1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// Jason Rohrer
// Noise.cpp
/**
*
* Noise generation implementation
*
*
* Created 11-3-99
* Mods:
* Jason Rohrer 12-20-2000 Changed genFractalNoise2d function to make
* it less blocky.
*
*/
#include "Noise.h"
// fills 2d image with ARGB noise
void genRandNoise2d(unsigned long *buff, int buffHigh, int buffWide) {
int *yOffset = new int[buffHigh];
// precalc y offsets
for( int y=0; y<buffHigh; y++) {
yOffset[y] = buffWide*y;
}
int red = (int)(255 * floatRand());
int green = (int)(255 * floatRand());
int blue = (int)(255 * floatRand());
int alpha = (int)(255 * floatRand());
for( int y=0; y<buffHigh; y++) {
int yContrib = yOffset[y];
for( int x=0; x<buffWide; x++) {
/* int red = (int)(255 * floatRand());
int green = (int)(255 * floatRand());
int blue = (int)(255 * floatRand());
int alpha = (int)(255 * floatRand());
*/
buff[ yContrib + x] = blue | green << 8 | red << 16 | alpha << 24;
}
}
delete [] yOffset;
}
// fills 2d image with ARGB fractal noise
void genFractalNoise2d(unsigned long *buff, int buffHigh, int buffWide) {
int *yOffset = new int[buffHigh];
// precalc y offsets
for( int y=0; y<buffHigh; y++) {
yOffset[y] = buffWide*y;
}
// first, zero out the buffer
for( int y=0; y<buffHigh; y++) {
int yContrib = yOffset[y];
for( int x=0; x<buffWide; x++) {
buff[ yContrib + x] = 127 | 127 << 8 | 127 << 16 | 127 << 24;
}
}
// walk through each frequency....
// weight in sum of frequencies by 1/f
// frequency in cycles per buffer width
// stop when frequency == buffer width
for( int f=1; f<=buffWide; f++) { // for each frequency
float weight = 1 / (float)(f);
// number of pixels in each cycle
int blockWide = (int)(buffWide * weight );
int blockHigh = (int)(buffHigh * weight );
int buffY = 0;
while( buffY < buffHigh ) {
int startY = buffY;
int buffX = 0;
while( buffX < buffWide ) {
buffY = startY;
int startX = buffX;
// color components for this block
// weighted by frequency
int red = (int)((255 * floatRand() - 127) * weight);
int green = (int)((255 * floatRand() - 127) * weight);
int blue = (int)((255 * floatRand() - 127) * weight);
int alpha = (int)((255 * floatRand() - 127) * weight);
int blockY = 0;
while( blockY < blockHigh) {
int blockX = 0;
buffX = startX;
while( blockX < blockWide) {
unsigned long buffARGB = buff[ yOffset[buffY] + buffX];
int buffAlpha = (buffARGB >> 24 & 0xFF) + alpha;
int buffRed = (buffARGB >> 16 & 0xFF) + red;
int buffGreen = (buffARGB >> 8 & 0xFF) + green;
int buffBlue = (buffARGB & 0xFF) + blue;
if( buffAlpha < 0) buffAlpha = 0;
if( buffRed < 0) buffRed = 0;
if( buffGreen < 0) buffGreen = 0;
if( buffBlue < 0) buffBlue = 0;
if( buffAlpha > 255) buffAlpha = 255;
if( buffRed > 255) buffRed = 255;
if( buffGreen > 255) buffGreen = 255;
if( buffBlue > 255) buffBlue = 255;
buff[ yOffset[buffY] + buffX] = buffBlue | buffGreen << 8 | buffRed << 16 | buffAlpha << 24;
buffX++;
blockX++;
if( buffX >= buffWide ) blockX = blockWide; // if this block hangs outside buffer
}
buffY++;
blockY++;
if( buffY >= buffHigh ) blockY = blockHigh; // if this block hangs outside buffer
}
buffX = startX + blockWide;
}
buffY = startY + blockHigh;
}
}
delete [] yOffset;
}
void genFractalNoise2d( double *inBuffer, int inWidth, int inMaxFrequency,
double inFPower, char inInterpolate, RandomSource *inRandSource ) {
RandomSource *r = inRandSource;
int w = inWidth;
int i, x, y, f;
int numPoints = w * w;
// first, fill surface with a uniform 0.5 value
for( i=0; i<numPoints; i++ ) {
inBuffer[i] = 0.5;
}
// for each frequency
for( f=2; f<=inMaxFrequency; f = f * 2 ) {
double weight = 1.0 / pow( f, inFPower );
int blockSize = (int)( (double)w / (double)f + 1.0 );
// one extra block to handle boundary case where x or y is 0
int numBlocks = (f+1) * (f+1);
double *blockValues = new double[ numBlocks ];
// assign a random value to each block
for( i=0; i<numBlocks; i++ ) {
blockValues[i] = ( 2 * r->getRandomDouble() - 1 ) * weight;
}
// now walk though 2d array and perform
// bilinear interpolation between blocks
for( y=0; y<w; y++ ) {
// handle boundary case by skipping first row of blocks
int yBlock = y / blockSize + 1;
double yWeight;
yWeight = (double)(y % blockSize) / blockSize;
for( x=0; x<w; x++ ) {
// handle boundary case by skipping first column of blocks
int xBlock = x / blockSize + 1;
double xWeight;
xWeight = (double)(x % blockSize) / blockSize;
// if interpolating take weighted sum with previous blocks
double value;
if( inInterpolate ) {
value =
xWeight *
( yWeight *
blockValues[ yBlock * f + xBlock ] +
(1-yWeight) *
blockValues[ (yBlock-1) * f + xBlock ] ) +
(1-xWeight) *
( yWeight *
blockValues[ yBlock * f + xBlock - 1 ] +
(1-yWeight) *
blockValues[ (yBlock-1) * f + xBlock - 1 ] );
}
else {
value =
blockValues[ yBlock * f + xBlock ];
}
// modulate current value by new value
inBuffer[ y * w + x ] += value;
// clip values as we go along
if( inBuffer[y * w + x] > 1.0 ) {
inBuffer[y * w + x] = 1.0;
}
else if( inBuffer[y * w + x] < 0.0 ) {
inBuffer[y * w + x] = 0.0;
}
}
}
delete [] blockValues;
}
}
void genFractalNoise( double *inBuffer, int inWidth, int inMaxFrequency,
double inFPower, char inInterpolate, RandomSource *inRandSource ) {
RandomSource *r = inRandSource;
int w = inWidth;
int i, x, f;
// first, fill array with uniform 0.5 values
for( i=0; i<w; i++ ) {
inBuffer[i] = 0.5;
}
// for each frequency
for( f=2; f<=inMaxFrequency; f = f * 2 ) {
double weight = 1.0 / pow( f, inFPower );
int blockSize = (int)( (double)w / (double)f + 1.0 );
// one extra block to handle boundary case where x is 0
int numBlocks = (f+1);
double *blockValues = new double[ numBlocks ];
// assign a random value to each block
for( i=0; i<numBlocks; i++ ) {
blockValues[i] = ( 2 * r->getRandomDouble() - 1 ) * weight;
}
// now walk though array and perform linear interpolation between blocks
for( x=0; x<w; x++ ) {
// handle boundary case by skipping first column of blocks
int xBlock = x / blockSize + 1;
double xWeight;
xWeight = (double)(x % blockSize) / blockSize;
// take weighted sum with previous blocks, but watch for
// boundary cases
double value;
if( inInterpolate ) {
value =
xWeight * blockValues[ xBlock ] +
(1-xWeight) * blockValues[ xBlock - 1 ];
}
else {
value =
blockValues[ xBlock ];
}
// modulate current value by new value
inBuffer[ x ] += value;
// clip values as we go along
if( inBuffer[x] > 1.0 ) {
inBuffer[x] = 1.0;
}
else if( inBuffer[x] < 0.0 ) {
inBuffer[x] = 0.0;
}
}
delete [] blockValues;
}
}
|