1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
|
#include "common.h"
#include "Timbre.h"
#include "Envelope.h"
#include "minorGems/util/SimpleVector.h"
#include <SDL/SDL.h>
#include <SDL/SDL_audio.h>
#include <math.h>
#include <stdlib.h>
// smoothly fade in particular tracks based on track fade level
// low value plays only first track... high value plays all tracks
extern double musicTrackFadeLevel;
int sampleRate = 22050;
//int sampleRate = 11025;
Image *musicImage = NULL;
int w, h;
// total number of samples played so far
int streamSamples = 0;
// offset into grid at start
// for testing
int gridStartOffset = 0;
// overal loudness of music
double musicLoudness = 1.0;
// one grid step in seconds
double gridStepDuration = 0.25;
int gridStepDurationInSamples = (int)( gridStepDuration * sampleRate );
double entireGridDuraton;
// c
double keyFrequency = 261.63;
int numTimbres = 9;
Timbre *musicTimbres[ 9 ];
int numEnvelopes = 9;
Envelope *musicEnvelopes[ 9 ];
class Note {
public:
// index into musicTimbres array
int mTimbreNumber;
// index into musicEnvelopes array
int mEnvelopeNumber;
int mScaleNoteNumber;
// additional loudness adjustment
// places note in stereo space
double mLoudnessLeft;
double mLoudnessRight;
// start time, in seconds from start of note grid
double mStartTime;
// duration in seconds
double mDuration;
// used when note is currently playing to track progress in note
// negative if we should wait before starting to play the note
int mCurrentSampleNumber;
// duration in samples
int mNumSamples;
};
// isomorphic to our music image, except only has an entry for each note
// start (all others, including grid spots that contain note continuations,
// are NULL)
// indexed as noteGrid[y][x]
Note ***noteGrid;
SimpleVector<Note*> currentlyPlayingNotes;
// need to synch these with audio thread
void setMusicLoudness( double inLoudness ) {
SDL_LockAudio();
musicLoudness = inLoudness;
SDL_UnlockAudio();
}
void restartMusic() {
SDL_LockAudio();
// return to beginning (and forget samples we've played so far)
streamSamples = 0;
// drop all currently-playing notes
currentlyPlayingNotes.deleteAll();
SDL_UnlockAudio();
}
// called by SDL to get more samples
void audioCallback( void *inUserData, Uint8 *inStream, int inLengthToFill ) {
// 2 bytes for each channel of stereo sample
int numSamples = inLengthToFill / 4;
Sint16 *samplesL = new Sint16[ numSamples ];
Sint16 *samplesR = new Sint16[ numSamples ];
// first, zero-out the buffer to prepare it for our sum of note samples
// each sample is 2 bytes
memset( samplesL, 0, 2 * numSamples );
memset( samplesR, 0, 2 * numSamples );
int i;
// hop through all grid steps that *start* in this stream buffer
// add notes that start during this stream buffer
// how far into stream buffer before we hit our first grid step?
int startOfFirstGridStep = streamSamples % gridStepDurationInSamples;
if( startOfFirstGridStep != 0 ) {
startOfFirstGridStep =
gridStepDurationInSamples - startOfFirstGridStep;
}
// hop from start of grid step to start of next grid step
// ignore samples in between, since notes don't start there,
// and all we're doing right now is finding notes that start
for( i=startOfFirstGridStep;
i<numSamples;
i += gridStepDurationInSamples ) {
// start of new grid position
// check for new notes that are starting
// map into our music image:
int x = ( streamSamples + i ) / gridStepDurationInSamples;
// wrap in image
x = x % w;
for( int y=0; y<h; y++ ) {
Note *note = noteGrid[y][x];
if( note != NULL ) {
// new note
currentlyPlayingNotes.push_back( note );
// start it
// set a delay for its start based on our position
// in this callback buffer
note->mCurrentSampleNumber = -i;
}
}
}
streamSamples += numSamples;
// loop over all current notes and add their samples to buffer
for( int n=0; n<currentlyPlayingNotes.size(); n++ ) {
Note *note = *( currentlyPlayingNotes.getElement( n ) );
int waveTableNumber = note->mScaleNoteNumber;
Timbre *timbre = musicTimbres[ note->mTimbreNumber ];
int tableLength = timbre->mWaveTableLengths[ waveTableNumber ];
Sint16 *waveTable = timbre->mWaveTable[ waveTableNumber ];
Envelope *env = musicEnvelopes[ note->mEnvelopeNumber ];
double *envLevels =
env->getEnvelope(
// index envelope by number of grid steps in note
note->mNumSamples / gridStepDurationInSamples );
double noteLoudnessL = note->mLoudnessLeft;
double noteLoudnessR = note->mLoudnessRight;
// do this outside inner loop
noteLoudnessL *= musicLoudness;
noteLoudnessR *= musicLoudness;
// factor in externally-set track fade level
// level from 0..(numTimbres)
double trackFadeInLevel = musicTrackFadeLevel * (numTimbres);
// level for this track based on trackFadeInLevel
double thisTrackLevel;
if( trackFadeInLevel >= note->mTimbreNumber + 1 ) {
// full volume
thisTrackLevel = 1.0;
}
else if( trackFadeInLevel > note->mTimbreNumber ) {
// linear fade in for this track
thisTrackLevel = trackFadeInLevel - (int)trackFadeInLevel;
}
else {
// track silent
thisTrackLevel = 0;
}
noteLoudnessL *= thisTrackLevel;
noteLoudnessR *= thisTrackLevel;
int noteStartInBuffer = 0;
int noteEndInBuffer = numSamples;
if( note->mCurrentSampleNumber < 0 ) {
// delay before note starts in this sample buffer
noteStartInBuffer = - note->mCurrentSampleNumber;
// we've taken account of the delay
note->mCurrentSampleNumber = 0;
}
char endNote = false;
int numSamplesLeftInNote =
note->mNumSamples - note->mCurrentSampleNumber;
if( noteStartInBuffer + numSamplesLeftInNote < noteEndInBuffer ) {
// note ends before end of buffer
noteEndInBuffer = noteStartInBuffer + numSamplesLeftInNote;
endNote = true;
}
int waveTablePos = note->mCurrentSampleNumber % tableLength;
int currentSampleNumber = note->mCurrentSampleNumber;
for( i=noteStartInBuffer; i != noteEndInBuffer; i++ ) {
double envelope = envLevels[ currentSampleNumber ];
double monoSample = envelope *
waveTable[ waveTablePos ];
samplesL[i] += (Sint16)( noteLoudnessL * monoSample );
samplesR[i] += (Sint16)( noteLoudnessR * monoSample );
currentSampleNumber ++;
waveTablePos ++;
// avoid using mod operator (%) in inner loop
// found with profiler
if( waveTablePos == tableLength ) {
// back to start of table
waveTablePos = 0;
}
}
note->mCurrentSampleNumber += ( noteEndInBuffer - noteStartInBuffer );
if( endNote ) {
// note ended in this buffer
currentlyPlayingNotes.deleteElement( n );
n--;
}
}
// now copy samples into Uint8 buffer
int streamPosition = 0;
for( i=0; i != numSamples; i++ ) {
Sint16 intSampleL = samplesL[i];
Sint16 intSampleR = samplesR[i];
inStream[ streamPosition ] = (Uint8)( intSampleL & 0xFF );
inStream[ streamPosition + 1 ] = (Uint8)( ( intSampleL >> 8 ) & 0xFF );
inStream[ streamPosition + 2 ] = (Uint8)( intSampleR & 0xFF );
inStream[ streamPosition + 3 ] = (Uint8)( ( intSampleR >> 8 ) & 0xFF );
streamPosition += 4;
}
delete [] samplesL;
delete [] samplesR;
}
// limit on n, based on Nyquist, when summing sine components
//int nLimit = (int)( sampleRate * M_PI );
// actually, this is way too many: it takes forever to compute
// use a lower limit instead
// This produces fine results (almost perfect square wave)
int nLimit = 40;
// square wave with period of 2pi
double squareWave( double inT ) {
double sum = 0;
for( int n=1; n<nLimit; n+=2 ) {
sum += 1.0/n * sin( n * inT );
}
return sum;
}
// sawtoot wave with period of 2pi
double sawWave( double inT ) {
double sum = 0;
for( int n=1; n<nLimit; n++ ) {
sum += 1.0/n * sin( n * inT );
}
return sum;
}
// white noise, ignores inT
double whiteNoise( double inT ) {
return 2.0 * ( rand() / (double)RAND_MAX ) - 1.0;
}
// white noise where each sample is averaged with last sample
// effectively a low-pass filter
double lastNoiseSample = 0;
double smoothedWhiteNoise( double inT ) {
// give double-weight to last sample to make it even smoother
lastNoiseSample = ( 2 * lastNoiseSample + whiteNoise( inT ) ) / 3;
return lastNoiseSample;
}
// square where each sample is averaged with last sample
// effectively a low-pass filter
double lastSquareSample = 0;
double smoothedSquareWave( double inT ) {
// give double-weight to last sample to make it even smoother
lastSquareSample = ( 4 * lastSquareSample + squareWave( inT ) ) / 5;
return lastSquareSample;
}
double harmonicSine( double inT ) {
return
0.5 * sin( inT )
+
0.25 * sin( 2 * inT )
+
0.125 * sin( 4 * inT );
}
double harmonicSaw( double inT ) {
return
0.5 * sawWave( inT )
+
0.25 * sawWave( 2 * inT )
+
0.125 * sawWave( 4 * inT );
}
void loadMusicImage( const char *inTGAFileName ) {
musicImage = readTGA( DATADIR"music", inTGAFileName );
w = musicImage->getWidth();
h = musicImage->getHeight();
// notes are in red and green channel
double *redChannel = musicImage->getChannel( 0 );
double *greenChannel = musicImage->getChannel( 1 );
entireGridDuraton = gridStepDuration * w;
// jump ahead in stream, if needed
streamSamples += gridStartOffset * gridStepDurationInSamples;
// blank line of pixels between timbres
int heightPerTimbre = (h+1) / numTimbres - 1;
// find the maximum number of simultaneous notes in the song
// take loudness into account
double maxNoteLoudnessInAColumn = 0;
int x, y;
for( x=0; x<w; x++ ) {
double noteLoudnessInColumnL = 0;
double noteLoudnessInColumnR = 0;
for( y=0; y<h; y++ ) {
int imageIndex = y * w + x;
// the note number in our scale
// scale starts over for each timbre, with blank line
// in between timbres
int noteNumber = (h - y - 1) % (heightPerTimbre + 1);
if( // not blank line between timbres
noteNumber < heightPerTimbre &&
// tone present in image
( redChannel[ imageIndex ] > 0 ||
greenChannel[ imageIndex ] > 0 ) ) {
noteLoudnessInColumnL += greenChannel[ imageIndex ];
noteLoudnessInColumnR += redChannel[ imageIndex ];
}
}
// pick loudest channel for this column and compare it to
// loudest column/channel seen so far
if( maxNoteLoudnessInAColumn < noteLoudnessInColumnL ) {
maxNoteLoudnessInAColumn = noteLoudnessInColumnL;
}
if( maxNoteLoudnessInAColumn < noteLoudnessInColumnR ) {
maxNoteLoudnessInAColumn = noteLoudnessInColumnR;
}
}
// divide loudness amoung timbres to avoid clipping
double loudnessPerTimbre = 1.0 / maxNoteLoudnessInAColumn;
// further adjust loudness per channel here as we construct
// each timbre.
// This is easier than tweaking loundness of a given part by hand
// using a painting program
musicTimbres[0] = new Timbre( sampleRate, 0.4 * loudnessPerTimbre,
keyFrequency / 2,
heightPerTimbre, sin );
musicTimbres[1] = new Timbre( sampleRate, 0.3 * loudnessPerTimbre,
keyFrequency,
heightPerTimbre, harmonicSine );
musicTimbres[2] = new Timbre( sampleRate, 0.2 * loudnessPerTimbre,
keyFrequency * 2,
heightPerTimbre, sin );
musicTimbres[3] = new Timbre( sampleRate, 0.6 * loudnessPerTimbre,
keyFrequency,
heightPerTimbre, sin );
musicTimbres[4] = new Timbre( sampleRate, loudnessPerTimbre,
keyFrequency,
heightPerTimbre, sin );
musicTimbres[5] = new Timbre( sampleRate, 0.7 * loudnessPerTimbre,
keyFrequency / 4,
heightPerTimbre, harmonicSaw );
musicTimbres[6] = new Timbre( sampleRate, 0.4 * loudnessPerTimbre,
keyFrequency,
heightPerTimbre, harmonicSaw );
musicTimbres[7] = new Timbre( sampleRate, 0.6 * loudnessPerTimbre,
keyFrequency,
heightPerTimbre, sin );
musicTimbres[8] = new Timbre( sampleRate, 0.4 * loudnessPerTimbre,
keyFrequency,
heightPerTimbre, sawWave );
// next, compute the longest note in the song
int maxNoteLength = 0;
for( y=0; y<h; y++ ) {
int currentNoteLength = 0;
for( x=0; x<w; x++ ) {
int imageIndex = y * w + x;
// the note number in our scale
// scale starts over for each timbre, with blank line
// in between timbres
int noteNumber = (h - y - 1) % (heightPerTimbre + 1);
if( // not blank line between timbres
noteNumber < heightPerTimbre &&
// tone present in image
( redChannel[ imageIndex ] > 0 ||
greenChannel[ imageIndex ] > 0 ) ) {
currentNoteLength ++;
}
else {
currentNoteLength = 0;
}
if( currentNoteLength > maxNoteLength ) {
maxNoteLength = currentNoteLength;
}
}
}
printf( "Max note length in song = %d\n", maxNoteLength );
musicEnvelopes[0] = new Envelope( 0.02, 0.98, 0, 0,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[1] = new Envelope( 0.1, 0.9, 0.0, 0.0,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[2] = new Envelope( 0.5, 0.5, 0.0, 0.0,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[3] = new Envelope( 0.02, 0.98, 0.0, 0.0,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[4] = new Envelope( 0.9, 0.0, 1.0, 0.1,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[5] = new Envelope( 0.25, 0.5, 1.0, 0.25,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[6] = new Envelope( 0.25, 0.7, 1.0, 0.05,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[7] = new Envelope( 0.02, 0.98, 0.0, 0.0,
maxNoteLength,
gridStepDurationInSamples );
musicEnvelopes[8] = new Envelope( 0.1, 0.9, 0.0, 0.0,
maxNoteLength,
gridStepDurationInSamples );
noteGrid = new Note**[ h ];
for( int y=0; y<h; y++ ) {
noteGrid[y] = new Note*[ w ];
// each row is one pitch for a given instrument
// thus, two consecutive pixels should be the same note
// handle this by tracking whether a note is playing or not
char notePlaying = false;
Note *noteStart = NULL;
for( int x=0; x<w; x++ ) {
int imageIndex = y * w + x;
// default to NULL
noteGrid[y][x] = NULL;
// the note number in our scale
// scale starts over for each timbre, with blank line
// in between timbres
int noteNumber = (h - y - 1) % (heightPerTimbre + 1);
if( // not blank line between timbres
noteNumber < heightPerTimbre &&
// tone present in image
( redChannel[ imageIndex ] > 0 ||
greenChannel[ imageIndex ] > 0 ) ) {
if( notePlaying ) {
// part of note that's already playing
// one more grid step
noteStart->mDuration += gridStepDuration;
noteStart->mNumSamples += gridStepDurationInSamples;
}
else {
// start a new note
noteGrid[y][x] = new Note();
noteGrid[y][x]->mScaleNoteNumber = noteNumber;
noteGrid[y][x]->mTimbreNumber =
y / ( heightPerTimbre + 1 );
// same as timbre number
noteGrid[y][x]->mEnvelopeNumber =
noteGrid[y][x]->mTimbreNumber;
// left loudness from green brightness
noteGrid[y][x]->mLoudnessLeft = greenChannel[ imageIndex ];
// right loudness from red brightness
noteGrid[y][x]->mLoudnessRight = redChannel[ imageIndex ];
noteGrid[y][x]->mStartTime = gridStepDuration * x;
// one grid step so far
noteGrid[y][x]->mDuration = gridStepDuration;
noteGrid[y][x]->mNumSamples = gridStepDurationInSamples;
// track if it needs to be continued
notePlaying = true;
noteStart = noteGrid[y][x];
}
}
else {
// no tone
if( notePlaying ) {
// stop it
notePlaying = false;
noteStart = NULL;
}
}
}
}
}
void startMusic( const char *inTGAFileName ) {
loadMusicImage( inTGAFileName );
SDL_AudioSpec audioFormat;
/* Set 16-bit stereo audio at 22Khz */
audioFormat.freq = sampleRate;
audioFormat.format = AUDIO_S16;
audioFormat.channels = 2;
audioFormat.samples = 512; /* A good value for games */
audioFormat.callback = audioCallback;
audioFormat.userdata = NULL;
/* Open the audio device and start playing sound! */
if( SDL_OpenAudio( &audioFormat, NULL ) < 0 ) {
printf( "Unable to open audio: %s\n", SDL_GetError() );
}
// set pause to 0 to start audio
SDL_PauseAudio(0);
}
void stopMusic() {
SDL_CloseAudio();
if( musicImage != NULL ) {
delete musicImage;
musicImage = NULL;
}
for( int y=0; y<h; y++ ) {
for( int x=0; x<w; x++ ) {
if( noteGrid[y][x] != NULL ) {
delete noteGrid[y][x];
}
}
delete [] noteGrid[y];
}
delete [] noteGrid;
int i;
for( i=0; i<numTimbres; i++ ) {
delete musicTimbres[i];
}
for( i=0; i<numEnvelopes; i++ ) {
delete musicEnvelopes[i];
}
}
|