1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/* md4.c - Functions to compute MD4 message digest
according to the definition of MD4 in RFC 1320 from April 1992.
Copyright (C) 2000,2003,2005 Bruce Guenter
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Based on the GNU C Library MD5 source code,
Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
#include <sys/types.h>
#include <string.h>
#include "sysdeps.h"
#include "md4.h"
#include "uint32.h"
#ifdef ENDIAN_MSB
# define SWAP(n) \
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#else
# define SWAP(n) (n)
#endif
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. (RFC 1320, 3.1: Step 1) */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/* Initialize structure containing state of computation.
(RFC 1320, 3.3: Step 3) */
void
md4_init_ctx (ctx)
struct md4_ctx *ctx;
{
ctx->A = 0x67452301;
ctx->B = 0xefcdab89;
ctx->C = 0x98badcfe;
ctx->D = 0x10325476;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
}
/* Put result from CTX in first 16 bytes following RESBUF. The result
must be in little endian byte order.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
void *
md4_read_ctx (ctx, resbuf)
const struct md4_ctx *ctx;
void *resbuf;
{
uint32_pack_lsb(ctx->A, resbuf);
uint32_pack_lsb(ctx->B, resbuf + 4);
uint32_pack_lsb(ctx->C, resbuf + 8);
uint32_pack_lsb(ctx->D, resbuf + 12);
return resbuf;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
void *
md4_finish_ctx (ctx, resbuf)
struct md4_ctx *ctx;
void *resbuf;
{
/* Take yet unprocessed bytes into account. */
md4_uint32 bytes = ctx->buflen;
md4_uint32 total0;
md4_uint32 total1;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
++ctx->total[1];
total0 = ctx->total[0];
total1 = ctx->total[1];
if (bytes >= 56) {
memcpy(ctx->buffer+bytes, fillbuf, 64-bytes);
md4_process_block(ctx->buffer, ctx);
memcpy(ctx->buffer, fillbuf+8, 56);
}
else
memcpy(ctx->buffer+bytes, fillbuf, 56-bytes);
/* Put the 64-bit file length in *bits* at the end of the buffer. */
uint32_pack_lsb(total0 << 3, (unsigned char*)&ctx->buffer[56]);
uint32_pack_lsb((total1 << 3) | (total0 >> 29), (unsigned char*)&ctx->buffer[60]);
/* Process last bytes. */
md4_process_block (ctx->buffer, ctx);
return md4_read_ctx (ctx, resbuf);
}
void
md4_process_bytes (buffer, len, ctx)
const void *buffer;
size_t len;
struct md4_ctx *ctx;
{
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0)
{
size_t left_over = ctx->buflen;
size_t add = 64 - left_over;
if (add > len)
add = len;
memcpy (&ctx->buffer[left_over], buffer, add);
if (left_over + add == 64)
md4_process_block (ctx->buffer, ctx);
ctx->buflen += add;
buffer = (const char *) buffer + add;
len -= add;
}
/* Process available complete blocks. */
while (len > 64)
{
md4_process_block (buffer, ctx);
buffer = (const char *) buffer + 64;
len -= 64;
}
/* Move remaining bytes in internal buffer. */
if (len > 0)
{
memcpy (ctx->buffer, buffer, len);
ctx->buflen = len;
}
}
/* Compute MD4 message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
void *
md4_buffer (buffer, len, resblock)
const char *buffer;
size_t len;
void *resblock;
{
struct md4_ctx ctx;
/* Initialize the computation context. */
md4_init_ctx (&ctx);
/* Process whole buffer but last len % 64 bytes. */
md4_process_bytes (buffer, len, &ctx);
/* Put result in desired memory area. */
return md4_finish_ctx (&ctx, resblock);
}
/* These are the four functions used in the four steps of the MD4 algorithm
and defined in the RFC 1320. The first function is a little bit optimized
(as found in Colin Plumbs public domain MD5 implementation). */
/* #define FF(X,Y,Z) ((X & Y) | (~X & Z)) */
#define FF(X,Y,Z) (Z ^ (X & (Y ^ Z)))
#define FG(X,Y,Z) ((X & Y) | (X & Z) | (Y & Z))
#define FH(X,Y,Z) (X ^ Y ^ Z)
/* Process 64 bytes of BUFFER, accumulating context into CTX. */
void
md4_process_block (buffer, ctx)
const void *buffer;
struct md4_ctx *ctx;
{
md4_uint32 correct_words[16];
const md4_uint32 *words = buffer;
md4_uint32 A = ctx->A;
md4_uint32 B = ctx->B;
md4_uint32 C = ctx->C;
md4_uint32 D = ctx->D;
md4_uint32 *cwp = correct_words;
/* First increment the byte count. RFC 1320 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] += 64;
if (ctx->total[0] < 64)
++ctx->total[1];
/* First round: using the given function, the context and a constant
the next context is computed. Because the algorithms processing
unit is a 32-bit word and it is determined to work on words in
little endian byte order we perhaps have to change the byte order
before the computation. To reduce the work for the next steps
we store the swapped words in the array CORRECT_WORDS. */
#define OP(a, b, c, d, s) \
do \
{ \
a += FF (b, c, d) + (*cwp++ = SWAP (*words)); \
++words; \
CYCLIC (a, s); \
} \
while (0)
/* It is unfortunate that C does not provide an operator for
cyclic rotation. Hope the C compiler is smart enough. */
#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
/* Round 1. */
OP(A,B,C,D, 3); OP(D,A,B,C, 7); OP(C,D,A,B,11); OP(B,C,D,A,19);
OP(A,B,C,D, 3); OP(D,A,B,C, 7); OP(C,D,A,B,11); OP(B,C,D,A,19);
OP(A,B,C,D, 3); OP(D,A,B,C, 7); OP(C,D,A,B,11); OP(B,C,D,A,19);
OP(A,B,C,D, 3); OP(D,A,B,C, 7); OP(C,D,A,B,11); OP(B,C,D,A,19);
/* For the second to fourth round we have the possibly swapped words
in CORRECT_WORDS. Redefine the macro to take an additional first
argument specifying the function to use. */
#undef OP
#define OP(f, a, b, c, d, k, s, T) \
do \
{ \
a += f (b, c, d) + correct_words[k] + T; \
CYCLIC (a, s); \
} \
while (0)
/* Round 2. */
#define OP2(a,b,c,d,k,s) OP(FG,a,b,c,d,k,s,0x5A827999)
OP2 (A, B, C, D, 0, 3);
OP2 (D, A, B, C, 4, 5);
OP2 (C, D, A, B, 8, 9);
OP2 (B, C, D, A, 12, 13);
OP2 (A, B, C, D, 1, 3);
OP2 (D, A, B, C, 5, 5);
OP2 (C, D, A, B, 9, 9);
OP2 (B, C, D, A, 13, 13);
OP2 (A, B, C, D, 2, 3);
OP2 (D, A, B, C, 6, 5);
OP2 (C, D, A, B, 10, 9);
OP2 (B, C, D, A, 14, 13);
OP2 (A, B, C, D, 3, 3);
OP2 (D, A, B, C, 7, 5);
OP2 (C, D, A, B, 11, 9);
OP2 (B, C, D, A, 15, 13);
/* Round 3. */
#define OP3(a,b,c,d,k,s) OP(FH,a,b,c,d,k,s,0x6ED9EBA1)
OP3 (A, B, C, D, 0, 3);
OP3 (D, A, B, C, 8, 9);
OP3 (C, D, A, B, 4, 11);
OP3 (B, C, D, A, 12, 15);
OP3 (A, B, C, D, 2, 3);
OP3 (D, A, B, C, 10, 9);
OP3 (C, D, A, B, 6, 11);
OP3 (B, C, D, A, 14, 15);
OP3 (A, B, C, D, 1, 3);
OP3 (D, A, B, C, 9, 9);
OP3 (C, D, A, B, 5, 11);
OP3 (B, C, D, A, 13, 15);
OP3 (A, B, C, D, 3, 3);
OP3 (D, A, B, C, 11, 9);
OP3 (C, D, A, B, 7, 11);
OP3 (B, C, D, A, 15, 15);
/* Put checksum in context given as argument. */
ctx->A += A;
ctx->B += B;
ctx->C += C;
ctx->D += D;
}
#ifdef SELFTEST_MAIN
#include <stdio.h>
static void MDString(const char* s)
{
struct md4_ctx ctx;
unsigned char digest[16];
unsigned int len = strlen(s);
unsigned i;
md4_init_ctx(&ctx);
md4_process_bytes(s, len, &ctx);
md4_finish_ctx(&ctx, digest);
printf("MD4 (\"%s\") = ", s);
for (i = 0; i < 16; i++) printf("%02x", digest[i]);
printf("\n");
}
MAIN
{
MDString("");
MDString("a");
MDString("abc");
MDString("message digest");
MDString("abcdefghijklmnopqrstuvwxyz");
MDString("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
MDString("1234567890123456789012345678901234567890"
"1234567890123456789012345678901234567890");
}
#endif
#ifdef SELFTEST_EXP
MD4 ("") = 31d6cfe0d16ae931b73c59d7e0c089c0
MD4 ("a") = bde52cb31de33e46245e05fbdbd6fb24
MD4 ("abc") = a448017aaf21d8525fc10ae87aa6729d
MD4 ("message digest") = d9130a8164549fe818874806e1c7014b
MD4 ("abcdefghijklmnopqrstuvwxyz") = d79e1c308aa5bbcdeea8ed63df412da9
MD4 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") = 043f8582f241db351ce627e153e7f0e4
MD4 ("12345678901234567890123456789012345678901234567890123456789012345678901234567890") = e33b4ddc9c38f2199c3e7b164fcc0536
#endif
|