1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
|
/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
/*
* For an overview, see doc/design/qp-trie.md
*/
#include <inttypes.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#if FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
#include <sys/mman.h>
#include <unistd.h>
#endif
#include <isc/atomic.h>
#include <isc/buffer.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/mutex.h>
#include <isc/refcount.h>
#include <isc/result.h>
#include <isc/rwlock.h>
#include <isc/tid.h>
#include <isc/time.h>
#include <isc/types.h>
#include <isc/urcu.h>
#include <isc/util.h>
#include <dns/fixedname.h>
#include <dns/log.h>
#include <dns/name.h>
#include <dns/qp.h>
#include <dns/types.h>
#include "qp_p.h"
#ifndef DNS_QP_LOG_STATS
#define DNS_QP_LOG_STATS 1
#endif
#ifndef DNS_QP_TRACE
#define DNS_QP_TRACE 0
#endif
/*
* very basic garbage collector statistics
*
* XXXFANF for now we're logging GC times, but ideally we should
* accumulate stats more quietly and report via the statschannel
*/
static atomic_uint_fast64_t compact_time;
static atomic_uint_fast64_t recycle_time;
static atomic_uint_fast64_t rollback_time;
/* for LOG_STATS() format strings */
#define PRItime " %" PRIu64 " ns "
#if DNS_QP_LOG_STATS
#define LOG_STATS(...) \
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DATABASE, DNS_LOGMODULE_QP, \
ISC_LOG_DEBUG(1), __VA_ARGS__)
#else
#define LOG_STATS(...)
#endif
#if DNS_QP_TRACE
/*
* TRACE is generally used in allocation-related functions so it doesn't
* trace very high-frequency ops
*/
#define TRACE(fmt, ...) \
do { \
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(7))) { \
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DATABASE, \
DNS_LOGMODULE_QP, ISC_LOG_DEBUG(7), \
"%s:%d:%s(qp %p uctx \"%s\"):t%u: " fmt, \
__FILE__, __LINE__, __func__, qp, \
qp ? TRIENAME(qp) : "(null)", isc_tid(), \
##__VA_ARGS__); \
} \
} while (0)
#else
#define TRACE(...)
#endif
/***********************************************************************
*
* converting DNS names to trie keys
*/
/*
* Number of distinct byte values, i.e. 256
*/
#define BYTE_VALUES (UINT8_MAX + 1)
/*
* Lookup table mapping bytes in DNS names to bit positions, used
* by dns_qpkey_fromname() to convert DNS names to qp-trie keys.
*
* Each element holds one or two bit positions, bit_one in the
* lower half and bit_two in the upper half.
*
* For common hostname characters, bit_two is zero (which cannot
* be a valid bit position).
*
* For others, bit_one is the escape bit, and bit_two is the
* position of the character within the escaped range.
*/
uint16_t dns_qp_bits_for_byte[BYTE_VALUES] = { 0 };
/*
* And the reverse, mapping bit positions to characters, so the tests
* can print diagnostics involving qp-trie keys.
*
* This table only handles the first bit in an escape sequence; we
* arrange that we can calculate the byte value for both bits by
* adding the the second bit to the first bit's byte value.
*/
uint8_t dns_qp_byte_for_bit[SHIFT_OFFSET] = { 0 };
/*
* Fill in the lookup tables at program startup. (It doesn't matter
* when this is initialized relative to other startup code.)
*/
static void
initialize_bits_for_byte(void) ISC_CONSTRUCTOR;
/*
* The bit positions for bytes inside labels have to be between
* SHIFT_BITMAP and SHIFT_OFFSET. (SHIFT_NOBYTE separates labels.)
*
* Each byte range in between common hostname characters has a different
* escape character, to preserve the correct lexical order.
*
* Escaped byte ranges mostly fit into the space available in the
* bitmap, except for those above 'z' (which is mostly bytes with the
* top bit set). So, when we reach the end of the bitmap we roll over
* to the next escape character.
*
* After filling the table we ensure that the bit positions for
* hostname characters and escape characters all fit.
*/
static void
initialize_bits_for_byte(void) {
/* zero common character marker not a valid shift position */
INSIST(0 < SHIFT_BITMAP);
/* first bit is common byte or escape byte */
dns_qpshift_t bit_one = SHIFT_BITMAP;
/* second bit is position in escaped range */
dns_qpshift_t bit_two = SHIFT_BITMAP;
bool escaping = true;
for (unsigned int byte = 0; byte < BYTE_VALUES; byte++) {
if (qp_common_character(byte)) {
escaping = false;
bit_one++;
dns_qp_byte_for_bit[bit_one] = byte;
dns_qp_bits_for_byte[byte] = bit_one;
} else if ('A' <= byte && byte <= 'Z') {
/* map upper case to lower case */
dns_qpshift_t after_esc = bit_one + 1;
dns_qpshift_t skip_punct = 'a' - '_';
dns_qpshift_t letter = byte - 'A';
dns_qpshift_t bit = after_esc + skip_punct + letter;
dns_qp_bits_for_byte[byte] = bit;
/* to simplify reverse conversion */
bit_two++;
} else {
/* non-hostname characters need to be escaped */
if (!escaping || bit_two >= SHIFT_OFFSET) {
escaping = true;
bit_one++;
dns_qp_byte_for_bit[bit_one] = byte;
bit_two = SHIFT_BITMAP;
}
dns_qp_bits_for_byte[byte] = bit_two << 8 | bit_one;
bit_two++;
}
}
ENSURE(bit_one < SHIFT_OFFSET);
}
/*
* Convert a DNS name into a trie lookup key.
*
* Returns the length of the key.
*
* For performance we get our hands dirty in the guts of the name.
*
* We don't worry about the distinction between absolute and relative
* names. When the trie is only used with absolute names, the first byte
* of the key will always be SHIFT_NOBYTE and it will always be skipped
* when traversing the trie. So keeping the root label costs little, and
* it allows us to support tries of relative names too. In fact absolute
* and relative names can be mixed in the same trie without causing
* confusion, because the presence or absence of the initial
* SHIFT_NOBYTE in the key disambiguates them (exactly like a trailing
* dot in a zone file).
*/
size_t
dns_qpkey_fromname(dns_qpkey_t key, const dns_name_t *name) {
size_t len, label;
dns_fixedname_t fixed;
REQUIRE(ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
if (name->labels == 0) {
key[0] = SHIFT_NOBYTE;
return 0;
}
if (name->offsets == NULL) {
dns_name_t *clone = dns_fixedname_initname(&fixed);
dns_name_clone(name, clone);
name = clone;
}
len = 0;
label = name->labels;
while (label-- > 0) {
const uint8_t *ldata = name->ndata + name->offsets[label];
size_t label_len = *ldata++;
while (label_len-- > 0) {
uint16_t bits = dns_qp_bits_for_byte[*ldata++];
key[len++] = bits & 0xFF; /* bit_one */
if ((bits >> 8) != 0) { /* escape? */
key[len++] = bits >> 8; /* bit_two */
}
}
/* label terminator */
key[len++] = SHIFT_NOBYTE;
}
/* mark end with a double NOBYTE */
key[len] = SHIFT_NOBYTE;
ENSURE(len < sizeof(dns_qpkey_t));
return len;
}
void
dns_qpkey_toname(const dns_qpkey_t key, size_t keylen, dns_name_t *name) {
size_t locs[DNS_NAME_MAXLABELS];
size_t loc = 0, opos = 0;
size_t offset;
REQUIRE(ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
REQUIRE(name->buffer != NULL);
REQUIRE(name->offsets != NULL);
dns_name_reset(name);
if (keylen == 0) {
return;
}
/* Scan the key looking for label boundaries */
for (offset = 0; offset <= keylen; offset++) {
INSIST(key[offset] >= SHIFT_NOBYTE &&
key[offset] < SHIFT_OFFSET);
INSIST(loc < DNS_NAME_MAXLABELS);
if (qpkey_bit(key, keylen, offset) == SHIFT_NOBYTE) {
if (qpkey_bit(key, keylen, offset + 1) == SHIFT_NOBYTE)
{
locs[loc] = offset + 1;
goto scanned;
}
locs[loc++] = offset + 1;
} else if (offset == 0) {
/* This happens for a relative name */
locs[loc++] = offset;
}
}
UNREACHABLE();
scanned:
/*
* In the key the labels are encoded in reverse order, so
* we step backward through the label boundaries, then forward
* through the labels, to create the DNS wire format data.
*/
name->labels = loc;
while (loc-- > 0) {
uint8_t len = 0, *lenp = NULL;
/* Add a length byte to the name data and set an offset */
lenp = isc_buffer_used(name->buffer);
isc_buffer_putuint8(name->buffer, 0);
name->offsets[opos++] = name->length++;
/* Convert from escaped byte ranges to ASCII */
for (offset = locs[loc]; offset < locs[loc + 1] - 1; offset++) {
uint8_t bit = qpkey_bit(key, keylen, offset);
uint8_t byte = dns_qp_byte_for_bit[bit];
if (qp_common_character(byte)) {
isc_buffer_putuint8(name->buffer, byte);
} else {
byte += key[++offset] - SHIFT_BITMAP;
isc_buffer_putuint8(name->buffer, byte);
}
len++;
}
name->length += len;
*lenp = len;
}
/* Add a root label for absolute names */
if (key[0] == SHIFT_NOBYTE) {
name->attributes.absolute = true;
isc_buffer_putuint8(name->buffer, 0);
name->offsets[opos++] = name->length++;
name->labels++;
}
name->ndata = isc_buffer_base(name->buffer);
}
/*
* Sentinel value for equal keys
*/
#define QPKEY_EQUAL (~(size_t)0)
/*
* Compare two keys and return the offset where they differ.
*
* This offset is used to work out where a trie search diverged: when one
* of the keys is in the trie and one is not, the common prefix (up to the
* offset) is the part of the unknown key that exists in the trie. This
* matters for adding new keys or finding neighbours of missing keys.
*
* When the keys are different lengths it is possible (but unwise) for
* the longer key to be the same as the shorter key but with superfluous
* trailing SHIFT_NOBYTE elements. This makes the keys equal for the
* purpose of traversing the trie.
*/
static size_t
qpkey_compare(const dns_qpkey_t key_a, const size_t keylen_a,
const dns_qpkey_t key_b, const size_t keylen_b) {
size_t keylen = ISC_MAX(keylen_a, keylen_b);
for (size_t offset = 0; offset < keylen; offset++) {
if (qpkey_bit(key_a, keylen_a, offset) !=
qpkey_bit(key_b, keylen_b, offset))
{
return offset;
}
}
return QPKEY_EQUAL;
}
/***********************************************************************
*
* allocator wrappers
*/
#if FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
/*
* Optionally (for debugging) during a copy-on-write transaction, use
* memory protection to ensure that the shared chunks are not modified.
* Once a chunk becomes shared, it remains read-only until it is freed.
* POSIX says we have to use mmap() to get an allocation that we can
* definitely pass to mprotect().
*/
static size_t
chunk_size_raw(void) {
size_t size = (size_t)sysconf(_SC_PAGE_SIZE);
return ISC_MAX(size, QP_CHUNK_BYTES);
}
static void *
chunk_get_raw(dns_qp_t *qp) {
if (qp->write_protect) {
size_t size = chunk_size_raw();
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
RUNTIME_CHECK(ptr != MAP_FAILED);
return ptr;
} else {
return isc_mem_allocate(qp->mctx, QP_CHUNK_BYTES);
}
}
static void
chunk_free_raw(dns_qp_t *qp, void *ptr) {
if (qp->write_protect) {
RUNTIME_CHECK(munmap(ptr, chunk_size_raw()) == 0);
} else {
isc_mem_free(qp->mctx, ptr);
}
}
static void *
chunk_shrink_raw(dns_qp_t *qp, void *ptr, size_t bytes) {
if (qp->write_protect) {
return ptr;
} else {
return isc_mem_reallocate(qp->mctx, ptr, bytes);
}
}
static void
write_protect(dns_qp_t *qp, dns_qpchunk_t chunk) {
if (qp->write_protect) {
/* see transaction_open() wrt this special case */
if (qp->transaction_mode == QP_WRITE && chunk == qp->bump) {
return;
}
TRACE("chunk %u", chunk);
void *ptr = qp->base->ptr[chunk];
size_t size = chunk_size_raw();
RUNTIME_CHECK(mprotect(ptr, size, PROT_READ) >= 0);
}
}
#else
#define chunk_get_raw(qp) isc_mem_allocate(qp->mctx, QP_CHUNK_BYTES)
#define chunk_free_raw(qp, ptr) isc_mem_free(qp->mctx, ptr)
#define chunk_shrink_raw(qp, ptr, size) isc_mem_reallocate(qp->mctx, ptr, size)
#define write_protect(qp, chunk)
#endif
/***********************************************************************
*
* allocator
*/
/*
* When we reuse the bump chunk across multiple write transactions,
* it can have an immutable prefix and a mutable suffix.
*/
static inline bool
cells_immutable(dns_qp_t *qp, dns_qpref_t ref) {
dns_qpchunk_t chunk = ref_chunk(ref);
dns_qpcell_t cell = ref_cell(ref);
if (chunk == qp->bump) {
return cell < qp->fender;
} else {
return qp->usage[chunk].immutable;
}
}
/*
* Create a fresh bump chunk and allocate some twigs from it.
*/
static dns_qpref_t
chunk_alloc(dns_qp_t *qp, dns_qpchunk_t chunk, dns_qpweight_t size) {
INSIST(qp->base->ptr[chunk] == NULL);
INSIST(qp->usage[chunk].used == 0);
INSIST(qp->usage[chunk].free == 0);
qp->base->ptr[chunk] = chunk_get_raw(qp);
qp->usage[chunk] = (qp_usage_t){ .exists = true, .used = size };
qp->used_count += size;
qp->bump = chunk;
qp->fender = 0;
if (qp->write_protect) {
TRACE("chunk %u base %p", chunk, qp->base->ptr[chunk]);
}
return make_ref(chunk, 0);
}
/*
* This is used to grow the chunk arrays when they fill up. If the old
* base array is in use by readers, we must make a clone, otherwise we
* can reallocate in place.
*
* The isc_refcount_init() and qpbase_unref() in this function are a pair.
*/
static void
realloc_chunk_arrays(dns_qp_t *qp, dns_qpchunk_t newmax) {
size_t oldptrs = sizeof(qp->base->ptr[0]) * qp->chunk_max;
size_t newptrs = sizeof(qp->base->ptr[0]) * newmax;
size_t size = STRUCT_FLEX_SIZE(qp->base, ptr, newmax);
if (qp->base == NULL || qpbase_unref(qp)) {
qp->base = isc_mem_reallocate(qp->mctx, qp->base, size);
} else {
dns_qpbase_t *oldbase = qp->base;
qp->base = isc_mem_allocate(qp->mctx, size);
memmove(&qp->base->ptr[0], &oldbase->ptr[0], oldptrs);
}
memset(&qp->base->ptr[qp->chunk_max], 0, newptrs - oldptrs);
isc_refcount_init(&qp->base->refcount, 1);
qp->base->magic = QPBASE_MAGIC;
/* usage array is exclusive to the writer */
size_t oldusage = sizeof(qp->usage[0]) * qp->chunk_max;
size_t newusage = sizeof(qp->usage[0]) * newmax;
qp->usage = isc_mem_reallocate(qp->mctx, qp->usage, newusage);
memset(&qp->usage[qp->chunk_max], 0, newusage - oldusage);
qp->chunk_max = newmax;
TRACE("qpbase %p usage %p max %u", qp->base, qp->usage, qp->chunk_max);
}
/*
* There was no space in the bump chunk, so find a place to put a fresh
* chunk in the chunk arrays, then allocate some twigs from it.
*/
static dns_qpref_t
alloc_slow(dns_qp_t *qp, dns_qpweight_t size) {
dns_qpchunk_t chunk;
for (chunk = 0; chunk < qp->chunk_max; chunk++) {
if (!qp->usage[chunk].exists) {
return chunk_alloc(qp, chunk, size);
}
}
ENSURE(chunk == qp->chunk_max);
realloc_chunk_arrays(qp, GROWTH_FACTOR(chunk));
return chunk_alloc(qp, chunk, size);
}
/*
* Ensure we are using a fresh bump chunk.
*/
static void
alloc_reset(dns_qp_t *qp) {
(void)alloc_slow(qp, 0);
}
/*
* Allocate some fresh twigs. This is the bump allocator fast path.
*/
static inline dns_qpref_t
alloc_twigs(dns_qp_t *qp, dns_qpweight_t size) {
dns_qpchunk_t chunk = qp->bump;
dns_qpcell_t cell = qp->usage[chunk].used;
if (cell + size <= QP_CHUNK_SIZE) {
qp->usage[chunk].used += size;
qp->used_count += size;
return make_ref(chunk, cell);
} else {
return alloc_slow(qp, size);
}
}
/*
* Record that some twigs are no longer being used, and if possible
* zero them to ensure that there isn't a spurious double detach when
* the chunk is later recycled.
*
* Returns true if the twigs were immediately destroyed.
*
* NOTE: the caller is responsible for attaching or detaching any
* leaves as required.
*/
static inline bool
free_twigs(dns_qp_t *qp, dns_qpref_t twigs, dns_qpweight_t size) {
dns_qpchunk_t chunk = ref_chunk(twigs);
qp->free_count += size;
qp->usage[chunk].free += size;
ENSURE(qp->free_count <= qp->used_count);
ENSURE(qp->usage[chunk].free <= qp->usage[chunk].used);
if (cells_immutable(qp, twigs)) {
qp->hold_count += size;
ENSURE(qp->free_count >= qp->hold_count);
return false;
} else {
zero_twigs(ref_ptr(qp, twigs), size);
return true;
}
}
/*
* When some twigs have been copied, and free_twigs() could not
* immediately destroy the old copy, we need to update the refcount
* on any leaves that were duplicated.
*/
static void
attach_twigs(dns_qp_t *qp, dns_qpnode_t *twigs, dns_qpweight_t size) {
for (dns_qpweight_t pos = 0; pos < size; pos++) {
if (node_tag(&twigs[pos]) == LEAF_TAG) {
attach_leaf(qp, &twigs[pos]);
}
}
}
/***********************************************************************
*
* chunk reclamation
*/
/*
* Is any of this chunk still in use?
*/
static inline dns_qpcell_t
chunk_usage(dns_qp_t *qp, dns_qpchunk_t chunk) {
return qp->usage[chunk].used - qp->usage[chunk].free;
}
/*
* We remove each empty chunk from the total counts when the chunk is
* freed, or when it is scheduled for safe memory reclamation. We check
* the chunk's phase to avoid discounting it twice in the latter case.
*/
static void
chunk_discount(dns_qp_t *qp, dns_qpchunk_t chunk) {
if (qp->usage[chunk].discounted) {
return;
}
INSIST(qp->used_count >= qp->usage[chunk].used);
INSIST(qp->free_count >= qp->usage[chunk].free);
qp->used_count -= qp->usage[chunk].used;
qp->free_count -= qp->usage[chunk].free;
qp->usage[chunk].discounted = true;
}
/*
* When a chunk is being recycled, we need to detach any leaves that
* remain, and free any `base` arrays that have been marked as unused.
*/
static void
chunk_free(dns_qp_t *qp, dns_qpchunk_t chunk) {
if (qp->write_protect) {
TRACE("chunk %u base %p", chunk, qp->base->ptr[chunk]);
}
dns_qpnode_t *n = qp->base->ptr[chunk];
for (dns_qpcell_t count = qp->usage[chunk].used; count > 0;
count--, n++)
{
if (node_tag(n) == LEAF_TAG && node_pointer(n) != NULL) {
detach_leaf(qp, n);
} else if (count > 1 && reader_valid(n)) {
dns_qpreader_t qpr;
unpack_reader(&qpr, n);
/* pairs with dns_qpmulti_commit() */
if (qpbase_unref(&qpr)) {
isc_mem_free(qp->mctx, qpr.base);
}
}
}
chunk_discount(qp, chunk);
chunk_free_raw(qp, qp->base->ptr[chunk]);
qp->base->ptr[chunk] = NULL;
qp->usage[chunk] = (qp_usage_t){};
}
/*
* Free any chunks that we can while a trie is in use.
*/
static void
recycle(dns_qp_t *qp) {
unsigned int free = 0;
isc_nanosecs_t start = isc_time_monotonic();
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && !qp->usage[chunk].immutable)
{
chunk_free(qp, chunk);
free++;
}
}
isc_nanosecs_t time = isc_time_monotonic() - start;
atomic_fetch_add_relaxed(&recycle_time, time);
if (free > 0) {
LOG_STATS("qp recycle" PRItime "free %u chunks", time, free);
LOG_STATS("qp recycle leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
}
/*
* asynchronous cleanup
*/
static void
reclaim_chunks_cb(struct rcu_head *arg) {
qp_rcuctx_t *rcuctx = caa_container_of(arg, qp_rcuctx_t, rcu_head);
REQUIRE(QPRCU_VALID(rcuctx));
dns_qpmulti_t *multi = rcuctx->multi;
REQUIRE(QPMULTI_VALID(multi));
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
REQUIRE(QP_VALID(qp));
unsigned int free = 0;
isc_nanosecs_t start = isc_time_monotonic();
for (unsigned int i = 0; i < rcuctx->count; i++) {
dns_qpchunk_t chunk = rcuctx->chunk[i];
if (qp->usage[chunk].snapshot) {
/* cleanup when snapshot is destroyed */
qp->usage[chunk].snapfree = true;
} else {
chunk_free(qp, chunk);
free++;
}
}
isc_mem_putanddetach(&rcuctx->mctx, rcuctx,
STRUCT_FLEX_SIZE(rcuctx, chunk, rcuctx->count));
isc_nanosecs_t time = isc_time_monotonic() - start;
recycle_time += time;
if (free > 0) {
LOG_STATS("qp reclaim" PRItime "free %u chunks", time, free);
LOG_STATS("qp reclaim leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
UNLOCK(&multi->mutex);
}
/*
* At the end of a transaction, schedule empty but immutable chunks
* for reclamation later.
*/
static void
reclaim_chunks(dns_qpmulti_t *multi) {
dns_qp_t *qp = &multi->writer;
unsigned int count = 0;
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && qp->usage[chunk].immutable &&
!qp->usage[chunk].discounted)
{
count++;
}
}
if (count == 0) {
return;
}
qp_rcuctx_t *rcuctx =
isc_mem_get(qp->mctx, STRUCT_FLEX_SIZE(rcuctx, chunk, count));
*rcuctx = (qp_rcuctx_t){
.magic = QPRCU_MAGIC,
.multi = multi,
.count = count,
};
isc_mem_attach(qp->mctx, &rcuctx->mctx);
unsigned int i = 0;
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && qp->usage[chunk].immutable &&
!qp->usage[chunk].discounted)
{
rcuctx->chunk[i++] = chunk;
chunk_discount(qp, chunk);
}
}
call_rcu(&rcuctx->rcu_head, reclaim_chunks_cb);
LOG_STATS("qp will reclaim %u chunks", count);
}
/*
* When a snapshot is destroyed, clean up chunks that need free()ing
* and are not used by any remaining snapshots.
*/
static void
marksweep_chunks(dns_qpmulti_t *multi) {
unsigned int free = 0;
isc_nanosecs_t start = isc_time_monotonic();
dns_qp_t *qpw = &multi->writer;
for (dns_qpsnap_t *qps = ISC_LIST_HEAD(multi->snapshots); qps != NULL;
qps = ISC_LIST_NEXT(qps, link))
{
for (dns_qpchunk_t chunk = 0; chunk < qps->chunk_max; chunk++) {
if (qps->base->ptr[chunk] != NULL) {
INSIST(qps->base->ptr[chunk] ==
qpw->base->ptr[chunk]);
qpw->usage[chunk].snapmark = true;
}
}
}
for (dns_qpchunk_t chunk = 0; chunk < qpw->chunk_max; chunk++) {
qpw->usage[chunk].snapshot = qpw->usage[chunk].snapmark;
qpw->usage[chunk].snapmark = false;
if (qpw->usage[chunk].snapfree && !qpw->usage[chunk].snapshot) {
chunk_free(qpw, chunk);
free++;
}
}
isc_nanosecs_t time = isc_time_monotonic() - start;
recycle_time += time;
if (free > 0) {
LOG_STATS("qp marksweep" PRItime "free %u chunks", time, free);
LOG_STATS(
"qp marksweep leaf %u live %u used %u free %u hold %u",
qpw->leaf_count, qpw->used_count - qpw->free_count,
qpw->used_count, qpw->free_count, qpw->hold_count);
}
}
/***********************************************************************
*
* garbage collector
*/
/*
* Move a branch node's twigs to the `bump` chunk, for copy-on-write
* or for garbage collection. We don't update the node in place
* because `compact_recursive()` does not ensure the node itself is
* mutable until after it discovers evacuation was necessary.
*
* If free_twigs() could not immediately destroy the old twigs, we have
* to re-attach to any leaves.
*/
static dns_qpref_t
evacuate(dns_qp_t *qp, dns_qpnode_t *n) {
dns_qpweight_t size = branch_twigs_size(n);
dns_qpref_t old_ref = branch_twigs_ref(n);
dns_qpref_t new_ref = alloc_twigs(qp, size);
dns_qpnode_t *old_twigs = ref_ptr(qp, old_ref);
dns_qpnode_t *new_twigs = ref_ptr(qp, new_ref);
move_twigs(new_twigs, old_twigs, size);
if (!free_twigs(qp, old_ref, size)) {
attach_twigs(qp, new_twigs, size);
}
return new_ref;
}
/*
* Immutable nodes need copy-on-write. As we walk down the trie finding the
* right place to modify, make_root_mutable() and make_twigs_mutable()
* are called to ensure that immutable nodes on the path from the root are
* copied to a mutable chunk.
*/
static inline dns_qpnode_t *
make_root_mutable(dns_qp_t *qp) {
if (cells_immutable(qp, qp->root_ref)) {
qp->root_ref = evacuate(qp, MOVABLE_ROOT(qp));
}
return ref_ptr(qp, qp->root_ref);
}
static inline void
make_twigs_mutable(dns_qp_t *qp, dns_qpnode_t *n) {
if (cells_immutable(qp, branch_twigs_ref(n))) {
*n = make_node(branch_index(n), evacuate(qp, n));
}
}
/*
* Compact the trie by traversing the whole thing recursively, copying
* bottom-up as required. The aim is to avoid evacuation as much as
* possible, but when parts of the trie are immutable, we need to evacuate
* the paths from the root to the parts of the trie that occupy
* fragmented chunks.
*
* Without the QP_MIN_USED check, the algorithm will leave the trie
* unchanged. If the children are all leaves, the loop changes nothing,
* so we will return this node's original ref. If all of the children
* that are branches did not need moving, again, the loop changes
* nothing. So the evacuation check is the only place that the
* algorithm introduces ref changes, that then bubble up towards the
* root through the logic inside the loop.
*/
static dns_qpref_t
compact_recursive(dns_qp_t *qp, dns_qpnode_t *parent) {
dns_qpweight_t size = branch_twigs_size(parent);
dns_qpref_t twigs_ref = branch_twigs_ref(parent);
dns_qpchunk_t chunk = ref_chunk(twigs_ref);
if (qp->compact_all ||
(chunk != qp->bump && chunk_usage(qp, chunk) < QP_MIN_USED))
{
twigs_ref = evacuate(qp, parent);
}
bool immutable = cells_immutable(qp, twigs_ref);
for (dns_qpweight_t pos = 0; pos < size; pos++) {
dns_qpnode_t *child = ref_ptr(qp, twigs_ref) + pos;
if (!is_branch(child)) {
continue;
}
dns_qpref_t old_grandtwigs = branch_twigs_ref(child);
dns_qpref_t new_grandtwigs = compact_recursive(qp, child);
if (old_grandtwigs == new_grandtwigs) {
continue;
}
if (immutable) {
twigs_ref = evacuate(qp, parent);
/* the twigs have moved */
child = ref_ptr(qp, twigs_ref) + pos;
immutable = false;
}
*child = make_node(branch_index(child), new_grandtwigs);
}
return twigs_ref;
}
static void
compact(dns_qp_t *qp) {
LOG_STATS("qp compact before leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
isc_nanosecs_t start = isc_time_monotonic();
if (qp->usage[qp->bump].free > QP_MAX_FREE) {
alloc_reset(qp);
}
if (qp->leaf_count > 0) {
qp->root_ref = compact_recursive(qp, MOVABLE_ROOT(qp));
}
qp->compact_all = false;
isc_nanosecs_t time = isc_time_monotonic() - start;
atomic_fetch_add_relaxed(&compact_time, time);
LOG_STATS("qp compact" PRItime
"leaf %u live %u used %u free %u hold %u",
time, qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
void
dns_qp_compact(dns_qp_t *qp, dns_qpgc_t mode) {
REQUIRE(QP_VALID(qp));
if (mode == DNS_QPGC_MAYBE && !QP_NEEDGC(qp)) {
return;
}
if (mode == DNS_QPGC_ALL) {
alloc_reset(qp);
qp->compact_all = true;
}
compact(qp);
recycle(qp);
}
/*
* Free some twigs and (if they were destroyed immediately so that the
* result from QP_MAX_GARBAGE can change) compact the trie if necessary.
*
* This is called by the trie modification API entry points. The
* free_twigs() function requires the caller to attach or detach any
* leaves as necessary. Callers of squash_twigs() satisfy this
* requirement by calling make_twigs_mutable().
*
* Aside: In typical garbage collectors, compaction is triggered when
* the allocator runs out of space. But that is because typical garbage
* collectors do not know how much memory can be recovered, so they must
* find out by scanning the heap. The qp-trie code was originally
* designed to use malloc() and free(), so it has more information about
* when garbage collection might be worthwhile. Hence we can trigger
* collection when garbage passes a threshold.
*
* XXXFANF: If we need to avoid latency outliers caused by compaction in
* write transactions, we can check qp->transaction_mode here.
*/
static inline bool
squash_twigs(dns_qp_t *qp, dns_qpref_t twigs, dns_qpweight_t size) {
bool destroyed = free_twigs(qp, twigs, size);
if (destroyed && QP_AUTOGC(qp)) {
compact(qp);
recycle(qp);
/*
* This shouldn't happen if the garbage collector is
* working correctly. We can recover at the cost of some
* time and space, but recovery should be cheaper than
* letting compact+recycle fail repeatedly.
*/
if (QP_AUTOGC(qp)) {
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DATABASE,
DNS_LOGMODULE_QP, ISC_LOG_NOTICE,
"qp %p uctx \"%s\" compact/recycle "
"failed to recover any space, "
"scheduling a full compaction",
qp, TRIENAME(qp));
qp->compact_all = true;
}
}
return destroyed;
}
/***********************************************************************
*
* public accessors for memory management internals
*/
dns_qp_memusage_t
dns_qp_memusage(dns_qp_t *qp) {
REQUIRE(QP_VALID(qp));
dns_qp_memusage_t memusage = {
.uctx = qp->uctx,
.leaves = qp->leaf_count,
.live = qp->used_count - qp->free_count,
.used = qp->used_count,
.hold = qp->hold_count,
.free = qp->free_count,
.node_size = sizeof(dns_qpnode_t),
.chunk_size = QP_CHUNK_SIZE,
.fragmented = QP_NEEDGC(qp),
};
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->base->ptr[chunk] != NULL) {
memusage.chunk_count += 1;
}
}
/*
* XXXFANF does not subtract chunks that have been shrunk,
* and does not count unreclaimed dns_qpbase_t objects
*/
memusage.bytes = memusage.chunk_count * QP_CHUNK_BYTES +
qp->chunk_max * sizeof(qp->base->ptr[0]) +
qp->chunk_max * sizeof(qp->usage[0]);
return memusage;
}
dns_qp_memusage_t
dns_qpmulti_memusage(dns_qpmulti_t *multi) {
REQUIRE(QPMULTI_VALID(multi));
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
INSIST(QP_VALID(qp));
dns_qp_memusage_t memusage = dns_qp_memusage(qp);
if (qp->transaction_mode == QP_UPDATE) {
memusage.bytes -= QP_CHUNK_BYTES;
memusage.bytes += qp->usage[qp->bump].used *
sizeof(dns_qpnode_t);
}
UNLOCK(&multi->mutex);
return memusage;
}
void
dns_qp_gctime(isc_nanosecs_t *compact_p, isc_nanosecs_t *recycle_p,
isc_nanosecs_t *rollback_p) {
*compact_p = atomic_load_relaxed(&compact_time);
*recycle_p = atomic_load_relaxed(&recycle_time);
*rollback_p = atomic_load_relaxed(&rollback_time);
}
/***********************************************************************
*
* read-write transactions
*/
static dns_qp_t *
transaction_open(dns_qpmulti_t *multi, dns_qp_t **qptp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qptp != NULL && *qptp == NULL);
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
INSIST(QP_VALID(qp));
/*
* Mark existing chunks as immutable.
*
* Aside: The bump chunk is special: in a series of write
* transactions the bump chunk is reused; the first part (up
* to fender) is immutable, the rest mutable. But we set its
* immutable flag so that when the bump chunk fills up, the
* first part continues to be treated as immutable. (And the
* rest of the chunk too, but that's OK.)
*/
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->usage[chunk].exists) {
qp->usage[chunk].immutable = true;
write_protect(qp, chunk);
}
}
/*
* Ensure QP_AUTOGC() ignores free space in immutable chunks.
*/
qp->hold_count = qp->free_count;
*qptp = qp;
return qp;
}
/*
* a write is light
*
* We need to ensure we allocate from a fresh chunk if the last transaction
* shrunk the bump chunk; but usually in a sequence of write transactions
* we just put `fender` at the point where we started this generation.
*
* (Aside: Instead of keeping the previous transaction's mode, I
* considered forcing allocation into the slow path by fiddling with
* the bump chunk's usage counters. But that is troublesome because
* `chunk_free()` needs to know how much of the chunk to scan.)
*/
void
dns_qpmulti_write(dns_qpmulti_t *multi, dns_qp_t **qptp) {
dns_qp_t *qp = transaction_open(multi, qptp);
TRACE("");
if (qp->transaction_mode == QP_WRITE) {
qp->fender = qp->usage[qp->bump].used;
} else {
alloc_reset(qp);
}
qp->transaction_mode = QP_WRITE;
}
/*
* an update is heavier
*
* We always reset the allocator to the start of a fresh chunk,
* because the previous transaction was probably an update that shrunk
* the bump chunk. It simplifies rollback because `fender` is always zero.
*
* To rollback a transaction, we need to reset all the allocation
* counters to their previous state, in particular we need to un-free
* any nodes that were copied to make them mutable. This means we need
* to make a copy of basically the whole `dns_qp_t writer`: everything
* but the chunks holding the trie nodes.
*
* We do most of the transaction setup before creating the rollback
* state so that after rollback we have a correct idea of which chunks
* are immutable, and so we have the correct transaction mode to make
* the next transaction allocate a new bump chunk. The exception is
* resetting the allocator, which we do after creating the rollback
* state; if this transaction is rolled back then the next transaction
* will start from the rollback state and also reset the allocator as
* one of its first actions.
*/
void
dns_qpmulti_update(dns_qpmulti_t *multi, dns_qp_t **qptp) {
dns_qp_t *qp = transaction_open(multi, qptp);
TRACE("");
qp->transaction_mode = QP_UPDATE;
dns_qp_t *rollback = isc_mem_allocate(qp->mctx, sizeof(*rollback));
memmove(rollback, qp, sizeof(*rollback));
/* can be uninitialized on the first transaction */
if (rollback->base != NULL) {
INSIST(QPBASE_VALID(rollback->base));
INSIST(qp->usage != NULL && qp->chunk_max > 0);
/* paired with either _commit() or _rollback() */
isc_refcount_increment(&rollback->base->refcount);
size_t usage_bytes = sizeof(qp->usage[0]) * qp->chunk_max;
rollback->usage = isc_mem_allocate(qp->mctx, usage_bytes);
memmove(rollback->usage, qp->usage, usage_bytes);
}
INSIST(multi->rollback == NULL);
multi->rollback = rollback;
alloc_reset(qp);
}
void
dns_qpmulti_commit(dns_qpmulti_t *multi, dns_qp_t **qptp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qptp != NULL && *qptp == &multi->writer);
REQUIRE(multi->writer.transaction_mode == QP_WRITE ||
multi->writer.transaction_mode == QP_UPDATE);
dns_qp_t *qp = *qptp;
TRACE("");
if (qp->transaction_mode == QP_UPDATE) {
INSIST(multi->rollback != NULL);
/* paired with dns_qpmulti_update() */
if (qpbase_unref(multi->rollback)) {
isc_mem_free(qp->mctx, multi->rollback->base);
}
if (multi->rollback->usage != NULL) {
isc_mem_free(qp->mctx, multi->rollback->usage);
}
isc_mem_free(qp->mctx, multi->rollback);
}
INSIST(multi->rollback == NULL);
/* not the first commit? */
if (multi->reader_ref != INVALID_REF) {
INSIST(cells_immutable(qp, multi->reader_ref));
free_twigs(qp, multi->reader_ref, READER_SIZE);
}
if (qp->transaction_mode == QP_UPDATE) {
/* minimize memory overhead */
compact(qp);
multi->reader_ref = alloc_twigs(qp, READER_SIZE);
qp->base->ptr[qp->bump] = chunk_shrink_raw(
qp, qp->base->ptr[qp->bump],
qp->usage[qp->bump].used * sizeof(dns_qpnode_t));
} else {
multi->reader_ref = alloc_twigs(qp, READER_SIZE);
}
/* anchor a new version of the trie */
dns_qpnode_t *reader = ref_ptr(qp, multi->reader_ref);
make_reader(reader, multi);
/* paired with chunk_free() */
isc_refcount_increment(&qp->base->refcount);
rcu_assign_pointer(multi->reader, reader); /* COMMIT */
/* clean up what we can right now */
if (qp->transaction_mode == QP_UPDATE || QP_NEEDGC(qp)) {
recycle(qp);
}
/* schedule the rest for later */
reclaim_chunks(multi);
*qptp = NULL;
UNLOCK(&multi->mutex);
}
/*
* Throw away everything that was allocated during this transaction.
*/
void
dns_qpmulti_rollback(dns_qpmulti_t *multi, dns_qp_t **qptp) {
unsigned int free = 0;
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(multi->writer.transaction_mode == QP_UPDATE);
REQUIRE(qptp != NULL && *qptp == &multi->writer);
dns_qp_t *qp = *qptp;
TRACE("");
isc_nanosecs_t start = isc_time_monotonic();
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->base->ptr[chunk] != NULL && !qp->usage[chunk].immutable)
{
chunk_free(qp, chunk);
/*
* we need to clear its base pointer in the rollback
* trie, in case the arrays were resized
*/
if (chunk < multi->rollback->chunk_max) {
INSIST(!multi->rollback->usage[chunk].exists);
multi->rollback->base->ptr[chunk] = NULL;
}
free++;
}
}
/*
* multi->rollback->base and multi->writer->base are the same,
* unless there was a realloc_chunk_arrays() during the transaction
*/
if (qpbase_unref(qp)) {
/* paired with dns_qpmulti_update() */
isc_mem_free(qp->mctx, qp->base);
}
isc_mem_free(qp->mctx, qp->usage);
/* reset allocator state */
INSIST(multi->rollback != NULL);
memmove(qp, multi->rollback, sizeof(*qp));
isc_mem_free(qp->mctx, multi->rollback);
INSIST(multi->rollback == NULL);
isc_nanosecs_t time = isc_time_monotonic() - start;
atomic_fetch_add_relaxed(&rollback_time, time);
LOG_STATS("qp rollback" PRItime "free %u chunks", time, free);
*qptp = NULL;
UNLOCK(&multi->mutex);
}
/***********************************************************************
*
* read-only transactions
*/
static dns_qpmulti_t *
reader_open(dns_qpmulti_t *multi, dns_qpreadable_t qpr) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpnode_t *reader = rcu_dereference(multi->reader);
if (reader == NULL) {
QP_INIT(qp, multi->writer.methods, multi->writer.uctx);
} else {
multi = unpack_reader(qp, reader);
}
return multi;
}
/*
* a query is light
*/
void
dns_qpmulti_query(dns_qpmulti_t *multi, dns_qpread_t *qp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qp != NULL);
qp->tid = isc_tid();
rcu_read_lock();
dns_qpmulti_t *whence = reader_open(multi, qp);
INSIST(whence == multi);
}
void
dns_qpread_destroy(dns_qpmulti_t *multi, dns_qpread_t *qp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(QP_VALID(qp));
REQUIRE(qp->tid == isc_tid());
*qp = (dns_qpread_t){};
rcu_read_unlock();
}
/*
* a snapshot is heavy
*/
void
dns_qpmulti_snapshot(dns_qpmulti_t *multi, dns_qpsnap_t **qpsp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qpsp != NULL && *qpsp == NULL);
rcu_read_lock();
LOCK(&multi->mutex);
dns_qp_t *qpw = &multi->writer;
size_t bytes = sizeof(dns_qpsnap_t) + sizeof(dns_qpbase_t) +
sizeof(qpw->base->ptr[0]) * qpw->chunk_max;
dns_qpsnap_t *qps = isc_mem_allocate(qpw->mctx, bytes);
qps->whence = reader_open(multi, qps);
INSIST(qps->whence == multi);
/* not a separate allocation */
qps->base = (dns_qpbase_t *)(qps + 1);
isc_refcount_init(&qps->base->refcount, 0);
/*
* only copy base pointers of chunks we need, so we can
* reclaim unused memory in dns_qpsnap_destroy()
*/
qps->chunk_max = qpw->chunk_max;
for (dns_qpchunk_t chunk = 0; chunk < qpw->chunk_max; chunk++) {
if (qpw->usage[chunk].exists && chunk_usage(qpw, chunk) > 0) {
qpw->usage[chunk].snapshot = true;
qps->base->ptr[chunk] = qpw->base->ptr[chunk];
} else {
qps->base->ptr[chunk] = NULL;
}
}
ISC_LIST_INITANDAPPEND(multi->snapshots, qps, link);
*qpsp = qps;
UNLOCK(&multi->mutex);
rcu_read_unlock();
}
void
dns_qpsnap_destroy(dns_qpmulti_t *multi, dns_qpsnap_t **qpsp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qpsp != NULL && *qpsp != NULL);
LOCK(&multi->mutex);
dns_qpsnap_t *qp = *qpsp;
/* make sure the API is being used correctly */
REQUIRE(qp->whence == multi);
ISC_LIST_UNLINK(multi->snapshots, qp, link);
/*
* eagerly reclaim chunks that are now unused, so that memory does
* not accumulate when a trie has a lot of updates and snapshots
*/
marksweep_chunks(multi);
isc_mem_free(multi->writer.mctx, qp);
*qpsp = NULL;
UNLOCK(&multi->mutex);
}
/***********************************************************************
*
* constructors, destructors
*/
void
dns_qp_create(isc_mem_t *mctx, const dns_qpmethods_t *methods, void *uctx,
dns_qp_t **qptp) {
REQUIRE(qptp != NULL && *qptp == NULL);
dns_qp_t *qp = isc_mem_get(mctx, sizeof(*qp));
QP_INIT(qp, methods, uctx);
isc_mem_attach(mctx, &qp->mctx);
alloc_reset(qp);
TRACE("");
*qptp = qp;
}
void
dns_qpmulti_create(isc_mem_t *mctx, const dns_qpmethods_t *methods, void *uctx,
dns_qpmulti_t **qpmp) {
REQUIRE(qpmp != NULL && *qpmp == NULL);
dns_qpmulti_t *multi = isc_mem_get(mctx, sizeof(*multi));
*multi = (dns_qpmulti_t){
.magic = QPMULTI_MAGIC,
.reader_ref = INVALID_REF,
};
isc_mutex_init(&multi->mutex);
ISC_LIST_INIT(multi->snapshots);
/*
* Do not waste effort allocating a bump chunk that will be thrown
* away when a transaction is opened. dns_qpmulti_update() always
* allocates; to ensure dns_qpmulti_write() does too, pretend the
* previous transaction was an update
*/
dns_qp_t *qp = &multi->writer;
QP_INIT(qp, methods, uctx);
isc_mem_attach(mctx, &qp->mctx);
qp->transaction_mode = QP_UPDATE;
TRACE("");
*qpmp = multi;
}
static void
destroy_guts(dns_qp_t *qp) {
if (qp->chunk_max == 0) {
return;
}
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->base->ptr[chunk] != NULL) {
chunk_free(qp, chunk);
}
}
ENSURE(qp->used_count == 0);
ENSURE(qp->free_count == 0);
ENSURE(isc_refcount_current(&qp->base->refcount) == 1);
isc_mem_free(qp->mctx, qp->base);
isc_mem_free(qp->mctx, qp->usage);
qp->magic = 0;
}
void
dns_qp_destroy(dns_qp_t **qptp) {
REQUIRE(qptp != NULL);
REQUIRE(QP_VALID(*qptp));
dns_qp_t *qp = *qptp;
*qptp = NULL;
/* do not try to destroy part of a dns_qpmulti_t */
REQUIRE(qp->transaction_mode == QP_NONE);
TRACE("");
destroy_guts(qp);
isc_mem_putanddetach(&qp->mctx, qp, sizeof(*qp));
}
static void
qpmulti_destroy_cb(struct rcu_head *arg) {
qp_rcuctx_t *rcuctx = caa_container_of(arg, qp_rcuctx_t, rcu_head);
REQUIRE(QPRCU_VALID(rcuctx));
/* only nonzero for reclaim_chunks_cb() */
REQUIRE(rcuctx->count == 0);
dns_qpmulti_t *multi = rcuctx->multi;
REQUIRE(QPMULTI_VALID(multi));
/* reassure thread sanitizer */
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
REQUIRE(QP_VALID(qp));
destroy_guts(qp);
UNLOCK(&multi->mutex);
isc_mutex_destroy(&multi->mutex);
isc_mem_putanddetach(&rcuctx->mctx, rcuctx,
STRUCT_FLEX_SIZE(rcuctx, chunk, rcuctx->count));
isc_mem_putanddetach(&qp->mctx, multi, sizeof(*multi));
}
void
dns_qpmulti_destroy(dns_qpmulti_t **qpmp) {
dns_qp_t *qp = NULL;
dns_qpmulti_t *multi = NULL;
qp_rcuctx_t *rcuctx = NULL;
REQUIRE(qpmp != NULL);
REQUIRE(QPMULTI_VALID(*qpmp));
multi = *qpmp;
qp = &multi->writer;
*qpmp = NULL;
REQUIRE(QP_VALID(qp));
REQUIRE(multi->rollback == NULL);
REQUIRE(ISC_LIST_EMPTY(multi->snapshots));
rcuctx = isc_mem_get(qp->mctx, STRUCT_FLEX_SIZE(rcuctx, chunk, 0));
*rcuctx = (qp_rcuctx_t){
.magic = QPRCU_MAGIC,
.multi = multi,
};
isc_mem_attach(qp->mctx, &rcuctx->mctx);
call_rcu(&rcuctx->rcu_head, qpmulti_destroy_cb);
}
/***********************************************************************
*
* modification
*/
isc_result_t
dns_qp_insert(dns_qp_t *qp, void *pval, uint32_t ival) {
dns_qpref_t new_ref, old_ref;
dns_qpnode_t new_leaf, old_node;
dns_qpnode_t *new_twigs = NULL, *old_twigs = NULL;
dns_qpshift_t new_bit, old_bit;
dns_qpweight_t old_size, new_size;
dns_qpkey_t new_key, old_key;
size_t new_keylen, old_keylen;
size_t offset;
uint64_t index;
dns_qpshift_t bit;
dns_qpweight_t pos;
dns_qpnode_t *n = NULL;
REQUIRE(QP_VALID(qp));
new_leaf = make_leaf(pval, ival);
new_keylen = leaf_qpkey(qp, &new_leaf, new_key);
/* first leaf in an empty trie? */
if (qp->leaf_count == 0) {
new_ref = alloc_twigs(qp, 1);
new_twigs = ref_ptr(qp, new_ref);
*new_twigs = new_leaf;
attach_leaf(qp, new_twigs);
qp->leaf_count++;
qp->root_ref = new_ref;
return ISC_R_SUCCESS;
}
/*
* We need to keep searching down to a leaf even if our key is
* missing from this branch. It doesn't matter which twig we
* choose since the keys are all the same up to this node's
* offset. Note that if we simply use branch_twig_pos(n, bit)
* we may get an out-of-bounds access if our bit is greater
* than all the set bits in the node.
*/
n = ref_ptr(qp, qp->root_ref);
while (is_branch(n)) {
prefetch_twigs(qp, n);
dns_qpref_t ref = branch_twigs_ref(n);
bit = branch_keybit(n, new_key, new_keylen);
pos = branch_has_twig(n, bit) ? branch_twig_pos(n, bit) : 0;
n = ref_ptr(qp, ref + pos);
}
/* do the keys differ, and if so, where? */
old_keylen = leaf_qpkey(qp, n, old_key);
offset = qpkey_compare(new_key, new_keylen, old_key, old_keylen);
if (offset == QPKEY_EQUAL) {
return ISC_R_EXISTS;
}
new_bit = qpkey_bit(new_key, new_keylen, offset);
old_bit = qpkey_bit(old_key, old_keylen, offset);
/* find where to insert a branch or grow an existing branch. */
n = make_root_mutable(qp);
while (is_branch(n)) {
prefetch_twigs(qp, n);
if (offset < branch_key_offset(n)) {
goto newbranch;
}
if (offset == branch_key_offset(n)) {
goto growbranch;
}
make_twigs_mutable(qp, n);
bit = branch_keybit(n, new_key, new_keylen);
INSIST(branch_has_twig(n, bit));
n = branch_twig_ptr(qp, n, bit);
}
/* fall through */
newbranch:
new_ref = alloc_twigs(qp, 2);
new_twigs = ref_ptr(qp, new_ref);
/* save before overwriting. */
old_node = *n;
/* new branch node takes old node's place */
index = BRANCH_TAG | (1ULL << new_bit) | (1ULL << old_bit) |
((uint64_t)offset << SHIFT_OFFSET);
*n = make_node(index, new_ref);
/* populate twigs */
new_twigs[old_bit > new_bit] = old_node;
new_twigs[new_bit > old_bit] = new_leaf;
attach_leaf(qp, &new_leaf);
qp->leaf_count++;
return ISC_R_SUCCESS;
growbranch:
INSIST(!branch_has_twig(n, new_bit));
/* locate twigs vectors */
old_size = branch_twigs_size(n);
new_size = old_size + 1;
old_ref = branch_twigs_ref(n);
new_ref = alloc_twigs(qp, new_size);
old_twigs = ref_ptr(qp, old_ref);
new_twigs = ref_ptr(qp, new_ref);
/* embiggen branch node */
index = branch_index(n) | (1ULL << new_bit);
*n = make_node(index, new_ref);
/* embiggen twigs vector */
pos = branch_twig_pos(n, new_bit);
move_twigs(new_twigs, old_twigs, pos);
new_twigs[pos] = new_leaf;
move_twigs(new_twigs + pos + 1, old_twigs + pos, old_size - pos);
if (squash_twigs(qp, old_ref, old_size)) {
/* old twigs destroyed, only attach to new leaf */
attach_leaf(qp, &new_leaf);
} else {
/* old twigs duplicated, attach to all leaves */
attach_twigs(qp, new_twigs, new_size);
}
qp->leaf_count++;
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_deletekey(dns_qp_t *qp, const dns_qpkey_t search_key,
size_t search_keylen, void **pval_r, uint32_t *ival_r) {
REQUIRE(QP_VALID(qp));
REQUIRE(search_keylen < sizeof(dns_qpkey_t));
if (get_root(qp) == NULL) {
return ISC_R_NOTFOUND;
}
dns_qpshift_t bit = 0; /* suppress warning */
dns_qpnode_t *parent = NULL;
dns_qpnode_t *n = make_root_mutable(qp);
while (is_branch(n)) {
prefetch_twigs(qp, n);
bit = branch_keybit(n, search_key, search_keylen);
if (!branch_has_twig(n, bit)) {
return ISC_R_NOTFOUND;
}
make_twigs_mutable(qp, n);
parent = n;
n = branch_twig_ptr(qp, n, bit);
}
dns_qpkey_t found_key;
size_t found_keylen = leaf_qpkey(qp, n, found_key);
if (qpkey_compare(search_key, search_keylen, found_key, found_keylen) !=
QPKEY_EQUAL)
{
return ISC_R_NOTFOUND;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
detach_leaf(qp, n);
qp->leaf_count--;
/* trie becomes empty */
if (qp->leaf_count == 0) {
INSIST(parent == NULL);
INSIST(n == get_root(qp));
free_twigs(qp, qp->root_ref, 1);
qp->root_ref = INVALID_REF;
return ISC_R_SUCCESS;
}
/* step back to parent node */
n = parent;
parent = NULL;
INSIST(bit != 0);
dns_qpweight_t size = branch_twigs_size(n);
dns_qpweight_t pos = branch_twig_pos(n, bit);
dns_qpref_t ref = branch_twigs_ref(n);
dns_qpnode_t *twigs = ref_ptr(qp, ref);
if (size == 2) {
/*
* move the other twig to the parent branch.
*/
*n = twigs[!pos];
squash_twigs(qp, ref, 2);
} else {
/*
* shrink the twigs in place, to avoid using the bump
* chunk too fast - the gc will clean up after us
*/
*n = make_node(branch_index(n) & ~(1ULL << bit), ref);
move_twigs(twigs + pos, twigs + pos + 1, size - pos - 1);
squash_twigs(qp, ref + size - 1, 1);
}
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_deletename(dns_qp_t *qp, const dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpkey_t key;
size_t keylen = dns_qpkey_fromname(key, name);
return dns_qp_deletekey(qp, key, keylen, pval_r, ival_r);
}
/***********************************************************************
* chains
*/
static void
maybe_set_name(dns_qpreader_t *qp, dns_qpnode_t *node, dns_name_t *name) {
dns_qpkey_t key;
size_t len;
if (name == NULL) {
return;
}
dns_name_reset(name);
len = leaf_qpkey(qp, node, key);
dns_qpkey_toname(key, len, name);
}
void
dns_qpchain_init(dns_qpreadable_t qpr, dns_qpchain_t *chain) {
dns_qpreader_t *qp = dns_qpreader(qpr);
REQUIRE(QP_VALID(qp));
REQUIRE(chain != NULL);
*chain = (dns_qpchain_t){
.magic = QPCHAIN_MAGIC,
.qp = qp,
};
}
unsigned int
dns_qpchain_length(dns_qpchain_t *chain) {
REQUIRE(QPCHAIN_VALID(chain));
return chain->len;
}
void
dns_qpchain_node(dns_qpchain_t *chain, unsigned int level, dns_name_t *name,
void **pval_r, uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
REQUIRE(QPCHAIN_VALID(chain));
REQUIRE(level < chain->len);
node = chain->chain[level].node;
maybe_set_name(chain->qp, node, name);
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
}
/***********************************************************************
* iterators
*/
void
dns_qpiter_init(dns_qpreadable_t qpr, dns_qpiter_t *qpi) {
dns_qpreader_t *qp = dns_qpreader(qpr);
REQUIRE(QP_VALID(qp));
REQUIRE(qpi != NULL);
*qpi = (dns_qpiter_t){
.qp = qp,
.magic = QPITER_MAGIC,
};
}
/*
* are we at the last twig in this branch (in whichever direction
* we're iterating)?
*/
static bool
last_twig(dns_qpiter_t *qpi, bool forward) {
dns_qpweight_t pos = 0, max = 0;
if (qpi->sp > 0) {
dns_qpnode_t *child = qpi->stack[qpi->sp];
dns_qpnode_t *parent = qpi->stack[qpi->sp - 1];
pos = child - ref_ptr(qpi->qp, branch_twigs_ref(parent));
if (forward) {
max = branch_twigs_size(parent) - 1;
}
}
return pos == max;
}
/*
* move a QP iterator forward or back to the next or previous leaf.
* note: this function can go wrong when the iterator refers to
* a mutable view of the trie which is altered while iterating
*/
static isc_result_t
iterate(bool forward, dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
bool initial_branch = true;
REQUIRE(QPITER_VALID(qpi));
dns_qpreader_t *qp = qpi->qp;
REQUIRE(QP_VALID(qp));
node = get_root(qp);
if (node == NULL) {
return ISC_R_NOMORE;
}
do {
if (qpi->stack[qpi->sp] == NULL) {
/* newly initialized iterator: use the root node */
INSIST(qpi->sp == 0);
qpi->stack[0] = node;
} else if (!initial_branch) {
/*
* in a prior loop, we reached a branch; from
* here we just need to get the highest or lowest
* leaf in the subtree; we don't need to bother
* stepping forward or backward through twigs
* anymore.
*/
INSIST(qpi->sp > 0);
} else if (last_twig(qpi, forward)) {
/*
* we've stepped to the end (or the beginning,
* if we're iterating backwards) of a set of twigs.
*/
if (qpi->sp == 0) {
/*
* we've finished iterating. reinitialize
* the iterator, then return ISC_R_NOMORE.
*/
dns_qpiter_init(qpi->qp, qpi);
return ISC_R_NOMORE;
}
/*
* pop the stack, and resume at the parent branch.
*/
qpi->stack[qpi->sp] = NULL;
qpi->sp--;
continue;
} else {
/*
* there are more twigs in the current branch,
* so step the node pointer forward (or back).
*/
qpi->stack[qpi->sp] += (forward ? 1 : -1);
node = qpi->stack[qpi->sp];
}
/*
* if we're at a branch now, we loop down to the
* left- or rightmost leaf.
*/
if (is_branch(node)) {
qpi->sp++;
INSIST(qpi->sp < DNS_QP_MAXKEY);
node = ref_ptr(qp, branch_twigs_ref(node)) +
(forward ? 0 : branch_twigs_size(node) - 1);
qpi->stack[qpi->sp] = node;
initial_branch = false;
}
} while (is_branch(node));
/* we're at a leaf: return its data to the caller */
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
maybe_set_name(qpi->qp, node, name);
return ISC_R_SUCCESS;
}
isc_result_t
dns_qpiter_next(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
return iterate(true, qpi, name, pval_r, ival_r);
}
isc_result_t
dns_qpiter_prev(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
return iterate(false, qpi, name, pval_r, ival_r);
}
isc_result_t
dns_qpiter_current(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
REQUIRE(QPITER_VALID(qpi));
node = qpi->stack[qpi->sp];
if (node == NULL || is_branch(node)) {
return ISC_R_FAILURE;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
maybe_set_name(qpi->qp, node, name);
return ISC_R_SUCCESS;
}
/***********************************************************************
*
* search
*/
isc_result_t
dns_qp_getkey(dns_qpreadable_t qpr, const dns_qpkey_t search_key,
size_t search_keylen, void **pval_r, uint32_t *ival_r) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpkey_t found_key;
size_t found_keylen;
dns_qpshift_t bit;
dns_qpnode_t *n = NULL;
REQUIRE(QP_VALID(qp));
REQUIRE(search_keylen < sizeof(dns_qpkey_t));
n = get_root(qp);
if (n == NULL) {
return ISC_R_NOTFOUND;
}
while (is_branch(n)) {
prefetch_twigs(qp, n);
bit = branch_keybit(n, search_key, search_keylen);
if (!branch_has_twig(n, bit)) {
return ISC_R_NOTFOUND;
}
n = branch_twig_ptr(qp, n, bit);
}
found_keylen = leaf_qpkey(qp, n, found_key);
if (qpkey_compare(search_key, search_keylen, found_key, found_keylen) !=
QPKEY_EQUAL)
{
return ISC_R_NOTFOUND;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_getname(dns_qpreadable_t qpr, const dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpkey_t key;
size_t keylen = dns_qpkey_fromname(key, name);
return dns_qp_getkey(qpr, key, keylen, pval_r, ival_r);
}
static inline void
add_link(dns_qpchain_t *chain, dns_qpnode_t *node, size_t offset) {
/* prevent duplication */
if (chain->len != 0 && chain->chain[chain->len - 1].node == node) {
return;
}
chain->chain[chain->len].node = node;
chain->chain[chain->len].offset = offset;
chain->len++;
INSIST(chain->len <= DNS_NAME_MAXLABELS);
}
static inline void
prevleaf(dns_qpiter_t *it) {
isc_result_t result = dns_qpiter_prev(it, NULL, NULL, NULL);
if (result == ISC_R_NOMORE) {
result = dns_qpiter_prev(it, NULL, NULL, NULL);
}
RUNTIME_CHECK(result == ISC_R_SUCCESS);
}
static inline void
greatest_leaf(dns_qpreadable_t qpr, dns_qpnode_t *n, dns_qpiter_t *iter) {
while (is_branch(n)) {
dns_qpref_t ref = branch_twigs_ref(n) + branch_twigs_size(n) -
1;
iter->stack[++iter->sp] = n;
n = ref_ptr(qpr, ref);
}
iter->stack[++iter->sp] = n;
}
static inline dns_qpnode_t *
anyleaf(dns_qpreader_t *qp, dns_qpnode_t *n) {
while (is_branch(n)) {
n = branch_twigs(qp, n);
}
return n;
}
static inline int
twig_offset(dns_qpnode_t *n, dns_qpshift_t sbit, dns_qpshift_t kbit,
dns_qpshift_t fbit) {
dns_qpweight_t pos = branch_twig_pos(n, sbit);
if (branch_has_twig(n, sbit)) {
return pos - (kbit < fbit);
}
return pos - 1;
}
/*
* If dns_qp_lookup() was passed an iterator, we want it to point at the
* matching name in the case of an exact match, or at the predecessor name
* for a non-exact match.
*
* If there is an exact match, then there is nothing to be done. Otherwise,
* we pop up the iterator stack until we find a parent branch with an offset
* that is before the position where the search key differs from the found key.
* From there we can step to the leaf that is the predecessor of the searched
* name.
*
* Requires the iterator to be pointing at a leaf node.
*/
static void
fix_iterator(dns_qpreader_t *qp, dns_qpiter_t *it, dns_qpkey_t key,
size_t len) {
dns_qpnode_t *n = it->stack[it->sp];
REQUIRE(!is_branch(n));
dns_qpkey_t found;
size_t foundlen = leaf_qpkey(qp, n, found);
size_t to = qpkey_compare(key, len, found, foundlen);
/* If the keys are equal, the iterator is already at the right node. */
if (to == QPKEY_EQUAL) {
return;
}
/*
* Special case: if the key differs even before the root
* key offset, it means the name desired either precedes or
* follows the entire range of names in the database, and
* popping up the stack won't help us, so just move the
* iterator one step back from the origin and return.
*/
if (to < branch_key_offset(it->stack[0])) {
dns_qpiter_init(qp, it);
prevleaf(it);
return;
}
/*
* As long as the branch offset point is after the point where the
* key differs, we need to branch up and find a better node.
*/
while (it->sp > 0) {
dns_qpnode_t *b = it->stack[it->sp - 1];
if (branch_key_offset(b) < to) {
break;
}
it->sp--;
}
n = it->stack[it->sp];
/*
* Either we are now at the correct branch, or we are at the
* first unmatched node. Determine the bit position for the
* twig we need (sbit).
*/
dns_qpshift_t kbit = qpkey_bit(key, len, to);
dns_qpshift_t fbit = qpkey_bit(found, foundlen, to);
dns_qpshift_t sbit = 0;
if (is_branch(n) && branch_key_offset(n) == to) {
/* We are on the correct branch now. */
sbit = kbit;
} else if (it->sp == 0) {
/*
* We are on the root branch, popping up the stack won't
* help us, so just move the iterator one step back from the
* origin and return.
*/
dns_qpiter_init(qp, it);
prevleaf(it);
return;
} else {
/* We are at the first unmatched node, pop up the stack. */
n = it->stack[--it->sp];
sbit = qpkey_bit(key, len, branch_key_offset(n));
}
INSIST(is_branch(n));
prefetch_twigs(qp, n);
dns_qpnode_t *twigs = branch_twigs(qp, n);
int toff = twig_offset(n, sbit, kbit, fbit);
if (toff >= 0) {
/*
* The name we want would've been after some twig in
* this branch. Walk down from that twig to the
* highest leaf in its subtree to get the predecessor.
*/
greatest_leaf(qp, twigs + toff, it);
} else {
/*
* Every leaf below this node is greater than the one we
* wanted, so the previous leaf is the predecessor.
*/
prevleaf(it);
}
}
/*
* When searching for a requested name in dns_qp_lookup(), we might add
* a leaf node to the chain, then subsequently determine that it was a
* dead end. When this happens, the chain can be left holding a node
* that is *not* an ancestor of the requested name. We correct for that
* here.
*/
static void
fix_chain(dns_qpchain_t *chain, size_t offset) {
while (chain->len > 0 && chain->chain[chain->len - 1].offset >= offset)
{
chain->len--;
chain->chain[chain->len].node = NULL;
chain->chain[chain->len].offset = 0;
}
}
isc_result_t
dns_qp_lookup(dns_qpreadable_t qpr, const dns_name_t *name,
dns_name_t *foundname, dns_qpiter_t *iter, dns_qpchain_t *chain,
void **pval_r, uint32_t *ival_r) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpkey_t search, found;
size_t searchlen, foundlen;
size_t offset = 0;
dns_qpnode_t *n = NULL;
dns_qpshift_t bit = SHIFT_NOBYTE;
dns_qpchain_t oc;
dns_qpiter_t it;
bool matched = false;
bool setiter = true;
REQUIRE(QP_VALID(qp));
REQUIRE(foundname == NULL || ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
searchlen = dns_qpkey_fromname(search, name);
if (chain == NULL) {
chain = &oc;
}
if (iter == NULL) {
iter = ⁢
setiter = false;
}
dns_qpchain_init(qp, chain);
dns_qpiter_init(qp, iter);
n = get_root(qp);
if (n == NULL) {
return ISC_R_NOTFOUND;
}
iter->stack[0] = n;
/*
* Like `dns_qp_insert()`, we must find a leaf. However, we don't make a
* second pass: instead, we keep track of any leaves with shorter keys
* that we discover along the way. (In general, qp-trie searches can be
* one-pass, by recording their traversal, or two-pass, for less stack
* memory usage.)
*/
while (is_branch(n)) {
prefetch_twigs(qp, n);
offset = branch_key_offset(n);
bit = qpkey_bit(search, searchlen, offset);
dns_qpnode_t *twigs = branch_twigs(qp, n);
/*
* A shorter key that can be a parent domain always has a
* leaf node at SHIFT_NOBYTE (indicating end of its key)
* where our search key has a normal character immediately
* after a label separator.
*
* Note 1: It is OK if `off - 1` underflows: it will
* become SIZE_MAX, which is greater than `searchlen`, so
* `qpkey_bit()` will return SHIFT_NOBYTE, which is what we
* want when `off == 0`.
*
* Note 2: If SHIFT_NOBYTE twig is present, it will always
* be in position 0, the first location in 'twigs'.
*/
if (bit != SHIFT_NOBYTE && branch_has_twig(n, SHIFT_NOBYTE) &&
qpkey_bit(search, searchlen, offset - 1) == SHIFT_NOBYTE &&
!is_branch(twigs))
{
add_link(chain, twigs, offset);
}
matched = branch_has_twig(n, bit);
if (matched) {
/*
* found a match: if it's a branch, we keep
* searching, and if it's a leaf, we drop out of
* the loop.
*/
n = branch_twig_ptr(qp, n, bit);
} else {
/*
* this branch is a dead end, and the predecessor
* doesn't matter. now we just need to find a leaf
* to end on so that qpkey_leaf() will work below.
*/
n = anyleaf(qp, twigs);
}
iter->stack[++iter->sp] = n;
}
if (setiter) {
/*
* we found a leaf, but it might not be the leaf we wanted.
* if it isn't, and if the caller passed us an iterator,
* then we might need to reposition it.
*/
fix_iterator(qp, iter, search, searchlen);
n = iter->stack[iter->sp];
}
/* at this point, n can only be a leaf node */
INSIST(!is_branch(n));
foundlen = leaf_qpkey(qp, n, found);
offset = qpkey_compare(search, searchlen, found, foundlen);
/* the search ended with an exact or partial match */
if (offset == QPKEY_EQUAL || offset == foundlen) {
isc_result_t result = ISC_R_SUCCESS;
if (offset == foundlen) {
fix_chain(chain, offset);
result = DNS_R_PARTIALMATCH;
}
add_link(chain, n, offset);
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
maybe_set_name(qp, n, foundname);
return result;
}
/*
* the requested name was not found, but if an ancestor
* was, we can retrieve that from the chain.
*/
int len = chain->len;
while (len-- > 0) {
if (offset >= chain->chain[len].offset) {
n = chain->chain[len].node;
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
maybe_set_name(qp, n, foundname);
return DNS_R_PARTIALMATCH;
} else {
/*
* oops, during the search we found and added
* a leaf that's longer than the requested
* name; remove it from the chain.
*/
chain->len--;
}
}
/* nothing was found at all */
return ISC_R_NOTFOUND;
}
/**********************************************************************/
|