1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
/*
* Unofficial release 1.3.0
* B I N G
*
*/
/* $Id: lin_reg.c,v 1.4 1999/10/16 07:07:58 fgouget Exp $ */
#include <math.h>
#include <float.h>
#include "lin_reg.h"
/*
* The linear regression stuff.
* The basic formula used to do the linear regression are given below but
* for more details you should see a maths book.
*
* We have a set of n samples (xi,yi). Then if we write
*
* y = a * x + b
*
* the a and b that best approximate the samples are given by:
*
* a = Covariance ( xi , yi ) / Variance ( xi )
*
* b = Covariance ( xi , yi ) / Variance (xi) * Mean ( xi ) - Mean ( yi )
*
* Note that in bing we only care about a.
*
* To compute a we maintain the variables below:
*
* sum_x = Sum ( xi )
* sum_x2 = Sum ( xi * xi )
* sum_y = Sum ( yi )
* sum_xy = Sum ( xi * yi )
*
* And then the covariance and variance can be computed as:
*
* Covariance ( xi , yi ) = ( sum_xy - sum_x * sum_y / n ) / ( n - 1 )
*
* Variance ( xi ) = ( sum_x2 - sum_x * sum_x / n ) / ( n - 1 )
*
* Thus:
*
* n * sum_xy - sum_x * sum_y
* a = ----------------------------
* n * sum_x2 - sum_x * sum_x
*
* sum_x2 * sum_y - sum_x * sum_xy
* b = ---------------------------------
* n * sum_x2 - sum_x * sum_x
*
*
* We also compute the correlation value so that we know whether the stats
* indeed look like a line or not. The correlation is computed from the
* following formula:
*
* Corr (xi , yi ) = Covariance ( xi , yi ) / Sqrt ( Variance ( xi ) / Variance ( yi ) )
*
* i.e.
*
* n * sum_xy - sum_x * sum_y
* Corr (xi , yi ) = -------------------------------------------------------------------------
* Sqrt( ( n * sum_x2 - sum_x * sum_x ) * ( n * sum_y2 - sum_y * sum_y ) )
*
*/
void linreg_update(linreg_t* linreg)
{
if (linreg->nb_samples>1) {
/*
* This function computes the end result from the computed
* intermediate statistics.
*/
linreg->a=(linreg->sum_xy-linreg->sum_x*linreg->sum_y/linreg->nb_samples)/
(linreg->sum_x2-linreg->sum_x*linreg->sum_x/linreg->nb_samples);
linreg->b=(linreg->sum_x2*linreg->sum_y-linreg->sum_x*linreg->sum_xy)/
(linreg->nb_samples*linreg->sum_x2-linreg->sum_x*linreg->sum_x);
linreg->corr=(linreg->sum_xy-linreg->sum_x*linreg->sum_y/linreg->nb_samples)/
sqrt((linreg->sum_x2-linreg->sum_x*linreg->sum_x/linreg->nb_samples) *
(linreg->sum_y2-linreg->sum_y*linreg->sum_y/linreg->nb_samples)
);
} else {
linreg->a=0;
linreg->b=0;
linreg->corr=0;
}
}
int linreg_init(linreg_t *linreg)
{
linreg->nb_samples=0;
linreg->sum_x=0.0;
linreg->sum_y=0.0;
linreg->sum_x2=0.0;
linreg->sum_y2=0.0;
linreg->sum_xy=0.0;
linreg->a=0.0;
linreg->b=0.0;
linreg->corr=0.0;
return 0;
}
int linreg_add_all(linreg_t *linreg,int nb_samples, int* x, double* y, int update)
{
int i;
/* Initialise the results data structure */
for (i=0;i<nb_samples;i++) {
if (y[i]==DBL_MAX)
continue;
linreg->sum_x+=x[i];
linreg->sum_y+=y[i];
linreg->sum_x2+=x[i]*x[i];
linreg->sum_y2+=y[i]*y[i];
linreg->sum_xy+=x[i]*y[i];
linreg->nb_samples++;
}
/* Update the regression results */
if (update!=0)
linreg_update(linreg);
return 0;
}
int linreg_del_sample(linreg_t *linreg, int x, double y, int update)
{
linreg->nb_samples--;
linreg->sum_x-=x;
linreg->sum_y-=y;
linreg->sum_x2-=x*x;
linreg->sum_y2-=y*y;
linreg->sum_xy-=x*y;
/* Update the regression results */
if (update!=0)
linreg_update(linreg);
return 0;
}
int linreg_add_sample(linreg_t *linreg, int x, double y, int update)
{
linreg->nb_samples++;
linreg->sum_x+=x;
linreg->sum_y+=y;
linreg->sum_x2+=x*x;
linreg->sum_y2+=y*y;
linreg->sum_xy+=x*y;
/* Update the regression results */
if (update!=0)
linreg_update(linreg);
return 0;
}
|