1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
|
/* Functions for manipulating expressions designed to be executed on the agent
Copyright (C) 1998-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Despite what the above comment says about this file being part of
GDB, we would like to keep these functions free of GDB
dependencies, since we want to be able to use them in contexts
outside of GDB (test suites, the stub, etc.) */
#include "defs.h"
#include "ax.h"
#include "value.h"
#include "user-regs.h"
static void grow_expr (struct agent_expr *x, int n);
static void append_const (struct agent_expr *x, LONGEST val, int n);
static LONGEST read_const (struct agent_expr *x, int o, int n);
static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
/* Functions for building expressions. */
/* Allocate a new, empty agent expression. */
struct agent_expr *
new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
{
struct agent_expr *x = XNEW (struct agent_expr);
x->len = 0;
x->size = 1; /* Change this to a larger value once
reallocation code is tested. */
x->buf = (unsigned char *) xmalloc (x->size);
x->gdbarch = gdbarch;
x->scope = scope;
/* Bit vector for registers used. */
x->reg_mask_len = 1;
x->reg_mask = XCNEWVEC (unsigned char, x->reg_mask_len);
x->tracing = 0;
x->trace_string = 0;
return x;
}
/* Free a agent expression. */
void
free_agent_expr (struct agent_expr *x)
{
xfree (x->buf);
xfree (x->reg_mask);
xfree (x);
}
static void
do_free_agent_expr_cleanup (void *x)
{
free_agent_expr ((struct agent_expr *) x);
}
struct cleanup *
make_cleanup_free_agent_expr (struct agent_expr *x)
{
return make_cleanup (do_free_agent_expr_cleanup, x);
}
/* Make sure that X has room for at least N more bytes. This doesn't
affect the length, just the allocated size. */
static void
grow_expr (struct agent_expr *x, int n)
{
if (x->len + n > x->size)
{
x->size *= 2;
if (x->size < x->len + n)
x->size = x->len + n + 10;
x->buf = (unsigned char *) xrealloc (x->buf, x->size);
}
}
/* Append the low N bytes of VAL as an N-byte integer to the
expression X, in big-endian order. */
static void
append_const (struct agent_expr *x, LONGEST val, int n)
{
int i;
grow_expr (x, n);
for (i = n - 1; i >= 0; i--)
{
x->buf[x->len + i] = val & 0xff;
val >>= 8;
}
x->len += n;
}
/* Extract an N-byte big-endian unsigned integer from expression X at
offset O. */
static LONGEST
read_const (struct agent_expr *x, int o, int n)
{
int i;
LONGEST accum = 0;
/* Make sure we're not reading off the end of the expression. */
if (o + n > x->len)
error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
for (i = 0; i < n; i++)
accum = (accum << 8) | x->buf[o + i];
return accum;
}
/* See ax.h. */
void
ax_raw_byte (struct agent_expr *x, gdb_byte byte)
{
grow_expr (x, 1);
x->buf[x->len++] = byte;
}
/* Append a simple operator OP to EXPR. */
void
ax_simple (struct agent_expr *x, enum agent_op op)
{
ax_raw_byte (x, op);
}
/* Append a pick operator to EXPR. DEPTH is the stack item to pick,
with 0 being top of stack. */
void
ax_pick (struct agent_expr *x, int depth)
{
if (depth < 0 || depth > 255)
error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
ax_simple (x, aop_pick);
append_const (x, 1, depth);
}
/* Append a sign-extension or zero-extension instruction to EXPR, to
extend an N-bit value. */
static void
generic_ext (struct agent_expr *x, enum agent_op op, int n)
{
/* N must fit in a byte. */
if (n < 0 || n > 255)
error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
/* That had better be enough range. */
if (sizeof (LONGEST) * 8 > 255)
error (_("GDB bug: ax-general.c (generic_ext): "
"opcode has inadequate range"));
grow_expr (x, 2);
x->buf[x->len++] = op;
x->buf[x->len++] = n;
}
/* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
void
ax_ext (struct agent_expr *x, int n)
{
generic_ext (x, aop_ext, n);
}
/* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
void
ax_zero_ext (struct agent_expr *x, int n)
{
generic_ext (x, aop_zero_ext, n);
}
/* Append a trace_quick instruction to EXPR, to record N bytes. */
void
ax_trace_quick (struct agent_expr *x, int n)
{
/* N must fit in a byte. */
if (n < 0 || n > 255)
error (_("GDB bug: ax-general.c (ax_trace_quick): "
"size out of range for trace_quick"));
grow_expr (x, 2);
x->buf[x->len++] = aop_trace_quick;
x->buf[x->len++] = n;
}
/* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
aop_if_goto). We assume we don't know the target offset yet,
because it's probably a forward branch, so we leave space in EXPR
for the target, and return the offset in EXPR of that space, so we
can backpatch it once we do know the target offset. Use ax_label
to do the backpatching. */
int
ax_goto (struct agent_expr *x, enum agent_op op)
{
grow_expr (x, 3);
x->buf[x->len + 0] = op;
x->buf[x->len + 1] = 0xff;
x->buf[x->len + 2] = 0xff;
x->len += 3;
return x->len - 2;
}
/* Suppose a given call to ax_goto returns some value PATCH. When you
know the offset TARGET that goto should jump to, call
ax_label (EXPR, PATCH, TARGET)
to patch TARGET into the ax_goto instruction. */
void
ax_label (struct agent_expr *x, int patch, int target)
{
/* Make sure the value is in range. Don't accept 0xffff as an
offset; that's our magic sentinel value for unpatched branches. */
if (target < 0 || target >= 0xffff)
error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
x->buf[patch] = (target >> 8) & 0xff;
x->buf[patch + 1] = target & 0xff;
}
/* Assemble code to push a constant on the stack. */
void
ax_const_l (struct agent_expr *x, LONGEST l)
{
static enum agent_op ops[]
=
{aop_const8, aop_const16, aop_const32, aop_const64};
int size;
int op;
/* How big is the number? 'op' keeps track of which opcode to use.
Notice that we don't really care whether the original number was
signed or unsigned; we always reproduce the value exactly, and
use the shortest representation. */
for (op = 0, size = 8; size < 64; size *= 2, op++)
{
LONGEST lim = ((LONGEST) 1) << (size - 1);
if (-lim <= l && l <= lim - 1)
break;
}
/* Emit the right opcode... */
ax_simple (x, ops[op]);
/* Emit the low SIZE bytes as an unsigned number. We know that
sign-extending this will yield l. */
append_const (x, l, size / 8);
/* Now, if it was negative, and not full-sized, sign-extend it. */
if (l < 0 && size < 64)
ax_ext (x, size);
}
void
ax_const_d (struct agent_expr *x, LONGEST d)
{
/* FIXME: floating-point support not present yet. */
error (_("GDB bug: ax-general.c (ax_const_d): "
"floating point not supported yet"));
}
/* Assemble code to push the value of register number REG on the
stack. */
void
ax_reg (struct agent_expr *x, int reg)
{
if (reg >= gdbarch_num_regs (x->gdbarch))
{
/* This is a pseudo-register. */
if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
error (_("'%s' is a pseudo-register; "
"GDB cannot yet trace its contents."),
user_reg_map_regnum_to_name (x->gdbarch, reg));
if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
error (_("Trace '%s' failed."),
user_reg_map_regnum_to_name (x->gdbarch, reg));
}
else
{
/* Make sure the register number is in range. */
if (reg < 0 || reg > 0xffff)
error (_("GDB bug: ax-general.c (ax_reg): "
"register number out of range"));
grow_expr (x, 3);
x->buf[x->len] = aop_reg;
x->buf[x->len + 1] = (reg >> 8) & 0xff;
x->buf[x->len + 2] = (reg) & 0xff;
x->len += 3;
}
}
/* Assemble code to operate on a trace state variable. */
void
ax_tsv (struct agent_expr *x, enum agent_op op, int num)
{
/* Make sure the tsv number is in range. */
if (num < 0 || num > 0xffff)
internal_error (__FILE__, __LINE__,
_("ax-general.c (ax_tsv): variable "
"number is %d, out of range"), num);
grow_expr (x, 3);
x->buf[x->len] = op;
x->buf[x->len + 1] = (num >> 8) & 0xff;
x->buf[x->len + 2] = (num) & 0xff;
x->len += 3;
}
/* Append a string to the expression. Note that the string is going
into the bytecodes directly, not on the stack. As a precaution,
include both length as prefix, and terminate with a NUL. (The NUL
is counted in the length.) */
void
ax_string (struct agent_expr *x, const char *str, int slen)
{
int i;
/* Make sure the string length is reasonable. */
if (slen < 0 || slen > 0xffff)
internal_error (__FILE__, __LINE__,
_("ax-general.c (ax_string): string "
"length is %d, out of allowed range"), slen);
grow_expr (x, 2 + slen + 1);
x->buf[x->len++] = ((slen + 1) >> 8) & 0xff;
x->buf[x->len++] = (slen + 1) & 0xff;
for (i = 0; i < slen; ++i)
x->buf[x->len++] = str[i];
x->buf[x->len++] = '\0';
}
/* Functions for disassembling agent expressions, and otherwise
debugging the expression compiler. */
struct aop_map aop_map[] =
{
{0, 0, 0, 0, 0}
#define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
, { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
#include "ax.def"
#undef DEFOP
};
/* Disassemble the expression EXPR, writing to F. */
void
ax_print (struct ui_file *f, struct agent_expr *x)
{
int i;
fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
fprintf_filtered (f, _("Reg mask:"));
for (i = 0; i < x->reg_mask_len; ++i)
fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
fprintf_filtered (f, _("\n"));
/* Check the size of the name array against the number of entries in
the enum, to catch additions that people didn't sync. */
if ((sizeof (aop_map) / sizeof (aop_map[0]))
!= aop_last)
error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
for (i = 0; i < x->len;)
{
enum agent_op op = (enum agent_op) x->buf[i];
if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
|| !aop_map[op].name)
{
fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
i++;
continue;
}
if (i + 1 + aop_map[op].op_size > x->len)
{
fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
i, aop_map[op].name);
break;
}
fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
if (aop_map[op].op_size > 0)
{
fputs_filtered (" ", f);
print_longest (f, 'd', 0,
read_const (x, i + 1, aop_map[op].op_size));
}
/* Handle the complicated printf arguments specially. */
else if (op == aop_printf)
{
int slen, nargs;
i++;
nargs = x->buf[i++];
slen = x->buf[i++];
slen = slen * 256 + x->buf[i++];
fprintf_filtered (f, _(" \"%s\", %d args"),
&(x->buf[i]), nargs);
i += slen - 1;
}
fprintf_filtered (f, "\n");
i += 1 + aop_map[op].op_size;
}
}
/* Add register REG to the register mask for expression AX. */
void
ax_reg_mask (struct agent_expr *ax, int reg)
{
if (reg >= gdbarch_num_regs (ax->gdbarch))
{
/* This is a pseudo-register. */
if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
error (_("'%s' is a pseudo-register; "
"GDB cannot yet trace its contents."),
user_reg_map_regnum_to_name (ax->gdbarch, reg));
if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
error (_("Trace '%s' failed."),
user_reg_map_regnum_to_name (ax->gdbarch, reg));
}
else
{
int byte = reg / 8;
/* Grow the bit mask if necessary. */
if (byte >= ax->reg_mask_len)
{
/* It's not appropriate to double here. This isn't a
string buffer. */
int new_len = byte + 1;
unsigned char *new_reg_mask
= XRESIZEVEC (unsigned char, ax->reg_mask, new_len);
memset (new_reg_mask + ax->reg_mask_len, 0,
(new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
ax->reg_mask_len = new_len;
ax->reg_mask = new_reg_mask;
}
ax->reg_mask[byte] |= 1 << (reg % 8);
}
}
/* Given an agent expression AX, fill in requirements and other descriptive
bits. */
void
ax_reqs (struct agent_expr *ax)
{
int i;
int height;
/* Jump target table. targets[i] is non-zero iff we have found a
jump to offset i. */
char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
/* Instruction boundary table. boundary[i] is non-zero iff our scan
has reached an instruction starting at offset i. */
char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
/* Stack height record. If either targets[i] or boundary[i] is
non-zero, heights[i] is the height the stack should have before
executing the bytecode at that point. */
int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
/* Pointer to a description of the present op. */
struct aop_map *op;
memset (targets, 0, ax->len * sizeof (targets[0]));
memset (boundary, 0, ax->len * sizeof (boundary[0]));
ax->max_height = ax->min_height = height = 0;
ax->flaw = agent_flaw_none;
ax->max_data_size = 0;
for (i = 0; i < ax->len; i += 1 + op->op_size)
{
if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
{
ax->flaw = agent_flaw_bad_instruction;
return;
}
op = &aop_map[ax->buf[i]];
if (!op->name)
{
ax->flaw = agent_flaw_bad_instruction;
return;
}
if (i + 1 + op->op_size > ax->len)
{
ax->flaw = agent_flaw_incomplete_instruction;
return;
}
/* If this instruction is a forward jump target, does the
current stack height match the stack height at the jump
source? */
if (targets[i] && (heights[i] != height))
{
ax->flaw = agent_flaw_height_mismatch;
return;
}
boundary[i] = 1;
heights[i] = height;
height -= op->consumed;
if (height < ax->min_height)
ax->min_height = height;
height += op->produced;
if (height > ax->max_height)
ax->max_height = height;
if (op->data_size > ax->max_data_size)
ax->max_data_size = op->data_size;
/* For jump instructions, check that the target is a valid
offset. If it is, record the fact that that location is a
jump target, and record the height we expect there. */
if (aop_goto == op - aop_map
|| aop_if_goto == op - aop_map)
{
int target = read_const (ax, i + 1, 2);
if (target < 0 || target >= ax->len)
{
ax->flaw = agent_flaw_bad_jump;
return;
}
/* Do we have any information about what the stack height
should be at the target? */
if (targets[target] || boundary[target])
{
if (heights[target] != height)
{
ax->flaw = agent_flaw_height_mismatch;
return;
}
}
/* Record the target, along with the stack height we expect. */
targets[target] = 1;
heights[target] = height;
}
/* For unconditional jumps with a successor, check that the
successor is a target, and pick up its stack height. */
if (aop_goto == op - aop_map
&& i + 3 < ax->len)
{
if (!targets[i + 3])
{
ax->flaw = agent_flaw_hole;
return;
}
height = heights[i + 3];
}
/* For reg instructions, record the register in the bit mask. */
if (aop_reg == op - aop_map)
{
int reg = read_const (ax, i + 1, 2);
ax_reg_mask (ax, reg);
}
}
/* Check that all the targets are on boundaries. */
for (i = 0; i < ax->len; i++)
if (targets[i] && !boundary[i])
{
ax->flaw = agent_flaw_bad_jump;
return;
}
ax->final_height = height;
}
|