1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
|
/* Support routines for building symbol tables in GDB's internal format.
Copyright (C) 1986-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This module provides subroutines used for creating and adding to
the symbol table. These routines are called from various symbol-
file-reading routines.
Routines to support specific debugging information formats (stabs,
DWARF, etc) belong somewhere else.
The basic way this module is used is as follows:
buildsym_init ();
cleanups = make_cleanup (really_free_pendings, NULL);
cust = start_symtab (...);
... read debug info ...
cust = end_symtab (...);
do_cleanups (cleanups);
The compunit symtab pointer ("cust") is returned from both start_symtab
and end_symtab to simplify the debug info readers.
There are minor variations on this, e.g., dwarf2read.c splits end_symtab
into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
but all debug info readers follow this basic flow.
Reading DWARF Type Units is another variation:
buildsym_init ();
cleanups = make_cleanup (really_free_pendings, NULL);
cust = start_symtab (...);
... read debug info ...
cust = end_expandable_symtab (...);
do_cleanups (cleanups);
And then reading subsequent Type Units within the containing "Comp Unit"
will use a second flow:
buildsym_init ();
cleanups = make_cleanup (really_free_pendings, NULL);
cust = restart_symtab (...);
... read debug info ...
cust = augment_type_symtab (...);
do_cleanups (cleanups);
dbxread.c and xcoffread.c use another variation:
buildsym_init ();
cleanups = make_cleanup (really_free_pendings, NULL);
cust = start_symtab (...);
... read debug info ...
cust = end_symtab (...);
... start_symtab + read + end_symtab repeated ...
do_cleanups (cleanups);
*/
#include "defs.h"
#include "bfd.h"
#include "gdb_obstack.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "complaints.h"
#include "expression.h" /* For "enum exp_opcode" used by... */
#include "bcache.h"
#include "filenames.h" /* For DOSish file names. */
#include "macrotab.h"
#include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
#include "block.h"
#include "cp-support.h"
#include "dictionary.h"
#include "addrmap.h"
/* Ask buildsym.h to define the vars it normally declares `extern'. */
#define EXTERN
/**/
#include "buildsym.h" /* Our own declarations. */
#undef EXTERN
/* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
questionable--see comment where we call them). */
#include "stabsread.h"
/* Buildsym's counterpart to struct compunit_symtab.
TODO(dje): Move all related global state into here. */
struct buildsym_compunit
{
/* The objfile we're reading debug info from. */
struct objfile *objfile;
/* List of subfiles (source files).
Files are added to the front of the list.
This is important mostly for the language determination hacks we use,
which iterate over previously added files. */
struct subfile *subfiles;
/* The subfile of the main source file. */
struct subfile *main_subfile;
/* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
char *comp_dir;
/* Space for this is not malloc'd, and is assumed to have at least
the same lifetime as objfile. */
const char *producer;
/* Space for this is not malloc'd, and is assumed to have at least
the same lifetime as objfile. */
const char *debugformat;
/* The compunit we are building. */
struct compunit_symtab *compunit_symtab;
};
/* The work-in-progress of the compunit we are building.
This is created first, before any subfiles by start_symtab. */
static struct buildsym_compunit *buildsym_compunit;
/* List of free `struct pending' structures for reuse. */
static struct pending *free_pendings;
/* Non-zero if symtab has line number info. This prevents an
otherwise empty symtab from being tossed. */
static int have_line_numbers;
/* The mutable address map for the compilation unit whose symbols
we're currently reading. The symtabs' shared blockvector will
point to a fixed copy of this. */
static struct addrmap *pending_addrmap;
/* The obstack on which we allocate pending_addrmap.
If pending_addrmap is NULL, this is uninitialized; otherwise, it is
initialized (and holds pending_addrmap). */
static struct obstack pending_addrmap_obstack;
/* Non-zero if we recorded any ranges in the addrmap that are
different from those in the blockvector already. We set this to
zero when we start processing a symfile, and if it's still zero at
the end, then we just toss the addrmap. */
static int pending_addrmap_interesting;
/* An obstack used for allocating pending blocks. */
static struct obstack pending_block_obstack;
/* List of blocks already made (lexical contexts already closed).
This is used at the end to make the blockvector. */
struct pending_block
{
struct pending_block *next;
struct block *block;
};
/* Pointer to the head of a linked list of symbol blocks which have
already been finalized (lexical contexts already closed) and which
are just waiting to be built into a blockvector when finalizing the
associated symtab. */
static struct pending_block *pending_blocks;
struct subfile_stack
{
struct subfile_stack *next;
char *name;
};
static struct subfile_stack *subfile_stack;
/* The macro table for the compilation unit whose symbols we're
currently reading. */
static struct macro_table *pending_macros;
static void free_buildsym_compunit (void);
static int compare_line_numbers (const void *ln1p, const void *ln2p);
static void record_pending_block (struct objfile *objfile,
struct block *block,
struct pending_block *opblock);
/* Initial sizes of data structures. These are realloc'd larger if
needed, and realloc'd down to the size actually used, when
completed. */
#define INITIAL_CONTEXT_STACK_SIZE 10
#define INITIAL_LINE_VECTOR_LENGTH 1000
/* Maintain the lists of symbols and blocks. */
/* Add a symbol to one of the lists of symbols. */
void
add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
{
struct pending *link;
/* If this is an alias for another symbol, don't add it. */
if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
return;
/* We keep PENDINGSIZE symbols in each link of the list. If we
don't have a link with room in it, add a new link. */
if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
{
if (free_pendings)
{
link = free_pendings;
free_pendings = link->next;
}
else
{
link = XNEW (struct pending);
}
link->next = *listhead;
*listhead = link;
link->nsyms = 0;
}
(*listhead)->symbol[(*listhead)->nsyms++] = symbol;
}
/* Find a symbol named NAME on a LIST. NAME need not be
'\0'-terminated; LENGTH is the length of the name. */
struct symbol *
find_symbol_in_list (struct pending *list, char *name, int length)
{
int j;
const char *pp;
while (list != NULL)
{
for (j = list->nsyms; --j >= 0;)
{
pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
if (*pp == *name && strncmp (pp, name, length) == 0
&& pp[length] == '\0')
{
return (list->symbol[j]);
}
}
list = list->next;
}
return (NULL);
}
/* At end of reading syms, or in case of quit, ensure everything associated
with building symtabs is freed. This is intended to be registered as a
cleanup before doing psymtab->symtab expansion.
N.B. This is *not* intended to be used when building psymtabs. Some debug
info readers call this anyway, which is harmless if confusing. */
void
really_free_pendings (void *dummy)
{
struct pending *next, *next1;
for (next = free_pendings; next; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
free_pendings = NULL;
free_pending_blocks ();
for (next = file_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
file_symbols = NULL;
for (next = global_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
global_symbols = NULL;
if (pending_macros)
free_macro_table (pending_macros);
pending_macros = NULL;
if (pending_addrmap)
obstack_free (&pending_addrmap_obstack, NULL);
pending_addrmap = NULL;
free_buildsym_compunit ();
}
/* This function is called to discard any pending blocks. */
void
free_pending_blocks (void)
{
if (pending_blocks != NULL)
{
obstack_free (&pending_block_obstack, NULL);
pending_blocks = NULL;
}
}
/* Take one of the lists of symbols and make a block from it. Keep
the order the symbols have in the list (reversed from the input
file). Put the block on the list of pending blocks. */
static struct block *
finish_block_internal (struct symbol *symbol,
struct pending **listhead,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end,
int is_global, int expandable)
{
struct objfile *objfile = buildsym_compunit->objfile;
struct gdbarch *gdbarch = get_objfile_arch (objfile);
struct pending *next, *next1;
struct block *block;
struct pending_block *pblock;
struct pending_block *opblock;
block = (is_global
? allocate_global_block (&objfile->objfile_obstack)
: allocate_block (&objfile->objfile_obstack));
if (symbol)
{
BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
*listhead);
}
else
{
if (expandable)
{
BLOCK_DICT (block) = dict_create_hashed_expandable ();
dict_add_pending (BLOCK_DICT (block), *listhead);
}
else
{
BLOCK_DICT (block) =
dict_create_hashed (&objfile->objfile_obstack, *listhead);
}
}
BLOCK_START (block) = start;
BLOCK_END (block) = end;
/* Put the block in as the value of the symbol that names it. */
if (symbol)
{
struct type *ftype = SYMBOL_TYPE (symbol);
struct dict_iterator iter;
SYMBOL_BLOCK_VALUE (symbol) = block;
BLOCK_FUNCTION (block) = symbol;
if (TYPE_NFIELDS (ftype) <= 0)
{
/* No parameter type information is recorded with the
function's type. Set that from the type of the
parameter symbols. */
int nparams = 0, iparams;
struct symbol *sym;
/* Here we want to directly access the dictionary, because
we haven't fully initialized the block yet. */
ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
{
if (SYMBOL_IS_ARGUMENT (sym))
nparams++;
}
if (nparams > 0)
{
TYPE_NFIELDS (ftype) = nparams;
TYPE_FIELDS (ftype) = (struct field *)
TYPE_ALLOC (ftype, nparams * sizeof (struct field));
iparams = 0;
/* Here we want to directly access the dictionary, because
we haven't fully initialized the block yet. */
ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
{
if (iparams == nparams)
break;
if (SYMBOL_IS_ARGUMENT (sym))
{
TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
iparams++;
}
}
}
}
}
else
{
BLOCK_FUNCTION (block) = NULL;
}
if (static_link != NULL)
objfile_register_static_link (objfile, block, static_link);
/* Now "free" the links of the list, and empty the list. */
for (next = *listhead; next; next = next1)
{
next1 = next->next;
next->next = free_pendings;
free_pendings = next;
}
*listhead = NULL;
/* Check to be sure that the blocks have an end address that is
greater than starting address. */
if (BLOCK_END (block) < BLOCK_START (block))
{
if (symbol)
{
complaint (&symfile_complaints,
_("block end address less than block "
"start address in %s (patched it)"),
SYMBOL_PRINT_NAME (symbol));
}
else
{
complaint (&symfile_complaints,
_("block end address %s less than block "
"start address %s (patched it)"),
paddress (gdbarch, BLOCK_END (block)),
paddress (gdbarch, BLOCK_START (block)));
}
/* Better than nothing. */
BLOCK_END (block) = BLOCK_START (block);
}
/* Install this block as the superblock of all blocks made since the
start of this scope that don't have superblocks yet. */
opblock = NULL;
for (pblock = pending_blocks;
pblock && pblock != old_blocks;
pblock = pblock->next)
{
if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
{
/* Check to be sure the blocks are nested as we receive
them. If the compiler/assembler/linker work, this just
burns a small amount of time.
Skip blocks which correspond to a function; they're not
physically nested inside this other blocks, only
lexically nested. */
if (BLOCK_FUNCTION (pblock->block) == NULL
&& (BLOCK_START (pblock->block) < BLOCK_START (block)
|| BLOCK_END (pblock->block) > BLOCK_END (block)))
{
if (symbol)
{
complaint (&symfile_complaints,
_("inner block not inside outer block in %s"),
SYMBOL_PRINT_NAME (symbol));
}
else
{
complaint (&symfile_complaints,
_("inner block (%s-%s) not "
"inside outer block (%s-%s)"),
paddress (gdbarch, BLOCK_START (pblock->block)),
paddress (gdbarch, BLOCK_END (pblock->block)),
paddress (gdbarch, BLOCK_START (block)),
paddress (gdbarch, BLOCK_END (block)));
}
if (BLOCK_START (pblock->block) < BLOCK_START (block))
BLOCK_START (pblock->block) = BLOCK_START (block);
if (BLOCK_END (pblock->block) > BLOCK_END (block))
BLOCK_END (pblock->block) = BLOCK_END (block);
}
BLOCK_SUPERBLOCK (pblock->block) = block;
}
opblock = pblock;
}
block_set_using (block,
(is_global
? global_using_directives
: local_using_directives),
&objfile->objfile_obstack);
if (is_global)
global_using_directives = NULL;
else
local_using_directives = NULL;
record_pending_block (objfile, block, opblock);
return block;
}
struct block *
finish_block (struct symbol *symbol,
struct pending **listhead,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end)
{
return finish_block_internal (symbol, listhead, old_blocks, static_link,
start, end, 0, 0);
}
/* Record BLOCK on the list of all blocks in the file. Put it after
OPBLOCK, or at the beginning if opblock is NULL. This puts the
block in the list after all its subblocks.
Allocate the pending block struct in the objfile_obstack to save
time. This wastes a little space. FIXME: Is it worth it? */
static void
record_pending_block (struct objfile *objfile, struct block *block,
struct pending_block *opblock)
{
struct pending_block *pblock;
if (pending_blocks == NULL)
obstack_init (&pending_block_obstack);
pblock = XOBNEW (&pending_block_obstack, struct pending_block);
pblock->block = block;
if (opblock)
{
pblock->next = opblock->next;
opblock->next = pblock;
}
else
{
pblock->next = pending_blocks;
pending_blocks = pblock;
}
}
/* Record that the range of addresses from START to END_INCLUSIVE
(inclusive, like it says) belongs to BLOCK. BLOCK's start and end
addresses must be set already. You must apply this function to all
BLOCK's children before applying it to BLOCK.
If a call to this function complicates the picture beyond that
already provided by BLOCK_START and BLOCK_END, then we create an
address map for the block. */
void
record_block_range (struct block *block,
CORE_ADDR start, CORE_ADDR end_inclusive)
{
/* If this is any different from the range recorded in the block's
own BLOCK_START and BLOCK_END, then note that the address map has
become interesting. Note that even if this block doesn't have
any "interesting" ranges, some later block might, so we still
need to record this block in the addrmap. */
if (start != BLOCK_START (block)
|| end_inclusive + 1 != BLOCK_END (block))
pending_addrmap_interesting = 1;
if (! pending_addrmap)
{
obstack_init (&pending_addrmap_obstack);
pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
}
addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
}
static struct blockvector *
make_blockvector (void)
{
struct objfile *objfile = buildsym_compunit->objfile;
struct pending_block *next;
struct blockvector *blockvector;
int i;
/* Count the length of the list of blocks. */
for (next = pending_blocks, i = 0; next; next = next->next, i++)
{;
}
blockvector = (struct blockvector *)
obstack_alloc (&objfile->objfile_obstack,
(sizeof (struct blockvector)
+ (i - 1) * sizeof (struct block *)));
/* Copy the blocks into the blockvector. This is done in reverse
order, which happens to put the blocks into the proper order
(ascending starting address). finish_block has hair to insert
each block into the list after its subblocks in order to make
sure this is true. */
BLOCKVECTOR_NBLOCKS (blockvector) = i;
for (next = pending_blocks; next; next = next->next)
{
BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
}
free_pending_blocks ();
/* If we needed an address map for this symtab, record it in the
blockvector. */
if (pending_addrmap && pending_addrmap_interesting)
BLOCKVECTOR_MAP (blockvector)
= addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
else
BLOCKVECTOR_MAP (blockvector) = 0;
/* Some compilers output blocks in the wrong order, but we depend on
their being in the right order so we can binary search. Check the
order and moan about it.
Note: Remember that the first two blocks are the global and static
blocks. We could special case that fact and begin checking at block 2.
To avoid making that assumption we do not. */
if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
{
for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
{
if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
> BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
{
CORE_ADDR start
= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
complaint (&symfile_complaints, _("block at %s out of order"),
hex_string ((LONGEST) start));
}
}
}
return (blockvector);
}
/* Start recording information about source code that came from an
included (or otherwise merged-in) source file with a different
name. NAME is the name of the file (cannot be NULL). */
void
start_subfile (const char *name)
{
const char *subfile_dirname;
struct subfile *subfile;
gdb_assert (buildsym_compunit != NULL);
subfile_dirname = buildsym_compunit->comp_dir;
/* See if this subfile is already registered. */
for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
{
char *subfile_name;
/* If NAME is an absolute path, and this subfile is not, then
attempt to create an absolute path to compare. */
if (IS_ABSOLUTE_PATH (name)
&& !IS_ABSOLUTE_PATH (subfile->name)
&& subfile_dirname != NULL)
subfile_name = concat (subfile_dirname, SLASH_STRING,
subfile->name, (char *) NULL);
else
subfile_name = subfile->name;
if (FILENAME_CMP (subfile_name, name) == 0)
{
current_subfile = subfile;
if (subfile_name != subfile->name)
xfree (subfile_name);
return;
}
if (subfile_name != subfile->name)
xfree (subfile_name);
}
/* This subfile is not known. Add an entry for it. */
subfile = XNEW (struct subfile);
memset (subfile, 0, sizeof (struct subfile));
subfile->buildsym_compunit = buildsym_compunit;
subfile->next = buildsym_compunit->subfiles;
buildsym_compunit->subfiles = subfile;
current_subfile = subfile;
subfile->name = xstrdup (name);
/* Initialize line-number recording for this subfile. */
subfile->line_vector = NULL;
/* Default the source language to whatever can be deduced from the
filename. If nothing can be deduced (such as for a C/C++ include
file with a ".h" extension), then inherit whatever language the
previous subfile had. This kludgery is necessary because there
is no standard way in some object formats to record the source
language. Also, when symtabs are allocated we try to deduce a
language then as well, but it is too late for us to use that
information while reading symbols, since symtabs aren't allocated
until after all the symbols have been processed for a given
source file. */
subfile->language = deduce_language_from_filename (subfile->name);
if (subfile->language == language_unknown
&& subfile->next != NULL)
{
subfile->language = subfile->next->language;
}
/* If the filename of this subfile ends in .C, then change the
language of any pending subfiles from C to C++. We also accept
any other C++ suffixes accepted by deduce_language_from_filename. */
/* Likewise for f2c. */
if (subfile->name)
{
struct subfile *s;
enum language sublang = deduce_language_from_filename (subfile->name);
if (sublang == language_cplus || sublang == language_fortran)
for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
if (s->language == language_c)
s->language = sublang;
}
/* And patch up this file if necessary. */
if (subfile->language == language_c
&& subfile->next != NULL
&& (subfile->next->language == language_cplus
|| subfile->next->language == language_fortran))
{
subfile->language = subfile->next->language;
}
}
/* Start recording information about a primary source file (IOW, not an
included source file).
COMP_DIR is the directory in which the compilation unit was compiled
(or NULL if not known). */
static struct buildsym_compunit *
start_buildsym_compunit (struct objfile *objfile, const char *comp_dir)
{
struct buildsym_compunit *bscu;
bscu = XNEW (struct buildsym_compunit);
memset (bscu, 0, sizeof (struct buildsym_compunit));
bscu->objfile = objfile;
bscu->comp_dir = (comp_dir == NULL) ? NULL : xstrdup (comp_dir);
/* Initialize the debug format string to NULL. We may supply it
later via a call to record_debugformat. */
bscu->debugformat = NULL;
/* Similarly for the producer. */
bscu->producer = NULL;
return bscu;
}
/* Delete the buildsym compunit. */
static void
free_buildsym_compunit (void)
{
struct subfile *subfile, *nextsub;
if (buildsym_compunit == NULL)
return;
for (subfile = buildsym_compunit->subfiles;
subfile != NULL;
subfile = nextsub)
{
nextsub = subfile->next;
xfree (subfile->name);
xfree (subfile->line_vector);
xfree (subfile);
}
xfree (buildsym_compunit->comp_dir);
xfree (buildsym_compunit);
buildsym_compunit = NULL;
current_subfile = NULL;
}
/* For stabs readers, the first N_SO symbol is assumed to be the
source file name, and the subfile struct is initialized using that
assumption. If another N_SO symbol is later seen, immediately
following the first one, then the first one is assumed to be the
directory name and the second one is really the source file name.
So we have to patch up the subfile struct by moving the old name
value to dirname and remembering the new name. Some sanity
checking is performed to ensure that the state of the subfile
struct is reasonable and that the old name we are assuming to be a
directory name actually is (by checking for a trailing '/'). */
void
patch_subfile_names (struct subfile *subfile, char *name)
{
if (subfile != NULL
&& buildsym_compunit->comp_dir == NULL
&& subfile->name != NULL
&& IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
{
buildsym_compunit->comp_dir = subfile->name;
subfile->name = xstrdup (name);
set_last_source_file (name);
/* Default the source language to whatever can be deduced from
the filename. If nothing can be deduced (such as for a C/C++
include file with a ".h" extension), then inherit whatever
language the previous subfile had. This kludgery is
necessary because there is no standard way in some object
formats to record the source language. Also, when symtabs
are allocated we try to deduce a language then as well, but
it is too late for us to use that information while reading
symbols, since symtabs aren't allocated until after all the
symbols have been processed for a given source file. */
subfile->language = deduce_language_from_filename (subfile->name);
if (subfile->language == language_unknown
&& subfile->next != NULL)
{
subfile->language = subfile->next->language;
}
}
}
/* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
switching source files (different subfiles, as we call them) within
one object file, but using a stack rather than in an arbitrary
order. */
void
push_subfile (void)
{
struct subfile_stack *tem = XNEW (struct subfile_stack);
tem->next = subfile_stack;
subfile_stack = tem;
if (current_subfile == NULL || current_subfile->name == NULL)
{
internal_error (__FILE__, __LINE__,
_("failed internal consistency check"));
}
tem->name = current_subfile->name;
}
char *
pop_subfile (void)
{
char *name;
struct subfile_stack *link = subfile_stack;
if (link == NULL)
{
internal_error (__FILE__, __LINE__,
_("failed internal consistency check"));
}
name = link->name;
subfile_stack = link->next;
xfree ((void *) link);
return (name);
}
/* Add a linetable entry for line number LINE and address PC to the
line vector for SUBFILE. */
void
record_line (struct subfile *subfile, int line, CORE_ADDR pc)
{
struct linetable_entry *e;
/* Ignore the dummy line number in libg.o */
if (line == 0xffff)
{
return;
}
/* Make sure line vector exists and is big enough. */
if (!subfile->line_vector)
{
subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
subfile->line_vector = (struct linetable *)
xmalloc (sizeof (struct linetable)
+ subfile->line_vector_length * sizeof (struct linetable_entry));
subfile->line_vector->nitems = 0;
have_line_numbers = 1;
}
if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
{
subfile->line_vector_length *= 2;
subfile->line_vector = (struct linetable *)
xrealloc ((char *) subfile->line_vector,
(sizeof (struct linetable)
+ (subfile->line_vector_length
* sizeof (struct linetable_entry))));
}
/* Normally, we treat lines as unsorted. But the end of sequence
marker is special. We sort line markers at the same PC by line
number, so end of sequence markers (which have line == 0) appear
first. This is right if the marker ends the previous function,
and there is no padding before the next function. But it is
wrong if the previous line was empty and we are now marking a
switch to a different subfile. We must leave the end of sequence
marker at the end of this group of lines, not sort the empty line
to after the marker. The easiest way to accomplish this is to
delete any empty lines from our table, if they are followed by
end of sequence markers. All we lose is the ability to set
breakpoints at some lines which contain no instructions
anyway. */
if (line == 0 && subfile->line_vector->nitems > 0)
{
e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
while (subfile->line_vector->nitems > 0 && e->pc == pc)
{
e--;
subfile->line_vector->nitems--;
}
}
e = subfile->line_vector->item + subfile->line_vector->nitems++;
e->line = line;
e->pc = pc;
}
/* Needed in order to sort line tables from IBM xcoff files. Sigh! */
static int
compare_line_numbers (const void *ln1p, const void *ln2p)
{
struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
/* Note: this code does not assume that CORE_ADDRs can fit in ints.
Please keep it that way. */
if (ln1->pc < ln2->pc)
return -1;
if (ln1->pc > ln2->pc)
return 1;
/* If pc equal, sort by line. I'm not sure whether this is optimum
behavior (see comment at struct linetable in symtab.h). */
return ln1->line - ln2->line;
}
/* See buildsym.h. */
struct compunit_symtab *
buildsym_compunit_symtab (void)
{
gdb_assert (buildsym_compunit != NULL);
return buildsym_compunit->compunit_symtab;
}
/* See buildsym.h. */
struct macro_table *
get_macro_table (void)
{
struct objfile *objfile;
gdb_assert (buildsym_compunit != NULL);
objfile = buildsym_compunit->objfile;
if (! pending_macros)
{
pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
objfile->per_bfd->macro_cache,
buildsym_compunit->compunit_symtab);
}
return pending_macros;
}
/* Init state to prepare for building a symtab.
Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
can call start_symtab+end_symtab multiple times after one call to
buildsym_init. */
static void
prepare_for_building (const char *name, CORE_ADDR start_addr)
{
set_last_source_file (name);
last_source_start_addr = start_addr;
local_symbols = NULL;
local_using_directives = NULL;
within_function = 0;
have_line_numbers = 0;
context_stack_depth = 0;
/* These should have been reset either by successful completion of building
a symtab, or by the really_free_pendings cleanup. */
gdb_assert (file_symbols == NULL);
gdb_assert (global_symbols == NULL);
gdb_assert (global_using_directives == NULL);
gdb_assert (pending_macros == NULL);
gdb_assert (pending_addrmap == NULL);
gdb_assert (current_subfile == NULL);
}
/* Start a new symtab for a new source file in OBJFILE. Called, for example,
when a stabs symbol of type N_SO is seen, or when a DWARF
TAG_compile_unit DIE is seen. It indicates the start of data for
one original source file.
NAME is the name of the file (cannot be NULL). COMP_DIR is the directory in
which the file was compiled (or NULL if not known). START_ADDR is the
lowest address of objects in the file (or 0 if not known). */
struct compunit_symtab *
start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
CORE_ADDR start_addr)
{
prepare_for_building (name, start_addr);
buildsym_compunit = start_buildsym_compunit (objfile, comp_dir);
/* Allocate the compunit symtab now. The caller needs it to allocate
non-primary symtabs. It is also needed by get_macro_table. */
buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
name);
/* Build the subfile for NAME (the main source file) so that we can record
a pointer to it for later.
IMPORTANT: Do not allocate a struct symtab for NAME here.
It can happen that the debug info provides a different path to NAME than
DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
that only works if the main_subfile doesn't have a symtab yet. */
start_subfile (name);
/* Save this so that we don't have to go looking for it at the end
of the subfiles list. */
buildsym_compunit->main_subfile = current_subfile;
return buildsym_compunit->compunit_symtab;
}
/* Restart compilation for a symtab.
CUST is the result of end_expandable_symtab.
NAME, START_ADDR are the source file we are resuming with.
This is used when a symtab is built from multiple sources.
The symtab is first built with start_symtab/end_expandable_symtab
and then for each additional piece call restart_symtab/augment_*_symtab.
Note: At the moment there is only augment_type_symtab. */
void
restart_symtab (struct compunit_symtab *cust,
const char *name, CORE_ADDR start_addr)
{
prepare_for_building (name, start_addr);
buildsym_compunit = start_buildsym_compunit (COMPUNIT_OBJFILE (cust),
COMPUNIT_DIRNAME (cust));
buildsym_compunit->compunit_symtab = cust;
}
/* Subroutine of end_symtab to simplify it. Look for a subfile that
matches the main source file's basename. If there is only one, and
if the main source file doesn't have any symbol or line number
information, then copy this file's symtab and line_vector to the
main source file's subfile and discard the other subfile. This can
happen because of a compiler bug or from the user playing games
with #line or from things like a distributed build system that
manipulates the debug info. This can also happen from an innocent
symlink in the paths, we don't canonicalize paths here. */
static void
watch_main_source_file_lossage (void)
{
struct subfile *mainsub, *subfile;
/* We have to watch for buildsym_compunit == NULL here. It's a quirk of
end_symtab, it can return NULL so there may not be a main subfile. */
if (buildsym_compunit == NULL)
return;
/* Get the main source file. */
mainsub = buildsym_compunit->main_subfile;
/* If the main source file doesn't have any line number or symbol
info, look for an alias in another subfile. */
if (mainsub->line_vector == NULL
&& mainsub->symtab == NULL)
{
const char *mainbase = lbasename (mainsub->name);
int nr_matches = 0;
struct subfile *prevsub;
struct subfile *mainsub_alias = NULL;
struct subfile *prev_mainsub_alias = NULL;
prevsub = NULL;
for (subfile = buildsym_compunit->subfiles;
subfile != NULL;
subfile = subfile->next)
{
if (subfile == mainsub)
continue;
if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
{
++nr_matches;
mainsub_alias = subfile;
prev_mainsub_alias = prevsub;
}
prevsub = subfile;
}
if (nr_matches == 1)
{
gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
/* Found a match for the main source file.
Copy its line_vector and symtab to the main subfile
and then discard it. */
mainsub->line_vector = mainsub_alias->line_vector;
mainsub->line_vector_length = mainsub_alias->line_vector_length;
mainsub->symtab = mainsub_alias->symtab;
if (prev_mainsub_alias == NULL)
buildsym_compunit->subfiles = mainsub_alias->next;
else
prev_mainsub_alias->next = mainsub_alias->next;
xfree (mainsub_alias->name);
xfree (mainsub_alias);
}
}
}
/* Helper function for qsort. Parameters are `struct block *' pointers,
function sorts them in descending order by their BLOCK_START. */
static int
block_compar (const void *ap, const void *bp)
{
const struct block *a = *(const struct block **) ap;
const struct block *b = *(const struct block **) bp;
return ((BLOCK_START (b) > BLOCK_START (a))
- (BLOCK_START (b) < BLOCK_START (a)));
}
/* Reset state after a successful building of a symtab.
This exists because dbxread.c and xcoffread.c can call
start_symtab+end_symtab multiple times after one call to buildsym_init,
and before the really_free_pendings cleanup is called.
We keep the free_pendings list around for dbx/xcoff sake. */
static void
reset_symtab_globals (void)
{
set_last_source_file (NULL);
local_symbols = NULL;
local_using_directives = NULL;
file_symbols = NULL;
global_symbols = NULL;
global_using_directives = NULL;
/* We don't free pending_macros here because if the symtab was successfully
built then ownership was transferred to the symtab. */
pending_macros = NULL;
if (pending_addrmap)
obstack_free (&pending_addrmap_obstack, NULL);
pending_addrmap = NULL;
free_buildsym_compunit ();
}
/* Implementation of the first part of end_symtab. It allows modifying
STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
If the returned value is NULL there is no blockvector created for
this symtab (you still must call end_symtab_from_static_block).
END_ADDR is the same as for end_symtab: the address of the end of the
file's text.
If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
expandable.
If REQUIRED is non-zero, then a symtab is created even if it does
not contain any symbols. */
struct block *
end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
{
struct objfile *objfile = buildsym_compunit->objfile;
/* Finish the lexical context of the last function in the file; pop
the context stack. */
if (context_stack_depth > 0)
{
struct context_stack *cstk = pop_context ();
/* Make a block for the local symbols within. */
finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
cstk->start_addr, end_addr);
if (context_stack_depth > 0)
{
/* This is said to happen with SCO. The old coffread.c
code simply emptied the context stack, so we do the
same. FIXME: Find out why it is happening. This is not
believed to happen in most cases (even for coffread.c);
it used to be an abort(). */
complaint (&symfile_complaints,
_("Context stack not empty in end_symtab"));
context_stack_depth = 0;
}
}
/* Reordered executables may have out of order pending blocks; if
OBJF_REORDERED is true, then sort the pending blocks. */
if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
{
unsigned count = 0;
struct pending_block *pb;
struct block **barray, **bp;
struct cleanup *back_to;
for (pb = pending_blocks; pb != NULL; pb = pb->next)
count++;
barray = XNEWVEC (struct block *, count);
back_to = make_cleanup (xfree, barray);
bp = barray;
for (pb = pending_blocks; pb != NULL; pb = pb->next)
*bp++ = pb->block;
qsort (barray, count, sizeof (*barray), block_compar);
bp = barray;
for (pb = pending_blocks; pb != NULL; pb = pb->next)
pb->block = *bp++;
do_cleanups (back_to);
}
/* Cleanup any undefined types that have been left hanging around
(this needs to be done before the finish_blocks so that
file_symbols is still good).
Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
specific, but harmless for other symbol readers, since on gdb
startup or when finished reading stabs, the state is set so these
are no-ops. FIXME: Is this handled right in case of QUIT? Can
we make this cleaner? */
cleanup_undefined_stabs_types (objfile);
finish_global_stabs (objfile);
if (!required
&& pending_blocks == NULL
&& file_symbols == NULL
&& global_symbols == NULL
&& have_line_numbers == 0
&& pending_macros == NULL
&& global_using_directives == NULL)
{
/* Ignore symtabs that have no functions with real debugging info. */
return NULL;
}
else
{
/* Define the STATIC_BLOCK. */
return finish_block_internal (NULL, &file_symbols, NULL, NULL,
last_source_start_addr, end_addr,
0, expandable);
}
}
/* Subroutine of end_symtab_from_static_block to simplify it.
Handle the "have blockvector" case.
See end_symtab_from_static_block for a description of the arguments. */
static struct compunit_symtab *
end_symtab_with_blockvector (struct block *static_block,
int section, int expandable)
{
struct objfile *objfile = buildsym_compunit->objfile;
struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
struct symtab *symtab;
struct blockvector *blockvector;
struct subfile *subfile;
CORE_ADDR end_addr;
gdb_assert (static_block != NULL);
gdb_assert (buildsym_compunit != NULL);
gdb_assert (buildsym_compunit->subfiles != NULL);
end_addr = BLOCK_END (static_block);
/* Create the GLOBAL_BLOCK and build the blockvector. */
finish_block_internal (NULL, &global_symbols, NULL, NULL,
last_source_start_addr, end_addr,
1, expandable);
blockvector = make_blockvector ();
/* Read the line table if it has to be read separately.
This is only used by xcoffread.c. */
if (objfile->sf->sym_read_linetable != NULL)
objfile->sf->sym_read_linetable (objfile);
/* Handle the case where the debug info specifies a different path
for the main source file. It can cause us to lose track of its
line number information. */
watch_main_source_file_lossage ();
/* Now create the symtab objects proper, if not already done,
one for each subfile. */
for (subfile = buildsym_compunit->subfiles;
subfile != NULL;
subfile = subfile->next)
{
int linetablesize = 0;
if (subfile->line_vector)
{
linetablesize = sizeof (struct linetable) +
subfile->line_vector->nitems * sizeof (struct linetable_entry);
/* Like the pending blocks, the line table may be
scrambled in reordered executables. Sort it if
OBJF_REORDERED is true. */
if (objfile->flags & OBJF_REORDERED)
qsort (subfile->line_vector->item,
subfile->line_vector->nitems,
sizeof (struct linetable_entry), compare_line_numbers);
}
/* Allocate a symbol table if necessary. */
if (subfile->symtab == NULL)
subfile->symtab = allocate_symtab (cu, subfile->name);
symtab = subfile->symtab;
/* Fill in its components. */
if (subfile->line_vector)
{
/* Reallocate the line table on the symbol obstack. */
SYMTAB_LINETABLE (symtab) = (struct linetable *)
obstack_alloc (&objfile->objfile_obstack, linetablesize);
memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
linetablesize);
}
else
{
SYMTAB_LINETABLE (symtab) = NULL;
}
/* Use whatever language we have been using for this
subfile, not the one that was deduced in allocate_symtab
from the filename. We already did our own deducing when
we created the subfile, and we may have altered our
opinion of what language it is from things we found in
the symbols. */
symtab->language = subfile->language;
}
/* Make sure the symtab of main_subfile is the first in its list. */
{
struct symtab *main_symtab, *prev_symtab;
main_symtab = buildsym_compunit->main_subfile->symtab;
prev_symtab = NULL;
ALL_COMPUNIT_FILETABS (cu, symtab)
{
if (symtab == main_symtab)
{
if (prev_symtab != NULL)
{
prev_symtab->next = main_symtab->next;
main_symtab->next = COMPUNIT_FILETABS (cu);
COMPUNIT_FILETABS (cu) = main_symtab;
}
break;
}
prev_symtab = symtab;
}
gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
}
/* Fill out the compunit symtab. */
if (buildsym_compunit->comp_dir != NULL)
{
/* Reallocate the dirname on the symbol obstack. */
COMPUNIT_DIRNAME (cu)
= (const char *) obstack_copy0 (&objfile->objfile_obstack,
buildsym_compunit->comp_dir,
strlen (buildsym_compunit->comp_dir));
}
/* Save the debug format string (if any) in the symtab. */
COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
/* Similarly for the producer. */
COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
COMPUNIT_BLOCKVECTOR (cu) = blockvector;
{
struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
set_block_compunit_symtab (b, cu);
}
COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
COMPUNIT_MACRO_TABLE (cu) = pending_macros;
/* Default any symbols without a specified symtab to the primary symtab. */
{
int block_i;
/* The main source file's symtab. */
symtab = COMPUNIT_FILETABS (cu);
for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
{
struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
struct symbol *sym;
struct dict_iterator iter;
/* Inlined functions may have symbols not in the global or
static symbol lists. */
if (BLOCK_FUNCTION (block) != NULL)
if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
/* Note that we only want to fix up symbols from the local
blocks, not blocks coming from included symtabs. That is why
we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
if (symbol_symtab (sym) == NULL)
symbol_set_symtab (sym, symtab);
}
}
add_compunit_symtab_to_objfile (cu);
return cu;
}
/* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
as value returned by end_symtab_get_static_block.
SECTION is the same as for end_symtab: the section number
(in objfile->section_offsets) of the blockvector and linetable.
If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
expandable. */
struct compunit_symtab *
end_symtab_from_static_block (struct block *static_block,
int section, int expandable)
{
struct compunit_symtab *cu;
if (static_block == NULL)
{
/* Handle the "no blockvector" case.
When this happens there is nothing to record, so there's nothing
to do: memory will be freed up later.
Note: We won't be adding a compunit to the objfile's list of
compunits, so there's nothing to unchain. However, since each symtab
is added to the objfile's obstack we can't free that space.
We could do better, but this is believed to be a sufficiently rare
event. */
cu = NULL;
}
else
cu = end_symtab_with_blockvector (static_block, section, expandable);
reset_symtab_globals ();
return cu;
}
/* Finish the symbol definitions for one main source file, close off
all the lexical contexts for that file (creating struct block's for
them), then make the struct symtab for that file and put it in the
list of all such.
END_ADDR is the address of the end of the file's text. SECTION is
the section number (in objfile->section_offsets) of the blockvector
and linetable.
Note that it is possible for end_symtab() to return NULL. In
particular, for the DWARF case at least, it will return NULL when
it finds a compilation unit that has exactly one DIE, a
TAG_compile_unit DIE. This can happen when we link in an object
file that was compiled from an empty source file. Returning NULL
is probably not the correct thing to do, because then gdb will
never know about this empty file (FIXME).
If you need to modify STATIC_BLOCK before it is finalized you should
call end_symtab_get_static_block and end_symtab_from_static_block
yourself. */
struct compunit_symtab *
end_symtab (CORE_ADDR end_addr, int section)
{
struct block *static_block;
static_block = end_symtab_get_static_block (end_addr, 0, 0);
return end_symtab_from_static_block (static_block, section, 0);
}
/* Same as end_symtab except create a symtab that can be later added to. */
struct compunit_symtab *
end_expandable_symtab (CORE_ADDR end_addr, int section)
{
struct block *static_block;
static_block = end_symtab_get_static_block (end_addr, 1, 0);
return end_symtab_from_static_block (static_block, section, 1);
}
/* Subroutine of augment_type_symtab to simplify it.
Attach the main source file's symtab to all symbols in PENDING_LIST that
don't have one. */
static void
set_missing_symtab (struct pending *pending_list,
struct compunit_symtab *cu)
{
struct pending *pending;
int i;
for (pending = pending_list; pending != NULL; pending = pending->next)
{
for (i = 0; i < pending->nsyms; ++i)
{
if (symbol_symtab (pending->symbol[i]) == NULL)
symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
}
}
}
/* Same as end_symtab, but for the case where we're adding more symbols
to an existing symtab that is known to contain only type information.
This is the case for DWARF4 Type Units. */
void
augment_type_symtab (void)
{
struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
if (context_stack_depth > 0)
{
complaint (&symfile_complaints,
_("Context stack not empty in augment_type_symtab"));
context_stack_depth = 0;
}
if (pending_blocks != NULL)
complaint (&symfile_complaints, _("Blocks in a type symtab"));
if (pending_macros != NULL)
complaint (&symfile_complaints, _("Macro in a type symtab"));
if (have_line_numbers)
complaint (&symfile_complaints,
_("Line numbers recorded in a type symtab"));
if (file_symbols != NULL)
{
struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
/* First mark any symbols without a specified symtab as belonging
to the primary symtab. */
set_missing_symtab (file_symbols, cust);
dict_add_pending (BLOCK_DICT (block), file_symbols);
}
if (global_symbols != NULL)
{
struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
/* First mark any symbols without a specified symtab as belonging
to the primary symtab. */
set_missing_symtab (global_symbols, cust);
dict_add_pending (BLOCK_DICT (block), global_symbols);
}
reset_symtab_globals ();
}
/* Push a context block. Args are an identifying nesting level
(checkable when you pop it), and the starting PC address of this
context. */
struct context_stack *
push_context (int desc, CORE_ADDR valu)
{
struct context_stack *newobj;
if (context_stack_depth == context_stack_size)
{
context_stack_size *= 2;
context_stack = (struct context_stack *)
xrealloc ((char *) context_stack,
(context_stack_size * sizeof (struct context_stack)));
}
newobj = &context_stack[context_stack_depth++];
newobj->depth = desc;
newobj->locals = local_symbols;
newobj->old_blocks = pending_blocks;
newobj->start_addr = valu;
newobj->local_using_directives = local_using_directives;
newobj->name = NULL;
local_symbols = NULL;
local_using_directives = NULL;
return newobj;
}
/* Pop a context block. Returns the address of the context block just
popped. */
struct context_stack *
pop_context (void)
{
gdb_assert (context_stack_depth > 0);
return (&context_stack[--context_stack_depth]);
}
/* Compute a small integer hash code for the given name. */
int
hashname (const char *name)
{
return (hash(name,strlen(name)) % HASHSIZE);
}
void
record_debugformat (const char *format)
{
buildsym_compunit->debugformat = format;
}
void
record_producer (const char *producer)
{
buildsym_compunit->producer = producer;
}
/* Merge the first symbol list SRCLIST into the second symbol list
TARGETLIST by repeated calls to add_symbol_to_list(). This
procedure "frees" each link of SRCLIST by adding it to the
free_pendings list. Caller must set SRCLIST to a null list after
calling this function.
Void return. */
void
merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
{
int i;
if (!srclist || !*srclist)
return;
/* Merge in elements from current link. */
for (i = 0; i < (*srclist)->nsyms; i++)
add_symbol_to_list ((*srclist)->symbol[i], targetlist);
/* Recurse on next. */
merge_symbol_lists (&(*srclist)->next, targetlist);
/* "Free" the current link. */
(*srclist)->next = free_pendings;
free_pendings = (*srclist);
}
/* Name of source file whose symbol data we are now processing. This
comes from a symbol of type N_SO for stabs. For Dwarf it comes
from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
static char *last_source_file;
/* See buildsym.h. */
void
set_last_source_file (const char *name)
{
xfree (last_source_file);
last_source_file = name == NULL ? NULL : xstrdup (name);
}
/* See buildsym.h. */
const char *
get_last_source_file (void)
{
return last_source_file;
}
/* Initialize anything that needs initializing when starting to read a
fresh piece of a symbol file, e.g. reading in the stuff
corresponding to a psymtab. */
void
buildsym_init (void)
{
subfile_stack = NULL;
pending_addrmap_interesting = 0;
/* Context stack is initially empty. Allocate first one with room
for a few levels; reuse it forever afterward. */
if (context_stack == NULL)
{
context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
context_stack = XNEWVEC (struct context_stack, context_stack_size);
}
/* Ensure the really_free_pendings cleanup was called after
the last time. */
gdb_assert (free_pendings == NULL);
gdb_assert (pending_blocks == NULL);
gdb_assert (file_symbols == NULL);
gdb_assert (global_symbols == NULL);
gdb_assert (global_using_directives == NULL);
gdb_assert (pending_macros == NULL);
gdb_assert (pending_addrmap == NULL);
gdb_assert (buildsym_compunit == NULL);
}
/* Initialize anything that needs initializing when a completely new
symbol file is specified (not just adding some symbols from another
file, e.g. a shared library). */
void
buildsym_new_init (void)
{
buildsym_init ();
}
|