1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
|
/* Floating point routines for GDB, the GNU debugger.
Copyright (C) 1986-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Support for converting target fp numbers into host DOUBLEST format. */
/* XXX - This code should really be in libiberty/floatformat.c,
however configuration issues with libiberty made this very
difficult to do in the available time. */
#include "defs.h"
#include "doublest.h"
#include "floatformat.h"
#include "gdbtypes.h"
#include <math.h> /* ldexp */
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
going to bother with trying to muck around with whether it is defined in
a system header, what we do if not, etc. */
#define FLOATFORMAT_CHAR_BIT 8
/* The number of bytes that the largest floating-point type that we
can convert to doublest will need. */
#define FLOATFORMAT_LARGEST_BYTES 16
/* Extract a field which starts at START and is LEN bytes long. DATA and
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
static unsigned long
get_field (const bfd_byte *data, enum floatformat_byteorders order,
unsigned int total_len, unsigned int start, unsigned int len)
{
unsigned long result;
unsigned int cur_byte;
int cur_bitshift;
/* Caller must byte-swap words before calling this routine. */
gdb_assert (order == floatformat_little || order == floatformat_big);
/* Start at the least significant part of the field. */
if (order == floatformat_little)
{
/* We start counting from the other end (i.e, from the high bytes
rather than the low bytes). As such, we need to be concerned
with what happens if bit 0 doesn't start on a byte boundary.
I.e, we need to properly handle the case where total_len is
not evenly divisible by 8. So we compute ``excess'' which
represents the number of bits from the end of our starting
byte needed to get to bit 0. */
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
- FLOATFORMAT_CHAR_BIT;
}
else
{
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
cur_bitshift =
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
}
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
result = *(data + cur_byte) >> (-cur_bitshift);
else
result = 0;
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
/* Move towards the most significant part of the field. */
while (cur_bitshift < len)
{
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
cur_bitshift += FLOATFORMAT_CHAR_BIT;
switch (order)
{
case floatformat_little:
++cur_byte;
break;
case floatformat_big:
--cur_byte;
break;
}
}
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
/* Mask out bits which are not part of the field. */
result &= ((1UL << len) - 1);
return result;
}
/* Normalize the byte order of FROM into TO. If no normalization is
needed then FMT->byteorder is returned and TO is not changed;
otherwise the format of the normalized form in TO is returned. */
static enum floatformat_byteorders
floatformat_normalize_byteorder (const struct floatformat *fmt,
const void *from, void *to)
{
const unsigned char *swapin;
unsigned char *swapout;
int words;
if (fmt->byteorder == floatformat_little
|| fmt->byteorder == floatformat_big)
return fmt->byteorder;
words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
words >>= 2;
swapout = (unsigned char *)to;
swapin = (const unsigned char *)from;
if (fmt->byteorder == floatformat_vax)
{
while (words-- > 0)
{
*swapout++ = swapin[1];
*swapout++ = swapin[0];
*swapout++ = swapin[3];
*swapout++ = swapin[2];
swapin += 4;
}
/* This may look weird, since VAX is little-endian, but it is
easier to translate to big-endian than to little-endian. */
return floatformat_big;
}
else
{
gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
while (words-- > 0)
{
*swapout++ = swapin[3];
*swapout++ = swapin[2];
*swapout++ = swapin[1];
*swapout++ = swapin[0];
swapin += 4;
}
return floatformat_big;
}
}
/* Convert from FMT to a DOUBLEST.
FROM is the address of the extended float.
Store the DOUBLEST in *TO. */
static void
convert_floatformat_to_doublest (const struct floatformat *fmt,
const void *from,
DOUBLEST *to)
{
unsigned char *ufrom = (unsigned char *) from;
DOUBLEST dto;
long exponent;
unsigned long mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
int special_exponent; /* It's a NaN, denorm or zero. */
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
enum float_kind kind;
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* For non-numbers, reuse libiberty's logic to find the correct
format. We do not lose any precision in this case by passing
through a double. */
kind = floatformat_classify (fmt, (const bfd_byte *) from);
if (kind == float_infinite || kind == float_nan)
{
double dto;
floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
from, &dto);
*to = (DOUBLEST) dto;
return;
}
order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
if (order != fmt->byteorder)
ufrom = newfrom;
if (fmt->split_half)
{
DOUBLEST dtop, dbot;
floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
/* Preserve the sign of 0, which is the sign of the top
half. */
if (dtop == 0.0)
{
*to = dtop;
return;
}
floatformat_to_doublest (fmt->split_half,
ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
&dbot);
*to = dtop + dbot;
return;
}
exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len);
/* Note that if exponent indicates a NaN, we can't really do anything useful
(not knowing if the host has NaN's, or how to build one). So it will
end up as an infinity or something close; that is OK. */
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
dto = 0.0;
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
/* Don't bias NaNs. Use minimum exponent for denorms. For
simplicity, we don't check for zero as the exponent doesn't matter.
Note the cast to int; exp_bias is unsigned, so it's important to
make sure the operation is done in signed arithmetic. */
if (!special_exponent)
exponent -= fmt->exp_bias;
else if (exponent == 0)
exponent = 1 - fmt->exp_bias;
/* Build the result algebraically. Might go infinite, underflow, etc;
who cares. */
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
increment the exponent by one to account for the integer bit. */
if (!special_exponent)
{
if (fmt->intbit == floatformat_intbit_no)
dto = ldexp (1.0, exponent);
else
exponent++;
}
while (mant_bits_left > 0)
{
mant_bits = min (mant_bits_left, 32);
mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
dto += ldexp ((double) mant, exponent - mant_bits);
exponent -= mant_bits;
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
/* Negate it if negative. */
if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
dto = -dto;
*to = dto;
}
/* Set a field which starts at START and is LEN bytes long. DATA and
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
static void
put_field (unsigned char *data, enum floatformat_byteorders order,
unsigned int total_len, unsigned int start, unsigned int len,
unsigned long stuff_to_put)
{
unsigned int cur_byte;
int cur_bitshift;
/* Caller must byte-swap words before calling this routine. */
gdb_assert (order == floatformat_little || order == floatformat_big);
/* Start at the least significant part of the field. */
if (order == floatformat_little)
{
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
- FLOATFORMAT_CHAR_BIT;
}
else
{
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
cur_bitshift =
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
}
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
{
*(data + cur_byte) &=
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
<< (-cur_bitshift));
*(data + cur_byte) |=
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
}
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
/* Move towards the most significant part of the field. */
while (cur_bitshift < len)
{
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
{
/* This is the last byte. */
*(data + cur_byte) &=
~((1 << (len - cur_bitshift)) - 1);
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
}
else
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
}
}
/* The converse: convert the DOUBLEST *FROM to an extended float and
store where TO points. Neither FROM nor TO have any alignment
restrictions. */
static void
convert_doublest_to_floatformat (const struct floatformat *fmt,
const DOUBLEST *from, void *to)
{
DOUBLEST dfrom;
int exponent;
DOUBLEST mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
unsigned char *uto = (unsigned char *) to;
enum floatformat_byteorders order = fmt->byteorder;
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
if (order != floatformat_little)
order = floatformat_big;
if (order != fmt->byteorder)
uto = newto;
memcpy (&dfrom, from, sizeof (dfrom));
memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
/ FLOATFORMAT_CHAR_BIT);
if (fmt->split_half)
{
/* Use static volatile to ensure that any excess precision is
removed via storing in memory, and so the top half really is
the result of converting to double. */
static volatile double dtop, dbot;
DOUBLEST dtopnv, dbotnv;
dtop = (double) dfrom;
/* If the rounded top half is Inf, the bottom must be 0 not NaN
or Inf. */
if (dtop + dtop == dtop && dtop != 0.0)
dbot = 0.0;
else
dbot = (double) (dfrom - (DOUBLEST) dtop);
dtopnv = dtop;
dbotnv = dbot;
floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
floatformat_from_doublest (fmt->split_half, &dbotnv,
(uto
+ fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
return;
}
if (dfrom == 0)
return; /* Result is zero */
if (dfrom != dfrom) /* Result is NaN */
{
/* From is NaN */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
/* Be sure it's not infinity, but NaN value is irrel. */
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 1);
goto finalize_byteorder;
}
/* If negative, set the sign bit. */
if (dfrom < 0)
{
put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
dfrom = -dfrom;
}
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
{
/* Infinity exponent is same as NaN's. */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
/* Infinity mantissa is all zeroes. */
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
#ifdef HAVE_LONG_DOUBLE
mant = frexpl (dfrom, &exponent);
#else
mant = frexp (dfrom, &exponent);
#endif
if (exponent + fmt->exp_bias <= 0)
{
/* The value is too small to be expressed in the destination
type (not enough bits in the exponent. Treat as 0. */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, 0);
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
{
/* The value is too large to fit into the destination.
Treat as infinity. */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
exponent + fmt->exp_bias - 1);
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
while (mant_bits_left > 0)
{
unsigned long mant_long;
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
mant *= 4294967296.0;
mant_long = ((unsigned long) mant) & 0xffffffffL;
mant -= mant_long;
/* If the integer bit is implicit, then we need to discard it.
If we are discarding a zero, we should be (but are not) creating
a denormalized number which means adjusting the exponent
(I think). */
if (mant_bits_left == fmt->man_len
&& fmt->intbit == floatformat_intbit_no)
{
mant_long <<= 1;
mant_long &= 0xffffffffL;
/* If we are processing the top 32 mantissa bits of a doublest
so as to convert to a float value with implied integer bit,
we will only be putting 31 of those 32 bits into the
final value due to the discarding of the top bit. In the
case of a small float value where the number of mantissa
bits is less than 32, discarding the top bit does not alter
the number of bits we will be adding to the result. */
if (mant_bits == 32)
mant_bits -= 1;
}
if (mant_bits < 32)
{
/* The bits we want are in the most significant MANT_BITS bits of
mant_long. Move them to the least significant. */
mant_long >>= 32 - mant_bits;
}
put_field (uto, order, fmt->totalsize,
mant_off, mant_bits, mant_long);
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
finalize_byteorder:
/* Do we need to byte-swap the words in the result? */
if (order != fmt->byteorder)
floatformat_normalize_byteorder (fmt, newto, to);
}
/* Check if VAL (which is assumed to be a floating point number whose
format is described by FMT) is negative. */
int
floatformat_is_negative (const struct floatformat *fmt,
const bfd_byte *uval)
{
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
gdb_assert (fmt != NULL);
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* An IBM long double (a two element array of double) always takes the
sign of the first double. */
if (fmt->split_half)
fmt = fmt->split_half;
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
if (order != fmt->byteorder)
uval = newfrom;
return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
}
/* Check if VAL is "not a number" (NaN) for FMT. */
enum float_kind
floatformat_classify (const struct floatformat *fmt,
const bfd_byte *uval)
{
long exponent;
unsigned long mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
int mant_zero;
gdb_assert (fmt != NULL);
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* An IBM long double (a two element array of double) can be classified
by looking at the first double. inf and nan are specified as
ignoring the second double. zero and subnormal will always have
the second double 0.0 if the long double is correctly rounded. */
if (fmt->split_half)
fmt = fmt->split_half;
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
if (order != fmt->byteorder)
uval = newfrom;
exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len);
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
mant_zero = 1;
while (mant_bits_left > 0)
{
mant_bits = min (mant_bits_left, 32);
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
/* If there is an explicit integer bit, mask it off. */
if (mant_off == fmt->man_start
&& fmt->intbit == floatformat_intbit_yes)
mant &= ~(1 << (mant_bits - 1));
if (mant)
{
mant_zero = 0;
break;
}
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
/* If exp_nan is not set, assume that inf, NaN, and subnormals are not
supported. */
if (! fmt->exp_nan)
{
if (mant_zero)
return float_zero;
else
return float_normal;
}
if (exponent == 0 && !mant_zero)
return float_subnormal;
if (exponent == fmt->exp_nan)
{
if (mant_zero)
return float_infinite;
else
return float_nan;
}
if (mant_zero)
return float_zero;
return float_normal;
}
/* Convert the mantissa of VAL (which is assumed to be a floating
point number whose format is described by FMT) into a hexadecimal
and store it in a static string. Return a pointer to that string. */
const char *
floatformat_mantissa (const struct floatformat *fmt,
const bfd_byte *val)
{
unsigned char *uval = (unsigned char *) val;
unsigned long mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
static char res[50];
char buf[9];
int len;
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
gdb_assert (fmt != NULL);
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* For IBM long double (a two element array of double), return the
mantissa of the first double. The problem with returning the
actual mantissa from both doubles is that there can be an
arbitrary number of implied 0's or 1's between the mantissas
of the first and second double. In any case, this function
is only used for dumping out nans, and a nan is specified to
ignore the value in the second double. */
if (fmt->split_half)
fmt = fmt->split_half;
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
if (order != fmt->byteorder)
uval = newfrom;
if (! fmt->exp_nan)
return 0;
/* Make sure we have enough room to store the mantissa. */
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
mant_off = fmt->man_start;
mant_bits_left = fmt->man_len;
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
len = xsnprintf (res, sizeof res, "%lx", mant);
mant_off += mant_bits;
mant_bits_left -= mant_bits;
while (mant_bits_left > 0)
{
mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
xsnprintf (buf, sizeof buf, "%08lx", mant);
gdb_assert (len + strlen (buf) <= sizeof res);
strcat (res, buf);
mant_off += 32;
mant_bits_left -= 32;
}
return res;
}
/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
If the host and target formats agree, we just copy the raw data
into the appropriate type of variable and return, letting the host
increase precision as necessary. Otherwise, we call the conversion
routine and let it do the dirty work. */
static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
static const struct floatformat *host_long_double_format
= GDB_HOST_LONG_DOUBLE_FORMAT;
void
floatformat_to_doublest (const struct floatformat *fmt,
const void *in, DOUBLEST *out)
{
gdb_assert (fmt != NULL);
if (fmt == host_float_format)
{
float val;
memcpy (&val, in, sizeof (val));
*out = val;
}
else if (fmt == host_double_format)
{
double val;
memcpy (&val, in, sizeof (val));
*out = val;
}
else if (fmt == host_long_double_format)
{
long double val;
memcpy (&val, in, sizeof (val));
*out = val;
}
else
convert_floatformat_to_doublest (fmt, in, out);
}
void
floatformat_from_doublest (const struct floatformat *fmt,
const DOUBLEST *in, void *out)
{
gdb_assert (fmt != NULL);
if (fmt == host_float_format)
{
float val = *in;
memcpy (out, &val, sizeof (val));
}
else if (fmt == host_double_format)
{
double val = *in;
memcpy (out, &val, sizeof (val));
}
else if (fmt == host_long_double_format)
{
long double val = *in;
memcpy (out, &val, sizeof (val));
}
else
convert_doublest_to_floatformat (fmt, in, out);
}
/* Return a floating-point format for a floating-point variable of
length LEN. If no suitable floating-point format is found, an
error is thrown.
We need this functionality since information about the
floating-point format of a type is not always available to GDB; the
debug information typically only tells us the size of a
floating-point type.
FIXME: kettenis/2001-10-28: In many places, particularly in
target-dependent code, the format of floating-point types is known,
but not passed on by GDB. This should be fixed. */
static const struct floatformat *
floatformat_from_length (struct gdbarch *gdbarch, int len)
{
const struct floatformat *format;
if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
format = gdbarch_half_format (gdbarch)
[gdbarch_byte_order (gdbarch)];
else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
format = gdbarch_float_format (gdbarch)
[gdbarch_byte_order (gdbarch)];
else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
format = gdbarch_double_format (gdbarch)
[gdbarch_byte_order (gdbarch)];
else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
format = gdbarch_long_double_format (gdbarch)
[gdbarch_byte_order (gdbarch)];
/* On i386 the 'long double' type takes 96 bits,
while the real number of used bits is only 80,
both in processor and in memory.
The code below accepts the real bit size. */
else if ((gdbarch_long_double_format (gdbarch) != NULL)
&& (len * TARGET_CHAR_BIT
== gdbarch_long_double_format (gdbarch)[0]->totalsize))
format = gdbarch_long_double_format (gdbarch)
[gdbarch_byte_order (gdbarch)];
else
format = NULL;
if (format == NULL)
error (_("Unrecognized %d-bit floating-point type."),
len * TARGET_CHAR_BIT);
return format;
}
const struct floatformat *
floatformat_from_type (const struct type *type)
{
struct gdbarch *gdbarch = get_type_arch (type);
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
if (TYPE_FLOATFORMAT (type) != NULL)
return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
else
return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
}
/* Extract a floating-point number of type TYPE from a target-order
byte-stream at ADDR. Returns the value as type DOUBLEST. */
DOUBLEST
extract_typed_floating (const void *addr, const struct type *type)
{
const struct floatformat *fmt = floatformat_from_type (type);
DOUBLEST retval;
floatformat_to_doublest (fmt, addr, &retval);
return retval;
}
/* Store VAL as a floating-point number of type TYPE to a target-order
byte-stream at ADDR. */
void
store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
{
const struct floatformat *fmt = floatformat_from_type (type);
/* FIXME: kettenis/2001-10-28: It is debatable whether we should
zero out any remaining bytes in the target buffer when TYPE is
longer than the actual underlying floating-point format. Perhaps
we should store a fixed bitpattern in those remaining bytes,
instead of zero, or perhaps we shouldn't touch those remaining
bytes at all.
NOTE: cagney/2001-10-28: With the way things currently work, it
isn't a good idea to leave the end bits undefined. This is
because GDB writes out the entire sizeof(<floating>) bits of the
floating-point type even though the value might only be stored
in, and the target processor may only refer to, the first N <
TYPE_LENGTH (type) bits. If the end of the buffer wasn't
initialized, GDB would write undefined data to the target. An
errant program, refering to that undefined data, would then
become non-deterministic.
See also the function convert_typed_floating below. */
memset (addr, 0, TYPE_LENGTH (type));
floatformat_from_doublest (fmt, &val, addr);
}
/* Convert a floating-point number of type FROM_TYPE from a
target-order byte-stream at FROM to a floating-point number of type
TO_TYPE, and store it to a target-order byte-stream at TO. */
void
convert_typed_floating (const void *from, const struct type *from_type,
void *to, const struct type *to_type)
{
const struct floatformat *from_fmt = floatformat_from_type (from_type);
const struct floatformat *to_fmt = floatformat_from_type (to_type);
if (from_fmt == NULL || to_fmt == NULL)
{
/* If we don't know the floating-point format of FROM_TYPE or
TO_TYPE, there's not much we can do. We might make the
assumption that if the length of FROM_TYPE and TO_TYPE match,
their floating-point format would match too, but that
assumption might be wrong on targets that support
floating-point types that only differ in endianness for
example. So we warn instead, and zero out the target buffer. */
warning (_("Can't convert floating-point number to desired type."));
memset (to, 0, TYPE_LENGTH (to_type));
}
else if (from_fmt == to_fmt)
{
/* We're in business. The floating-point format of FROM_TYPE
and TO_TYPE match. However, even though the floating-point
format matches, the length of the type might still be
different. Make sure we don't overrun any buffers. See
comment in store_typed_floating for a discussion about
zeroing out remaining bytes in the target buffer. */
memset (to, 0, TYPE_LENGTH (to_type));
memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
}
else
{
/* The floating-point types don't match. The best we can do
(apart from simulating the target FPU) is converting to the
widest floating-point type supported by the host, and then
again to the desired type. */
DOUBLEST d;
floatformat_to_doublest (from_fmt, from, &d);
floatformat_from_doublest (to_fmt, &d, to);
}
}
|