1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
|
/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
Copyright (C) 1990-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "elf/external.h"
#include "elf/common.h"
#include "elf/mips.h"
#include "symtab.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "target.h"
#include "inferior.h"
#include "infrun.h"
#include "regcache.h"
#include "gdbthread.h"
#include "observer.h"
#include "solist.h"
#include "solib.h"
#include "solib-svr4.h"
#include "bfd-target.h"
#include "elf-bfd.h"
#include "exec.h"
#include "auxv.h"
#include "gdb_bfd.h"
#include "probe.h"
static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
static int svr4_have_link_map_offsets (void);
static void svr4_relocate_main_executable (void);
static void svr4_free_library_list (void *p_list);
/* Link map info to include in an allocated so_list entry. */
struct lm_info
{
/* Amount by which addresses in the binary should be relocated to
match the inferior. The direct inferior value is L_ADDR_INFERIOR.
When prelinking is involved and the prelink base address changes,
we may need a different offset - the recomputed offset is in L_ADDR.
It is commonly the same value. It is cached as we want to warn about
the difference and compute it only once. L_ADDR is valid
iff L_ADDR_P. */
CORE_ADDR l_addr, l_addr_inferior;
unsigned int l_addr_p : 1;
/* The target location of lm. */
CORE_ADDR lm_addr;
/* Values read in from inferior's fields of the same name. */
CORE_ADDR l_ld, l_next, l_prev, l_name;
};
/* On SVR4 systems, a list of symbols in the dynamic linker where
GDB can try to place a breakpoint to monitor shared library
events.
If none of these symbols are found, or other errors occur, then
SVR4 systems will fall back to using a symbol as the "startup
mapping complete" breakpoint address. */
static const char * const solib_break_names[] =
{
"r_debug_state",
"_r_debug_state",
"_dl_debug_state",
"rtld_db_dlactivity",
"__dl_rtld_db_dlactivity",
"_rtld_debug_state",
NULL
};
static const char * const bkpt_names[] =
{
"_start",
"__start",
"main",
NULL
};
static const char * const main_name_list[] =
{
"main_$main",
NULL
};
/* What to do when a probe stop occurs. */
enum probe_action
{
/* Something went seriously wrong. Stop using probes and
revert to using the older interface. */
PROBES_INTERFACE_FAILED,
/* No action is required. The shared object list is still
valid. */
DO_NOTHING,
/* The shared object list should be reloaded entirely. */
FULL_RELOAD,
/* Attempt to incrementally update the shared object list. If
the update fails or is not possible, fall back to reloading
the list in full. */
UPDATE_OR_RELOAD,
};
/* A probe's name and its associated action. */
struct probe_info
{
/* The name of the probe. */
const char *name;
/* What to do when a probe stop occurs. */
enum probe_action action;
};
/* A list of named probes and their associated actions. If all
probes are present in the dynamic linker then the probes-based
interface will be used. */
static const struct probe_info probe_info[] =
{
{ "init_start", DO_NOTHING },
{ "init_complete", FULL_RELOAD },
{ "map_start", DO_NOTHING },
{ "map_failed", DO_NOTHING },
{ "reloc_complete", UPDATE_OR_RELOAD },
{ "unmap_start", DO_NOTHING },
{ "unmap_complete", FULL_RELOAD },
};
#define NUM_PROBES ARRAY_SIZE (probe_info)
/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
the same shared library. */
static int
svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
{
if (strcmp (gdb_so_name, inferior_so_name) == 0)
return 1;
/* On Solaris, when starting inferior we think that dynamic linker is
/usr/lib/ld.so.1, but later on, the table of loaded shared libraries
contains /lib/ld.so.1. Sometimes one file is a link to another, but
sometimes they have identical content, but are not linked to each
other. We don't restrict this check for Solaris, but the chances
of running into this situation elsewhere are very low. */
if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
&& strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
return 1;
/* Similarly, we observed the same issue with sparc64, but with
different locations. */
if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
&& strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
return 1;
return 0;
}
static int
svr4_same (struct so_list *gdb, struct so_list *inferior)
{
return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
}
static struct lm_info *
lm_info_read (CORE_ADDR lm_addr)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
gdb_byte *lm;
struct lm_info *lm_info;
struct cleanup *back_to;
lm = (gdb_byte *) xmalloc (lmo->link_map_size);
back_to = make_cleanup (xfree, lm);
if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
{
warning (_("Error reading shared library list entry at %s"),
paddress (target_gdbarch (), lm_addr)),
lm_info = NULL;
}
else
{
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
lm_info = XCNEW (struct lm_info);
lm_info->lm_addr = lm_addr;
lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
ptr_type);
lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
ptr_type);
lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
ptr_type);
lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
ptr_type);
}
do_cleanups (back_to);
return lm_info;
}
static int
has_lm_dynamic_from_link_map (void)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return lmo->l_ld_offset >= 0;
}
static CORE_ADDR
lm_addr_check (const struct so_list *so, bfd *abfd)
{
if (!so->lm_info->l_addr_p)
{
struct bfd_section *dyninfo_sect;
CORE_ADDR l_addr, l_dynaddr, dynaddr;
l_addr = so->lm_info->l_addr_inferior;
if (! abfd || ! has_lm_dynamic_from_link_map ())
goto set_addr;
l_dynaddr = so->lm_info->l_ld;
dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
if (dyninfo_sect == NULL)
goto set_addr;
dynaddr = bfd_section_vma (abfd, dyninfo_sect);
if (dynaddr + l_addr != l_dynaddr)
{
CORE_ADDR align = 0x1000;
CORE_ADDR minpagesize = align;
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
{
Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
int i;
align = 1;
for (i = 0; i < ehdr->e_phnum; i++)
if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
align = phdr[i].p_align;
minpagesize = get_elf_backend_data (abfd)->minpagesize;
}
/* Turn it into a mask. */
align--;
/* If the changes match the alignment requirements, we
assume we're using a core file that was generated by the
same binary, just prelinked with a different base offset.
If it doesn't match, we may have a different binary, the
same binary with the dynamic table loaded at an unrelated
location, or anything, really. To avoid regressions,
don't adjust the base offset in the latter case, although
odds are that, if things really changed, debugging won't
quite work.
One could expect more the condition
((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
but the one below is relaxed for PPC. The PPC kernel supports
either 4k or 64k page sizes. To be prepared for 64k pages,
PPC ELF files are built using an alignment requirement of 64k.
However, when running on a kernel supporting 4k pages, the memory
mapping of the library may not actually happen on a 64k boundary!
(In the usual case where (l_addr & align) == 0, this check is
equivalent to the possibly expected check above.)
Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
l_addr = l_dynaddr - dynaddr;
if ((l_addr & (minpagesize - 1)) == 0
&& (l_addr & align) == ((l_dynaddr - dynaddr) & align))
{
if (info_verbose)
printf_unfiltered (_("Using PIC (Position Independent Code) "
"prelink displacement %s for \"%s\".\n"),
paddress (target_gdbarch (), l_addr),
so->so_name);
}
else
{
/* There is no way to verify the library file matches. prelink
can during prelinking of an unprelinked file (or unprelinking
of a prelinked file) shift the DYNAMIC segment by arbitrary
offset without any page size alignment. There is no way to
find out the ELF header and/or Program Headers for a limited
verification if it they match. One could do a verification
of the DYNAMIC segment. Still the found address is the best
one GDB could find. */
warning (_(".dynamic section for \"%s\" "
"is not at the expected address "
"(wrong library or version mismatch?)"), so->so_name);
}
}
set_addr:
so->lm_info->l_addr = l_addr;
so->lm_info->l_addr_p = 1;
}
return so->lm_info->l_addr;
}
/* Per pspace SVR4 specific data. */
struct svr4_info
{
CORE_ADDR debug_base; /* Base of dynamic linker structures. */
/* Validity flag for debug_loader_offset. */
int debug_loader_offset_p;
/* Load address for the dynamic linker, inferred. */
CORE_ADDR debug_loader_offset;
/* Name of the dynamic linker, valid if debug_loader_offset_p. */
char *debug_loader_name;
/* Load map address for the main executable. */
CORE_ADDR main_lm_addr;
CORE_ADDR interp_text_sect_low;
CORE_ADDR interp_text_sect_high;
CORE_ADDR interp_plt_sect_low;
CORE_ADDR interp_plt_sect_high;
/* Nonzero if the list of objects was last obtained from the target
via qXfer:libraries-svr4:read. */
int using_xfer;
/* Table of struct probe_and_action instances, used by the
probes-based interface to map breakpoint addresses to probes
and their associated actions. Lookup is performed using
probe_and_action->probe->address. */
htab_t probes_table;
/* List of objects loaded into the inferior, used by the probes-
based interface. */
struct so_list *solib_list;
};
/* Per-program-space data key. */
static const struct program_space_data *solib_svr4_pspace_data;
/* Free the probes table. */
static void
free_probes_table (struct svr4_info *info)
{
if (info->probes_table == NULL)
return;
htab_delete (info->probes_table);
info->probes_table = NULL;
}
/* Free the solib list. */
static void
free_solib_list (struct svr4_info *info)
{
svr4_free_library_list (&info->solib_list);
info->solib_list = NULL;
}
static void
svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
{
struct svr4_info *info = (struct svr4_info *) arg;
free_probes_table (info);
free_solib_list (info);
xfree (info);
}
/* Get the current svr4 data. If none is found yet, add it now. This
function always returns a valid object. */
static struct svr4_info *
get_svr4_info (void)
{
struct svr4_info *info;
info = (struct svr4_info *) program_space_data (current_program_space,
solib_svr4_pspace_data);
if (info != NULL)
return info;
info = XCNEW (struct svr4_info);
set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
return info;
}
/* Local function prototypes */
static int match_main (const char *);
/* Read program header TYPE from inferior memory. The header is found
by scanning the OS auxillary vector.
If TYPE == -1, return the program headers instead of the contents of
one program header.
Return a pointer to allocated memory holding the program header contents,
or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
size of those contents is returned to P_SECT_SIZE. Likewise, the target
architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
the base address of the section is returned in BASE_ADDR. */
static gdb_byte *
read_program_header (int type, int *p_sect_size, int *p_arch_size,
CORE_ADDR *base_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
int arch_size, sect_size;
CORE_ADDR sect_addr;
gdb_byte *buf;
int pt_phdr_p = 0;
/* Get required auxv elements from target. */
if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0)
return 0;
if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0)
return 0;
if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0)
return 0;
if (!at_phdr || !at_phnum)
return 0;
/* Determine ELF architecture type. */
if (at_phent == sizeof (Elf32_External_Phdr))
arch_size = 32;
else if (at_phent == sizeof (Elf64_External_Phdr))
arch_size = 64;
else
return 0;
/* Find the requested segment. */
if (type == -1)
{
sect_addr = at_phdr;
sect_size = at_phent * at_phnum;
}
else if (arch_size == 32)
{
Elf32_External_Phdr phdr;
int i;
/* Search for requested PHDR. */
for (i = 0; i < at_phnum; i++)
{
int p_type;
if (target_read_memory (at_phdr + i * sizeof (phdr),
(gdb_byte *)&phdr, sizeof (phdr)))
return 0;
p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
4, byte_order);
if (p_type == PT_PHDR)
{
pt_phdr_p = 1;
pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
4, byte_order);
}
if (p_type == type)
break;
}
if (i == at_phnum)
return 0;
/* Retrieve address and size. */
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
4, byte_order);
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
4, byte_order);
}
else
{
Elf64_External_Phdr phdr;
int i;
/* Search for requested PHDR. */
for (i = 0; i < at_phnum; i++)
{
int p_type;
if (target_read_memory (at_phdr + i * sizeof (phdr),
(gdb_byte *)&phdr, sizeof (phdr)))
return 0;
p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
4, byte_order);
if (p_type == PT_PHDR)
{
pt_phdr_p = 1;
pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
8, byte_order);
}
if (p_type == type)
break;
}
if (i == at_phnum)
return 0;
/* Retrieve address and size. */
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
8, byte_order);
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
8, byte_order);
}
/* PT_PHDR is optional, but we really need it
for PIE to make this work in general. */
if (pt_phdr_p)
{
/* at_phdr is real address in memory. pt_phdr is what pheader says it is.
Relocation offset is the difference between the two. */
sect_addr = sect_addr + (at_phdr - pt_phdr);
}
/* Read in requested program header. */
buf = (gdb_byte *) xmalloc (sect_size);
if (target_read_memory (sect_addr, buf, sect_size))
{
xfree (buf);
return NULL;
}
if (p_arch_size)
*p_arch_size = arch_size;
if (p_sect_size)
*p_sect_size = sect_size;
if (base_addr)
*base_addr = sect_addr;
return buf;
}
/* Return program interpreter string. */
static char *
find_program_interpreter (void)
{
gdb_byte *buf = NULL;
/* If we have an exec_bfd, use its section table. */
if (exec_bfd
&& bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
{
struct bfd_section *interp_sect;
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
if (interp_sect != NULL)
{
int sect_size = bfd_section_size (exec_bfd, interp_sect);
buf = (gdb_byte *) xmalloc (sect_size);
bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
}
}
/* If we didn't find it, use the target auxillary vector. */
if (!buf)
buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
return (char *) buf;
}
/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
found, 1 is returned and the corresponding PTR is set. */
static int
scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
CORE_ADDR *ptr_addr)
{
int arch_size, step, sect_size;
long current_dyntag;
CORE_ADDR dyn_ptr, dyn_addr;
gdb_byte *bufend, *bufstart, *buf;
Elf32_External_Dyn *x_dynp_32;
Elf64_External_Dyn *x_dynp_64;
struct bfd_section *sect;
struct target_section *target_section;
if (abfd == NULL)
return 0;
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
return 0;
arch_size = bfd_get_arch_size (abfd);
if (arch_size == -1)
return 0;
/* Find the start address of the .dynamic section. */
sect = bfd_get_section_by_name (abfd, ".dynamic");
if (sect == NULL)
return 0;
for (target_section = current_target_sections->sections;
target_section < current_target_sections->sections_end;
target_section++)
if (sect == target_section->the_bfd_section)
break;
if (target_section < current_target_sections->sections_end)
dyn_addr = target_section->addr;
else
{
/* ABFD may come from OBJFILE acting only as a symbol file without being
loaded into the target (see add_symbol_file_command). This case is
such fallback to the file VMA address without the possibility of
having the section relocated to its actual in-memory address. */
dyn_addr = bfd_section_vma (abfd, sect);
}
/* Read in .dynamic from the BFD. We will get the actual value
from memory later. */
sect_size = bfd_section_size (abfd, sect);
buf = bufstart = (gdb_byte *) alloca (sect_size);
if (!bfd_get_section_contents (abfd, sect,
buf, 0, sect_size))
return 0;
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
: sizeof (Elf64_External_Dyn);
for (bufend = buf + sect_size;
buf < bufend;
buf += step)
{
if (arch_size == 32)
{
x_dynp_32 = (Elf32_External_Dyn *) buf;
current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
}
else
{
x_dynp_64 = (Elf64_External_Dyn *) buf;
current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
}
if (current_dyntag == DT_NULL)
return 0;
if (current_dyntag == desired_dyntag)
{
/* If requested, try to read the runtime value of this .dynamic
entry. */
if (ptr)
{
struct type *ptr_type;
gdb_byte ptr_buf[8];
CORE_ADDR ptr_addr_1;
ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
*ptr = dyn_ptr;
if (ptr_addr)
*ptr_addr = dyn_addr + (buf - bufstart);
}
return 1;
}
}
return 0;
}
/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
is returned and the corresponding PTR is set. */
static int
scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
CORE_ADDR *ptr_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
int sect_size, arch_size, step;
long current_dyntag;
CORE_ADDR dyn_ptr;
CORE_ADDR base_addr;
gdb_byte *bufend, *bufstart, *buf;
/* Read in .dynamic section. */
buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size,
&base_addr);
if (!buf)
return 0;
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
: sizeof (Elf64_External_Dyn);
for (bufend = buf + sect_size;
buf < bufend;
buf += step)
{
if (arch_size == 32)
{
Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
4, byte_order);
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
4, byte_order);
}
else
{
Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
8, byte_order);
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
8, byte_order);
}
if (current_dyntag == DT_NULL)
break;
if (current_dyntag == desired_dyntag)
{
if (ptr)
*ptr = dyn_ptr;
if (ptr_addr)
*ptr_addr = base_addr + buf - bufstart;
xfree (bufstart);
return 1;
}
}
xfree (bufstart);
return 0;
}
/* Locate the base address of dynamic linker structs for SVR4 elf
targets.
For SVR4 elf targets the address of the dynamic linker's runtime
structure is contained within the dynamic info section in the
executable file. The dynamic section is also mapped into the
inferior address space. Because the runtime loader fills in the
real address before starting the inferior, we have to read in the
dynamic info section from the inferior address space.
If there are any errors while trying to find the address, we
silently return 0, otherwise the found address is returned. */
static CORE_ADDR
elf_locate_base (void)
{
struct bound_minimal_symbol msymbol;
CORE_ADDR dyn_ptr, dyn_ptr_addr;
/* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
instead of DT_DEBUG, although they sometimes contain an unused
DT_DEBUG. */
if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
|| scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
{
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
gdb_byte *pbuf;
int pbuf_size = TYPE_LENGTH (ptr_type);
pbuf = (gdb_byte *) alloca (pbuf_size);
/* DT_MIPS_RLD_MAP contains a pointer to the address
of the dynamic link structure. */
if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
return 0;
return extract_typed_address (pbuf, ptr_type);
}
/* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
in non-PIE. */
if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
|| scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
{
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
gdb_byte *pbuf;
int pbuf_size = TYPE_LENGTH (ptr_type);
pbuf = (gdb_byte *) alloca (pbuf_size);
/* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
DT slot to the address of the dynamic link structure. */
if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
return 0;
return extract_typed_address (pbuf, ptr_type);
}
/* Find DT_DEBUG. */
if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
|| scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
return dyn_ptr;
/* This may be a static executable. Look for the symbol
conventionally named _r_debug, as a last resort. */
msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
if (msymbol.minsym != NULL)
return BMSYMBOL_VALUE_ADDRESS (msymbol);
/* DT_DEBUG entry not found. */
return 0;
}
/* Locate the base address of dynamic linker structs.
For both the SunOS and SVR4 shared library implementations, if the
inferior executable has been linked dynamically, there is a single
address somewhere in the inferior's data space which is the key to
locating all of the dynamic linker's runtime structures. This
address is the value of the debug base symbol. The job of this
function is to find and return that address, or to return 0 if there
is no such address (the executable is statically linked for example).
For SunOS, the job is almost trivial, since the dynamic linker and
all of it's structures are statically linked to the executable at
link time. Thus the symbol for the address we are looking for has
already been added to the minimal symbol table for the executable's
objfile at the time the symbol file's symbols were read, and all we
have to do is look it up there. Note that we explicitly do NOT want
to find the copies in the shared library.
The SVR4 version is a bit more complicated because the address
is contained somewhere in the dynamic info section. We have to go
to a lot more work to discover the address of the debug base symbol.
Because of this complexity, we cache the value we find and return that
value on subsequent invocations. Note there is no copy in the
executable symbol tables. */
static CORE_ADDR
locate_base (struct svr4_info *info)
{
/* Check to see if we have a currently valid address, and if so, avoid
doing all this work again and just return the cached address. If
we have no cached address, try to locate it in the dynamic info
section for ELF executables. There's no point in doing any of this
though if we don't have some link map offsets to work with. */
if (info->debug_base == 0 && svr4_have_link_map_offsets ())
info->debug_base = elf_locate_base ();
return info->debug_base;
}
/* Find the first element in the inferior's dynamic link map, and
return its address in the inferior. Return zero if the address
could not be determined.
FIXME: Perhaps we should validate the info somehow, perhaps by
checking r_version for a known version number, or r_state for
RT_CONSISTENT. */
static CORE_ADDR
solib_svr4_r_map (struct svr4_info *info)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
CORE_ADDR addr = 0;
TRY
{
addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
ptr_type);
}
CATCH (ex, RETURN_MASK_ERROR)
{
exception_print (gdb_stderr, ex);
}
END_CATCH
return addr;
}
/* Find r_brk from the inferior's debug base. */
static CORE_ADDR
solib_svr4_r_brk (struct svr4_info *info)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
ptr_type);
}
/* Find the link map for the dynamic linker (if it is not in the
normal list of loaded shared objects). */
static CORE_ADDR
solib_svr4_r_ldsomap (struct svr4_info *info)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
ULONGEST version = 0;
TRY
{
/* Check version, and return zero if `struct r_debug' doesn't have
the r_ldsomap member. */
version
= read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
lmo->r_version_size, byte_order);
}
CATCH (ex, RETURN_MASK_ERROR)
{
exception_print (gdb_stderr, ex);
}
END_CATCH
if (version < 2 || lmo->r_ldsomap_offset == -1)
return 0;
return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
ptr_type);
}
/* On Solaris systems with some versions of the dynamic linker,
ld.so's l_name pointer points to the SONAME in the string table
rather than into writable memory. So that GDB can find shared
libraries when loading a core file generated by gcore, ensure that
memory areas containing the l_name string are saved in the core
file. */
static int
svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
{
struct svr4_info *info;
CORE_ADDR ldsomap;
struct so_list *newobj;
struct cleanup *old_chain;
CORE_ADDR name_lm;
info = get_svr4_info ();
info->debug_base = 0;
locate_base (info);
if (!info->debug_base)
return 0;
ldsomap = solib_svr4_r_ldsomap (info);
if (!ldsomap)
return 0;
newobj = XCNEW (struct so_list);
old_chain = make_cleanup (xfree, newobj);
newobj->lm_info = lm_info_read (ldsomap);
make_cleanup (xfree, newobj->lm_info);
name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
do_cleanups (old_chain);
return (name_lm >= vaddr && name_lm < vaddr + size);
}
/* Implement the "open_symbol_file_object" target_so_ops method.
If no open symbol file, attempt to locate and open the main symbol
file. On SVR4 systems, this is the first link map entry. If its
name is here, we can open it. Useful when attaching to a process
without first loading its symbol file. */
static int
open_symbol_file_object (void *from_ttyp)
{
CORE_ADDR lm, l_name;
char *filename;
int errcode;
int from_tty = *(int *)from_ttyp;
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
int l_name_size = TYPE_LENGTH (ptr_type);
gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
struct svr4_info *info = get_svr4_info ();
if (symfile_objfile)
if (!query (_("Attempt to reload symbols from process? ")))
{
do_cleanups (cleanups);
return 0;
}
/* Always locate the debug struct, in case it has moved. */
info->debug_base = 0;
if (locate_base (info) == 0)
{
do_cleanups (cleanups);
return 0; /* failed somehow... */
}
/* First link map member should be the executable. */
lm = solib_svr4_r_map (info);
if (lm == 0)
{
do_cleanups (cleanups);
return 0; /* failed somehow... */
}
/* Read address of name from target memory to GDB. */
read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
/* Convert the address to host format. */
l_name = extract_typed_address (l_name_buf, ptr_type);
if (l_name == 0)
{
do_cleanups (cleanups);
return 0; /* No filename. */
}
/* Now fetch the filename from target memory. */
target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
make_cleanup (xfree, filename);
if (errcode)
{
warning (_("failed to read exec filename from attached file: %s"),
safe_strerror (errcode));
do_cleanups (cleanups);
return 0;
}
/* Have a pathname: read the symbol file. */
symbol_file_add_main (filename, from_tty);
do_cleanups (cleanups);
return 1;
}
/* Data exchange structure for the XML parser as returned by
svr4_current_sos_via_xfer_libraries. */
struct svr4_library_list
{
struct so_list *head, **tailp;
/* Inferior address of struct link_map used for the main executable. It is
NULL if not known. */
CORE_ADDR main_lm;
};
/* Implementation for target_so_ops.free_so. */
static void
svr4_free_so (struct so_list *so)
{
xfree (so->lm_info);
}
/* Implement target_so_ops.clear_so. */
static void
svr4_clear_so (struct so_list *so)
{
if (so->lm_info != NULL)
so->lm_info->l_addr_p = 0;
}
/* Free so_list built so far (called via cleanup). */
static void
svr4_free_library_list (void *p_list)
{
struct so_list *list = *(struct so_list **) p_list;
while (list != NULL)
{
struct so_list *next = list->next;
free_so (list);
list = next;
}
}
/* Copy library list. */
static struct so_list *
svr4_copy_library_list (struct so_list *src)
{
struct so_list *dst = NULL;
struct so_list **link = &dst;
while (src != NULL)
{
struct so_list *newobj;
newobj = XNEW (struct so_list);
memcpy (newobj, src, sizeof (struct so_list));
newobj->lm_info = XNEW (struct lm_info);
memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
newobj->next = NULL;
*link = newobj;
link = &newobj->next;
src = src->next;
}
return dst;
}
#ifdef HAVE_LIBEXPAT
#include "xml-support.h"
/* Handle the start of a <library> element. Note: new elements are added
at the tail of the list, keeping the list in order. */
static void
library_list_start_library (struct gdb_xml_parser *parser,
const struct gdb_xml_element *element,
void *user_data, VEC(gdb_xml_value_s) *attributes)
{
struct svr4_library_list *list = (struct svr4_library_list *) user_data;
const char *name
= (const char *) xml_find_attribute (attributes, "name")->value;
ULONGEST *lmp
= (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
ULONGEST *l_addrp
= (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
ULONGEST *l_ldp
= (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
struct so_list *new_elem;
new_elem = XCNEW (struct so_list);
new_elem->lm_info = XCNEW (struct lm_info);
new_elem->lm_info->lm_addr = *lmp;
new_elem->lm_info->l_addr_inferior = *l_addrp;
new_elem->lm_info->l_ld = *l_ldp;
strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
strcpy (new_elem->so_original_name, new_elem->so_name);
*list->tailp = new_elem;
list->tailp = &new_elem->next;
}
/* Handle the start of a <library-list-svr4> element. */
static void
svr4_library_list_start_list (struct gdb_xml_parser *parser,
const struct gdb_xml_element *element,
void *user_data, VEC(gdb_xml_value_s) *attributes)
{
struct svr4_library_list *list = (struct svr4_library_list *) user_data;
const char *version
= (const char *) xml_find_attribute (attributes, "version")->value;
struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
if (strcmp (version, "1.0") != 0)
gdb_xml_error (parser,
_("SVR4 Library list has unsupported version \"%s\""),
version);
if (main_lm)
list->main_lm = *(ULONGEST *) main_lm->value;
}
/* The allowed elements and attributes for an XML library list.
The root element is a <library-list>. */
static const struct gdb_xml_attribute svr4_library_attributes[] =
{
{ "name", GDB_XML_AF_NONE, NULL, NULL },
{ "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
{ "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
{ "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
{ NULL, GDB_XML_AF_NONE, NULL, NULL }
};
static const struct gdb_xml_element svr4_library_list_children[] =
{
{
"library", svr4_library_attributes, NULL,
GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
library_list_start_library, NULL
},
{ NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
};
static const struct gdb_xml_attribute svr4_library_list_attributes[] =
{
{ "version", GDB_XML_AF_NONE, NULL, NULL },
{ "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
{ NULL, GDB_XML_AF_NONE, NULL, NULL }
};
static const struct gdb_xml_element svr4_library_list_elements[] =
{
{ "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
{ NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
};
/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
empty, caller is responsible for freeing all its entries. */
static int
svr4_parse_libraries (const char *document, struct svr4_library_list *list)
{
struct cleanup *back_to = make_cleanup (svr4_free_library_list,
&list->head);
memset (list, 0, sizeof (*list));
list->tailp = &list->head;
if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
svr4_library_list_elements, document, list) == 0)
{
/* Parsed successfully, keep the result. */
discard_cleanups (back_to);
return 1;
}
do_cleanups (back_to);
return 0;
}
/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
empty, caller is responsible for freeing all its entries.
Note that ANNEX must be NULL if the remote does not explicitly allow
qXfer:libraries-svr4:read packets with non-empty annexes. Support for
this can be checked using target_augmented_libraries_svr4_read (). */
static int
svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
const char *annex)
{
char *svr4_library_document;
int result;
struct cleanup *back_to;
gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
/* Fetch the list of shared libraries. */
svr4_library_document = target_read_stralloc (¤t_target,
TARGET_OBJECT_LIBRARIES_SVR4,
annex);
if (svr4_library_document == NULL)
return 0;
back_to = make_cleanup (xfree, svr4_library_document);
result = svr4_parse_libraries (svr4_library_document, list);
do_cleanups (back_to);
return result;
}
#else
static int
svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
const char *annex)
{
return 0;
}
#endif
/* If no shared library information is available from the dynamic
linker, build a fallback list from other sources. */
static struct so_list *
svr4_default_sos (void)
{
struct svr4_info *info = get_svr4_info ();
struct so_list *newobj;
if (!info->debug_loader_offset_p)
return NULL;
newobj = XCNEW (struct so_list);
newobj->lm_info = XCNEW (struct lm_info);
/* Nothing will ever check the other fields if we set l_addr_p. */
newobj->lm_info->l_addr = info->debug_loader_offset;
newobj->lm_info->l_addr_p = 1;
strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
strcpy (newobj->so_original_name, newobj->so_name);
return newobj;
}
/* Read the whole inferior libraries chain starting at address LM.
Expect the first entry in the chain's previous entry to be PREV_LM.
Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
to it. Returns nonzero upon success. If zero is returned the
entries stored to LINK_PTR_PTR are still valid although they may
represent only part of the inferior library list. */
static int
svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
struct so_list ***link_ptr_ptr, int ignore_first)
{
CORE_ADDR first_l_name = 0;
CORE_ADDR next_lm;
for (; lm != 0; prev_lm = lm, lm = next_lm)
{
struct so_list *newobj;
struct cleanup *old_chain;
int errcode;
char *buffer;
newobj = XCNEW (struct so_list);
old_chain = make_cleanup_free_so (newobj);
newobj->lm_info = lm_info_read (lm);
if (newobj->lm_info == NULL)
{
do_cleanups (old_chain);
return 0;
}
next_lm = newobj->lm_info->l_next;
if (newobj->lm_info->l_prev != prev_lm)
{
warning (_("Corrupted shared library list: %s != %s"),
paddress (target_gdbarch (), prev_lm),
paddress (target_gdbarch (), newobj->lm_info->l_prev));
do_cleanups (old_chain);
return 0;
}
/* For SVR4 versions, the first entry in the link map is for the
inferior executable, so we must ignore it. For some versions of
SVR4, it has no name. For others (Solaris 2.3 for example), it
does have a name, so we can no longer use a missing name to
decide when to ignore it. */
if (ignore_first && newobj->lm_info->l_prev == 0)
{
struct svr4_info *info = get_svr4_info ();
first_l_name = newobj->lm_info->l_name;
info->main_lm_addr = newobj->lm_info->lm_addr;
do_cleanups (old_chain);
continue;
}
/* Extract this shared object's name. */
target_read_string (newobj->lm_info->l_name, &buffer,
SO_NAME_MAX_PATH_SIZE - 1, &errcode);
if (errcode != 0)
{
/* If this entry's l_name address matches that of the
inferior executable, then this is not a normal shared
object, but (most likely) a vDSO. In this case, silently
skip it; otherwise emit a warning. */
if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
warning (_("Can't read pathname for load map: %s."),
safe_strerror (errcode));
do_cleanups (old_chain);
continue;
}
strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
strcpy (newobj->so_original_name, newobj->so_name);
xfree (buffer);
/* If this entry has no name, or its name matches the name
for the main executable, don't include it in the list. */
if (! newobj->so_name[0] || match_main (newobj->so_name))
{
do_cleanups (old_chain);
continue;
}
discard_cleanups (old_chain);
newobj->next = 0;
**link_ptr_ptr = newobj;
*link_ptr_ptr = &newobj->next;
}
return 1;
}
/* Read the full list of currently loaded shared objects directly
from the inferior, without referring to any libraries read and
stored by the probes interface. Handle special cases relating
to the first elements of the list. */
static struct so_list *
svr4_current_sos_direct (struct svr4_info *info)
{
CORE_ADDR lm;
struct so_list *head = NULL;
struct so_list **link_ptr = &head;
struct cleanup *back_to;
int ignore_first;
struct svr4_library_list library_list;
/* Fall back to manual examination of the target if the packet is not
supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
tests a case where gdbserver cannot find the shared libraries list while
GDB itself is able to find it via SYMFILE_OBJFILE.
Unfortunately statically linked inferiors will also fall back through this
suboptimal code path. */
info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
NULL);
if (info->using_xfer)
{
if (library_list.main_lm)
info->main_lm_addr = library_list.main_lm;
return library_list.head ? library_list.head : svr4_default_sos ();
}
/* Always locate the debug struct, in case it has moved. */
info->debug_base = 0;
locate_base (info);
/* If we can't find the dynamic linker's base structure, this
must not be a dynamically linked executable. Hmm. */
if (! info->debug_base)
return svr4_default_sos ();
/* Assume that everything is a library if the dynamic loader was loaded
late by a static executable. */
if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
ignore_first = 0;
else
ignore_first = 1;
back_to = make_cleanup (svr4_free_library_list, &head);
/* Walk the inferior's link map list, and build our list of
`struct so_list' nodes. */
lm = solib_svr4_r_map (info);
if (lm)
svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
/* On Solaris, the dynamic linker is not in the normal list of
shared objects, so make sure we pick it up too. Having
symbol information for the dynamic linker is quite crucial
for skipping dynamic linker resolver code. */
lm = solib_svr4_r_ldsomap (info);
if (lm)
svr4_read_so_list (lm, 0, &link_ptr, 0);
discard_cleanups (back_to);
if (head == NULL)
return svr4_default_sos ();
return head;
}
/* Implement the main part of the "current_sos" target_so_ops
method. */
static struct so_list *
svr4_current_sos_1 (void)
{
struct svr4_info *info = get_svr4_info ();
/* If the solib list has been read and stored by the probes
interface then we return a copy of the stored list. */
if (info->solib_list != NULL)
return svr4_copy_library_list (info->solib_list);
/* Otherwise obtain the solib list directly from the inferior. */
return svr4_current_sos_direct (info);
}
/* Implement the "current_sos" target_so_ops method. */
static struct so_list *
svr4_current_sos (void)
{
struct so_list *so_head = svr4_current_sos_1 ();
struct mem_range vsyscall_range;
/* Filter out the vDSO module, if present. Its symbol file would
not be found on disk. The vDSO/vsyscall's OBJFILE is instead
managed by symfile-mem.c:add_vsyscall_page. */
if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
&& vsyscall_range.length != 0)
{
struct so_list **sop;
sop = &so_head;
while (*sop != NULL)
{
struct so_list *so = *sop;
/* We can't simply match the vDSO by starting address alone,
because lm_info->l_addr_inferior (and also l_addr) do not
necessarily represent the real starting address of the
ELF if the vDSO's ELF itself is "prelinked". The l_ld
field (the ".dynamic" section of the shared object)
always points at the absolute/resolved address though.
So check whether that address is inside the vDSO's
mapping instead.
E.g., on Linux 3.16 (x86_64) the vDSO is a regular
0-based ELF, and we see:
(gdb) info auxv
33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
(gdb) p/x *_r_debug.r_map.l_next
$1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
And on Linux 2.6.32 (x86_64) we see:
(gdb) info auxv
33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
(gdb) p/x *_r_debug.r_map.l_next
$5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
Dumping that vDSO shows:
(gdb) info proc mappings
0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
(gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
# readelf -Wa vdso.bin
[...]
Entry point address: 0xffffffffff700700
[...]
Section Headers:
[Nr] Name Type Address Off Size
[ 0] NULL 0000000000000000 000000 000000
[ 1] .hash HASH ffffffffff700120 000120 000038
[ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
[...]
[ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
*/
if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
{
*sop = so->next;
free_so (so);
break;
}
sop = &so->next;
}
}
return so_head;
}
/* Get the address of the link_map for a given OBJFILE. */
CORE_ADDR
svr4_fetch_objfile_link_map (struct objfile *objfile)
{
struct so_list *so;
struct svr4_info *info = get_svr4_info ();
/* Cause svr4_current_sos() to be run if it hasn't been already. */
if (info->main_lm_addr == 0)
solib_add (NULL, 0, ¤t_target, auto_solib_add);
/* svr4_current_sos() will set main_lm_addr for the main executable. */
if (objfile == symfile_objfile)
return info->main_lm_addr;
/* The other link map addresses may be found by examining the list
of shared libraries. */
for (so = master_so_list (); so; so = so->next)
if (so->objfile == objfile)
return so->lm_info->lm_addr;
/* Not found! */
return 0;
}
/* On some systems, the only way to recognize the link map entry for
the main executable file is by looking at its name. Return
non-zero iff SONAME matches one of the known main executable names. */
static int
match_main (const char *soname)
{
const char * const *mainp;
for (mainp = main_name_list; *mainp != NULL; mainp++)
{
if (strcmp (soname, *mainp) == 0)
return (1);
}
return (0);
}
/* Return 1 if PC lies in the dynamic symbol resolution code of the
SVR4 run time loader. */
int
svr4_in_dynsym_resolve_code (CORE_ADDR pc)
{
struct svr4_info *info = get_svr4_info ();
return ((pc >= info->interp_text_sect_low
&& pc < info->interp_text_sect_high)
|| (pc >= info->interp_plt_sect_low
&& pc < info->interp_plt_sect_high)
|| in_plt_section (pc)
|| in_gnu_ifunc_stub (pc));
}
/* Given an executable's ABFD and target, compute the entry-point
address. */
static CORE_ADDR
exec_entry_point (struct bfd *abfd, struct target_ops *targ)
{
CORE_ADDR addr;
/* KevinB wrote ... for most targets, the address returned by
bfd_get_start_address() is the entry point for the start
function. But, for some targets, bfd_get_start_address() returns
the address of a function descriptor from which the entry point
address may be extracted. This address is extracted by
gdbarch_convert_from_func_ptr_addr(). The method
gdbarch_convert_from_func_ptr_addr() is the merely the identify
function for targets which don't use function descriptors. */
addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
bfd_get_start_address (abfd),
targ);
return gdbarch_addr_bits_remove (target_gdbarch (), addr);
}
/* A probe and its associated action. */
struct probe_and_action
{
/* The probe. */
struct probe *probe;
/* The relocated address of the probe. */
CORE_ADDR address;
/* The action. */
enum probe_action action;
};
/* Returns a hash code for the probe_and_action referenced by p. */
static hashval_t
hash_probe_and_action (const void *p)
{
const struct probe_and_action *pa = (const struct probe_and_action *) p;
return (hashval_t) pa->address;
}
/* Returns non-zero if the probe_and_actions referenced by p1 and p2
are equal. */
static int
equal_probe_and_action (const void *p1, const void *p2)
{
const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
return pa1->address == pa2->address;
}
/* Register a solib event probe and its associated action in the
probes table. */
static void
register_solib_event_probe (struct probe *probe, CORE_ADDR address,
enum probe_action action)
{
struct svr4_info *info = get_svr4_info ();
struct probe_and_action lookup, *pa;
void **slot;
/* Create the probes table, if necessary. */
if (info->probes_table == NULL)
info->probes_table = htab_create_alloc (1, hash_probe_and_action,
equal_probe_and_action,
xfree, xcalloc, xfree);
lookup.probe = probe;
lookup.address = address;
slot = htab_find_slot (info->probes_table, &lookup, INSERT);
gdb_assert (*slot == HTAB_EMPTY_ENTRY);
pa = XCNEW (struct probe_and_action);
pa->probe = probe;
pa->address = address;
pa->action = action;
*slot = pa;
}
/* Get the solib event probe at the specified location, and the
action associated with it. Returns NULL if no solib event probe
was found. */
static struct probe_and_action *
solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
{
struct probe_and_action lookup;
void **slot;
lookup.address = address;
slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
if (slot == NULL)
return NULL;
return (struct probe_and_action *) *slot;
}
/* Decide what action to take when the specified solib event probe is
hit. */
static enum probe_action
solib_event_probe_action (struct probe_and_action *pa)
{
enum probe_action action;
unsigned probe_argc = 0;
struct frame_info *frame = get_current_frame ();
action = pa->action;
if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
return action;
gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
/* Check that an appropriate number of arguments has been supplied.
We expect:
arg0: Lmid_t lmid (mandatory)
arg1: struct r_debug *debug_base (mandatory)
arg2: struct link_map *new (optional, for incremental updates) */
TRY
{
probe_argc = get_probe_argument_count (pa->probe, frame);
}
CATCH (ex, RETURN_MASK_ERROR)
{
exception_print (gdb_stderr, ex);
probe_argc = 0;
}
END_CATCH
/* If get_probe_argument_count throws an exception, probe_argc will
be set to zero. However, if pa->probe does not have arguments,
then get_probe_argument_count will succeed but probe_argc will
also be zero. Both cases happen because of different things, but
they are treated equally here: action will be set to
PROBES_INTERFACE_FAILED. */
if (probe_argc == 2)
action = FULL_RELOAD;
else if (probe_argc < 2)
action = PROBES_INTERFACE_FAILED;
return action;
}
/* Populate the shared object list by reading the entire list of
shared objects from the inferior. Handle special cases relating
to the first elements of the list. Returns nonzero on success. */
static int
solist_update_full (struct svr4_info *info)
{
free_solib_list (info);
info->solib_list = svr4_current_sos_direct (info);
return 1;
}
/* Update the shared object list starting from the link-map entry
passed by the linker in the probe's third argument. Returns
nonzero if the list was successfully updated, or zero to indicate
failure. */
static int
solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
{
struct so_list *tail;
CORE_ADDR prev_lm;
/* svr4_current_sos_direct contains logic to handle a number of
special cases relating to the first elements of the list. To
avoid duplicating this logic we defer to solist_update_full
if the list is empty. */
if (info->solib_list == NULL)
return 0;
/* Fall back to a full update if we are using a remote target
that does not support incremental transfers. */
if (info->using_xfer && !target_augmented_libraries_svr4_read ())
return 0;
/* Walk to the end of the list. */
for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
/* Nothing. */;
prev_lm = tail->lm_info->lm_addr;
/* Read the new objects. */
if (info->using_xfer)
{
struct svr4_library_list library_list;
char annex[64];
xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
phex_nz (lm, sizeof (lm)),
phex_nz (prev_lm, sizeof (prev_lm)));
if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
return 0;
tail->next = library_list.head;
}
else
{
struct so_list **link = &tail->next;
/* IGNORE_FIRST may safely be set to zero here because the
above check and deferral to solist_update_full ensures
that this call to svr4_read_so_list will never see the
first element. */
if (!svr4_read_so_list (lm, prev_lm, &link, 0))
return 0;
}
return 1;
}
/* Disable the probes-based linker interface and revert to the
original interface. We don't reset the breakpoints as the
ones set up for the probes-based interface are adequate. */
static void
disable_probes_interface_cleanup (void *arg)
{
struct svr4_info *info = get_svr4_info ();
warning (_("Probes-based dynamic linker interface failed.\n"
"Reverting to original interface.\n"));
free_probes_table (info);
free_solib_list (info);
}
/* Update the solib list as appropriate when using the
probes-based linker interface. Do nothing if using the
standard interface. */
static void
svr4_handle_solib_event (void)
{
struct svr4_info *info = get_svr4_info ();
struct probe_and_action *pa;
enum probe_action action;
struct cleanup *old_chain, *usm_chain;
struct value *val = NULL;
CORE_ADDR pc, debug_base, lm = 0;
int is_initial_ns;
struct frame_info *frame = get_current_frame ();
/* Do nothing if not using the probes interface. */
if (info->probes_table == NULL)
return;
/* If anything goes wrong we revert to the original linker
interface. */
old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
pc = regcache_read_pc (get_current_regcache ());
pa = solib_event_probe_at (info, pc);
if (pa == NULL)
{
do_cleanups (old_chain);
return;
}
action = solib_event_probe_action (pa);
if (action == PROBES_INTERFACE_FAILED)
{
do_cleanups (old_chain);
return;
}
if (action == DO_NOTHING)
{
discard_cleanups (old_chain);
return;
}
/* evaluate_probe_argument looks up symbols in the dynamic linker
using find_pc_section. find_pc_section is accelerated by a cache
called the section map. The section map is invalidated every
time a shared library is loaded or unloaded, and if the inferior
is generating a lot of shared library events then the section map
will be updated every time svr4_handle_solib_event is called.
We called find_pc_section in svr4_create_solib_event_breakpoints,
so we can guarantee that the dynamic linker's sections are in the
section map. We can therefore inhibit section map updates across
these calls to evaluate_probe_argument and save a lot of time. */
inhibit_section_map_updates (current_program_space);
usm_chain = make_cleanup (resume_section_map_updates_cleanup,
current_program_space);
TRY
{
val = evaluate_probe_argument (pa->probe, 1, frame);
}
CATCH (ex, RETURN_MASK_ERROR)
{
exception_print (gdb_stderr, ex);
val = NULL;
}
END_CATCH
if (val == NULL)
{
do_cleanups (old_chain);
return;
}
debug_base = value_as_address (val);
if (debug_base == 0)
{
do_cleanups (old_chain);
return;
}
/* Always locate the debug struct, in case it moved. */
info->debug_base = 0;
if (locate_base (info) == 0)
{
do_cleanups (old_chain);
return;
}
/* GDB does not currently support libraries loaded via dlmopen
into namespaces other than the initial one. We must ignore
any namespace other than the initial namespace here until
support for this is added to GDB. */
if (debug_base != info->debug_base)
action = DO_NOTHING;
if (action == UPDATE_OR_RELOAD)
{
TRY
{
val = evaluate_probe_argument (pa->probe, 2, frame);
}
CATCH (ex, RETURN_MASK_ERROR)
{
exception_print (gdb_stderr, ex);
do_cleanups (old_chain);
return;
}
END_CATCH
if (val != NULL)
lm = value_as_address (val);
if (lm == 0)
action = FULL_RELOAD;
}
/* Resume section map updates. */
do_cleanups (usm_chain);
if (action == UPDATE_OR_RELOAD)
{
if (!solist_update_incremental (info, lm))
action = FULL_RELOAD;
}
if (action == FULL_RELOAD)
{
if (!solist_update_full (info))
{
do_cleanups (old_chain);
return;
}
}
discard_cleanups (old_chain);
}
/* Helper function for svr4_update_solib_event_breakpoints. */
static int
svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
{
struct bp_location *loc;
if (b->type != bp_shlib_event)
{
/* Continue iterating. */
return 0;
}
for (loc = b->loc; loc != NULL; loc = loc->next)
{
struct svr4_info *info;
struct probe_and_action *pa;
info = ((struct svr4_info *)
program_space_data (loc->pspace, solib_svr4_pspace_data));
if (info == NULL || info->probes_table == NULL)
continue;
pa = solib_event_probe_at (info, loc->address);
if (pa == NULL)
continue;
if (pa->action == DO_NOTHING)
{
if (b->enable_state == bp_disabled && stop_on_solib_events)
enable_breakpoint (b);
else if (b->enable_state == bp_enabled && !stop_on_solib_events)
disable_breakpoint (b);
}
break;
}
/* Continue iterating. */
return 0;
}
/* Enable or disable optional solib event breakpoints as appropriate.
Called whenever stop_on_solib_events is changed. */
static void
svr4_update_solib_event_breakpoints (void)
{
iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
}
/* Create and register solib event breakpoints. PROBES is an array
of NUM_PROBES elements, each of which is vector of probes. A
solib event breakpoint will be created and registered for each
probe. */
static void
svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
VEC (probe_p) **probes,
struct objfile *objfile)
{
int i;
for (i = 0; i < NUM_PROBES; i++)
{
enum probe_action action = probe_info[i].action;
struct probe *probe;
int ix;
for (ix = 0;
VEC_iterate (probe_p, probes[i], ix, probe);
++ix)
{
CORE_ADDR address = get_probe_address (probe, objfile);
create_solib_event_breakpoint (gdbarch, address);
register_solib_event_probe (probe, address, action);
}
}
svr4_update_solib_event_breakpoints ();
}
/* Both the SunOS and the SVR4 dynamic linkers call a marker function
before and after mapping and unmapping shared libraries. The sole
purpose of this method is to allow debuggers to set a breakpoint so
they can track these changes.
Some versions of the glibc dynamic linker contain named probes
to allow more fine grained stopping. Given the address of the
original marker function, this function attempts to find these
probes, and if found, sets breakpoints on those instead. If the
probes aren't found, a single breakpoint is set on the original
marker function. */
static void
svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
CORE_ADDR address)
{
struct obj_section *os;
os = find_pc_section (address);
if (os != NULL)
{
int with_prefix;
for (with_prefix = 0; with_prefix <= 1; with_prefix++)
{
VEC (probe_p) *probes[NUM_PROBES];
int all_probes_found = 1;
int checked_can_use_probe_arguments = 0;
int i;
memset (probes, 0, sizeof (probes));
for (i = 0; i < NUM_PROBES; i++)
{
const char *name = probe_info[i].name;
struct probe *p;
char buf[32];
/* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
shipped with an early version of the probes code in
which the probes' names were prefixed with "rtld_"
and the "map_failed" probe did not exist. The
locations of the probes are otherwise the same, so
we check for probes with prefixed names if probes
with unprefixed names are not present. */
if (with_prefix)
{
xsnprintf (buf, sizeof (buf), "rtld_%s", name);
name = buf;
}
probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
/* The "map_failed" probe did not exist in early
versions of the probes code in which the probes'
names were prefixed with "rtld_". */
if (strcmp (name, "rtld_map_failed") == 0)
continue;
if (VEC_empty (probe_p, probes[i]))
{
all_probes_found = 0;
break;
}
/* Ensure probe arguments can be evaluated. */
if (!checked_can_use_probe_arguments)
{
p = VEC_index (probe_p, probes[i], 0);
if (!can_evaluate_probe_arguments (p))
{
all_probes_found = 0;
break;
}
checked_can_use_probe_arguments = 1;
}
}
if (all_probes_found)
svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
for (i = 0; i < NUM_PROBES; i++)
VEC_free (probe_p, probes[i]);
if (all_probes_found)
return;
}
}
create_solib_event_breakpoint (gdbarch, address);
}
/* Helper function for gdb_bfd_lookup_symbol. */
static int
cmp_name_and_sec_flags (const asymbol *sym, const void *data)
{
return (strcmp (sym->name, (const char *) data) == 0
&& (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
}
/* Arrange for dynamic linker to hit breakpoint.
Both the SunOS and the SVR4 dynamic linkers have, as part of their
debugger interface, support for arranging for the inferior to hit
a breakpoint after mapping in the shared libraries. This function
enables that breakpoint.
For SunOS, there is a special flag location (in_debugger) which we
set to 1. When the dynamic linker sees this flag set, it will set
a breakpoint at a location known only to itself, after saving the
original contents of that place and the breakpoint address itself,
in it's own internal structures. When we resume the inferior, it
will eventually take a SIGTRAP when it runs into the breakpoint.
We handle this (in a different place) by restoring the contents of
the breakpointed location (which is only known after it stops),
chasing around to locate the shared libraries that have been
loaded, then resuming.
For SVR4, the debugger interface structure contains a member (r_brk)
which is statically initialized at the time the shared library is
built, to the offset of a function (_r_debug_state) which is guaran-
teed to be called once before mapping in a library, and again when
the mapping is complete. At the time we are examining this member,
it contains only the unrelocated offset of the function, so we have
to do our own relocation. Later, when the dynamic linker actually
runs, it relocates r_brk to be the actual address of _r_debug_state().
The debugger interface structure also contains an enumeration which
is set to either RT_ADD or RT_DELETE prior to changing the mapping,
depending upon whether or not the library is being mapped or unmapped,
and then set to RT_CONSISTENT after the library is mapped/unmapped. */
static int
enable_break (struct svr4_info *info, int from_tty)
{
struct bound_minimal_symbol msymbol;
const char * const *bkpt_namep;
asection *interp_sect;
char *interp_name;
CORE_ADDR sym_addr;
info->interp_text_sect_low = info->interp_text_sect_high = 0;
info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
/* If we already have a shared library list in the target, and
r_debug contains r_brk, set the breakpoint there - this should
mean r_brk has already been relocated. Assume the dynamic linker
is the object containing r_brk. */
solib_add (NULL, from_tty, ¤t_target, auto_solib_add);
sym_addr = 0;
if (info->debug_base && solib_svr4_r_map (info) != 0)
sym_addr = solib_svr4_r_brk (info);
if (sym_addr != 0)
{
struct obj_section *os;
sym_addr = gdbarch_addr_bits_remove
(target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
sym_addr,
¤t_target));
/* On at least some versions of Solaris there's a dynamic relocation
on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
we get control before the dynamic linker has self-relocated.
Check if SYM_ADDR is in a known section, if it is assume we can
trust its value. This is just a heuristic though, it could go away
or be replaced if it's getting in the way.
On ARM we need to know whether the ISA of rtld_db_dlactivity (or
however it's spelled in your particular system) is ARM or Thumb.
That knowledge is encoded in the address, if it's Thumb the low bit
is 1. However, we've stripped that info above and it's not clear
what all the consequences are of passing a non-addr_bits_remove'd
address to svr4_create_solib_event_breakpoints. The call to
find_pc_section verifies we know about the address and have some
hope of computing the right kind of breakpoint to use (via
symbol info). It does mean that GDB needs to be pointed at a
non-stripped version of the dynamic linker in order to obtain
information it already knows about. Sigh. */
os = find_pc_section (sym_addr);
if (os != NULL)
{
/* Record the relocated start and end address of the dynamic linker
text and plt section for svr4_in_dynsym_resolve_code. */
bfd *tmp_bfd;
CORE_ADDR load_addr;
tmp_bfd = os->objfile->obfd;
load_addr = ANOFFSET (os->objfile->section_offsets,
SECT_OFF_TEXT (os->objfile));
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
if (interp_sect)
{
info->interp_text_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
info->interp_text_sect_high =
info->interp_text_sect_low
+ bfd_section_size (tmp_bfd, interp_sect);
}
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
if (interp_sect)
{
info->interp_plt_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
info->interp_plt_sect_high =
info->interp_plt_sect_low
+ bfd_section_size (tmp_bfd, interp_sect);
}
svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
return 1;
}
}
/* Find the program interpreter; if not found, warn the user and drop
into the old breakpoint at symbol code. */
interp_name = find_program_interpreter ();
if (interp_name)
{
CORE_ADDR load_addr = 0;
int load_addr_found = 0;
int loader_found_in_list = 0;
struct so_list *so;
bfd *tmp_bfd = NULL;
struct target_ops *tmp_bfd_target;
sym_addr = 0;
/* Now we need to figure out where the dynamic linker was
loaded so that we can load its symbols and place a breakpoint
in the dynamic linker itself.
This address is stored on the stack. However, I've been unable
to find any magic formula to find it for Solaris (appears to
be trivial on GNU/Linux). Therefore, we have to try an alternate
mechanism to find the dynamic linker's base address. */
TRY
{
tmp_bfd = solib_bfd_open (interp_name);
}
CATCH (ex, RETURN_MASK_ALL)
{
}
END_CATCH
if (tmp_bfd == NULL)
goto bkpt_at_symbol;
/* Now convert the TMP_BFD into a target. That way target, as
well as BFD operations can be used. */
tmp_bfd_target = target_bfd_reopen (tmp_bfd);
/* target_bfd_reopen acquired its own reference, so we can
release ours now. */
gdb_bfd_unref (tmp_bfd);
/* On a running target, we can get the dynamic linker's base
address from the shared library table. */
so = master_so_list ();
while (so)
{
if (svr4_same_1 (interp_name, so->so_original_name))
{
load_addr_found = 1;
loader_found_in_list = 1;
load_addr = lm_addr_check (so, tmp_bfd);
break;
}
so = so->next;
}
/* If we were not able to find the base address of the loader
from our so_list, then try using the AT_BASE auxilliary entry. */
if (!load_addr_found)
if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0)
{
int addr_bit = gdbarch_addr_bit (target_gdbarch ());
/* Ensure LOAD_ADDR has proper sign in its possible upper bits so
that `+ load_addr' will overflow CORE_ADDR width not creating
invalid addresses like 0x101234567 for 32bit inferiors on 64bit
GDB. */
if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
{
CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
tmp_bfd_target);
gdb_assert (load_addr < space_size);
/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
64bit ld.so with 32bit executable, it should not happen. */
if (tmp_entry_point < space_size
&& tmp_entry_point + load_addr >= space_size)
load_addr -= space_size;
}
load_addr_found = 1;
}
/* Otherwise we find the dynamic linker's base address by examining
the current pc (which should point at the entry point for the
dynamic linker) and subtracting the offset of the entry point.
This is more fragile than the previous approaches, but is a good
fallback method because it has actually been working well in
most cases. */
if (!load_addr_found)
{
struct regcache *regcache
= get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
load_addr = (regcache_read_pc (regcache)
- exec_entry_point (tmp_bfd, tmp_bfd_target));
}
if (!loader_found_in_list)
{
info->debug_loader_name = xstrdup (interp_name);
info->debug_loader_offset_p = 1;
info->debug_loader_offset = load_addr;
solib_add (NULL, from_tty, ¤t_target, auto_solib_add);
}
/* Record the relocated start and end address of the dynamic linker
text and plt section for svr4_in_dynsym_resolve_code. */
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
if (interp_sect)
{
info->interp_text_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
info->interp_text_sect_high =
info->interp_text_sect_low
+ bfd_section_size (tmp_bfd, interp_sect);
}
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
if (interp_sect)
{
info->interp_plt_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
info->interp_plt_sect_high =
info->interp_plt_sect_low
+ bfd_section_size (tmp_bfd, interp_sect);
}
/* Now try to set a breakpoint in the dynamic linker. */
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
{
sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
*bkpt_namep);
if (sym_addr != 0)
break;
}
if (sym_addr != 0)
/* Convert 'sym_addr' from a function pointer to an address.
Because we pass tmp_bfd_target instead of the current
target, this will always produce an unrelocated value. */
sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
sym_addr,
tmp_bfd_target);
/* We're done with both the temporary bfd and target. Closing
the target closes the underlying bfd, because it holds the
only remaining reference. */
target_close (tmp_bfd_target);
if (sym_addr != 0)
{
svr4_create_solib_event_breakpoints (target_gdbarch (),
load_addr + sym_addr);
xfree (interp_name);
return 1;
}
/* For whatever reason we couldn't set a breakpoint in the dynamic
linker. Warn and drop into the old code. */
bkpt_at_symbol:
xfree (interp_name);
warning (_("Unable to find dynamic linker breakpoint function.\n"
"GDB will be unable to debug shared library initializers\n"
"and track explicitly loaded dynamic code."));
}
/* Scan through the lists of symbols, trying to look up the symbol and
set a breakpoint there. Terminate loop when we/if we succeed. */
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
{
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
if ((msymbol.minsym != NULL)
&& (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
{
sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
sym_addr,
¤t_target);
svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
return 1;
}
}
if (interp_name != NULL && !current_inferior ()->attach_flag)
{
for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
{
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
if ((msymbol.minsym != NULL)
&& (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
{
sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
sym_addr,
¤t_target);
svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
return 1;
}
}
}
return 0;
}
/* Implement the "special_symbol_handling" target_so_ops method. */
static void
svr4_special_symbol_handling (void)
{
/* Nothing to do. */
}
/* Read the ELF program headers from ABFD. Return the contents and
set *PHDRS_SIZE to the size of the program headers. */
static gdb_byte *
read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
{
Elf_Internal_Ehdr *ehdr;
gdb_byte *buf;
ehdr = elf_elfheader (abfd);
*phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
if (*phdrs_size == 0)
return NULL;
buf = (gdb_byte *) xmalloc (*phdrs_size);
if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
|| bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
{
xfree (buf);
return NULL;
}
return buf;
}
/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
exec_bfd. Otherwise return 0.
We relocate all of the sections by the same amount. This
behavior is mandated by recent editions of the System V ABI.
According to the System V Application Binary Interface,
Edition 4.1, page 5-5:
... Though the system chooses virtual addresses for
individual processes, it maintains the segments' relative
positions. Because position-independent code uses relative
addressesing between segments, the difference between
virtual addresses in memory must match the difference
between virtual addresses in the file. The difference
between the virtual address of any segment in memory and
the corresponding virtual address in the file is thus a
single constant value for any one executable or shared
object in a given process. This difference is the base
address. One use of the base address is to relocate the
memory image of the program during dynamic linking.
The same language also appears in Edition 4.0 of the System V
ABI and is left unspecified in some of the earlier editions.
Decide if the objfile needs to be relocated. As indicated above, we will
only be here when execution is stopped. But during attachment PC can be at
arbitrary address therefore regcache_read_pc can be misleading (contrary to
the auxv AT_ENTRY value). Moreover for executable with interpreter section
regcache_read_pc would point to the interpreter and not the main executable.
So, to summarize, relocations are necessary when the start address obtained
from the executable is different from the address in auxv AT_ENTRY entry.
[ The astute reader will note that we also test to make sure that
the executable in question has the DYNAMIC flag set. It is my
opinion that this test is unnecessary (undesirable even). It
was added to avoid inadvertent relocation of an executable
whose e_type member in the ELF header is not ET_DYN. There may
be a time in the future when it is desirable to do relocations
on other types of files as well in which case this condition
should either be removed or modified to accomodate the new file
type. - Kevin, Nov 2000. ] */
static int
svr4_exec_displacement (CORE_ADDR *displacementp)
{
/* ENTRY_POINT is a possible function descriptor - before
a call to gdbarch_convert_from_func_ptr_addr. */
CORE_ADDR entry_point, exec_displacement;
if (exec_bfd == NULL)
return 0;
/* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
being executed themselves and PIE (Position Independent Executable)
executables are ET_DYN. */
if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
return 0;
if (target_auxv_search (¤t_target, AT_ENTRY, &entry_point) <= 0)
return 0;
exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
/* Verify the EXEC_DISPLACEMENT candidate complies with the required page
alignment. It is cheaper than the program headers comparison below. */
if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
{
const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
/* p_align of PT_LOAD segments does not specify any alignment but
only congruency of addresses:
p_offset % p_align == p_vaddr % p_align
Kernel is free to load the executable with lower alignment. */
if ((exec_displacement & (elf->minpagesize - 1)) != 0)
return 0;
}
/* Verify that the auxilliary vector describes the same file as exec_bfd, by
comparing their program headers. If the program headers in the auxilliary
vector do not match the program headers in the executable, then we are
looking at a different file than the one used by the kernel - for
instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
{
/* Be optimistic and clear OK only if GDB was able to verify the headers
really do not match. */
int phdrs_size, phdrs2_size, ok = 1;
gdb_byte *buf, *buf2;
int arch_size;
buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
if (buf != NULL && buf2 != NULL)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
/* We are dealing with three different addresses. EXEC_BFD
represents current address in on-disk file. target memory content
may be different from EXEC_BFD as the file may have been prelinked
to a different address after the executable has been loaded.
Moreover the address of placement in target memory can be
different from what the program headers in target memory say -
this is the goal of PIE.
Detected DISPLACEMENT covers both the offsets of PIE placement and
possible new prelink performed after start of the program. Here
relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
content offset for the verification purpose. */
if (phdrs_size != phdrs2_size
|| bfd_get_arch_size (exec_bfd) != arch_size)
ok = 0;
else if (arch_size == 32
&& phdrs_size >= sizeof (Elf32_External_Phdr)
&& phdrs_size % sizeof (Elf32_External_Phdr) == 0)
{
Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
CORE_ADDR displacement = 0;
int i;
/* DISPLACEMENT could be found more easily by the difference of
ehdr2->e_entry. But we haven't read the ehdr yet, and we
already have enough information to compute that displacement
with what we've read. */
for (i = 0; i < ehdr2->e_phnum; i++)
if (phdr2[i].p_type == PT_LOAD)
{
Elf32_External_Phdr *phdrp;
gdb_byte *buf_vaddr_p, *buf_paddr_p;
CORE_ADDR vaddr, paddr;
CORE_ADDR displacement_vaddr = 0;
CORE_ADDR displacement_paddr = 0;
phdrp = &((Elf32_External_Phdr *) buf)[i];
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
byte_order);
displacement_vaddr = vaddr - phdr2[i].p_vaddr;
paddr = extract_unsigned_integer (buf_paddr_p, 4,
byte_order);
displacement_paddr = paddr - phdr2[i].p_paddr;
if (displacement_vaddr == displacement_paddr)
displacement = displacement_vaddr;
break;
}
/* Now compare BUF and BUF2 with optional DISPLACEMENT. */
for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
{
Elf32_External_Phdr *phdrp;
Elf32_External_Phdr *phdr2p;
gdb_byte *buf_vaddr_p, *buf_paddr_p;
CORE_ADDR vaddr, paddr;
asection *plt2_asect;
phdrp = &((Elf32_External_Phdr *) buf)[i];
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
phdr2p = &((Elf32_External_Phdr *) buf2)[i];
/* PT_GNU_STACK is an exception by being never relocated by
prelink as its addresses are always zero. */
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
continue;
/* Check also other adjustment combinations - PR 11786. */
vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
byte_order);
vaddr -= displacement;
store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
paddr = extract_unsigned_integer (buf_paddr_p, 4,
byte_order);
paddr -= displacement;
store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
continue;
/* Strip modifies the flags and alignment of PT_GNU_RELRO.
CentOS-5 has problems with filesz, memsz as well.
See PR 11786. */
if (phdr2[i].p_type == PT_GNU_RELRO)
{
Elf32_External_Phdr tmp_phdr = *phdrp;
Elf32_External_Phdr tmp_phdr2 = *phdr2p;
memset (tmp_phdr.p_filesz, 0, 4);
memset (tmp_phdr.p_memsz, 0, 4);
memset (tmp_phdr.p_flags, 0, 4);
memset (tmp_phdr.p_align, 0, 4);
memset (tmp_phdr2.p_filesz, 0, 4);
memset (tmp_phdr2.p_memsz, 0, 4);
memset (tmp_phdr2.p_flags, 0, 4);
memset (tmp_phdr2.p_align, 0, 4);
if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
== 0)
continue;
}
/* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
if (plt2_asect)
{
int content2;
gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
CORE_ADDR filesz;
content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
& SEC_HAS_CONTENTS) != 0;
filesz = extract_unsigned_integer (buf_filesz_p, 4,
byte_order);
/* PLT2_ASECT is from on-disk file (exec_bfd) while
FILESZ is from the in-memory image. */
if (content2)
filesz += bfd_get_section_size (plt2_asect);
else
filesz -= bfd_get_section_size (plt2_asect);
store_unsigned_integer (buf_filesz_p, 4, byte_order,
filesz);
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
continue;
}
ok = 0;
break;
}
}
else if (arch_size == 64
&& phdrs_size >= sizeof (Elf64_External_Phdr)
&& phdrs_size % sizeof (Elf64_External_Phdr) == 0)
{
Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
CORE_ADDR displacement = 0;
int i;
/* DISPLACEMENT could be found more easily by the difference of
ehdr2->e_entry. But we haven't read the ehdr yet, and we
already have enough information to compute that displacement
with what we've read. */
for (i = 0; i < ehdr2->e_phnum; i++)
if (phdr2[i].p_type == PT_LOAD)
{
Elf64_External_Phdr *phdrp;
gdb_byte *buf_vaddr_p, *buf_paddr_p;
CORE_ADDR vaddr, paddr;
CORE_ADDR displacement_vaddr = 0;
CORE_ADDR displacement_paddr = 0;
phdrp = &((Elf64_External_Phdr *) buf)[i];
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
byte_order);
displacement_vaddr = vaddr - phdr2[i].p_vaddr;
paddr = extract_unsigned_integer (buf_paddr_p, 8,
byte_order);
displacement_paddr = paddr - phdr2[i].p_paddr;
if (displacement_vaddr == displacement_paddr)
displacement = displacement_vaddr;
break;
}
/* Now compare BUF and BUF2 with optional DISPLACEMENT. */
for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
{
Elf64_External_Phdr *phdrp;
Elf64_External_Phdr *phdr2p;
gdb_byte *buf_vaddr_p, *buf_paddr_p;
CORE_ADDR vaddr, paddr;
asection *plt2_asect;
phdrp = &((Elf64_External_Phdr *) buf)[i];
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
phdr2p = &((Elf64_External_Phdr *) buf2)[i];
/* PT_GNU_STACK is an exception by being never relocated by
prelink as its addresses are always zero. */
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
continue;
/* Check also other adjustment combinations - PR 11786. */
vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
byte_order);
vaddr -= displacement;
store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
paddr = extract_unsigned_integer (buf_paddr_p, 8,
byte_order);
paddr -= displacement;
store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
continue;
/* Strip modifies the flags and alignment of PT_GNU_RELRO.
CentOS-5 has problems with filesz, memsz as well.
See PR 11786. */
if (phdr2[i].p_type == PT_GNU_RELRO)
{
Elf64_External_Phdr tmp_phdr = *phdrp;
Elf64_External_Phdr tmp_phdr2 = *phdr2p;
memset (tmp_phdr.p_filesz, 0, 8);
memset (tmp_phdr.p_memsz, 0, 8);
memset (tmp_phdr.p_flags, 0, 4);
memset (tmp_phdr.p_align, 0, 8);
memset (tmp_phdr2.p_filesz, 0, 8);
memset (tmp_phdr2.p_memsz, 0, 8);
memset (tmp_phdr2.p_flags, 0, 4);
memset (tmp_phdr2.p_align, 0, 8);
if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
== 0)
continue;
}
/* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
if (plt2_asect)
{
int content2;
gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
CORE_ADDR filesz;
content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
& SEC_HAS_CONTENTS) != 0;
filesz = extract_unsigned_integer (buf_filesz_p, 8,
byte_order);
/* PLT2_ASECT is from on-disk file (exec_bfd) while
FILESZ is from the in-memory image. */
if (content2)
filesz += bfd_get_section_size (plt2_asect);
else
filesz -= bfd_get_section_size (plt2_asect);
store_unsigned_integer (buf_filesz_p, 8, byte_order,
filesz);
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
continue;
}
ok = 0;
break;
}
}
else
ok = 0;
}
xfree (buf);
xfree (buf2);
if (!ok)
return 0;
}
if (info_verbose)
{
/* It can be printed repeatedly as there is no easy way to check
the executable symbols/file has been already relocated to
displacement. */
printf_unfiltered (_("Using PIE (Position Independent Executable) "
"displacement %s for \"%s\".\n"),
paddress (target_gdbarch (), exec_displacement),
bfd_get_filename (exec_bfd));
}
*displacementp = exec_displacement;
return 1;
}
/* Relocate the main executable. This function should be called upon
stopping the inferior process at the entry point to the program.
The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
different, the main executable is relocated by the proper amount. */
static void
svr4_relocate_main_executable (void)
{
CORE_ADDR displacement;
/* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
probably contains the offsets computed using the PIE displacement
from the previous run, which of course are irrelevant for this run.
So we need to determine the new PIE displacement and recompute the
section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
already contains pre-computed offsets.
If we cannot compute the PIE displacement, either:
- The executable is not PIE.
- SYMFILE_OBJFILE does not match the executable started in the target.
This can happen for main executable symbols loaded at the host while
`ld.so --ld-args main-executable' is loaded in the target.
Then we leave the section offsets untouched and use them as is for
this run. Either:
- These section offsets were properly reset earlier, and thus
already contain the correct values. This can happen for instance
when reconnecting via the remote protocol to a target that supports
the `qOffsets' packet.
- The section offsets were not reset earlier, and the best we can
hope is that the old offsets are still applicable to the new run. */
if (! svr4_exec_displacement (&displacement))
return;
/* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
addresses. */
if (symfile_objfile)
{
struct section_offsets *new_offsets;
int i;
new_offsets = XALLOCAVEC (struct section_offsets,
symfile_objfile->num_sections);
for (i = 0; i < symfile_objfile->num_sections; i++)
new_offsets->offsets[i] = displacement;
objfile_relocate (symfile_objfile, new_offsets);
}
else if (exec_bfd)
{
asection *asect;
for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
(bfd_section_vma (exec_bfd, asect)
+ displacement));
}
}
/* Implement the "create_inferior_hook" target_solib_ops method.
For SVR4 executables, this first instruction is either the first
instruction in the dynamic linker (for dynamically linked
executables) or the instruction at "start" for statically linked
executables. For dynamically linked executables, the system
first exec's /lib/libc.so.N, which contains the dynamic linker,
and starts it running. The dynamic linker maps in any needed
shared libraries, maps in the actual user executable, and then
jumps to "start" in the user executable.
We can arrange to cooperate with the dynamic linker to discover the
names of shared libraries that are dynamically linked, and the base
addresses to which they are linked.
This function is responsible for discovering those names and
addresses, and saving sufficient information about them to allow
their symbols to be read at a later time. */
static void
svr4_solib_create_inferior_hook (int from_tty)
{
struct svr4_info *info;
info = get_svr4_info ();
/* Clear the probes-based interface's state. */
free_probes_table (info);
free_solib_list (info);
/* Relocate the main executable if necessary. */
svr4_relocate_main_executable ();
/* No point setting a breakpoint in the dynamic linker if we can't
hit it (e.g., a core file, or a trace file). */
if (!target_has_execution)
return;
if (!svr4_have_link_map_offsets ())
return;
if (!enable_break (info, from_tty))
return;
}
static void
svr4_clear_solib (void)
{
struct svr4_info *info;
info = get_svr4_info ();
info->debug_base = 0;
info->debug_loader_offset_p = 0;
info->debug_loader_offset = 0;
xfree (info->debug_loader_name);
info->debug_loader_name = NULL;
}
/* Clear any bits of ADDR that wouldn't fit in a target-format
data pointer. "Data pointer" here refers to whatever sort of
address the dynamic linker uses to manage its sections. At the
moment, we don't support shared libraries on any processors where
code and data pointers are different sizes.
This isn't really the right solution. What we really need here is
a way to do arithmetic on CORE_ADDR values that respects the
natural pointer/address correspondence. (For example, on the MIPS,
converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
sign-extend the value. There, simply truncating the bits above
gdbarch_ptr_bit, as we do below, is no good.) This should probably
be a new gdbarch method or something. */
static CORE_ADDR
svr4_truncate_ptr (CORE_ADDR addr)
{
if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
/* We don't need to truncate anything, and the bit twiddling below
will fail due to overflow problems. */
return addr;
else
return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
}
static void
svr4_relocate_section_addresses (struct so_list *so,
struct target_section *sec)
{
bfd *abfd = sec->the_bfd_section->owner;
sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
}
/* Architecture-specific operations. */
/* Per-architecture data key. */
static struct gdbarch_data *solib_svr4_data;
struct solib_svr4_ops
{
/* Return a description of the layout of `struct link_map'. */
struct link_map_offsets *(*fetch_link_map_offsets)(void);
};
/* Return a default for the architecture-specific operations. */
static void *
solib_svr4_init (struct obstack *obstack)
{
struct solib_svr4_ops *ops;
ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
ops->fetch_link_map_offsets = NULL;
return ops;
}
/* Set the architecture-specific `struct link_map_offsets' fetcher for
GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
void
set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
struct link_map_offsets *(*flmo) (void))
{
struct solib_svr4_ops *ops
= (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
ops->fetch_link_map_offsets = flmo;
set_solib_ops (gdbarch, &svr4_so_ops);
}
/* Fetch a link_map_offsets structure using the architecture-specific
`struct link_map_offsets' fetcher. */
static struct link_map_offsets *
svr4_fetch_link_map_offsets (void)
{
struct solib_svr4_ops *ops
= (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
solib_svr4_data);
gdb_assert (ops->fetch_link_map_offsets);
return ops->fetch_link_map_offsets ();
}
/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
static int
svr4_have_link_map_offsets (void)
{
struct solib_svr4_ops *ops
= (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
solib_svr4_data);
return (ops->fetch_link_map_offsets != NULL);
}
/* Most OS'es that have SVR4-style ELF dynamic libraries define a
`struct r_debug' and a `struct link_map' that are binary compatible
with the origional SVR4 implementation. */
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
for an ILP32 SVR4 system. */
struct link_map_offsets *
svr4_ilp32_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_version_offset = 0;
lmo.r_version_size = 4;
lmo.r_map_offset = 4;
lmo.r_brk_offset = 8;
lmo.r_ldsomap_offset = 20;
/* Everything we need is in the first 20 bytes. */
lmo.link_map_size = 20;
lmo.l_addr_offset = 0;
lmo.l_name_offset = 4;
lmo.l_ld_offset = 8;
lmo.l_next_offset = 12;
lmo.l_prev_offset = 16;
}
return lmp;
}
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
for an LP64 SVR4 system. */
struct link_map_offsets *
svr4_lp64_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_version_offset = 0;
lmo.r_version_size = 4;
lmo.r_map_offset = 8;
lmo.r_brk_offset = 16;
lmo.r_ldsomap_offset = 40;
/* Everything we need is in the first 40 bytes. */
lmo.link_map_size = 40;
lmo.l_addr_offset = 0;
lmo.l_name_offset = 8;
lmo.l_ld_offset = 16;
lmo.l_next_offset = 24;
lmo.l_prev_offset = 32;
}
return lmp;
}
struct target_so_ops svr4_so_ops;
/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
different rule for symbol lookup. The lookup begins here in the DSO, not in
the main executable. */
static struct block_symbol
elf_lookup_lib_symbol (struct objfile *objfile,
const char *name,
const domain_enum domain)
{
bfd *abfd;
if (objfile == symfile_objfile)
abfd = exec_bfd;
else
{
/* OBJFILE should have been passed as the non-debug one. */
gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
abfd = objfile->obfd;
}
if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
return (struct block_symbol) {NULL, NULL};
return lookup_global_symbol_from_objfile (objfile, name, domain);
}
extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
void
_initialize_svr4_solib (void)
{
solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
solib_svr4_pspace_data
= register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
svr4_so_ops.free_so = svr4_free_so;
svr4_so_ops.clear_so = svr4_clear_so;
svr4_so_ops.clear_solib = svr4_clear_solib;
svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
svr4_so_ops.current_sos = svr4_current_sos;
svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
svr4_so_ops.bfd_open = solib_bfd_open;
svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
svr4_so_ops.same = svr4_same;
svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
svr4_so_ops.handle_event = svr4_handle_solib_event;
}
|