1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
#include <stdio.h>
#include <unistd.h>
/*
* Since using watchpoints can be very slow, we have to take some pains to
* ensure that we don't run too long with them enabled or we run the risk
* of having the test timeout. To help avoid this, we insert some marker
* functions in the execution stream so we can set breakpoints at known
* locations, without worrying about invalidating line numbers by changing
* this file. We use null bodied functions are markers since gdb does
* not support breakpoints at labeled text points at this time.
*
* One place we need is a marker for when we start executing our tests
* instructions rather than any process startup code, so we insert one
* right after entering main(). Another is right before we finish, before
* we start executing any process termination code.
*
* Another problem we have to guard against, at least for the test
* suite, is that we need to ensure that the line that causes the
* watchpoint to be hit is still the current line when gdb notices
* the hit. Depending upon the specific code generated by the compiler,
* the instruction after the one that triggers the hit may be part of
* the same line or part of the next line. Thus we ensure that there
* are always some instructions to execute on the same line after the
* code that should trigger the hit.
*/
int count = -1;
int ival1 = -1;
int ival2 = -1;
int ival3 = -1;
int ival4 = -1;
int ival5 = -1;
char buf[30] = "testtesttesttesttesttesttestte";
struct foo
{
int val;
};
struct foo struct1, struct2, *ptr1, *ptr2;
int doread = 0;
char *global_ptr;
char **global_ptr_ptr;
struct foo2
{
int val[2];
};
struct foo2 foo2;
struct foo4
{
int val[4];
};
struct foo4 foo4;
struct foo5
{
struct { int x; } *p;
};
struct foo5 *nullptr;
void marker1 ()
{
}
void marker2 ()
{
}
void marker4 ()
{
}
void marker5 ()
{
}
void marker6 ()
{
}
void recurser (int x)
{
int local_x = 0;
if (x > 0)
recurser (x-1);
local_x = x;
}
void
func2 ()
{
int local_a = 0;
static int static_b;
/* func2 breakpoint here */
ival5++;
local_a = ival5;
static_b = local_a;
}
void
func3 ()
{
int x;
int y;
x = 0;
x = 1; /* second x assignment */
y = 1;
y = 2;
buf[26] = 3;
}
int
func1 ()
{
/* The point of this is that we will set a breakpoint at this call.
Then, if DECR_PC_AFTER_BREAK equals the size of a function call
instruction (true on a sun3 if this is gcc-compiled--FIXME we
should use asm() to make it work for any compiler, present or
future), then we will end up branching to the location just after
the breakpoint. And we better not confuse that with hitting the
breakpoint. */
func2 ();
return 73;
}
void
func4 ()
{
buf[0] = 3;
global_ptr = buf;
buf[0] = 7;
buf[1] = 5;
global_ptr_ptr = &global_ptr;
buf[0] = 9;
global_ptr++;
}
void
func5 ()
{
int val = 0, val2 = 23;
int *x = &val;
/* func5 breakpoint here */
x = &val2;
val = 27;
}
void
func6 (void)
{
/* func6 breakpoint here */
foo2.val[1] = 0;
foo2.val[1] = 11;
}
void
func7 (void)
{
/* func7 breakpoint here */
foo4.val[3] = 0;
foo4.val[3] = 33;
}
int main ()
{
struct1.val = 1;
struct2.val = 2;
ptr1 = &struct1;
ptr2 = &struct2;
marker1 ();
func1 ();
for (count = 0; count < 4; count++) {
ival1 = count;
ival3 = count; ival4 = count;
}
ival1 = count; /* Outside loop */
ival2 = count;
ival3 = count; ival4 = count;
marker2 ();
if (doread)
{
static char msg[] = "type stuff for buf now:";
write (1, msg, sizeof (msg) - 1);
read (0, &buf[0], 5);
}
marker4 ();
/* We have a watchpoint on ptr1->val. It should be triggered if
ptr1's value changes. */
ptr1 = ptr2;
/* This should not trigger the watchpoint. If it does, then we
used the wrong value chain to re-insert the watchpoints or we
are not evaluating the watchpoint expression correctly. */
struct1.val = 5;
marker5 ();
/* We have a watchpoint on ptr1->val. It should be triggered if
ptr1's value changes. */
ptr1 = ptr2;
/* This should not trigger the watchpoint. If it does, then we
used the wrong value chain to re-insert the watchpoints or we
are not evaluating the watchpoint expression correctly. */
struct1.val = 5;
marker5 ();
/* We're going to watch locals of func2, to see that out-of-scope
watchpoints are detected and properly deleted.
*/
marker6 ();
/* This invocation is used for watches of a single
local variable. */
func2 ();
/* This invocation is used for watches of an expression
involving a local variable. */
func2 ();
/* This invocation is used for watches of a static
(non-stack-based) local variable. */
func2 ();
/* This invocation is used for watches of a local variable
when recursion happens.
*/
marker6 ();
recurser (2);
/* This invocation is used for watches of a local variable with explicitly
specified scope when recursion happens.
*/
marker6 ();
recurser (2);
marker6 ();
func3 ();
func4 ();
func5 ();
func6 ();
func7 ();
return 0;
}
|