1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
/* Target-dependent code for Analog Devices Blackfin processor, for GDB.
Copyright (C) 2005-2015 Free Software Foundation, Inc.
Contributed by Analog Devices, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "arch-utils.h"
#include "regcache.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "dis-asm.h"
#include "sim-regno.h"
#include "gdb/sim-bfin.h"
#include "dwarf2-frame.h"
#include "symtab.h"
#include "elf-bfd.h"
#include "elf/bfin.h"
#include "osabi.h"
#include "infcall.h"
#include "xml-syscall.h"
#include "bfin-tdep.h"
/* Macros used by prologue functions. */
#define P_LINKAGE 0xE800
#define P_MINUS_SP1 0x0140
#define P_MINUS_SP2 0x05C0
#define P_MINUS_SP3 0x0540
#define P_MINUS_SP4 0x04C0
#define P_SP_PLUS 0x6C06
#define P_P2_LOW 0xE10A
#define P_P2_HIGH 0XE14A
#define P_SP_EQ_SP_PLUS_P2 0X5BB2
#define P_SP_EQ_P2_PLUS_SP 0x5B96
#define P_MINUS_MINUS_SP_EQ_RETS 0x0167
/* Macros used for program flow control. */
/* 16 bit instruction, max */
#define P_16_BIT_INSR_MAX 0xBFFF
/* 32 bit instruction, min */
#define P_32_BIT_INSR_MIN 0xC000
/* 32 bit instruction, max */
#define P_32_BIT_INSR_MAX 0xE801
/* jump (preg), 16-bit, min */
#define P_JUMP_PREG_MIN 0x0050
/* jump (preg), 16-bit, max */
#define P_JUMP_PREG_MAX 0x0057
/* jump (pc+preg), 16-bit, min */
#define P_JUMP_PC_PLUS_PREG_MIN 0x0080
/* jump (pc+preg), 16-bit, max */
#define P_JUMP_PC_PLUS_PREG_MAX 0x0087
/* jump.s pcrel13m2, 16-bit, min */
#define P_JUMP_S_MIN 0x2000
/* jump.s pcrel13m2, 16-bit, max */
#define P_JUMP_S_MAX 0x2FFF
/* jump.l pcrel25m2, 32-bit, min */
#define P_JUMP_L_MIN 0xE200
/* jump.l pcrel25m2, 32-bit, max */
#define P_JUMP_L_MAX 0xE2FF
/* conditional jump pcrel11m2, 16-bit, min */
#define P_IF_CC_JUMP_MIN 0x1800
/* conditional jump pcrel11m2, 16-bit, max */
#define P_IF_CC_JUMP_MAX 0x1BFF
/* conditional jump(bp) pcrel11m2, 16-bit, min */
#define P_IF_CC_JUMP_BP_MIN 0x1C00
/* conditional jump(bp) pcrel11m2, 16-bit, max */
#define P_IF_CC_JUMP_BP_MAX 0x1FFF
/* conditional !jump pcrel11m2, 16-bit, min */
#define P_IF_NOT_CC_JUMP_MIN 0x1000
/* conditional !jump pcrel11m2, 16-bit, max */
#define P_IF_NOT_CC_JUMP_MAX 0x13FF
/* conditional jump(bp) pcrel11m2, 16-bit, min */
#define P_IF_NOT_CC_JUMP_BP_MIN 0x1400
/* conditional jump(bp) pcrel11m2, 16-bit, max */
#define P_IF_NOT_CC_JUMP_BP_MAX 0x17FF
/* call (preg), 16-bit, min */
#define P_CALL_PREG_MIN 0x0060
/* call (preg), 16-bit, max */
#define P_CALL_PREG_MAX 0x0067
/* call (pc+preg), 16-bit, min */
#define P_CALL_PC_PLUS_PREG_MIN 0x0070
/* call (pc+preg), 16-bit, max */
#define P_CALL_PC_PLUS_PREG_MAX 0x0077
/* call pcrel25m2, 32-bit, min */
#define P_CALL_MIN 0xE300
/* call pcrel25m2, 32-bit, max */
#define P_CALL_MAX 0xE3FF
/* RTS */
#define P_RTS 0x0010
/* MNOP */
#define P_MNOP 0xC803
/* EXCPT, 16-bit, min */
#define P_EXCPT_MIN 0x00A0
/* EXCPT, 16-bit, max */
#define P_EXCPT_MAX 0x00AF
/* multi instruction mask 1, 16-bit */
#define P_BIT_MULTI_INS_1 0xC000
/* multi instruction mask 2, 16-bit */
#define P_BIT_MULTI_INS_2 0x0800
/* The maximum bytes we search to skip the prologue. */
#define UPPER_LIMIT 40
/* ASTAT bits */
#define ASTAT_CC_POS 5
#define ASTAT_CC (1 << ASTAT_CC_POS)
/* Initial value: Register names used in BFIN's ISA documentation. */
static const char * const bfin_register_name_strings[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"p0", "p1", "p2", "p3", "p4", "p5", "sp", "fp",
"i0", "i1", "i2", "i3", "m0", "m1", "m2", "m3",
"b0", "b1", "b2", "b3", "l0", "l1", "l2", "l3",
"a0x", "a0w", "a1x", "a1w", "astat", "rets",
"lc0", "lt0", "lb0", "lc1", "lt1", "lb1", "cycles", "cycles2",
"usp", "seqstat", "syscfg", "reti", "retx", "retn", "rete",
"pc", "cc",
};
#define NUM_BFIN_REGNAMES ARRAY_SIZE (bfin_register_name_strings)
/* In this diagram successive memory locations increase downwards or the
stack grows upwards with negative indices. (PUSH analogy for stack.)
The top frame is the "frame" of the current function being executed.
+--------------+ SP -
| local vars | ^
+--------------+ |
| save regs | |
+--------------+ FP |
| old FP -|-- top
+--------------+ | frame
| RETS | | |
+--------------+ | |
| param 1 | | |
| param 2 | | |
| ... | | V
+--------------+ | -
| local vars | | ^
+--------------+ | |
| save regs | | |
+--------------+<- |
| old FP -|-- next
+--------------+ | frame
| RETS | | |
+--------------+ | |
| param 1 | | |
| param 2 | | |
| ... | | V
+--------------+ | -
| local vars | | ^
+--------------+ | |
| save regs | | |
+--------------+<- next frame
| old FP | |
+--------------+ |
| RETS | V
+--------------+ -
The frame chain is formed as following:
FP has the topmost frame.
FP + 4 has the previous FP and so on. */
/* Map from DWARF2 register number to GDB register number. */
static const int map_gcc_gdb[] =
{
BFIN_R0_REGNUM,
BFIN_R1_REGNUM,
BFIN_R2_REGNUM,
BFIN_R3_REGNUM,
BFIN_R4_REGNUM,
BFIN_R5_REGNUM,
BFIN_R6_REGNUM,
BFIN_R7_REGNUM,
BFIN_P0_REGNUM,
BFIN_P1_REGNUM,
BFIN_P2_REGNUM,
BFIN_P3_REGNUM,
BFIN_P4_REGNUM,
BFIN_P5_REGNUM,
BFIN_SP_REGNUM,
BFIN_FP_REGNUM,
BFIN_I0_REGNUM,
BFIN_I1_REGNUM,
BFIN_I2_REGNUM,
BFIN_I3_REGNUM,
BFIN_B0_REGNUM,
BFIN_B1_REGNUM,
BFIN_B2_REGNUM,
BFIN_B3_REGNUM,
BFIN_L0_REGNUM,
BFIN_L1_REGNUM,
BFIN_L2_REGNUM,
BFIN_L3_REGNUM,
BFIN_M0_REGNUM,
BFIN_M1_REGNUM,
BFIN_M2_REGNUM,
BFIN_M3_REGNUM,
BFIN_A0_DOT_X_REGNUM,
BFIN_A1_DOT_X_REGNUM,
BFIN_CC_REGNUM,
BFIN_RETS_REGNUM,
BFIN_RETI_REGNUM,
BFIN_RETX_REGNUM,
BFIN_RETN_REGNUM,
BFIN_RETE_REGNUM,
BFIN_ASTAT_REGNUM,
BFIN_SEQSTAT_REGNUM,
BFIN_USP_REGNUM,
BFIN_LT0_REGNUM,
BFIN_LT1_REGNUM,
BFIN_LC0_REGNUM,
BFIN_LC1_REGNUM,
BFIN_LB0_REGNUM,
BFIN_LB1_REGNUM
};
struct bfin_frame_cache
{
/* Base address. */
CORE_ADDR base;
CORE_ADDR sp_offset;
CORE_ADDR pc;
int frameless_pc_value;
/* Saved registers. */
CORE_ADDR saved_regs[BFIN_NUM_REGS];
CORE_ADDR saved_sp;
/* Stack space reserved for local variables. */
long locals;
};
/* Allocate and initialize a frame cache. */
static struct bfin_frame_cache *
bfin_alloc_frame_cache (void)
{
struct bfin_frame_cache *cache;
int i;
cache = FRAME_OBSTACK_ZALLOC (struct bfin_frame_cache);
/* Base address. */
cache->base = 0;
cache->sp_offset = -4;
cache->pc = 0;
cache->frameless_pc_value = 0;
/* Saved registers. We initialize these to -1 since zero is a valid
offset (that's where fp is supposed to be stored). */
for (i = 0; i < BFIN_NUM_REGS; i++)
cache->saved_regs[i] = -1;
/* Frameless until proven otherwise. */
cache->locals = -1;
return cache;
}
static struct bfin_frame_cache *
bfin_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct bfin_frame_cache *cache;
int i;
if (*this_cache)
return (struct bfin_frame_cache *) *this_cache;
cache = bfin_alloc_frame_cache ();
*this_cache = cache;
cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
if (cache->base == 0)
return cache;
/* For normal frames, PC is stored at [FP + 4]. */
cache->saved_regs[BFIN_PC_REGNUM] = 4;
cache->saved_regs[BFIN_FP_REGNUM] = 0;
/* Adjust all the saved registers such that they contain addresses
instead of offsets. */
for (i = 0; i < BFIN_NUM_REGS; i++)
if (cache->saved_regs[i] != -1)
cache->saved_regs[i] += cache->base;
cache->pc = get_frame_func (this_frame) ;
if (cache->pc == 0 || cache->pc == get_frame_pc (this_frame))
{
/* Either there is no prologue (frameless function) or we are at
the start of a function. In short we do not have a frame.
PC is stored in rets register. FP points to previous frame. */
cache->saved_regs[BFIN_PC_REGNUM] =
get_frame_register_unsigned (this_frame, BFIN_RETS_REGNUM);
cache->frameless_pc_value = 1;
cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
cache->saved_regs[BFIN_FP_REGNUM] = cache->base;
cache->saved_sp = cache->base;
}
else
{
cache->frameless_pc_value = 0;
/* Now that we have the base address for the stack frame we can
calculate the value of SP in the calling frame. */
cache->saved_sp = cache->base + 8;
}
return cache;
}
static void
bfin_frame_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
/* This marks the outermost frame. */
if (cache->base == 0)
return;
/* See the end of bfin_push_dummy_call. */
*this_id = frame_id_build (cache->base + 8, cache->pc);
}
static struct value *
bfin_frame_prev_register (struct frame_info *this_frame,
void **this_cache,
int regnum)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
if (regnum < BFIN_NUM_REGS && cache->saved_regs[regnum] != -1)
return frame_unwind_got_memory (this_frame, regnum,
cache->saved_regs[regnum]);
return frame_unwind_got_register (this_frame, regnum, regnum);
}
static const struct frame_unwind bfin_frame_unwind =
{
NORMAL_FRAME,
default_frame_unwind_stop_reason,
bfin_frame_this_id,
bfin_frame_prev_register,
NULL,
default_frame_sniffer
};
/* Check for "[--SP] = <reg>;" insns. These are appear in function
prologues to save misc registers onto the stack. */
static int
is_minus_minus_sp (int op)
{
op &= 0xFFC0;
if ((op == P_MINUS_SP1) || (op == P_MINUS_SP2)
|| (op == P_MINUS_SP3) || (op == P_MINUS_SP4))
return 1;
return 0;
}
/* Skip all the insns that appear in generated function prologues. */
static CORE_ADDR
bfin_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int op = read_memory_unsigned_integer (pc, 2, byte_order);
CORE_ADDR orig_pc = pc;
int done = 0;
/* The new gcc prologue generates the register saves BEFORE the link
or RETS saving instruction.
So, our job is to stop either at those instructions or some upper
limit saying there is no frame! */
while (!done)
{
if (is_minus_minus_sp (op))
{
while (is_minus_minus_sp (op))
{
pc += 2;
op = read_memory_unsigned_integer (pc, 2, byte_order);
}
if (op == P_LINKAGE)
pc += 4;
done = 1;
}
else if (op == P_LINKAGE)
{
pc += 4;
done = 1;
}
else if (op == P_MINUS_MINUS_SP_EQ_RETS)
{
pc += 2;
done = 1;
}
else if (op == P_RTS)
{
done = 1;
}
else if ((op >= P_JUMP_PREG_MIN && op <= P_JUMP_PREG_MAX)
|| (op >= P_JUMP_PC_PLUS_PREG_MIN
&& op <= P_JUMP_PC_PLUS_PREG_MAX)
|| (op == P_JUMP_S_MIN && op <= P_JUMP_S_MAX))
{
done = 1;
}
else if (pc - orig_pc >= UPPER_LIMIT)
{
warning (_("Function Prologue not recognised; "
"pc will point to ENTRY_POINT of the function"));
pc = orig_pc + 2;
done = 1;
}
else
{
pc += 2; /* Not a terminating instruction go on. */
op = read_memory_unsigned_integer (pc, 2, byte_order);
}
}
/* TODO:
Dwarf2 uses entry point value AFTER some register initializations.
We should perhaps skip such asssignments as well (R6 = R1, ...). */
return pc;
}
/* Return the GDB type object for the "standard" data type of data in
register N. This should be void pointer for P0-P5, SP, FP;
void pointer to function for PC; int otherwise. */
static struct type *
bfin_register_type (struct gdbarch *gdbarch, int regnum)
{
if ((regnum >= BFIN_P0_REGNUM && regnum <= BFIN_FP_REGNUM)
|| regnum == BFIN_USP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
if (regnum == BFIN_PC_REGNUM || regnum == BFIN_RETS_REGNUM
|| regnum == BFIN_RETI_REGNUM || regnum == BFIN_RETX_REGNUM
|| regnum == BFIN_RETN_REGNUM || regnum == BFIN_RETE_REGNUM
|| regnum == BFIN_LT0_REGNUM || regnum == BFIN_LB0_REGNUM
|| regnum == BFIN_LT1_REGNUM || regnum == BFIN_LB1_REGNUM)
return builtin_type (gdbarch)->builtin_func_ptr;
return builtin_type (gdbarch)->builtin_int32;
}
static CORE_ADDR
bfin_push_dummy_call (struct gdbarch *gdbarch,
struct value *function,
struct regcache *regcache,
CORE_ADDR bp_addr,
int nargs,
struct value **args,
CORE_ADDR sp,
int struct_return,
CORE_ADDR struct_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
gdb_byte buf[4];
int i;
long reg_r0, reg_r1, reg_r2;
int total_len = 0;
enum bfin_abi abi = bfin_abi (gdbarch);
CORE_ADDR func_addr = find_function_addr (function, NULL);
for (i = nargs - 1; i >= 0; i--)
{
struct type *value_type = value_enclosing_type (args[i]);
total_len += (TYPE_LENGTH (value_type) + 3) & ~3;
}
/* At least twelve bytes of stack space must be allocated for the function's
arguments, even for functions that have less than 12 bytes of argument
data. */
if (total_len < 12)
sp -= 12 - total_len;
/* Push arguments in reverse order. */
for (i = nargs - 1; i >= 0; i--)
{
struct type *value_type = value_enclosing_type (args[i]);
struct type *arg_type = check_typedef (value_type);
int container_len = (TYPE_LENGTH (value_type) + 3) & ~3;
sp -= container_len;
write_memory (sp, value_contents_writeable (args[i]), container_len);
}
/* Initialize R0, R1, and R2 to the first 3 words of parameters. */
reg_r0 = read_memory_integer (sp, 4, byte_order);
regcache_cooked_write_unsigned (regcache, BFIN_R0_REGNUM, reg_r0);
reg_r1 = read_memory_integer (sp + 4, 4, byte_order);
regcache_cooked_write_unsigned (regcache, BFIN_R1_REGNUM, reg_r1);
reg_r2 = read_memory_integer (sp + 8, 4, byte_order);
regcache_cooked_write_unsigned (regcache, BFIN_R2_REGNUM, reg_r2);
/* Store struct value address. */
if (struct_return)
regcache_cooked_write_unsigned (regcache, BFIN_P0_REGNUM, struct_addr);
/* Set the dummy return value to bp_addr.
A dummy breakpoint will be setup to execute the call. */
regcache_cooked_write_unsigned (regcache, BFIN_RETS_REGNUM, bp_addr);
/* Finally, update the stack pointer. */
regcache_cooked_write_unsigned (regcache, BFIN_SP_REGNUM, sp);
return sp;
}
/* Convert DWARF2 register number REG to the appropriate register number
used by GDB. */
static int
bfin_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
if (reg < 0 || reg >= ARRAY_SIZE (map_gcc_gdb))
return -1;
return map_gcc_gdb[reg];
}
/* This function implements the 'breakpoint_from_pc' gdbarch method.
It returns a pointer to a string of bytes that encode a breakpoint
instruction, stores the length of the string to *lenptr, and
adjusts the program counter (if necessary) to point to the actual
memory location where the breakpoint should be inserted. */
static const unsigned char *
bfin_breakpoint_from_pc (struct gdbarch *gdbarch,
CORE_ADDR *pcptr, int *lenptr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
unsigned short iw;
static unsigned char bfin_breakpoint[] = {0xa1, 0x00, 0x00, 0x00};
static unsigned char bfin_sim_breakpoint[] = {0x25, 0x00, 0x00, 0x00};
iw = read_memory_unsigned_integer (*pcptr, 2, byte_order);
if ((iw & 0xf000) >= 0xc000)
/* 32-bit instruction. */
*lenptr = 4;
else
*lenptr = 2;
if (strcmp (target_shortname, "sim") == 0)
return bfin_sim_breakpoint;
else
return bfin_breakpoint;
}
static void
bfin_extract_return_value (struct type *type,
struct regcache *regs,
gdb_byte *dst)
{
struct gdbarch *gdbarch = get_regcache_arch (regs);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bfd_byte *valbuf = dst;
int len = TYPE_LENGTH (type);
ULONGEST tmp;
int regno = BFIN_R0_REGNUM;
gdb_assert (len <= 8);
while (len > 0)
{
regcache_cooked_read_unsigned (regs, regno++, &tmp);
store_unsigned_integer (valbuf, (len > 4 ? 4 : len), byte_order, tmp);
len -= 4;
valbuf += 4;
}
}
/* Write into appropriate registers a function return value of type
TYPE, given in virtual format. */
static void
bfin_store_return_value (struct type *type,
struct regcache *regs,
const gdb_byte *src)
{
const bfd_byte *valbuf = src;
/* Integral values greater than one word are stored in consecutive
registers starting with R0. This will always be a multiple of
the register size. */
int len = TYPE_LENGTH (type);
int regno = BFIN_R0_REGNUM;
gdb_assert (len <= 8);
while (len > 0)
{
regcache_cooked_write (regs, regno++, valbuf);
len -= 4;
valbuf += 4;
}
}
/* Determine, for architecture GDBARCH, how a return value of TYPE
should be returned. If it is supposed to be returned in registers,
and READBUF is nonzero, read the appropriate value from REGCACHE,
and copy it into READBUF. If WRITEBUF is nonzero, write the value
from WRITEBUF into REGCACHE. */
static enum return_value_convention
bfin_return_value (struct gdbarch *gdbarch,
struct value *function,
struct type *type,
struct regcache *regcache,
gdb_byte *readbuf,
const gdb_byte *writebuf)
{
if (TYPE_LENGTH (type) > 8)
return RETURN_VALUE_STRUCT_CONVENTION;
if (readbuf)
bfin_extract_return_value (type, regcache, readbuf);
if (writebuf)
bfin_store_return_value (type, regcache, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* Return the BFIN register name corresponding to register I. */
static const char *
bfin_register_name (struct gdbarch *gdbarch, int i)
{
return bfin_register_name_strings[i];
}
static enum register_status
bfin_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, gdb_byte *buffer)
{
gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
enum register_status status;
if (regnum != BFIN_CC_REGNUM)
internal_error (__FILE__, __LINE__,
_("invalid register number %d"), regnum);
/* Extract the CC bit from the ASTAT register. */
status = regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
if (status == REG_VALID)
{
buffer[1] = buffer[2] = buffer[3] = 0;
buffer[0] = !!(buf[0] & ASTAT_CC);
}
return status;
}
static void
bfin_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, const gdb_byte *buffer)
{
gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
if (regnum != BFIN_CC_REGNUM)
internal_error (__FILE__, __LINE__,
_("invalid register number %d"), regnum);
/* Overlay the CC bit in the ASTAT register. */
regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
buf[0] = (buf[0] & ~ASTAT_CC) | ((buffer[0] & 1) << ASTAT_CC_POS);
regcache_raw_write (regcache, BFIN_ASTAT_REGNUM, buf);
}
static CORE_ADDR
bfin_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
return cache->base;
}
static CORE_ADDR
bfin_frame_local_address (struct frame_info *this_frame, void **this_cache)
{
struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
return cache->base - 4;
}
static CORE_ADDR
bfin_frame_args_address (struct frame_info *this_frame, void **this_cache)
{
struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
return cache->base + 8;
}
static const struct frame_base bfin_frame_base =
{
&bfin_frame_unwind,
bfin_frame_base_address,
bfin_frame_local_address,
bfin_frame_args_address
};
static struct frame_id
bfin_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
CORE_ADDR sp;
sp = get_frame_register_unsigned (this_frame, BFIN_SP_REGNUM);
return frame_id_build (sp, get_frame_pc (this_frame));
}
static CORE_ADDR
bfin_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, BFIN_PC_REGNUM);
}
static CORE_ADDR
bfin_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
{
return (address & ~0x3);
}
enum bfin_abi
bfin_abi (struct gdbarch *gdbarch)
{
return gdbarch_tdep (gdbarch)->bfin_abi;
}
/* Initialize the current architecture based on INFO. If possible,
re-use an architecture from ARCHES, which is a list of
architectures already created during this debugging session.
Called e.g. at program startup, when reading a core file, and when
reading a binary file. */
static struct gdbarch *
bfin_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch_tdep *tdep;
struct gdbarch *gdbarch;
int elf_flags;
enum bfin_abi abi;
/* Extract the ELF flags, if available. */
if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
elf_flags = elf_elfheader (info.abfd)->e_flags;
else
elf_flags = 0;
abi = BFIN_ABI_FLAT;
/* If there is already a candidate, use it. */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
if (gdbarch_tdep (arches->gdbarch)->bfin_abi != abi)
continue;
return arches->gdbarch;
}
tdep = XNEW (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
tdep->bfin_abi = abi;
set_gdbarch_num_regs (gdbarch, BFIN_NUM_REGS);
set_gdbarch_pseudo_register_read (gdbarch, bfin_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, bfin_pseudo_register_write);
set_gdbarch_num_pseudo_regs (gdbarch, BFIN_NUM_PSEUDO_REGS);
set_gdbarch_sp_regnum (gdbarch, BFIN_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, BFIN_PC_REGNUM);
set_gdbarch_ps_regnum (gdbarch, BFIN_ASTAT_REGNUM);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, bfin_reg_to_regnum);
set_gdbarch_register_name (gdbarch, bfin_register_name);
set_gdbarch_register_type (gdbarch, bfin_register_type);
set_gdbarch_dummy_id (gdbarch, bfin_dummy_id);
set_gdbarch_push_dummy_call (gdbarch, bfin_push_dummy_call);
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
set_gdbarch_return_value (gdbarch, bfin_return_value);
set_gdbarch_skip_prologue (gdbarch, bfin_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, bfin_breakpoint_from_pc);
set_gdbarch_decr_pc_after_break (gdbarch, 2);
set_gdbarch_frame_args_skip (gdbarch, 8);
set_gdbarch_unwind_pc (gdbarch, bfin_unwind_pc);
set_gdbarch_frame_align (gdbarch, bfin_frame_align);
set_gdbarch_print_insn (gdbarch, print_insn_bfin);
/* Hook in ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
dwarf2_append_unwinders (gdbarch);
frame_base_set_default (gdbarch, &bfin_frame_base);
frame_unwind_append_unwinder (gdbarch, &bfin_frame_unwind);
return gdbarch;
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern initialize_file_ftype _initialize_bfin_tdep;
void
_initialize_bfin_tdep (void)
{
register_gdbarch_init (bfd_arch_bfin, bfin_gdbarch_init);
}
|