1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
|
;; Linux BPF CPU description -*- Scheme -*-
;; Copyright (C) 2019 Free Software Foundation, Inc.
;;
;; Contributed by Oracle Inc.
;;
;; This file is part of the GNU Binutils and of GDB.
;;
;; This program is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License as
;; published by the Free Software Foundation; either version 3 of the
;; License, or (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
;; 02110-1301, USA.
;; This file contains a CGEN CPU description for the Linux kernel eBPF
;; instruction set. eBPF is documented in the linux kernel source
;; tree. See linux/Documentation/networking/filter.txt, and also the
;; sources in the networking subsystem, notably
;; linux/net/core/filter.c.
(include "simplify.inc")
(define-arch
(name bpf)
(comment "Linux kernel BPF")
(insn-lsb0? #t)
;; XXX explain the default-alignment setting is for the simulator.
;; It is confusing that the simulator follows the emulated memory
;; access conventions for fetching instructions by pieces...
(default-alignment unaligned)
(machs bpf xbpf)
(isas ebpfle ebpfbe xbpfle xbpfbe))
;;;; The ISAs
;; Logically, eBPF comforms a single instruction set featuring two
;; kind of instructions: 64-bit instructions and 128-bit instructions.
;;
;; The 64-bit instructions have the form:
;;
;; code:8 regs:8 offset:16 imm:32
;;
;; Whereas the 128-bit instructions (at the moment there is only one
;; of such instructions, lddw) have the form:
;;
;; code:8 regs:8 offset:16 imm:32 unused:32 imm:32
;;
;; In both formats `regs' is itself composed by two fields:
;;
;; dst:4 src:4
;;
;; The ISA is supposed to be orthogonal to endianness: the endianness
;; of the instruction fields follow the endianness of the host running
;; the eBPF program, and that's all. However, this is not entirely
;; true. The definition of an eBPF code in the Linux kernel is:
;;
;; struct bpf_insn {
;; __u8 code; /* opcode */
;; __u8 dst_reg:4; /* dest register */
;; __u8 src_reg:4; /* source register */
;; __s16 off; /* signed offset */
;; __s32 imm; /* signed immediate constant */
;; };
;;
;; Since the ordering of fields in C bitmaps is defined by the
;; implementation, the impact of endianness in the encoding of eBPF
;; instructions is effectively defined by GCC. In particular, GCC
;; places dst_reg before src_reg in little-endian code, and the other
;; way around in big-endian code.
;;
;; So, in reality, eBPF comprises two instruction sets: one for
;; little-endian with instructions like:
;;
;; code:8 src:4 dst:4 offset:16 imm:32 [unused:32 imm:32]
;;
;; and another for big-endian with instructions like:
;;
;; code:8 dst:4 src:4 offset:16 imm:32 [unused:32 imm:32]
;;
;; where `offset' and the immediate fields are encoded in
;; little-endian and big-endian byte-order, respectively.
(define-pmacro (define-bpf-isa x-endian)
(define-isa
(name (.sym ebpf x-endian))
(comment "The eBPF instruction set")
;; Default length to record in ifields. This is used in
;; calculations involving bit numbers.
(default-insn-word-bitsize 64)
;; Length of an unknown instruction. Used by disassembly and by the
;; simulator's invalid insn handler.
(default-insn-bitsize 64)
;; Number of bits of insn that can be initially fetched. This is
;; the size of the smallest insn.
(base-insn-bitsize 64)))
(define-bpf-isa le)
(define-bpf-isa be)
(define-pmacro (define-xbpf-isa x-endian)
(define-isa
(name (.sym xbpf x-endian))
(comment "The xBPF instruction set")
(default-insn-word-bitsize 64)
(default-insn-bitsize 64)
(base-insn-bitsize 64)))
(define-xbpf-isa le)
(define-xbpf-isa be)
(define-pmacro all-isas () (ISA ebpfle,ebpfbe,xbpfle,xbpfbe))
(define-pmacro xbpf-isas () (ISA xbpfle,xbpfbe))
(define-pmacro (endian-isas x-endian)
((ISA (.sym ebpf x-endian) (.sym xbpf x-endian))))
;;;; Hardware Hierarchy
;;
;; bpf architecture
;; |
;; bpfbf cpu-family
;; / \
;; bpf xbpf machine
;; | |
;; bpf-def xbpf-def model
(define-cpu
(name bpfbf)
(comment "Linux kernel eBPF virtual CPU")
(insn-endian big)
(word-bitsize 64))
(define-mach
(name bpf)
(comment "Linux eBPF")
(cpu bpfbf)
(isas ebpfle ebpfbe))
(define-model
(name bpf-def)
(comment "Linux eBPF default model")
(mach bpf)
(unit u-exec "execution unit" ()
1 ; issue
1 ; done
() ; state
() ; inputs
() ; outputs
() ; profile action (default)
))
(define-mach
(name xbpf)
(comment "Experimental BPF")
(cpu bpfbf)
(isas ebpfle ebpfbe xbpfle xbpfbe))
(define-model
(name xbpf-def)
(comment "xBPF default model")
(mach xbpf)
(unit u-exec "execution unit" ()
1 ; issue
1 ; done
() ; state
() ; inputs
() ; outputs
() ; profile action (default)
))
;;;; Hardware Elements
;; eBPF programs can access 10 general-purpose registers which are
;; 64-bit.
(define-hardware
(name h-gpr)
(comment "General Purpose Registers")
(attrs all-isas (MACH bpf xbpf))
(type register DI (16))
(indices keyword "%"
;; XXX the frame pointer fp is read-only, so it should
;; go in a different hardware.
(;; ABI names. Take priority when disassembling.
(r0 0) (r1 1) (r2 2) (r3 3) (r4 4) (r5 5) (r6 6)
(r7 7) (r8 8) (r9 9) (fp 10)
;; Additional names recognized when assembling.
(r0 0) (r6 6) (r10 10))))
;; The program counter. CGEN requires it, even if it is not visible
;; to eBPF programs.
(define-hardware
(name h-pc)
(comment "program counter")
(attrs PC PROFILE all-isas)
(type pc UDI)
(get () (raw-reg h-pc))
(set (newval) (set (raw-reg h-pc) newval)))
;; A 64-bit h-sint to be used by the imm64 operand below. XXX this
;; shouldn't be needed, as h-sint is supposed to be able to hold
;; 64-bit values. However, in practice CGEN limits h-sint to 32 bits
;; in 32-bit hosts. To be fixed in CGEN.
(dnh h-sint64 "signed 64-bit integer" (all-isas) (immediate DI)
() () ())
;;;; The Instruction Sets
;;; Fields and Opcodes
;; Convenience macro to shorten the definition of the fields below.
(define-pmacro (dwf x-name x-comment x-attrs
x-word-offset x-word-length x-start x-length
x-mode)
"Define a field including its containing word."
(define-ifield
(name x-name)
(comment x-comment)
(.splice attrs (.unsplice x-attrs))
(word-offset x-word-offset)
(word-length x-word-length)
(start x-start)
(length x-length)
(mode x-mode)))
;; For arithmetic and jump instructions the 8-bit code field is
;; subdivided in:
;;
;; op-code:4 op-src:1 op-class:3
(dwf f-op-code "eBPF opcode code" (all-isas) 0 8 7 4 UINT)
(dwf f-op-src "eBPF opcode source" (all-isas) 0 8 3 1 UINT)
(dwf f-op-class "eBPF opcode instruction class" (all-isas) 0 8 2 3 UINT)
(define-normal-insn-enum insn-op-code-alu "eBPF instruction codes"
(all-isas) OP_CODE_ f-op-code
(;; Codes for OP_CLASS_ALU and OP_CLASS_ALU64
(ADD #x0) (SUB #x1) (MUL #x2) (DIV #x3) (OR #x4) (AND #x5)
(LSH #x6) (RSH #x7) (NEG #x8) (MOD #x9) (XOR #xa) (MOV #xb)
(ARSH #xc) (END #xd)
;; Codes for OP_CLASS_JMP
(JA #x0) (JEQ #x1) (JGT #x2) (JGE #x3) (JSET #x4)
(JNE #x5) (JSGT #x6) (JSGE #x7) (CALL #x8) (EXIT #x9)
(JLT #xa) (JLE #xb) (JSLT #xc) (JSLE #xd)))
(define-normal-insn-enum insn-op-src "eBPF instruction source"
(all-isas) OP_SRC_ f-op-src
;; X => use `src' as source operand.
;; K => use `imm32' as source operand.
((K #b0) (X #b1)))
(define-normal-insn-enum insn-op-class "eBPF instruction class"
(all-isas) OP_CLASS_ f-op-class
((LD #b000) (LDX #b001) (ST #b010) (STX #b011)
(ALU #b100) (JMP #b101) (JMP32 #b110) (ALU64 #b111)))
;; For load/store instructions, the 8-bit code field is subdivided in:
;;
;; op-mode:3 op-size:2 op-class:3
(dwf f-op-mode "eBPF opcode mode" (all-isas) 0 8 7 3 UINT)
(dwf f-op-size "eBPF opcode size" (all-isas) 0 8 4 2 UINT)
(define-normal-insn-enum insn-op-mode "eBPF load/store instruction modes"
(all-isas) OP_MODE_ f-op-mode
((IMM #b000) (ABS #b001) (IND #b010) (MEM #b011)
;; #b100 and #b101 are used in classic BPF only, reserved in eBPF.
(XADD #b110)))
(define-normal-insn-enum insn-op-size "eBPF load/store instruction sizes"
(all-isas) OP_SIZE_ f-op-size
((W #b00) ;; Word: 4 byte
(H #b01) ;; Half-word: 2 byte
(B #b10) ;; Byte: 1 byte
(DW #b11))) ;; Double-word: 8 byte
;; The fields for the source and destination registers are a bit
;; tricky. Due to the bizarre nibble swap between little-endian and
;; big-endian ISAs we need to keep different variants of the fields.
;;
;; Note that f-regs is used in the format spec of instructions that do
;; NOT use registers, where endianness is irrelevant i.e. f-regs is a
;; constant 0 opcode.
(dwf f-dstle "eBPF dst register field" ((ISA ebpfle xbpfle)) 8 8 3 4 UINT)
(dwf f-srcle "eBPF source register field" ((ISA ebpfle xbpfle)) 8 8 7 4 UINT)
(dwf f-dstbe "eBPF dst register field" ((ISA ebpfbe xbpfbe)) 8 8 7 4 UINT)
(dwf f-srcbe "eBPF source register field" ((ISA ebpfbe xbpfbe)) 8 8 3 4 UINT)
(dwf f-regs "eBPF registers field" (all-isas) 8 8 7 8 UINT)
;; Finally, the fields for the immediates.
;;
;; The 16-bit offsets and 32-bit immediates do not present any special
;; difficulty: we put them in their own instruction word so the
;; byte-endianness will be properly applied.
(dwf f-offset16 "eBPF offset field" (all-isas) 16 16 15 16 HI)
(dwf f-imm32 "eBPF 32-bit immediate field" (all-isas) 32 32 31 32 INT)
;; For the disjoint 64-bit signed immediate, however, we need to use a
;; multi-ifield.
(dwf f-imm64-a "eBPF 64-bit immediate a" (all-isas) 32 32 31 32 UINT)
(dwf f-imm64-b "eBPF 64-bit immediate b" (all-isas) 64 32 31 32 UINT)
(dwf f-imm64-c "eBPF 64-bit immediate c" (all-isas) 96 32 31 32 UINT)
(define-multi-ifield
(name f-imm64)
(comment "eBPF 64-bit immediate field")
(attrs all-isas)
(mode DI)
(subfields f-imm64-a f-imm64-b f-imm64-c)
(insert (sequence ()
(set (ifield f-imm64-b) (const 0))
(set (ifield f-imm64-c) (srl (ifield f-imm64) (const 32)))
(set (ifield f-imm64-a) (and (ifield f-imm64) (const #xffffffff)))))
(extract (sequence ()
(set (ifield f-imm64)
(or (sll UDI (zext UDI (ifield f-imm64-c)) (const 32))
(zext UDI (ifield f-imm64-a)))))))
;;; Operands
;; A couple of source and destination register operands are defined
;; for each ISA: ebpfle and ebpfbe.
(dno dstle "destination register" ((ISA ebpfle xbpfle)) h-gpr f-dstle)
(dno srcle "source register" ((ISA ebpfle xbpfle)) h-gpr f-srcle)
(dno dstbe "destination register" ((ISA ebpfbe xbpfbe)) h-gpr f-dstbe)
(dno srcbe "source register" ((ISA ebpfbe xbpfbe)) h-gpr f-srcbe)
;; Jump instructions have a 16-bit PC-relative address.
;; CALL instructions have a 32-bit PC-relative address.
(dno disp16 "16-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
f-offset16)
(dno disp32 "32-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
f-imm32)
;; Immediate operands in eBPF are signed, and we want the disassembler
;; to print negative values in a sane way. Therefore we use the macro
;; below to register a printer, which is itself defined as a C
;; function in bpf.opc.
;; define-normal-signed-immediate-operand
(define-pmacro (dnsio x-name x-comment x-attrs x-type x-index)
(define-operand
(name x-name)
(comment x-comment)
(.splice attrs (.unsplice x-attrs))
(type x-type)
(index x-index)
(handlers (print "immediate"))))
(dnsio imm32 "32-bit immediate" (all-isas) h-sint f-imm32)
(dnsio offset16 "16-bit offset" (all-isas) h-sint f-offset16)
;; The 64-bit immediate cannot use the default
;; cgen_parse_signed_integer, because it assumes operands are at much
;; 32-bit wide. Use our own.
(define-operand
(name imm64)
(comment "64-bit immediate")
(attrs all-isas)
(type h-sint64)
(index f-imm64)
(handlers (parse "imm64") (print "immediate")))
;; The endle/endbe instructions take an operand to specify the word
;; width in endianness conversions. We use both a parser and printer,
;; which are defined as C functions in bpf.opc.
(define-operand
(name endsize)
(comment "endianness size immediate: 16, 32 or 64")
(attrs all-isas)
(type h-uint)
(index f-imm32)
(handlers (parse "endsize") (print "endsize")))
;;; ALU instructions
;; For each opcode in insn-op-code-alu representing and integer
;; arithmetic instruction (ADD, SUB, etc) we define a bunch of
;; instruction variants:
;;
;; ADD[32]{i,r}le for the little-endian ISA
;; ADD[32]{i,r}be for the big-endian ISA
;;
;; The `i' variants perform `dst OP imm32 -> dst' operations.
;; The `r' variants perform `dst OP src -> dst' operations.
;;
;; The variants with 32 in their name are of ALU class. Otherwise
;; they are ALU64 class.
(define-pmacro (define-alu-insn-un x-basename x-suffix x-op-class x-op-code
x-endian x-mode x-semop)
(dni (.sym x-basename x-suffix x-endian)
(.str x-basename x-suffix)
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian)
(+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K x-op-code)
(set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian)))
()))
(define-pmacro (define-alu-insn-bin x-basename x-suffix x-op-class x-op-code
x-endian x-mode x-semop)
(begin
;; dst = dst OP immediate
(dni (.sym x-basename x-suffix "i" x-endian)
(.str x-basename x-suffix " immediate")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$imm32")
(+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K x-op-code)
(set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian) imm32))
())
;; dst = dst OP src
(dni (.sym x-basename x-suffix "r" x-endian)
(.str x-basename x-suffix " register")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
(+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
x-op-class OP_SRC_X x-op-code)
(set x-mode (.sym dst x-endian)
(x-semop x-mode (.sym dst x-endian) (.sym src x-endian)))
())))
(define-pmacro (define-alu-insn-mov x-basename x-suffix x-op-class x-op-code
x-endian x-mode)
(begin
(dni (.sym mov x-suffix "i" x-endian)
(.str mov x-suffix " immediate")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$imm32")
(+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K x-op-code)
(set x-mode (.sym dst x-endian) imm32)
())
(dni (.sym mov x-suffix "r" x-endian)
(.str mov x-suffix " register")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
(+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
x-op-class OP_SRC_X x-op-code)
(set x-mode (.sym dst x-endian) (.sym src x-endian))
())))
;; Unary ALU instructions (neg)
(define-pmacro (daiu x-basename x-op-code x-endian x-semop)
(begin
(define-alu-insn-un x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop)
(define-alu-insn-un x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop)))
;; Binary ALU instructions (all the others)
;; For ALU32: DST = (u32) DST OP (u32) SRC is correct semantics
(define-pmacro (daib x-basename x-op-code x-endian x-semop)
(begin
(define-alu-insn-bin x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop)
(define-alu-insn-bin x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop)))
;; Move ALU instructions (mov)
(define-pmacro (daim x-basename x-op-code x-endian)
(begin
(define-alu-insn-mov x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI)
(define-alu-insn-mov x-basename "32" OP_CLASS_ALU x-op-code x-endian USI)))
(define-pmacro (define-alu-instructions x-endian)
(begin
(daib add OP_CODE_ADD x-endian add)
(daib sub OP_CODE_SUB x-endian sub)
(daib mul OP_CODE_MUL x-endian mul)
(daib div OP_CODE_DIV x-endian div)
(daib or OP_CODE_OR x-endian or)
(daib and OP_CODE_AND x-endian and)
(daib lsh OP_CODE_LSH x-endian sll)
(daib rsh OP_CODE_RSH x-endian srl)
(daib mod OP_CODE_MOD x-endian mod)
(daib xor OP_CODE_XOR x-endian xor)
(daib arsh OP_CODE_ARSH x-endian sra)
(daiu neg OP_CODE_NEG x-endian neg)
(daim mov OP_CODE_MOV x-endian)))
(define-alu-instructions le)
(define-alu-instructions be)
;;; Endianness conversion instructions
;; The endianness conversion instructions come in several variants:
;;
;; END{le,be}le for the little-endian ISA
;; END{le,be}be for the big-endian ISA
;;
;; Please do not be confused by the repeated `be' and `le' here. Each
;; ISA has both endle and endbe instructions. It is the disposition
;; of the source and destination register fields that change between
;; ISAs, not the semantics of the instructions themselves (see section
;; "The ISAs" above in this very file.)
(define-pmacro (define-endian-insn x-suffix x-op-src x-endian)
(dni (.sym "end" x-suffix x-endian)
(.str "end" x-suffix " register")
(endian-isas x-endian)
(.str "end" x-suffix " $dst" x-endian ",$endsize")
(+ (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) endsize
OP_CLASS_ALU x-op-src OP_CODE_END)
(set (.sym dst x-endian)
(c-call DI (.str "bpfbf_end" x-suffix) (.sym dst x-endian) endsize))
()))
(define-endian-insn "le" OP_SRC_K le)
(define-endian-insn "be" OP_SRC_X le)
(define-endian-insn "le" OP_SRC_K be)
(define-endian-insn "be" OP_SRC_X be)
;;; Load/Store instructions
;; The lddw instruction takes a 64-bit immediate as an operand. Since
;; this instruction also takes a `dst' operand, we need to define a
;; variant for each ISA:
;;
;; LDDWle for the little-endian ISA
;; LDDWbe for the big-endian ISA
(define-pmacro (define-lddw x-endian)
(dni (.sym lddw x-endian)
(.str "lddw" x-endian)
(endian-isas x-endian)
(.str "lddw $dst" x-endian ",$imm64")
(+ imm64 (f-offset16 0) ((.sym f-src x-endian) 0)
(.sym dst x-endian)
OP_CLASS_LD OP_SIZE_DW OP_MODE_IMM)
(set DI (.sym dst x-endian) imm64)
()))
(define-lddw le)
(define-lddw be)
;; The absolute load instructions are non-generic loads designed to be
;; used in socket filters. They come in several variants:
;;
;; LDABS{w,h,b,dw}
(define-pmacro (dlabs x-suffix x-size x-smode)
(dni (.sym "ldabs" x-suffix)
(.str "ldabs" x-suffix)
(all-isas)
(.str "ldabs" x-suffix " $imm32")
(+ imm32 (f-offset16 0) (f-regs 0)
OP_CLASS_LD OP_MODE_ABS (.sym OP_SIZE_ x-size))
(set x-smode
(reg x-smode h-gpr 0)
(mem x-smode
(add DI
(mem DI
(add DI
(reg DI h-gpr 6) ;; Pointer to struct sk_buff
(c-call "bpfbf_skb_data_offset")))
imm32)))
;; XXX this clobbers R1-R5
()))
(dlabs "w" W SI)
(dlabs "h" H HI)
(dlabs "b" B QI)
(dlabs "dw" DW DI)
;; The indirect load instructions are non-generic loads designed to be
;; used in socket filters. They come in several variants:
;;
;; LDIND{w,h,b,dw}le for the little-endian ISA
;; LDIND[w,h,b,dw}be for the big-endian ISA
(define-pmacro (dlind x-suffix x-size x-endian x-smode)
(dni (.sym "ldind" x-suffix x-endian)
(.str "ldind" x-suffix)
(endian-isas x-endian)
(.str "ldind" x-suffix " $src" x-endian ",$imm32")
(+ imm32 (f-offset16 0) ((.sym f-dst x-endian) 0) (.sym src x-endian)
OP_CLASS_LD OP_MODE_IND (.sym OP_SIZE_ x-size))
(set x-smode
(reg x-smode h-gpr 0)
(mem x-smode
(add DI
(mem DI
(add DI
(reg DI h-gpr 6) ;; Pointer to struct sk_buff
(c-call "bpfbf_skb_data_offset")))
(add DI
(.sym src x-endian)
imm32))))
;; XXX this clobbers R1-R5
()))
(define-pmacro (define-ldind x-endian)
(begin
(dlind "w" W x-endian SI)
(dlind "h" H x-endian HI)
(dlind "b" B x-endian QI)
(dlind "dw" DW x-endian DI)))
(define-ldind le)
(define-ldind be)
;; Generic load and store instructions are provided for several word
;; sizes. They come in several variants:
;;
;; LDX{b,h,w,dw}le, STX{b,h,w,dw}le for the little-endian ISA
;;
;; LDX{b,h,w,dw}be, STX{b,h,w,dw}be for the big-endian ISA
;;
;; Loads operate on [$SRC+-OFFSET] -> $DST
;; Stores operate on $SRC -> [$DST+-OFFSET]
(define-pmacro (dxli x-basename x-suffix x-size x-endian x-mode)
(dni (.sym x-basename x-suffix x-endian)
(.str x-basename x-suffix)
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",[$src" x-endian "+$offset16]")
(+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
OP_CLASS_LDX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
(set x-mode
(.sym dst x-endian)
(mem x-mode (add DI (.sym src x-endian) offset16)))
()))
(define-pmacro (dxsi x-basename x-suffix x-size x-endian x-mode)
(dni (.sym x-basename x-suffix x-endian)
(.str x-basename x-suffix)
(endian-isas x-endian)
(.str x-basename x-suffix " [$dst" x-endian "+$offset16],$src" x-endian)
(+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
OP_CLASS_STX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
(set x-mode
(mem x-mode (add DI (.sym dst x-endian) offset16))
(.sym src x-endian)) ;; XXX address is section-relative
()))
(define-pmacro (define-ldstx-insns x-endian)
(begin
(dxli "ldx" "w" W x-endian SI)
(dxli "ldx" "h" H x-endian HI)
(dxli "ldx" "b" B x-endian QI)
(dxli "ldx" "dw" DW x-endian DI)
(dxsi "stx" "w" W x-endian SI)
(dxsi "stx" "h" H x-endian HI)
(dxsi "stx" "b" B x-endian QI)
(dxsi "stx" "dw" DW x-endian DI)))
(define-ldstx-insns le)
(define-ldstx-insns be)
;; Generic store instructions of the form IMM32 -> [$DST+OFFSET] are
;; provided in several variants:
;;
;; ST{b,h,w,dw}le for the little-endian ISA
;; ST{b,h,w,dw}be for the big-endian ISA
(define-pmacro (dsti x-suffix x-size x-endian x-mode)
(dni (.sym "st" x-suffix x-endian)
(.str "st" x-suffix)
(endian-isas x-endian)
(.str "st" x-suffix " [$dst" x-endian "+$offset16],$imm32")
(+ imm32 offset16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
OP_CLASS_ST (.sym OP_SIZE_ x-size) OP_MODE_MEM)
(set x-mode
(mem x-mode (add DI (.sym dst x-endian) offset16))
imm32) ;; XXX address is section-relative
()))
(define-pmacro (define-st-insns x-endian)
(begin
(dsti "b" B x-endian QI)
(dsti "h" H x-endian HI)
(dsti "w" W x-endian SI)
(dsti "dw" DW x-endian DI)))
(define-st-insns le)
(define-st-insns be)
;;; Jump instructions
;; Compare-and-jump instructions, on the other hand, make use of
;; registers. Therefore, we need to define several variants in both
;; ISAs:
;;
;; J{eq,gt,ge,lt,le,set,ne,sgt,sge,slt,sle}[32]{i,r}le for the
;; little-endian ISA.
;; J{eq,gt,ge,lt,le,set,ne.sgt,sge,slt,sle}[32]{i,r}be for the
;; big-endian ISA.
(define-pmacro (define-cond-jump-insn x-cond x-suffix x-op-class x-op-code x-endian x-mode x-semop)
(begin
(dni (.sym j x-cond x-suffix i x-endian)
(.str j x-cond x-suffix " i")
(endian-isas x-endian)
(.str "j" x-cond x-suffix " $dst" x-endian ",$imm32,$disp16")
(+ imm32 disp16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K (.sym OP_CODE_ x-op-code))
(if VOID (x-semop x-mode (.sym dst x-endian) imm32)
(set DI
(reg DI h-pc) (add DI (reg DI h-pc)
(mul DI (add HI disp16 1) 8))))
())
(dni (.sym j x-cond x-suffix r x-endian)
(.str j x-cond x-suffix " r")
(endian-isas x-endian)
(.str "j" x-cond x-suffix " $dst" x-endian ",$src" x-endian ",$disp16")
(+ (f-imm32 0) disp16 (.sym src x-endian) (.sym dst x-endian)
x-op-class OP_SRC_X (.sym OP_CODE_ x-op-code))
(if VOID (x-semop x-mode (.sym dst x-endian) (.sym src x-endian))
(set DI
(reg DI h-pc) (add DI (reg DI h-pc)
(mul DI (add HI disp16 1) 8))))
())))
(define-pmacro (dcji x-cond x-op-code x-endian x-semop)
(begin
(define-cond-jump-insn x-cond "" OP_CLASS_JMP x-op-code x-endian DI x-semop)
(define-cond-jump-insn x-cond "32" OP_CLASS_JMP32 x-op-code x-endian SI x-semop )))
(define-pmacro (define-condjump-insns x-endian)
(begin
(dcji "eq" JEQ x-endian eq)
(dcji "gt" JGT x-endian gtu)
(dcji "ge" JGE x-endian geu)
(dcji "lt" JLT x-endian ltu)
(dcji "le" JLE x-endian leu)
(dcji "set" JSET x-endian and)
(dcji "ne" JNE x-endian ne)
(dcji "sgt" JSGT x-endian gt)
(dcji "sge" JSGE x-endian ge)
(dcji "slt" JSLT x-endian lt)
(dcji "sle" JSLE x-endian le)))
(define-condjump-insns le)
(define-condjump-insns be)
;; The `call' instruction doesn't make use of registers, but the
;; semantic routine should have access to the src register in order to
;; properly interpret the meaning of disp32. Therefore we need one
;; version per ISA.
(define-pmacro (define-call-insn x-endian)
(dni (.sym call x-endian)
"call"
(endian-isas x-endian)
"call $disp32"
(+ disp32 (f-offset16 0) (f-regs 0)
OP_CLASS_JMP OP_SRC_K OP_CODE_CALL)
(c-call VOID
"bpfbf_call" disp32 (ifield (.sym f-src x-endian)))
()))
(define-call-insn le)
(define-call-insn be)
(define-pmacro (define-callr-insn x-endian)
(dni (.sym callr x-endian)
"callr"
((ISA (.sym xbpf x-endian)))
(.str "call $dst" x-endian)
(+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
OP_CLASS_JMP OP_SRC_X OP_CODE_CALL)
(c-call VOID
"bpfbf_callr" (ifield (.sym f-dst x-endian)))
()))
(define-callr-insn le)
(define-callr-insn be)
;; The jump-always and `exit' instructions dont make use of either
;; source nor destination registers, so only one variant per
;; instruction is defined.
(dni ja "ja" (all-isas) "ja $disp16"
(+ (f-imm32 0) disp16 (f-regs 0)
OP_CLASS_JMP OP_SRC_K OP_CODE_JA)
(set DI (reg DI h-pc) (add DI (reg DI h-pc)
(mul DI (add HI disp16 1) 8)))
())
(dni "exit" "exit" (all-isas) "exit"
(+ (f-imm32 0) (f-offset16 0) (f-regs 0)
OP_CLASS_JMP (f-op-src 0) OP_CODE_EXIT)
(c-call VOID "bpfbf_exit")
())
;;; Atomic instructions
;; The atomic exchange-and-add instructions come in two flavors: one
;; for swapping 64-bit quantities and another for 32-bit quantities.
(define-pmacro (sem-exchange-and-add x-endian x-mode)
(sequence VOID ((x-mode tmp))
;; XXX acquire lock in simulator... as a hardware element?
(set x-mode tmp (mem x-mode (add DI (.sym dst x-endian) offset16)))
(set x-mode
(mem x-mode (add DI (.sym dst x-endian) offset16))
(add x-mode tmp (.sym src x-endian)))))
(define-pmacro (define-atomic-insns x-endian)
(begin
(dni (.str "xadddw" x-endian)
"xadddw"
(endian-isas x-endian)
(.str "xadddw [$dst" x-endian "+$offset16],$src" x-endian)
(+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
offset16 OP_MODE_XADD OP_SIZE_DW OP_CLASS_STX)
(sem-exchange-and-add x-endian DI)
())
(dni (.str "xaddw" x-endian)
"xaddw"
(endian-isas x-endian)
(.str "xaddw [$dst" x-endian "+$offset16],$src" x-endian)
(+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
offset16 OP_MODE_XADD OP_SIZE_W OP_CLASS_STX)
(sem-exchange-and-add x-endian SI)
())))
(define-atomic-insns le)
(define-atomic-insns be)
;;; Breakpoint instruction
;; The brkpt instruction is used by the BPF simulator and it doesn't
;; really belong to the eBPF instruction set.
(dni "brkpt" "brkpt" (all-isas) "brkpt"
(+ (f-imm32 0) (f-offset16 0) (f-regs 0)
OP_CLASS_ALU OP_SRC_X OP_CODE_NEG)
(c-call VOID "bpfbf_breakpoint")
())
|