1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664
|
/* tc-mips.c -- assemble code for a MIPS chip.
Copyright (C) 1993-2020 Free Software Foundation, Inc.
Contributed by the OSF and Ralph Campbell.
Written by Keith Knowles and Ralph Campbell, working independently.
Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
Support.
This file is part of GAS.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include "as.h"
#include "config.h"
#include "subsegs.h"
#include "safe-ctype.h"
#include "opcode/mips.h"
#include "itbl-ops.h"
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
/* Check assumptions made in this file. */
typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
#ifdef DEBUG
#define DBG(x) printf x
#else
#define DBG(x)
#endif
#define streq(a, b) (strcmp (a, b) == 0)
#define SKIP_SPACE_TABS(S) \
do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
/* Clean up namespace so we can include obj-elf.h too. */
static int mips_output_flavor (void);
static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
#undef OBJ_PROCESS_STAB
#undef OUTPUT_FLAVOR
#undef S_GET_ALIGN
#undef S_GET_SIZE
#undef S_SET_ALIGN
#undef S_SET_SIZE
#undef obj_frob_file
#undef obj_frob_file_after_relocs
#undef obj_frob_symbol
#undef obj_pop_insert
#undef obj_sec_sym_ok_for_reloc
#undef OBJ_COPY_SYMBOL_ATTRIBUTES
#include "obj-elf.h"
/* Fix any of them that we actually care about. */
#undef OUTPUT_FLAVOR
#define OUTPUT_FLAVOR mips_output_flavor()
#include "elf/mips.h"
#ifndef ECOFF_DEBUGGING
#define NO_ECOFF_DEBUGGING
#define ECOFF_DEBUGGING 0
#endif
int mips_flag_mdebug = -1;
/* Control generation of .pdr sections. Off by default on IRIX: the native
linker doesn't know about and discards them, but relocations against them
remain, leading to rld crashes. */
#ifdef TE_IRIX
int mips_flag_pdr = FALSE;
#else
int mips_flag_pdr = TRUE;
#endif
#include "ecoff.h"
static char *mips_regmask_frag;
static char *mips_flags_frag;
#define ZERO 0
#define ATREG 1
#define S0 16
#define S7 23
#define TREG 24
#define PIC_CALL_REG 25
#define KT0 26
#define KT1 27
#define GP 28
#define SP 29
#define FP 30
#define RA 31
#define ILLEGAL_REG (32)
#define AT mips_opts.at
extern int target_big_endian;
/* The name of the readonly data section. */
#define RDATA_SECTION_NAME ".rodata"
/* Ways in which an instruction can be "appended" to the output. */
enum append_method {
/* Just add it normally. */
APPEND_ADD,
/* Add it normally and then add a nop. */
APPEND_ADD_WITH_NOP,
/* Turn an instruction with a delay slot into a "compact" version. */
APPEND_ADD_COMPACT,
/* Insert the instruction before the last one. */
APPEND_SWAP
};
/* Information about an instruction, including its format, operands
and fixups. */
struct mips_cl_insn
{
/* The opcode's entry in mips_opcodes or mips16_opcodes. */
const struct mips_opcode *insn_mo;
/* The 16-bit or 32-bit bitstring of the instruction itself. This is
a copy of INSN_MO->match with the operands filled in. If we have
decided to use an extended MIPS16 instruction, this includes the
extension. */
unsigned long insn_opcode;
/* The name if this is an label. */
char label[16];
/* The target label name if this is an branch. */
char target[16];
/* The frag that contains the instruction. */
struct frag *frag;
/* The offset into FRAG of the first instruction byte. */
long where;
/* The relocs associated with the instruction, if any. */
fixS *fixp[3];
/* True if this entry cannot be moved from its current position. */
unsigned int fixed_p : 1;
/* True if this instruction occurred in a .set noreorder block. */
unsigned int noreorder_p : 1;
/* True for mips16 instructions that jump to an absolute address. */
unsigned int mips16_absolute_jump_p : 1;
/* True if this instruction is complete. */
unsigned int complete_p : 1;
/* True if this instruction is cleared from history by unconditional
branch. */
unsigned int cleared_p : 1;
};
/* The ABI to use. */
enum mips_abi_level
{
NO_ABI = 0,
O32_ABI,
O64_ABI,
N32_ABI,
N64_ABI,
EABI_ABI
};
/* MIPS ABI we are using for this output file. */
static enum mips_abi_level mips_abi = NO_ABI;
/* Whether or not we have code that can call pic code. */
int mips_abicalls = FALSE;
/* Whether or not we have code which can be put into a shared
library. */
static bfd_boolean mips_in_shared = TRUE;
/* This is the set of options which may be modified by the .set
pseudo-op. We use a struct so that .set push and .set pop are more
reliable. */
struct mips_set_options
{
/* MIPS ISA (Instruction Set Architecture) level. This is set to -1
if it has not been initialized. Changed by `.set mipsN', and the
-mipsN command line option, and the default CPU. */
int isa;
/* Enabled Application Specific Extensions (ASEs). Changed by `.set
<asename>', by command line options, and based on the default
architecture. */
int ase;
/* Whether we are assembling for the mips16 processor. 0 if we are
not, 1 if we are, and -1 if the value has not been initialized.
Changed by `.set mips16' and `.set nomips16', and the -mips16 and
-nomips16 command line options, and the default CPU. */
int mips16;
/* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
1 if we are, and -1 if the value has not been initialized. Changed
by `.set micromips' and `.set nomicromips', and the -mmicromips
and -mno-micromips command line options, and the default CPU. */
int micromips;
/* Non-zero if we should not reorder instructions. Changed by `.set
reorder' and `.set noreorder'. */
int noreorder;
/* Non-zero if we should not permit the register designated "assembler
temporary" to be used in instructions. The value is the register
number, normally $at ($1). Changed by `.set at=REG', `.set noat'
(same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
unsigned int at;
/* Non-zero if we should warn when a macro instruction expands into
more than one machine instruction. Changed by `.set nomacro' and
`.set macro'. */
int warn_about_macros;
/* Non-zero if we should not move instructions. Changed by `.set
move', `.set volatile', `.set nomove', and `.set novolatile'. */
int nomove;
/* Non-zero if we should not optimize branches by moving the target
of the branch into the delay slot. Actually, we don't perform
this optimization anyhow. Changed by `.set bopt' and `.set
nobopt'. */
int nobopt;
/* Non-zero if we should not autoextend mips16 instructions.
Changed by `.set autoextend' and `.set noautoextend'. */
int noautoextend;
/* True if we should only emit 32-bit microMIPS instructions.
Changed by `.set insn32' and `.set noinsn32', and the -minsn32
and -mno-insn32 command line options. */
bfd_boolean insn32;
/* Restrict general purpose registers and floating point registers
to 32 bit. This is initially determined when -mgp32 or -mfp32
is passed but can changed if the assembler code uses .set mipsN. */
int gp;
int fp;
/* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
command line option, and the default CPU. */
int arch;
/* True if ".set sym32" is in effect. */
bfd_boolean sym32;
/* True if floating-point operations are not allowed. Changed by .set
softfloat or .set hardfloat, by command line options -msoft-float or
-mhard-float. The default is false. */
bfd_boolean soft_float;
/* True if only single-precision floating-point operations are allowed.
Changed by .set singlefloat or .set doublefloat, command-line options
-msingle-float or -mdouble-float. The default is false. */
bfd_boolean single_float;
/* 1 if single-precision operations on odd-numbered registers are
allowed. */
int oddspreg;
/* The set of ASEs that should be enabled for the user specified
architecture. This cannot be inferred from 'arch' for all cores
as processors only have a unique 'arch' if they add architecture
specific instructions (UDI). */
int init_ase;
};
/* Specifies whether module level options have been checked yet. */
static bfd_boolean file_mips_opts_checked = FALSE;
/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
value has not been initialized. Changed by `.nan legacy' and
`.nan 2008', and the -mnan=legacy and -mnan=2008 command line
options, and the default CPU. */
static int mips_nan2008 = -1;
/* This is the struct we use to hold the module level set of options.
Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
fp fields to -1 to indicate that they have not been initialized. */
static struct mips_set_options file_mips_opts =
{
/* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
/* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
/* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
/* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
/* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
/* init_ase */ 0
};
/* This is similar to file_mips_opts, but for the current set of options. */
static struct mips_set_options mips_opts =
{
/* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
/* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
/* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
/* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
/* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
/* init_ase */ 0
};
/* Which bits of file_ase were explicitly set or cleared by ASE options. */
static unsigned int file_ase_explicit;
/* These variables are filled in with the masks of registers used.
The object format code reads them and puts them in the appropriate
place. */
unsigned long mips_gprmask;
unsigned long mips_cprmask[4];
/* True if any MIPS16 code was produced. */
static int file_ase_mips16;
#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
|| mips_opts.isa == ISA_MIPS32R2 \
|| mips_opts.isa == ISA_MIPS32R3 \
|| mips_opts.isa == ISA_MIPS32R5 \
|| mips_opts.isa == ISA_MIPS64 \
|| mips_opts.isa == ISA_MIPS64R2 \
|| mips_opts.isa == ISA_MIPS64R3 \
|| mips_opts.isa == ISA_MIPS64R5)
/* True if any microMIPS code was produced. */
static int file_ase_micromips;
/* True if we want to create R_MIPS_JALR for jalr $25. */
#ifdef TE_IRIX
#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
#else
/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
because there's no place for any addend, the only acceptable
expression is a bare symbol. */
#define MIPS_JALR_HINT_P(EXPR) \
(!HAVE_IN_PLACE_ADDENDS \
|| ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
#endif
/* The argument of the -march= flag. The architecture we are assembling. */
static const char *mips_arch_string;
/* The argument of the -mtune= flag. The architecture for which we
are optimizing. */
static int mips_tune = CPU_UNKNOWN;
static const char *mips_tune_string;
/* True when generating 32-bit code for a 64-bit processor. */
static int mips_32bitmode = 0;
/* True if the given ABI requires 32-bit registers. */
#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
/* Likewise 64-bit registers. */
#define ABI_NEEDS_64BIT_REGS(ABI) \
((ABI) == N32_ABI \
|| (ABI) == N64_ABI \
|| (ABI) == O64_ABI)
#define ISA_IS_R6(ISA) \
((ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64 bit wide gp registers. */
#define ISA_HAS_64BIT_REGS(ISA) \
((ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64 bit wide float registers. */
#define ISA_HAS_64BIT_FPRS(ISA) \
((ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64-bit right rotate (dror et al.)
instructions. */
#define ISA_HAS_DROR(ISA) \
((ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (mips_opts.micromips \
&& ISA_HAS_64BIT_REGS (ISA)) \
)
/* Return true if ISA supports 32-bit right rotate (ror et al.)
instructions. */
#define ISA_HAS_ROR(ISA) \
((ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (mips_opts.ase & ASE_SMARTMIPS) \
|| mips_opts.micromips \
)
/* Return true if ISA supports single-precision floats in odd registers. */
#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
(((ISA) == ISA_MIPS32 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (CPU) == CPU_R5900) \
&& ((CPU) != CPU_GS464 \
|| (CPU) != CPU_GS464E \
|| (CPU) != CPU_GS264E))
/* Return true if ISA supports move to/from high part of a 64-bit
floating-point register. */
#define ISA_HAS_MXHC1(ISA) \
((ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports legacy NAN. */
#define ISA_HAS_LEGACY_NAN(ISA) \
((ISA) == ISA_MIPS1 \
|| (ISA) == ISA_MIPS2 \
|| (ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS32 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5)
#define GPR_SIZE \
(mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
? 32 \
: mips_opts.gp)
#define FPR_SIZE \
(mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
? 32 \
: mips_opts.fp)
#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
/* True if relocations are stored in-place. */
#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
/* The ABI-derived address size. */
#define HAVE_64BIT_ADDRESSES \
(GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
/* The size of symbolic constants (i.e., expressions of the form
"SYMBOL" or "SYMBOL + OFFSET"). */
#define HAVE_32BIT_SYMBOLS \
(HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
/* Addresses are loaded in different ways, depending on the address size
in use. The n32 ABI Documentation also mandates the use of additions
with overflow checking, but existing implementations don't follow it. */
#define ADDRESS_ADD_INSN \
(HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
#define ADDRESS_ADDI_INSN \
(HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
#define ADDRESS_LOAD_INSN \
(HAVE_32BIT_ADDRESSES ? "lw" : "ld")
#define ADDRESS_STORE_INSN \
(HAVE_32BIT_ADDRESSES ? "sw" : "sd")
/* Return true if the given CPU supports the MIPS16 ASE. */
#define CPU_HAS_MIPS16(cpu) \
(strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
|| strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
/* Return true if the given CPU supports the microMIPS ASE. */
#define CPU_HAS_MICROMIPS(cpu) 0
/* True if CPU has a dror instruction. */
#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
/* True if CPU has a ror instruction. */
#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
/* True if CPU is in the Octeon family. */
#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
|| (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
/* True if CPU has seq/sne and seqi/snei instructions. */
#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
/* True, if CPU has support for ldc1 and sdc1. */
#define CPU_HAS_LDC1_SDC1(CPU) \
((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
/* True if mflo and mfhi can be immediately followed by instructions
which write to the HI and LO registers.
According to MIPS specifications, MIPS ISAs I, II, and III need
(at least) two instructions between the reads of HI/LO and
instructions which write them, and later ISAs do not. Contradicting
the MIPS specifications, some MIPS IV processor user manuals (e.g.
the UM for the NEC Vr5000) document needing the instructions between
HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
MIPS64 and later ISAs to have the interlocks, plus any specific
earlier-ISA CPUs for which CPU documentation declares that the
instructions are really interlocked. */
#define hilo_interlocks \
(mips_opts.isa == ISA_MIPS32 \
|| mips_opts.isa == ISA_MIPS32R2 \
|| mips_opts.isa == ISA_MIPS32R3 \
|| mips_opts.isa == ISA_MIPS32R5 \
|| mips_opts.isa == ISA_MIPS32R6 \
|| mips_opts.isa == ISA_MIPS64 \
|| mips_opts.isa == ISA_MIPS64R2 \
|| mips_opts.isa == ISA_MIPS64R3 \
|| mips_opts.isa == ISA_MIPS64R5 \
|| mips_opts.isa == ISA_MIPS64R6 \
|| mips_opts.arch == CPU_R4010 \
|| mips_opts.arch == CPU_R5900 \
|| mips_opts.arch == CPU_R10000 \
|| mips_opts.arch == CPU_R12000 \
|| mips_opts.arch == CPU_R14000 \
|| mips_opts.arch == CPU_R16000 \
|| mips_opts.arch == CPU_RM7000 \
|| mips_opts.arch == CPU_VR5500 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to protect reads
from the GPRs after they are loaded from memory, and thus does not
require nops to be inserted. This applies to instructions marked
INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
level I and microMIPS mode instructions are always interlocked. */
#define gpr_interlocks \
(mips_opts.isa != ISA_MIPS1 \
|| mips_opts.arch == CPU_R3900 \
|| mips_opts.arch == CPU_R5900 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to avoid delays
required by coprocessor instructions, and thus does not require
nops to be inserted. This applies to instructions marked
INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
instructions marked INSN_WRITE_COND_CODE and ones marked
INSN_READ_COND_CODE. These nops are only required at MIPS ISA
levels I, II, and III and microMIPS mode instructions are always
interlocked. */
/* Itbl support may require additional care here. */
#define cop_interlocks \
((mips_opts.isa != ISA_MIPS1 \
&& mips_opts.isa != ISA_MIPS2 \
&& mips_opts.isa != ISA_MIPS3) \
|| mips_opts.arch == CPU_R4300 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to protect reads
from coprocessor registers after they are loaded from memory, and
thus does not require nops to be inserted. This applies to
instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
requires at MIPS ISA level I and microMIPS mode instructions are
always interlocked. */
#define cop_mem_interlocks \
(mips_opts.isa != ISA_MIPS1 \
|| mips_opts.micromips \
)
/* Is this a mfhi or mflo instruction? */
#define MF_HILO_INSN(PINFO) \
((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
has been selected. This implies, in particular, that addresses of text
labels have their LSB set. */
#define HAVE_CODE_COMPRESSION \
((mips_opts.mips16 | mips_opts.micromips) != 0)
/* The minimum and maximum signed values that can be stored in a GPR. */
#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
#define GPR_SMIN (-GPR_SMAX - 1)
/* MIPS PIC level. */
enum mips_pic_level mips_pic;
/* 1 if we should generate 32 bit offsets from the $gp register in
SVR4_PIC mode. Currently has no meaning in other modes. */
static int mips_big_got = 0;
/* 1 if trap instructions should used for overflow rather than break
instructions. */
static int mips_trap = 0;
/* 1 if double width floating point constants should not be constructed
by assembling two single width halves into two single width floating
point registers which just happen to alias the double width destination
register. On some architectures this aliasing can be disabled by a bit
in the status register, and the setting of this bit cannot be determined
automatically at assemble time. */
static int mips_disable_float_construction;
/* Non-zero if any .set noreorder directives were used. */
static int mips_any_noreorder;
/* Non-zero if nops should be inserted when the register referenced in
an mfhi/mflo instruction is read in the next two instructions. */
static int mips_7000_hilo_fix;
/* The size of objects in the small data section. */
static unsigned int g_switch_value = 8;
/* Whether the -G option was used. */
static int g_switch_seen = 0;
#define N_RMASK 0xc4
#define N_VFP 0xd4
/* If we can determine in advance that GP optimization won't be
possible, we can skip the relaxation stuff that tries to produce
GP-relative references. This makes delay slot optimization work
better.
This function can only provide a guess, but it seems to work for
gcc output. It needs to guess right for gcc, otherwise gcc
will put what it thinks is a GP-relative instruction in a branch
delay slot.
I don't know if a fix is needed for the SVR4_PIC mode. I've only
fixed it for the non-PIC mode. KR 95/04/07 */
static int nopic_need_relax (symbolS *, int);
/* Handle of the OPCODE hash table. */
static struct hash_control *op_hash = NULL;
/* The opcode hash table we use for the mips16. */
static struct hash_control *mips16_op_hash = NULL;
/* The opcode hash table we use for the microMIPS ASE. */
static struct hash_control *micromips_op_hash = NULL;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful. */
const char comment_chars[] = "#";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output. */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that C style comments are always supported. */
const char line_comment_chars[] = "#";
/* This array holds machine specific line separator characters. */
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant from exp in floating point nums. */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant.
As in 0f12.456
or 0d1.2345e12. */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
changed in read.c . Ideally it shouldn't have to know about it at all,
but nothing is ideal around here. */
/* Types of printf format used for instruction-related error messages.
"I" means int ("%d") and "S" means string ("%s"). */
enum mips_insn_error_format
{
ERR_FMT_PLAIN,
ERR_FMT_I,
ERR_FMT_SS,
};
/* Information about an error that was found while assembling the current
instruction. */
struct mips_insn_error
{
/* We sometimes need to match an instruction against more than one
opcode table entry. Errors found during this matching are reported
against a particular syntactic argument rather than against the
instruction as a whole. We grade these messages so that errors
against argument N have a greater priority than an error against
any argument < N, since the former implies that arguments up to N
were acceptable and that the opcode entry was therefore a closer match.
If several matches report an error against the same argument,
we only use that error if it is the same in all cases.
min_argnum is the minimum argument number for which an error message
should be accepted. It is 0 if MSG is against the instruction as
a whole. */
int min_argnum;
/* The printf()-style message, including its format and arguments. */
enum mips_insn_error_format format;
const char *msg;
union
{
int i;
const char *ss[2];
} u;
};
/* The error that should be reported for the current instruction. */
static struct mips_insn_error insn_error;
static int auto_align = 1;
/* When outputting SVR4 PIC code, the assembler needs to know the
offset in the stack frame from which to restore the $gp register.
This is set by the .cprestore pseudo-op, and saved in this
variable. */
static offsetT mips_cprestore_offset = -1;
/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
more optimizations, it can use a register value instead of a memory-saved
offset and even an other register than $gp as global pointer. */
static offsetT mips_cpreturn_offset = -1;
static int mips_cpreturn_register = -1;
static int mips_gp_register = GP;
static int mips_gprel_offset = 0;
/* Whether mips_cprestore_offset has been set in the current function
(or whether it has already been warned about, if not). */
static int mips_cprestore_valid = 0;
/* This is the register which holds the stack frame, as set by the
.frame pseudo-op. This is needed to implement .cprestore. */
static int mips_frame_reg = SP;
/* Whether mips_frame_reg has been set in the current function
(or whether it has already been warned about, if not). */
static int mips_frame_reg_valid = 0;
/* To output NOP instructions correctly, we need to keep information
about the previous two instructions. */
/* Whether we are optimizing. The default value of 2 means to remove
unneeded NOPs and swap branch instructions when possible. A value
of 1 means to not swap branches. A value of 0 means to always
insert NOPs. */
static int mips_optimize = 2;
/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
equivalent to seeing no -g option at all. */
static int mips_debug = 0;
/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
#define MAX_VR4130_NOPS 4
/* The maximum number of NOPs needed to fill delay slots. */
#define MAX_DELAY_NOPS 2
/* The maximum number of NOPs needed for any purpose. */
#define MAX_NOPS 4
/* The maximum range of context length of ll/sc. */
#define MAX_LLSC_RANGE 20
/* A list of previous instructions, with index 0 being the most recent.
We need to look back MAX_NOPS instructions when filling delay slots
or working around processor errata. We need to look back one
instruction further if we're thinking about using history[0] to
fill a branch delay slot. */
static struct mips_cl_insn history[1 + MAX_NOPS + MAX_LLSC_RANGE];
/* The maximum number of LABELS detect for the same address. */
#define MAX_LABELS_SAME 10
/* Arrays of operands for each instruction. */
#define MAX_OPERANDS 6
struct mips_operand_array
{
const struct mips_operand *operand[MAX_OPERANDS];
};
static struct mips_operand_array *mips_operands;
static struct mips_operand_array *mips16_operands;
static struct mips_operand_array *micromips_operands;
/* Nop instructions used by emit_nop. */
static struct mips_cl_insn nop_insn;
static struct mips_cl_insn mips16_nop_insn;
static struct mips_cl_insn micromips_nop16_insn;
static struct mips_cl_insn micromips_nop32_insn;
/* Sync instructions used by insert sync. */
static struct mips_cl_insn sync_insn;
/* The appropriate nop for the current mode. */
#define NOP_INSN (mips_opts.mips16 \
? &mips16_nop_insn \
: (mips_opts.micromips \
? (mips_opts.insn32 \
? µmips_nop32_insn \
: µmips_nop16_insn) \
: &nop_insn))
/* The size of NOP_INSN in bytes. */
#define NOP_INSN_SIZE ((mips_opts.mips16 \
|| (mips_opts.micromips && !mips_opts.insn32)) \
? 2 : 4)
/* If this is set, it points to a frag holding nop instructions which
were inserted before the start of a noreorder section. If those
nops turn out to be unnecessary, the size of the frag can be
decreased. */
static fragS *prev_nop_frag;
/* The number of nop instructions we created in prev_nop_frag. */
static int prev_nop_frag_holds;
/* The number of nop instructions that we know we need in
prev_nop_frag. */
static int prev_nop_frag_required;
/* The number of instructions we've seen since prev_nop_frag. */
static int prev_nop_frag_since;
/* Relocations against symbols are sometimes done in two parts, with a HI
relocation and a LO relocation. Each relocation has only 16 bits of
space to store an addend. This means that in order for the linker to
handle carries correctly, it must be able to locate both the HI and
the LO relocation. This means that the relocations must appear in
order in the relocation table.
In order to implement this, we keep track of each unmatched HI
relocation. We then sort them so that they immediately precede the
corresponding LO relocation. */
struct mips_hi_fixup
{
/* Next HI fixup. */
struct mips_hi_fixup *next;
/* This fixup. */
fixS *fixp;
/* The section this fixup is in. */
segT seg;
};
/* The list of unmatched HI relocs. */
static struct mips_hi_fixup *mips_hi_fixup_list;
/* The frag containing the last explicit relocation operator.
Null if explicit relocations have not been used. */
static fragS *prev_reloc_op_frag;
/* Map mips16 register numbers to normal MIPS register numbers. */
static const unsigned int mips16_to_32_reg_map[] =
{
16, 17, 2, 3, 4, 5, 6, 7
};
/* Map microMIPS register numbers to normal MIPS register numbers. */
#define micromips_to_32_reg_d_map mips16_to_32_reg_map
/* The microMIPS registers with type h. */
static const unsigned int micromips_to_32_reg_h_map1[] =
{
5, 5, 6, 4, 4, 4, 4, 4
};
static const unsigned int micromips_to_32_reg_h_map2[] =
{
6, 7, 7, 21, 22, 5, 6, 7
};
/* The microMIPS registers with type m. */
static const unsigned int micromips_to_32_reg_m_map[] =
{
0, 17, 2, 3, 16, 18, 19, 20
};
#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
/* Classifies the kind of instructions we're interested in when
implementing -mfix-vr4120. */
enum fix_vr4120_class
{
FIX_VR4120_MACC,
FIX_VR4120_DMACC,
FIX_VR4120_MULT,
FIX_VR4120_DMULT,
FIX_VR4120_DIV,
FIX_VR4120_MTHILO,
NUM_FIX_VR4120_CLASSES
};
/* ...likewise -mfix-loongson2f-jump. */
static bfd_boolean mips_fix_loongson2f_jump;
/* ...likewise -mfix-loongson2f-nop. */
static bfd_boolean mips_fix_loongson2f_nop;
/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
static bfd_boolean mips_fix_loongson2f;
/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
there must be at least one other instruction between an instruction
of type X and an instruction of type Y. */
static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
/* True if -mfix-vr4120 is in force. */
static int mips_fix_vr4120;
/* ...likewise -mfix-vr4130. */
static int mips_fix_vr4130;
/* ...likewise -mfix-24k. */
static int mips_fix_24k;
/* ...likewise -mfix-rm7000 */
static int mips_fix_rm7000;
/* ...likewise -mfix-cn63xxp1 */
static bfd_boolean mips_fix_cn63xxp1;
/* ...likewise -mfix-r5900 */
static bfd_boolean mips_fix_r5900;
static bfd_boolean mips_fix_r5900_explicit;
/* ...likewise -mfix-loongson3-llsc. */
static bfd_boolean mips_fix_loongson3_llsc = DEFAULT_MIPS_FIX_LOONGSON3_LLSC;
/* We don't relax branches by default, since this causes us to expand
`la .l2 - .l1' if there's a branch between .l1 and .l2, because we
fail to compute the offset before expanding the macro to the most
efficient expansion. */
static int mips_relax_branch;
/* TRUE if checks are suppressed for invalid branches between ISA modes.
Needed for broken assembly produced by some GCC versions and some
sloppy code out there, where branches to data labels are present. */
static bfd_boolean mips_ignore_branch_isa;
/* The expansion of many macros depends on the type of symbol that
they refer to. For example, when generating position-dependent code,
a macro that refers to a symbol may have two different expansions,
one which uses GP-relative addresses and one which uses absolute
addresses. When generating SVR4-style PIC, a macro may have
different expansions for local and global symbols.
We handle these situations by generating both sequences and putting
them in variant frags. In position-dependent code, the first sequence
will be the GP-relative one and the second sequence will be the
absolute one. In SVR4 PIC, the first sequence will be for global
symbols and the second will be for local symbols.
The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
SECOND are the lengths of the two sequences in bytes. These fields
can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
the subtype has the following flags:
RELAX_PIC
Set if generating PIC code.
RELAX_USE_SECOND
Set if it has been decided that we should use the second
sequence instead of the first.
RELAX_SECOND_LONGER
Set in the first variant frag if the macro's second implementation
is longer than its first. This refers to the macro as a whole,
not an individual relaxation.
RELAX_NOMACRO
Set in the first variant frag if the macro appeared in a .set nomacro
block and if one alternative requires a warning but the other does not.
RELAX_DELAY_SLOT
Like RELAX_NOMACRO, but indicates that the macro appears in a branch
delay slot.
RELAX_DELAY_SLOT_16BIT
Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
16-bit instruction.
RELAX_DELAY_SLOT_SIZE_FIRST
Like RELAX_DELAY_SLOT, but indicates that the first implementation of
the macro is of the wrong size for the branch delay slot.
RELAX_DELAY_SLOT_SIZE_SECOND
Like RELAX_DELAY_SLOT, but indicates that the second implementation of
the macro is of the wrong size for the branch delay slot.
The frag's "opcode" points to the first fixup for relaxable code.
Relaxable macros are generated using a sequence such as:
relax_start (SYMBOL);
... generate first expansion ...
relax_switch ();
... generate second expansion ...
relax_end ();
The code and fixups for the unwanted alternative are discarded
by md_convert_frag. */
#define RELAX_ENCODE(FIRST, SECOND, PIC) \
(((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
#define RELAX_SECOND(X) ((X) & 0xff)
#define RELAX_PIC(X) (((X) & 0x10000) != 0)
#define RELAX_USE_SECOND 0x20000
#define RELAX_SECOND_LONGER 0x40000
#define RELAX_NOMACRO 0x80000
#define RELAX_DELAY_SLOT 0x100000
#define RELAX_DELAY_SLOT_16BIT 0x200000
#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
/* Branch without likely bit. If label is out of range, we turn:
beq reg1, reg2, label
delay slot
into
bne reg1, reg2, 0f
nop
j label
0: delay slot
with the following opcode replacements:
beq <-> bne
blez <-> bgtz
bltz <-> bgez
bc1f <-> bc1t
bltzal <-> bgezal (with jal label instead of j label)
Even though keeping the delay slot instruction in the delay slot of
the branch would be more efficient, it would be very tricky to do
correctly, because we'd have to introduce a variable frag *after*
the delay slot instruction, and expand that instead. Let's do it
the easy way for now, even if the branch-not-taken case now costs
one additional instruction. Out-of-range branches are not supposed
to be common, anyway.
Branch likely. If label is out of range, we turn:
beql reg1, reg2, label
delay slot (annulled if branch not taken)
into
beql reg1, reg2, 1f
nop
beql $0, $0, 2f
nop
1: j[al] label
delay slot (executed only if branch taken)
2:
It would be possible to generate a shorter sequence by losing the
likely bit, generating something like:
bne reg1, reg2, 0f
nop
j[al] label
delay slot (executed only if branch taken)
0:
beql -> bne
bnel -> beq
blezl -> bgtz
bgtzl -> blez
bltzl -> bgez
bgezl -> bltz
bc1fl -> bc1t
bc1tl -> bc1f
bltzall -> bgezal (with jal label instead of j label)
bgezall -> bltzal (ditto)
but it's not clear that it would actually improve performance. */
#define RELAX_BRANCH_ENCODE(at, pic, \
uncond, likely, link, toofar) \
((relax_substateT) \
(0xc0000000 \
| ((at) & 0x1f) \
| ((pic) ? 0x20 : 0) \
| ((toofar) ? 0x40 : 0) \
| ((link) ? 0x80 : 0) \
| ((likely) ? 0x100 : 0) \
| ((uncond) ? 0x200 : 0)))
#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
/* For mips16 code, we use an entirely different form of relaxation.
mips16 supports two versions of most instructions which take
immediate values: a small one which takes some small value, and a
larger one which takes a 16 bit value. Since branches also follow
this pattern, relaxing these values is required.
We can assemble both mips16 and normal MIPS code in a single
object. Therefore, we need to support this type of relaxation at
the same time that we support the relaxation described above. We
use the high bit of the subtype field to distinguish these cases.
The information we store for this type of relaxation is the
argument code found in the opcode file for this relocation, whether
the user explicitly requested a small or extended form, and whether
the relocation is in a jump or jal delay slot. That tells us the
size of the value, and how it should be stored. We also store
whether the fragment is considered to be extended or not. We also
store whether this is known to be a branch to a different section,
whether we have tried to relax this frag yet, and whether we have
ever extended a PC relative fragment because of a shift count. */
#define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
small, ext, \
dslot, jal_dslot) \
(0x80000000 \
| ((type) & 0xff) \
| ((e2) ? 0x100 : 0) \
| ((pic) ? 0x200 : 0) \
| ((sym32) ? 0x400 : 0) \
| ((nomacro) ? 0x800 : 0) \
| ((small) ? 0x1000 : 0) \
| ((ext) ? 0x2000 : 0) \
| ((dslot) ? 0x4000 : 0) \
| ((jal_dslot) ? 0x8000 : 0))
#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
#define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
#define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
#define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
#define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
#define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
#define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
#define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
#define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
/* For microMIPS code, we use relaxation similar to one we use for
MIPS16 code. Some instructions that take immediate values support
two encodings: a small one which takes some small value, and a
larger one which takes a 16 bit value. As some branches also follow
this pattern, relaxing these values is required.
We can assemble both microMIPS and normal MIPS code in a single
object. Therefore, we need to support this type of relaxation at
the same time that we support the relaxation described above. We
use one of the high bits of the subtype field to distinguish these
cases.
The information we store for this type of relaxation is the argument
code found in the opcode file for this relocation, the register
selected as the assembler temporary, whether in the 32-bit
instruction mode, whether the branch is unconditional, whether it is
compact, whether there is no delay-slot instruction available to fill
in, whether it stores the link address implicitly in $ra, whether
relaxation of out-of-range 32-bit branches to a sequence of
instructions is enabled, and whether the displacement of a branch is
too large to fit as an immediate argument of a 16-bit and a 32-bit
branch, respectively. */
#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
uncond, compact, link, nods, \
relax32, toofar16, toofar32) \
(0x40000000 \
| ((type) & 0xff) \
| (((at) & 0x1f) << 8) \
| ((insn32) ? 0x2000 : 0) \
| ((pic) ? 0x4000 : 0) \
| ((uncond) ? 0x8000 : 0) \
| ((compact) ? 0x10000 : 0) \
| ((link) ? 0x20000 : 0) \
| ((nods) ? 0x40000 : 0) \
| ((relax32) ? 0x80000 : 0) \
| ((toofar16) ? 0x100000 : 0) \
| ((toofar32) ? 0x200000 : 0))
#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
/* Sign-extend 16-bit value X. */
#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
/* Is the given value a sign-extended 32-bit value? */
#define IS_SEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0x7fffffff) == 0 \
|| (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
/* Is the given value a sign-extended 16-bit value? */
#define IS_SEXT_16BIT_NUM(x) \
(((x) &~ (offsetT) 0x7fff) == 0 \
|| (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
/* Is the given value a sign-extended 12-bit value? */
#define IS_SEXT_12BIT_NUM(x) \
(((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
/* Is the given value a sign-extended 9-bit value? */
#define IS_SEXT_9BIT_NUM(x) \
(((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
/* Is the given value a zero-extended 32-bit value? Or a negated one? */
#define IS_ZEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0xffffffff) == 0 \
|| (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
/* Extract bits MASK << SHIFT from STRUCT and shift them right
SHIFT places. */
#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
(((STRUCT) >> (SHIFT)) & (MASK))
/* Extract the operand given by FIELD from mips_cl_insn INSN. */
#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
(!(MICROMIPS) \
? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
: EXTRACT_BITS ((INSN).insn_opcode, \
MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
EXTRACT_BITS ((INSN).insn_opcode, \
MIPS16OP_MASK_##FIELD, \
MIPS16OP_SH_##FIELD)
/* The MIPS16 EXTEND opcode, shifted left 16 places. */
#define MIPS16_EXTEND (0xf000U << 16)
/* Whether or not we are emitting a branch-likely macro. */
static bfd_boolean emit_branch_likely_macro = FALSE;
/* Global variables used when generating relaxable macros. See the
comment above RELAX_ENCODE for more details about how relaxation
is used. */
static struct {
/* 0 if we're not emitting a relaxable macro.
1 if we're emitting the first of the two relaxation alternatives.
2 if we're emitting the second alternative. */
int sequence;
/* The first relaxable fixup in the current frag. (In other words,
the first fixup that refers to relaxable code.) */
fixS *first_fixup;
/* sizes[0] says how many bytes of the first alternative are stored in
the current frag. Likewise sizes[1] for the second alternative. */
unsigned int sizes[2];
/* The symbol on which the choice of sequence depends. */
symbolS *symbol;
} mips_relax;
/* Global variables used to decide whether a macro needs a warning. */
static struct {
/* True if the macro is in a branch delay slot. */
bfd_boolean delay_slot_p;
/* Set to the length in bytes required if the macro is in a delay slot
that requires a specific length of instruction, otherwise zero. */
unsigned int delay_slot_length;
/* For relaxable macros, sizes[0] is the length of the first alternative
in bytes and sizes[1] is the length of the second alternative.
For non-relaxable macros, both elements give the length of the
macro in bytes. */
unsigned int sizes[2];
/* For relaxable macros, first_insn_sizes[0] is the length of the first
instruction of the first alternative in bytes and first_insn_sizes[1]
is the length of the first instruction of the second alternative.
For non-relaxable macros, both elements give the length of the first
instruction in bytes.
Set to zero if we haven't yet seen the first instruction. */
unsigned int first_insn_sizes[2];
/* For relaxable macros, insns[0] is the number of instructions for the
first alternative and insns[1] is the number of instructions for the
second alternative.
For non-relaxable macros, both elements give the number of
instructions for the macro. */
unsigned int insns[2];
/* The first variant frag for this macro. */
fragS *first_frag;
} mips_macro_warning;
/* Prototypes for static functions. */
enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
static void append_insn
(struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
bfd_boolean expansionp);
static void mips_no_prev_insn (void);
static void macro_build (expressionS *, const char *, const char *, ...);
static void mips16_macro_build
(expressionS *, const char *, const char *, va_list *);
static void load_register (int, expressionS *, int);
static void macro_start (void);
static void macro_end (void);
static void macro (struct mips_cl_insn *ip, char *str);
static void mips16_macro (struct mips_cl_insn * ip);
static void mips_ip (char *str, struct mips_cl_insn * ip);
static void mips16_ip (char *str, struct mips_cl_insn * ip);
static unsigned long mips16_immed_extend (offsetT, unsigned int);
static void mips16_immed
(const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
unsigned int, unsigned long *);
static size_t my_getSmallExpression
(expressionS *, bfd_reloc_code_real_type *, char *);
static void my_getExpression (expressionS *, char *);
static void s_align (int);
static void s_change_sec (int);
static void s_change_section (int);
static void s_cons (int);
static void s_float_cons (int);
static void s_mips_globl (int);
static void s_option (int);
static void s_mipsset (int);
static void s_abicalls (int);
static void s_cpload (int);
static void s_cpsetup (int);
static void s_cplocal (int);
static void s_cprestore (int);
static void s_cpreturn (int);
static void s_dtprelword (int);
static void s_dtpreldword (int);
static void s_tprelword (int);
static void s_tpreldword (int);
static void s_gpvalue (int);
static void s_gpword (int);
static void s_gpdword (int);
static void s_ehword (int);
static void s_cpadd (int);
static void s_insn (int);
static void s_nan (int);
static void s_module (int);
static void s_mips_ent (int);
static void s_mips_end (int);
static void s_mips_frame (int);
static void s_mips_mask (int reg_type);
static void s_mips_stab (int);
static void s_mips_weakext (int);
static void s_mips_file (int);
static void s_mips_loc (int);
static bfd_boolean pic_need_relax (symbolS *);
static int relaxed_branch_length (fragS *, asection *, int);
static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
static void file_mips_check_options (void);
/* Table and functions used to map between CPU/ISA names, and
ISA levels, and CPU numbers. */
struct mips_cpu_info
{
const char *name; /* CPU or ISA name. */
int flags; /* MIPS_CPU_* flags. */
int ase; /* Set of ASEs implemented by the CPU. */
int isa; /* ISA level. */
int cpu; /* CPU number (default CPU if ISA). */
};
#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
/* Command-line options. */
const char *md_shortopts = "O::g::G:";
enum options
{
OPTION_MARCH = OPTION_MD_BASE,
OPTION_MTUNE,
OPTION_MIPS1,
OPTION_MIPS2,
OPTION_MIPS3,
OPTION_MIPS4,
OPTION_MIPS5,
OPTION_MIPS32,
OPTION_MIPS64,
OPTION_MIPS32R2,
OPTION_MIPS32R3,
OPTION_MIPS32R5,
OPTION_MIPS32R6,
OPTION_MIPS64R2,
OPTION_MIPS64R3,
OPTION_MIPS64R5,
OPTION_MIPS64R6,
OPTION_MIPS16,
OPTION_NO_MIPS16,
OPTION_MIPS3D,
OPTION_NO_MIPS3D,
OPTION_MDMX,
OPTION_NO_MDMX,
OPTION_DSP,
OPTION_NO_DSP,
OPTION_MT,
OPTION_NO_MT,
OPTION_VIRT,
OPTION_NO_VIRT,
OPTION_MSA,
OPTION_NO_MSA,
OPTION_SMARTMIPS,
OPTION_NO_SMARTMIPS,
OPTION_DSPR2,
OPTION_NO_DSPR2,
OPTION_DSPR3,
OPTION_NO_DSPR3,
OPTION_EVA,
OPTION_NO_EVA,
OPTION_XPA,
OPTION_NO_XPA,
OPTION_MICROMIPS,
OPTION_NO_MICROMIPS,
OPTION_MCU,
OPTION_NO_MCU,
OPTION_MIPS16E2,
OPTION_NO_MIPS16E2,
OPTION_CRC,
OPTION_NO_CRC,
OPTION_M4650,
OPTION_NO_M4650,
OPTION_M4010,
OPTION_NO_M4010,
OPTION_M4100,
OPTION_NO_M4100,
OPTION_M3900,
OPTION_NO_M3900,
OPTION_M7000_HILO_FIX,
OPTION_MNO_7000_HILO_FIX,
OPTION_FIX_24K,
OPTION_NO_FIX_24K,
OPTION_FIX_RM7000,
OPTION_NO_FIX_RM7000,
OPTION_FIX_LOONGSON3_LLSC,
OPTION_NO_FIX_LOONGSON3_LLSC,
OPTION_FIX_LOONGSON2F_JUMP,
OPTION_NO_FIX_LOONGSON2F_JUMP,
OPTION_FIX_LOONGSON2F_NOP,
OPTION_NO_FIX_LOONGSON2F_NOP,
OPTION_FIX_VR4120,
OPTION_NO_FIX_VR4120,
OPTION_FIX_VR4130,
OPTION_NO_FIX_VR4130,
OPTION_FIX_CN63XXP1,
OPTION_NO_FIX_CN63XXP1,
OPTION_FIX_R5900,
OPTION_NO_FIX_R5900,
OPTION_TRAP,
OPTION_BREAK,
OPTION_EB,
OPTION_EL,
OPTION_FP32,
OPTION_GP32,
OPTION_CONSTRUCT_FLOATS,
OPTION_NO_CONSTRUCT_FLOATS,
OPTION_FP64,
OPTION_FPXX,
OPTION_GP64,
OPTION_RELAX_BRANCH,
OPTION_NO_RELAX_BRANCH,
OPTION_IGNORE_BRANCH_ISA,
OPTION_NO_IGNORE_BRANCH_ISA,
OPTION_INSN32,
OPTION_NO_INSN32,
OPTION_MSHARED,
OPTION_MNO_SHARED,
OPTION_MSYM32,
OPTION_MNO_SYM32,
OPTION_SOFT_FLOAT,
OPTION_HARD_FLOAT,
OPTION_SINGLE_FLOAT,
OPTION_DOUBLE_FLOAT,
OPTION_32,
OPTION_CALL_SHARED,
OPTION_CALL_NONPIC,
OPTION_NON_SHARED,
OPTION_XGOT,
OPTION_MABI,
OPTION_N32,
OPTION_64,
OPTION_MDEBUG,
OPTION_NO_MDEBUG,
OPTION_PDR,
OPTION_NO_PDR,
OPTION_MVXWORKS_PIC,
OPTION_NAN,
OPTION_ODD_SPREG,
OPTION_NO_ODD_SPREG,
OPTION_GINV,
OPTION_NO_GINV,
OPTION_LOONGSON_MMI,
OPTION_NO_LOONGSON_MMI,
OPTION_LOONGSON_CAM,
OPTION_NO_LOONGSON_CAM,
OPTION_LOONGSON_EXT,
OPTION_NO_LOONGSON_EXT,
OPTION_LOONGSON_EXT2,
OPTION_NO_LOONGSON_EXT2,
OPTION_END_OF_ENUM
};
struct option md_longopts[] =
{
/* Options which specify architecture. */
{"march", required_argument, NULL, OPTION_MARCH},
{"mtune", required_argument, NULL, OPTION_MTUNE},
{"mips0", no_argument, NULL, OPTION_MIPS1},
{"mips1", no_argument, NULL, OPTION_MIPS1},
{"mips2", no_argument, NULL, OPTION_MIPS2},
{"mips3", no_argument, NULL, OPTION_MIPS3},
{"mips4", no_argument, NULL, OPTION_MIPS4},
{"mips5", no_argument, NULL, OPTION_MIPS5},
{"mips32", no_argument, NULL, OPTION_MIPS32},
{"mips64", no_argument, NULL, OPTION_MIPS64},
{"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
{"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
{"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
{"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
{"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
{"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
{"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
{"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
/* Options which specify Application Specific Extensions (ASEs). */
{"mips16", no_argument, NULL, OPTION_MIPS16},
{"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
{"mips3d", no_argument, NULL, OPTION_MIPS3D},
{"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
{"mdmx", no_argument, NULL, OPTION_MDMX},
{"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
{"mdsp", no_argument, NULL, OPTION_DSP},
{"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
{"mmt", no_argument, NULL, OPTION_MT},
{"mno-mt", no_argument, NULL, OPTION_NO_MT},
{"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
{"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
{"mdspr2", no_argument, NULL, OPTION_DSPR2},
{"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
{"mdspr3", no_argument, NULL, OPTION_DSPR3},
{"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
{"meva", no_argument, NULL, OPTION_EVA},
{"mno-eva", no_argument, NULL, OPTION_NO_EVA},
{"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
{"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
{"mmcu", no_argument, NULL, OPTION_MCU},
{"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
{"mvirt", no_argument, NULL, OPTION_VIRT},
{"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
{"mmsa", no_argument, NULL, OPTION_MSA},
{"mno-msa", no_argument, NULL, OPTION_NO_MSA},
{"mxpa", no_argument, NULL, OPTION_XPA},
{"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
{"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
{"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
{"mcrc", no_argument, NULL, OPTION_CRC},
{"mno-crc", no_argument, NULL, OPTION_NO_CRC},
{"mginv", no_argument, NULL, OPTION_GINV},
{"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
{"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
{"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
{"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
{"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
{"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
{"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
{"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
{"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
/* Old-style architecture options. Don't add more of these. */
{"m4650", no_argument, NULL, OPTION_M4650},
{"no-m4650", no_argument, NULL, OPTION_NO_M4650},
{"m4010", no_argument, NULL, OPTION_M4010},
{"no-m4010", no_argument, NULL, OPTION_NO_M4010},
{"m4100", no_argument, NULL, OPTION_M4100},
{"no-m4100", no_argument, NULL, OPTION_NO_M4100},
{"m3900", no_argument, NULL, OPTION_M3900},
{"no-m3900", no_argument, NULL, OPTION_NO_M3900},
/* Options which enable bug fixes. */
{"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
{"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
{"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
{"mfix-loongson3-llsc", no_argument, NULL, OPTION_FIX_LOONGSON3_LLSC},
{"mno-fix-loongson3-llsc", no_argument, NULL, OPTION_NO_FIX_LOONGSON3_LLSC},
{"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
{"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
{"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
{"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
{"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
{"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
{"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
{"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
{"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
{"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
{"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
{"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
{"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
{"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
{"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
{"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
/* Miscellaneous options. */
{"trap", no_argument, NULL, OPTION_TRAP},
{"no-break", no_argument, NULL, OPTION_TRAP},
{"break", no_argument, NULL, OPTION_BREAK},
{"no-trap", no_argument, NULL, OPTION_BREAK},
{"EB", no_argument, NULL, OPTION_EB},
{"EL", no_argument, NULL, OPTION_EL},
{"mfp32", no_argument, NULL, OPTION_FP32},
{"mgp32", no_argument, NULL, OPTION_GP32},
{"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
{"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
{"mfp64", no_argument, NULL, OPTION_FP64},
{"mfpxx", no_argument, NULL, OPTION_FPXX},
{"mgp64", no_argument, NULL, OPTION_GP64},
{"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
{"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
{"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
{"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
{"minsn32", no_argument, NULL, OPTION_INSN32},
{"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
{"mshared", no_argument, NULL, OPTION_MSHARED},
{"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
{"msym32", no_argument, NULL, OPTION_MSYM32},
{"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
{"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
{"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
{"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
{"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
{"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
{"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
/* Strictly speaking this next option is ELF specific,
but we allow it for other ports as well in order to
make testing easier. */
{"32", no_argument, NULL, OPTION_32},
/* ELF-specific options. */
{"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
{"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
{"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
{"non_shared", no_argument, NULL, OPTION_NON_SHARED},
{"xgot", no_argument, NULL, OPTION_XGOT},
{"mabi", required_argument, NULL, OPTION_MABI},
{"n32", no_argument, NULL, OPTION_N32},
{"64", no_argument, NULL, OPTION_64},
{"mdebug", no_argument, NULL, OPTION_MDEBUG},
{"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
{"mpdr", no_argument, NULL, OPTION_PDR},
{"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
{"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
{"mnan", required_argument, NULL, OPTION_NAN},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
/* Information about either an Application Specific Extension or an
optional architecture feature that, for simplicity, we treat in the
same way as an ASE. */
struct mips_ase
{
/* The name of the ASE, used in both the command-line and .set options. */
const char *name;
/* The associated ASE_* flags. If the ASE is available on both 32-bit
and 64-bit architectures, the flags here refer to the subset that
is available on both. */
unsigned int flags;
/* The ASE_* flag used for instructions that are available on 64-bit
architectures but that are not included in FLAGS. */
unsigned int flags64;
/* The command-line options that turn the ASE on and off. */
int option_on;
int option_off;
/* The minimum required architecture revisions for MIPS32, MIPS64,
microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
int mips32_rev;
int mips64_rev;
int micromips32_rev;
int micromips64_rev;
/* The architecture where the ASE was removed or -1 if the extension has not
been removed. */
int rem_rev;
};
/* A table of all supported ASEs. */
static const struct mips_ase mips_ases[] = {
{ "dsp", ASE_DSP, ASE_DSP64,
OPTION_DSP, OPTION_NO_DSP,
2, 2, 2, 2,
-1 },
{ "dspr2", ASE_DSP | ASE_DSPR2, 0,
OPTION_DSPR2, OPTION_NO_DSPR2,
2, 2, 2, 2,
-1 },
{ "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
OPTION_DSPR3, OPTION_NO_DSPR3,
6, 6, -1, -1,
-1 },
{ "eva", ASE_EVA, 0,
OPTION_EVA, OPTION_NO_EVA,
2, 2, 2, 2,
-1 },
{ "mcu", ASE_MCU, 0,
OPTION_MCU, OPTION_NO_MCU,
2, 2, 2, 2,
-1 },
/* Deprecated in MIPS64r5, but we don't implement that yet. */
{ "mdmx", ASE_MDMX, 0,
OPTION_MDMX, OPTION_NO_MDMX,
-1, 1, -1, -1,
6 },
/* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
{ "mips3d", ASE_MIPS3D, 0,
OPTION_MIPS3D, OPTION_NO_MIPS3D,
2, 1, -1, -1,
6 },
{ "mt", ASE_MT, 0,
OPTION_MT, OPTION_NO_MT,
2, 2, -1, -1,
-1 },
{ "smartmips", ASE_SMARTMIPS, 0,
OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1, -1, -1, -1,
6 },
{ "virt", ASE_VIRT, ASE_VIRT64,
OPTION_VIRT, OPTION_NO_VIRT,
2, 2, 2, 2,
-1 },
{ "msa", ASE_MSA, ASE_MSA64,
OPTION_MSA, OPTION_NO_MSA,
2, 2, 2, 2,
-1 },
{ "xpa", ASE_XPA, 0,
OPTION_XPA, OPTION_NO_XPA,
2, 2, 2, 2,
-1 },
{ "mips16e2", ASE_MIPS16E2, 0,
OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
2, 2, -1, -1,
6 },
{ "crc", ASE_CRC, ASE_CRC64,
OPTION_CRC, OPTION_NO_CRC,
6, 6, -1, -1,
-1 },
{ "ginv", ASE_GINV, 0,
OPTION_GINV, OPTION_NO_GINV,
6, 6, 6, 6,
-1 },
{ "loongson-mmi", ASE_LOONGSON_MMI, 0,
OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
0, 0, -1, -1,
-1 },
{ "loongson-cam", ASE_LOONGSON_CAM, 0,
OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
0, 0, -1, -1,
-1 },
{ "loongson-ext", ASE_LOONGSON_EXT, 0,
OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
0, 0, -1, -1,
-1 },
{ "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
0, 0, -1, -1,
-1 },
};
/* The set of ASEs that require -mfp64. */
#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
/* Groups of ASE_* flags that represent different revisions of an ASE. */
static const unsigned int mips_ase_groups[] = {
ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
};
/* Pseudo-op table.
The following pseudo-ops from the Kane and Heinrich MIPS book
should be defined here, but are currently unsupported: .alias,
.galive, .gjaldef, .gjrlive, .livereg, .noalias.
The following pseudo-ops from the Kane and Heinrich MIPS book are
specific to the type of debugging information being generated, and
should be defined by the object format: .aent, .begin, .bend,
.bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
.vreg.
The following pseudo-ops from the Kane and Heinrich MIPS book are
not MIPS CPU specific, but are also not specific to the object file
format. This file is probably the best place to define them, but
they are not currently supported: .asm0, .endr, .lab, .struct. */
static const pseudo_typeS mips_pseudo_table[] =
{
/* MIPS specific pseudo-ops. */
{"option", s_option, 0},
{"set", s_mipsset, 0},
{"rdata", s_change_sec, 'r'},
{"sdata", s_change_sec, 's'},
{"livereg", s_ignore, 0},
{"abicalls", s_abicalls, 0},
{"cpload", s_cpload, 0},
{"cpsetup", s_cpsetup, 0},
{"cplocal", s_cplocal, 0},
{"cprestore", s_cprestore, 0},
{"cpreturn", s_cpreturn, 0},
{"dtprelword", s_dtprelword, 0},
{"dtpreldword", s_dtpreldword, 0},
{"tprelword", s_tprelword, 0},
{"tpreldword", s_tpreldword, 0},
{"gpvalue", s_gpvalue, 0},
{"gpword", s_gpword, 0},
{"gpdword", s_gpdword, 0},
{"ehword", s_ehword, 0},
{"cpadd", s_cpadd, 0},
{"insn", s_insn, 0},
{"nan", s_nan, 0},
{"module", s_module, 0},
/* Relatively generic pseudo-ops that happen to be used on MIPS
chips. */
{"asciiz", stringer, 8 + 1},
{"bss", s_change_sec, 'b'},
{"err", s_err, 0},
{"half", s_cons, 1},
{"dword", s_cons, 3},
{"weakext", s_mips_weakext, 0},
{"origin", s_org, 0},
{"repeat", s_rept, 0},
/* For MIPS this is non-standard, but we define it for consistency. */
{"sbss", s_change_sec, 'B'},
/* These pseudo-ops are defined in read.c, but must be overridden
here for one reason or another. */
{"align", s_align, 0},
{"byte", s_cons, 0},
{"data", s_change_sec, 'd'},
{"double", s_float_cons, 'd'},
{"float", s_float_cons, 'f'},
{"globl", s_mips_globl, 0},
{"global", s_mips_globl, 0},
{"hword", s_cons, 1},
{"int", s_cons, 2},
{"long", s_cons, 2},
{"octa", s_cons, 4},
{"quad", s_cons, 3},
{"section", s_change_section, 0},
{"short", s_cons, 1},
{"single", s_float_cons, 'f'},
{"stabd", s_mips_stab, 'd'},
{"stabn", s_mips_stab, 'n'},
{"stabs", s_mips_stab, 's'},
{"text", s_change_sec, 't'},
{"word", s_cons, 2},
{ "extern", ecoff_directive_extern, 0},
{ NULL, NULL, 0 },
};
static const pseudo_typeS mips_nonecoff_pseudo_table[] =
{
/* These pseudo-ops should be defined by the object file format.
However, a.out doesn't support them, so we have versions here. */
{"aent", s_mips_ent, 1},
{"bgnb", s_ignore, 0},
{"end", s_mips_end, 0},
{"endb", s_ignore, 0},
{"ent", s_mips_ent, 0},
{"file", s_mips_file, 0},
{"fmask", s_mips_mask, 'F'},
{"frame", s_mips_frame, 0},
{"loc", s_mips_loc, 0},
{"mask", s_mips_mask, 'R'},
{"verstamp", s_ignore, 0},
{ NULL, NULL, 0 },
};
/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
purpose of the `.dc.a' internal pseudo-op. */
int
mips_address_bytes (void)
{
file_mips_check_options ();
return HAVE_64BIT_ADDRESSES ? 8 : 4;
}
extern void pop_insert (const pseudo_typeS *);
void
mips_pop_insert (void)
{
pop_insert (mips_pseudo_table);
if (! ECOFF_DEBUGGING)
pop_insert (mips_nonecoff_pseudo_table);
}
/* Symbols labelling the current insn. */
struct insn_label_list
{
struct insn_label_list *next;
symbolS *label;
};
static struct insn_label_list *free_insn_labels;
#define label_list tc_segment_info_data.labels
static void mips_clear_insn_labels (void);
static void mips_mark_labels (void);
static void mips_compressed_mark_labels (void);
static inline void
mips_clear_insn_labels (void)
{
struct insn_label_list **pl;
segment_info_type *si;
if (now_seg)
{
for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
;
si = seg_info (now_seg);
*pl = si->label_list;
si->label_list = NULL;
}
}
/* Mark instruction labels in MIPS16/microMIPS mode. */
static inline void
mips_mark_labels (void)
{
if (HAVE_CODE_COMPRESSION)
mips_compressed_mark_labels ();
}
static char *expr_end;
/* An expression in a macro instruction. This is set by mips_ip and
mips16_ip and when populated is always an O_constant. */
static expressionS imm_expr;
/* The relocatable field in an instruction and the relocs associated
with it. These variables are used for instructions like LUI and
JAL as well as true offsets. They are also used for address
operands in macros. */
static expressionS offset_expr;
static bfd_reloc_code_real_type offset_reloc[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
/* This is set to the resulting size of the instruction to be produced
by mips16_ip if an explicit extension is used or by mips_ip if an
explicit size is supplied. */
static unsigned int forced_insn_length;
/* True if we are assembling an instruction. All dot symbols defined during
this time should be treated as code labels. */
static bfd_boolean mips_assembling_insn;
/* The pdr segment for per procedure frame/regmask info. Not used for
ECOFF debugging. */
static segT pdr_seg;
/* The default target format to use. */
#if defined (TE_FreeBSD)
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
#elif defined (TE_TMIPS)
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
#else
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
#endif
const char *
mips_target_format (void)
{
switch (OUTPUT_FLAVOR)
{
case bfd_target_elf_flavour:
#ifdef TE_VXWORKS
if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
return (target_big_endian
? "elf32-bigmips-vxworks"
: "elf32-littlemips-vxworks");
#endif
return (target_big_endian
? (HAVE_64BIT_OBJECTS
? ELF_TARGET ("elf64-", "big")
: (HAVE_NEWABI
? ELF_TARGET ("elf32-n", "big")
: ELF_TARGET ("elf32-", "big")))
: (HAVE_64BIT_OBJECTS
? ELF_TARGET ("elf64-", "little")
: (HAVE_NEWABI
? ELF_TARGET ("elf32-n", "little")
: ELF_TARGET ("elf32-", "little"))));
default:
abort ();
return NULL;
}
}
/* Return the ISA revision that is currently in use, or 0 if we are
generating code for MIPS V or below. */
static int
mips_isa_rev (void)
{
if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
return 2;
if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
return 3;
if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
return 5;
if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
return 6;
/* microMIPS implies revision 2 or above. */
if (mips_opts.micromips)
return 2;
if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
return 1;
return 0;
}
/* Return the mask of all ASEs that are revisions of those in FLAGS. */
static unsigned int
mips_ase_mask (unsigned int flags)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
if (flags & mips_ase_groups[i])
flags |= mips_ase_groups[i];
return flags;
}
/* Check whether the current ISA supports ASE. Issue a warning if
appropriate. */
static void
mips_check_isa_supports_ase (const struct mips_ase *ase)
{
const char *base;
int min_rev, size;
static unsigned int warned_isa;
static unsigned int warned_fp32;
if (ISA_HAS_64BIT_REGS (mips_opts.isa))
min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
else
min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
if ((min_rev < 0 || mips_isa_rev () < min_rev)
&& (warned_isa & ase->flags) != ase->flags)
{
warned_isa |= ase->flags;
base = mips_opts.micromips ? "microMIPS" : "MIPS";
size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
if (min_rev < 0)
as_warn (_("the %d-bit %s architecture does not support the"
" `%s' extension"), size, base, ase->name);
else
as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
ase->name, base, size, min_rev);
}
else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
&& (warned_isa & ase->flags) != ase->flags)
{
warned_isa |= ase->flags;
base = mips_opts.micromips ? "microMIPS" : "MIPS";
size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
as_warn (_("the `%s' extension was removed in %s%d revision %d"),
ase->name, base, size, ase->rem_rev);
}
if ((ase->flags & FP64_ASES)
&& mips_opts.fp != 64
&& (warned_fp32 & ase->flags) != ase->flags)
{
warned_fp32 |= ase->flags;
as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
}
}
/* Check all enabled ASEs to see whether they are supported by the
chosen architecture. */
static void
mips_check_isa_supports_ases (void)
{
unsigned int i, mask;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
{
mask = mips_ase_mask (mips_ases[i].flags);
if ((mips_opts.ase & mask) == mips_ases[i].flags)
mips_check_isa_supports_ase (&mips_ases[i]);
}
}
/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
that were affected. */
static unsigned int
mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
bfd_boolean enabled_p)
{
unsigned int mask;
mask = mips_ase_mask (ase->flags);
opts->ase &= ~mask;
/* Clear combination ASE flags, which need to be recalculated based on
updated regular ASE settings. */
opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT | ASE_EVA_R6);
if (enabled_p)
opts->ase |= ase->flags;
/* The Virtualization ASE has eXtended Physical Addressing (XPA)
instructions which are only valid when both ASEs are enabled.
This sets the ASE_XPA_VIRT flag when both ASEs are present. */
if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
{
opts->ase |= ASE_XPA_VIRT;
mask |= ASE_XPA_VIRT;
}
if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
{
opts->ase |= ASE_MIPS16E2_MT;
mask |= ASE_MIPS16E2_MT;
}
/* The EVA Extension has instructions which are only valid when the R6 ISA
is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
present. */
if (((opts->ase & ASE_EVA) != 0) && ISA_IS_R6 (opts->isa))
{
opts->ase |= ASE_EVA_R6;
mask |= ASE_EVA_R6;
}
return mask;
}
/* Return the ASE called NAME, or null if none. */
static const struct mips_ase *
mips_lookup_ase (const char *name)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if (strcmp (name, mips_ases[i].name) == 0)
return &mips_ases[i];
return NULL;
}
/* Return the length of a microMIPS instruction in bytes. If bits of
the mask beyond the low 16 are 0, then it is a 16-bit instruction,
otherwise it is a 32-bit instruction. */
static inline unsigned int
micromips_insn_length (const struct mips_opcode *mo)
{
return mips_opcode_32bit_p (mo) ? 4 : 2;
}
/* Return the length of MIPS16 instruction OPCODE. */
static inline unsigned int
mips16_opcode_length (unsigned long opcode)
{
return (opcode >> 16) == 0 ? 2 : 4;
}
/* Return the length of instruction INSN. */
static inline unsigned int
insn_length (const struct mips_cl_insn *insn)
{
if (mips_opts.micromips)
return micromips_insn_length (insn->insn_mo);
else if (mips_opts.mips16)
return mips16_opcode_length (insn->insn_opcode);
else
return 4;
}
/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
static void
create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
{
size_t i;
insn->insn_mo = mo;
insn->insn_opcode = mo->match;
insn->frag = NULL;
insn->where = 0;
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
insn->fixp[i] = NULL;
insn->fixed_p = (mips_opts.noreorder > 0);
insn->noreorder_p = (mips_opts.noreorder > 0);
insn->mips16_absolute_jump_p = 0;
insn->complete_p = 0;
insn->cleared_p = 0;
}
/* Get a list of all the operands in INSN. */
static const struct mips_operand_array *
insn_operands (const struct mips_cl_insn *insn)
{
if (insn->insn_mo >= &mips_opcodes[0]
&& insn->insn_mo < &mips_opcodes[NUMOPCODES])
return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
if (insn->insn_mo >= &mips16_opcodes[0]
&& insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
if (insn->insn_mo >= µmips_opcodes[0]
&& insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
abort ();
}
/* Get a description of operand OPNO of INSN. */
static const struct mips_operand *
insn_opno (const struct mips_cl_insn *insn, unsigned opno)
{
const struct mips_operand_array *operands;
operands = insn_operands (insn);
if (opno >= MAX_OPERANDS || !operands->operand[opno])
abort ();
return operands->operand[opno];
}
/* Install UVAL as the value of OPERAND in INSN. */
static inline void
insn_insert_operand (struct mips_cl_insn *insn,
const struct mips_operand *operand, unsigned int uval)
{
if (mips_opts.mips16
&& operand->type == OP_INT && operand->lsb == 0
&& mips_opcode_32bit_p (insn->insn_mo))
insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
else
insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
}
/* Extract the value of OPERAND from INSN. */
static inline unsigned
insn_extract_operand (const struct mips_cl_insn *insn,
const struct mips_operand *operand)
{
return mips_extract_operand (operand, insn->insn_opcode);
}
/* Record the current MIPS16/microMIPS mode in now_seg. */
static void
mips_record_compressed_mode (void)
{
segment_info_type *si;
si = seg_info (now_seg);
if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
si->tc_segment_info_data.mips16 = mips_opts.mips16;
if (si->tc_segment_info_data.micromips != mips_opts.micromips)
si->tc_segment_info_data.micromips = mips_opts.micromips;
}
/* Read a standard MIPS instruction from BUF. */
static unsigned long
read_insn (char *buf)
{
if (target_big_endian)
return bfd_getb32 ((bfd_byte *) buf);
else
return bfd_getl32 ((bfd_byte *) buf);
}
/* Write standard MIPS instruction INSN to BUF. Return a pointer to
the next byte. */
static char *
write_insn (char *buf, unsigned int insn)
{
md_number_to_chars (buf, insn, 4);
return buf + 4;
}
/* Read a microMIPS or MIPS16 opcode from BUF, given that it
has length LENGTH. */
static unsigned long
read_compressed_insn (char *buf, unsigned int length)
{
unsigned long insn;
unsigned int i;
insn = 0;
for (i = 0; i < length; i += 2)
{
insn <<= 16;
if (target_big_endian)
insn |= bfd_getb16 ((char *) buf);
else
insn |= bfd_getl16 ((char *) buf);
buf += 2;
}
return insn;
}
/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
instruction is LENGTH bytes long. Return a pointer to the next byte. */
static char *
write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
{
unsigned int i;
for (i = 0; i < length; i += 2)
md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
return buf + length;
}
/* Install INSN at the location specified by its "frag" and "where" fields. */
static void
install_insn (const struct mips_cl_insn *insn)
{
char *f = insn->frag->fr_literal + insn->where;
if (HAVE_CODE_COMPRESSION)
write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
else
write_insn (f, insn->insn_opcode);
mips_record_compressed_mode ();
}
/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
and install the opcode in the new location. */
static void
move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
{
size_t i;
insn->frag = frag;
insn->where = where;
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
if (insn->fixp[i] != NULL)
{
insn->fixp[i]->fx_frag = frag;
insn->fixp[i]->fx_where = where;
}
install_insn (insn);
}
/* Add INSN to the end of the output. */
static void
add_fixed_insn (struct mips_cl_insn *insn)
{
char *f = frag_more (insn_length (insn));
move_insn (insn, frag_now, f - frag_now->fr_literal);
}
/* Start a variant frag and move INSN to the start of the variant part,
marking it as fixed. The other arguments are as for frag_var. */
static void
add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
relax_substateT subtype, symbolS *symbol, offsetT offset)
{
frag_grow (max_chars);
move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
insn->fixed_p = 1;
frag_var (rs_machine_dependent, max_chars, var,
subtype, symbol, offset, NULL);
}
/* Insert N copies of INSN into the history buffer, starting at
position FIRST. Neither FIRST nor N need to be clipped. */
static void
insert_into_history (unsigned int first, unsigned int n,
const struct mips_cl_insn *insn)
{
if (mips_relax.sequence != 2)
{
unsigned int i;
for (i = ARRAY_SIZE (history); i-- > first;)
if (i >= first + n)
history[i] = history[i - n];
else
history[i] = *insn;
}
}
/* Clear the error in insn_error. */
static void
clear_insn_error (void)
{
memset (&insn_error, 0, sizeof (insn_error));
}
/* Possibly record error message MSG for the current instruction.
If the error is about a particular argument, ARGNUM is the 1-based
number of that argument, otherwise it is 0. FORMAT is the format
of MSG. Return true if MSG was used, false if the current message
was kept. */
static bfd_boolean
set_insn_error_format (int argnum, enum mips_insn_error_format format,
const char *msg)
{
if (argnum == 0)
{
/* Give priority to errors against specific arguments, and to
the first whole-instruction message. */
if (insn_error.msg)
return FALSE;
}
else
{
/* Keep insn_error if it is against a later argument. */
if (argnum < insn_error.min_argnum)
return FALSE;
/* If both errors are against the same argument but are different,
give up on reporting a specific error for this argument.
See the comment about mips_insn_error for details. */
if (argnum == insn_error.min_argnum
&& insn_error.msg
&& strcmp (insn_error.msg, msg) != 0)
{
insn_error.msg = 0;
insn_error.min_argnum += 1;
return FALSE;
}
}
insn_error.min_argnum = argnum;
insn_error.format = format;
insn_error.msg = msg;
return TRUE;
}
/* Record an instruction error with no % format fields. ARGNUM and MSG are
as for set_insn_error_format. */
static void
set_insn_error (int argnum, const char *msg)
{
set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
}
/* Record an instruction error with one %d field I. ARGNUM and MSG are
as for set_insn_error_format. */
static void
set_insn_error_i (int argnum, const char *msg, int i)
{
if (set_insn_error_format (argnum, ERR_FMT_I, msg))
insn_error.u.i = i;
}
/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
are as for set_insn_error_format. */
static void
set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
{
if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
{
insn_error.u.ss[0] = s1;
insn_error.u.ss[1] = s2;
}
}
/* Report the error in insn_error, which is against assembly code STR. */
static void
report_insn_error (const char *str)
{
const char *msg = concat (insn_error.msg, " `%s'", NULL);
switch (insn_error.format)
{
case ERR_FMT_PLAIN:
as_bad (msg, str);
break;
case ERR_FMT_I:
as_bad (msg, insn_error.u.i, str);
break;
case ERR_FMT_SS:
as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
break;
}
free ((char *) msg);
}
/* Initialize vr4120_conflicts. There is a bit of duplication here:
the idea is to make it obvious at a glance that each errata is
included. */
static void
init_vr4120_conflicts (void)
{
#define CONFLICT(FIRST, SECOND) \
vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
/* Errata 21 - [D]DIV[U] after [D]MACC */
CONFLICT (MACC, DIV);
CONFLICT (DMACC, DIV);
/* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
CONFLICT (DMULT, DMULT);
CONFLICT (DMULT, DMACC);
CONFLICT (DMACC, DMULT);
CONFLICT (DMACC, DMACC);
/* Errata 24 - MT{LO,HI} after [D]MACC */
CONFLICT (MACC, MTHILO);
CONFLICT (DMACC, MTHILO);
/* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
instruction is executed immediately after a MACC or DMACC
instruction, the result of [either instruction] is incorrect." */
CONFLICT (MACC, MULT);
CONFLICT (MACC, DMULT);
CONFLICT (DMACC, MULT);
CONFLICT (DMACC, DMULT);
/* VR4181A errata MD(4): "If a MACC or DMACC instruction is
executed immediately after a DMULT, DMULTU, DIV, DIVU,
DDIV or DDIVU instruction, the result of the MACC or
DMACC instruction is incorrect.". */
CONFLICT (DMULT, MACC);
CONFLICT (DMULT, DMACC);
CONFLICT (DIV, MACC);
CONFLICT (DIV, DMACC);
#undef CONFLICT
}
struct regname {
const char *name;
unsigned int num;
};
#define RNUM_MASK 0x00000ff
#define RTYPE_MASK 0x0ffff00
#define RTYPE_NUM 0x0000100
#define RTYPE_FPU 0x0000200
#define RTYPE_FCC 0x0000400
#define RTYPE_VEC 0x0000800
#define RTYPE_GP 0x0001000
#define RTYPE_CP0 0x0002000
#define RTYPE_PC 0x0004000
#define RTYPE_ACC 0x0008000
#define RTYPE_CCC 0x0010000
#define RTYPE_VI 0x0020000
#define RTYPE_VF 0x0040000
#define RTYPE_R5900_I 0x0080000
#define RTYPE_R5900_Q 0x0100000
#define RTYPE_R5900_R 0x0200000
#define RTYPE_R5900_ACC 0x0400000
#define RTYPE_MSA 0x0800000
#define RWARN 0x8000000
#define GENERIC_REGISTER_NUMBERS \
{"$0", RTYPE_NUM | 0}, \
{"$1", RTYPE_NUM | 1}, \
{"$2", RTYPE_NUM | 2}, \
{"$3", RTYPE_NUM | 3}, \
{"$4", RTYPE_NUM | 4}, \
{"$5", RTYPE_NUM | 5}, \
{"$6", RTYPE_NUM | 6}, \
{"$7", RTYPE_NUM | 7}, \
{"$8", RTYPE_NUM | 8}, \
{"$9", RTYPE_NUM | 9}, \
{"$10", RTYPE_NUM | 10}, \
{"$11", RTYPE_NUM | 11}, \
{"$12", RTYPE_NUM | 12}, \
{"$13", RTYPE_NUM | 13}, \
{"$14", RTYPE_NUM | 14}, \
{"$15", RTYPE_NUM | 15}, \
{"$16", RTYPE_NUM | 16}, \
{"$17", RTYPE_NUM | 17}, \
{"$18", RTYPE_NUM | 18}, \
{"$19", RTYPE_NUM | 19}, \
{"$20", RTYPE_NUM | 20}, \
{"$21", RTYPE_NUM | 21}, \
{"$22", RTYPE_NUM | 22}, \
{"$23", RTYPE_NUM | 23}, \
{"$24", RTYPE_NUM | 24}, \
{"$25", RTYPE_NUM | 25}, \
{"$26", RTYPE_NUM | 26}, \
{"$27", RTYPE_NUM | 27}, \
{"$28", RTYPE_NUM | 28}, \
{"$29", RTYPE_NUM | 29}, \
{"$30", RTYPE_NUM | 30}, \
{"$31", RTYPE_NUM | 31}
#define FPU_REGISTER_NAMES \
{"$f0", RTYPE_FPU | 0}, \
{"$f1", RTYPE_FPU | 1}, \
{"$f2", RTYPE_FPU | 2}, \
{"$f3", RTYPE_FPU | 3}, \
{"$f4", RTYPE_FPU | 4}, \
{"$f5", RTYPE_FPU | 5}, \
{"$f6", RTYPE_FPU | 6}, \
{"$f7", RTYPE_FPU | 7}, \
{"$f8", RTYPE_FPU | 8}, \
{"$f9", RTYPE_FPU | 9}, \
{"$f10", RTYPE_FPU | 10}, \
{"$f11", RTYPE_FPU | 11}, \
{"$f12", RTYPE_FPU | 12}, \
{"$f13", RTYPE_FPU | 13}, \
{"$f14", RTYPE_FPU | 14}, \
{"$f15", RTYPE_FPU | 15}, \
{"$f16", RTYPE_FPU | 16}, \
{"$f17", RTYPE_FPU | 17}, \
{"$f18", RTYPE_FPU | 18}, \
{"$f19", RTYPE_FPU | 19}, \
{"$f20", RTYPE_FPU | 20}, \
{"$f21", RTYPE_FPU | 21}, \
{"$f22", RTYPE_FPU | 22}, \
{"$f23", RTYPE_FPU | 23}, \
{"$f24", RTYPE_FPU | 24}, \
{"$f25", RTYPE_FPU | 25}, \
{"$f26", RTYPE_FPU | 26}, \
{"$f27", RTYPE_FPU | 27}, \
{"$f28", RTYPE_FPU | 28}, \
{"$f29", RTYPE_FPU | 29}, \
{"$f30", RTYPE_FPU | 30}, \
{"$f31", RTYPE_FPU | 31}
#define FPU_CONDITION_CODE_NAMES \
{"$fcc0", RTYPE_FCC | 0}, \
{"$fcc1", RTYPE_FCC | 1}, \
{"$fcc2", RTYPE_FCC | 2}, \
{"$fcc3", RTYPE_FCC | 3}, \
{"$fcc4", RTYPE_FCC | 4}, \
{"$fcc5", RTYPE_FCC | 5}, \
{"$fcc6", RTYPE_FCC | 6}, \
{"$fcc7", RTYPE_FCC | 7}
#define COPROC_CONDITION_CODE_NAMES \
{"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
{"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
{"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
{"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
{"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
{"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
{"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
{"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
#define N32N64_SYMBOLIC_REGISTER_NAMES \
{"$a4", RTYPE_GP | 8}, \
{"$a5", RTYPE_GP | 9}, \
{"$a6", RTYPE_GP | 10}, \
{"$a7", RTYPE_GP | 11}, \
{"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
{"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
{"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
{"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
{"$t0", RTYPE_GP | 12}, \
{"$t1", RTYPE_GP | 13}, \
{"$t2", RTYPE_GP | 14}, \
{"$t3", RTYPE_GP | 15}
#define O32_SYMBOLIC_REGISTER_NAMES \
{"$t0", RTYPE_GP | 8}, \
{"$t1", RTYPE_GP | 9}, \
{"$t2", RTYPE_GP | 10}, \
{"$t3", RTYPE_GP | 11}, \
{"$t4", RTYPE_GP | 12}, \
{"$t5", RTYPE_GP | 13}, \
{"$t6", RTYPE_GP | 14}, \
{"$t7", RTYPE_GP | 15}, \
{"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
{"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
{"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
{"$ta3", RTYPE_GP | 15} /* alias for $t7 */
/* Remaining symbolic register names. */
#define SYMBOLIC_REGISTER_NAMES \
{"$zero", RTYPE_GP | 0}, \
{"$at", RTYPE_GP | 1}, \
{"$AT", RTYPE_GP | 1}, \
{"$v0", RTYPE_GP | 2}, \
{"$v1", RTYPE_GP | 3}, \
{"$a0", RTYPE_GP | 4}, \
{"$a1", RTYPE_GP | 5}, \
{"$a2", RTYPE_GP | 6}, \
{"$a3", RTYPE_GP | 7}, \
{"$s0", RTYPE_GP | 16}, \
{"$s1", RTYPE_GP | 17}, \
{"$s2", RTYPE_GP | 18}, \
{"$s3", RTYPE_GP | 19}, \
{"$s4", RTYPE_GP | 20}, \
{"$s5", RTYPE_GP | 21}, \
{"$s6", RTYPE_GP | 22}, \
{"$s7", RTYPE_GP | 23}, \
{"$t8", RTYPE_GP | 24}, \
{"$t9", RTYPE_GP | 25}, \
{"$k0", RTYPE_GP | 26}, \
{"$kt0", RTYPE_GP | 26}, \
{"$k1", RTYPE_GP | 27}, \
{"$kt1", RTYPE_GP | 27}, \
{"$gp", RTYPE_GP | 28}, \
{"$sp", RTYPE_GP | 29}, \
{"$s8", RTYPE_GP | 30}, \
{"$fp", RTYPE_GP | 30}, \
{"$ra", RTYPE_GP | 31}
#define MIPS16_SPECIAL_REGISTER_NAMES \
{"$pc", RTYPE_PC | 0}
#define MDMX_VECTOR_REGISTER_NAMES \
/* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
/* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
{"$v2", RTYPE_VEC | 2}, \
{"$v3", RTYPE_VEC | 3}, \
{"$v4", RTYPE_VEC | 4}, \
{"$v5", RTYPE_VEC | 5}, \
{"$v6", RTYPE_VEC | 6}, \
{"$v7", RTYPE_VEC | 7}, \
{"$v8", RTYPE_VEC | 8}, \
{"$v9", RTYPE_VEC | 9}, \
{"$v10", RTYPE_VEC | 10}, \
{"$v11", RTYPE_VEC | 11}, \
{"$v12", RTYPE_VEC | 12}, \
{"$v13", RTYPE_VEC | 13}, \
{"$v14", RTYPE_VEC | 14}, \
{"$v15", RTYPE_VEC | 15}, \
{"$v16", RTYPE_VEC | 16}, \
{"$v17", RTYPE_VEC | 17}, \
{"$v18", RTYPE_VEC | 18}, \
{"$v19", RTYPE_VEC | 19}, \
{"$v20", RTYPE_VEC | 20}, \
{"$v21", RTYPE_VEC | 21}, \
{"$v22", RTYPE_VEC | 22}, \
{"$v23", RTYPE_VEC | 23}, \
{"$v24", RTYPE_VEC | 24}, \
{"$v25", RTYPE_VEC | 25}, \
{"$v26", RTYPE_VEC | 26}, \
{"$v27", RTYPE_VEC | 27}, \
{"$v28", RTYPE_VEC | 28}, \
{"$v29", RTYPE_VEC | 29}, \
{"$v30", RTYPE_VEC | 30}, \
{"$v31", RTYPE_VEC | 31}
#define R5900_I_NAMES \
{"$I", RTYPE_R5900_I | 0}
#define R5900_Q_NAMES \
{"$Q", RTYPE_R5900_Q | 0}
#define R5900_R_NAMES \
{"$R", RTYPE_R5900_R | 0}
#define R5900_ACC_NAMES \
{"$ACC", RTYPE_R5900_ACC | 0 }
#define MIPS_DSP_ACCUMULATOR_NAMES \
{"$ac0", RTYPE_ACC | 0}, \
{"$ac1", RTYPE_ACC | 1}, \
{"$ac2", RTYPE_ACC | 2}, \
{"$ac3", RTYPE_ACC | 3}
static const struct regname reg_names[] = {
GENERIC_REGISTER_NUMBERS,
FPU_REGISTER_NAMES,
FPU_CONDITION_CODE_NAMES,
COPROC_CONDITION_CODE_NAMES,
/* The $txx registers depends on the abi,
these will be added later into the symbol table from
one of the tables below once mips_abi is set after
parsing of arguments from the command line. */
SYMBOLIC_REGISTER_NAMES,
MIPS16_SPECIAL_REGISTER_NAMES,
MDMX_VECTOR_REGISTER_NAMES,
R5900_I_NAMES,
R5900_Q_NAMES,
R5900_R_NAMES,
R5900_ACC_NAMES,
MIPS_DSP_ACCUMULATOR_NAMES,
{0, 0}
};
static const struct regname reg_names_o32[] = {
O32_SYMBOLIC_REGISTER_NAMES,
{0, 0}
};
static const struct regname reg_names_n32n64[] = {
N32N64_SYMBOLIC_REGISTER_NAMES,
{0, 0}
};
/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
interpreted as vector registers 0 and 1. If SYMVAL is the value of one
of these register symbols, return the associated vector register,
otherwise return SYMVAL itself. */
static unsigned int
mips_prefer_vec_regno (unsigned int symval)
{
if ((symval & -2) == (RTYPE_GP | 2))
return RTYPE_VEC | (symval & 1);
return symval;
}
/* Return true if string [S, E) is a valid register name, storing its
symbol value in *SYMVAL_PTR if so. */
static bfd_boolean
mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
{
char save_c;
symbolS *symbol;
/* Terminate name. */
save_c = *e;
*e = '\0';
/* Look up the name. */
symbol = symbol_find (s);
*e = save_c;
if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
return FALSE;
*symval_ptr = S_GET_VALUE (symbol);
return TRUE;
}
/* Return true if the string at *SPTR is a valid register name. Allow it
to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
is nonnull.
When returning true, move *SPTR past the register, store the
register's symbol value in *SYMVAL_PTR and the channel mask in
*CHANNELS_PTR (if nonnull). The symbol value includes the register
number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
static bfd_boolean
mips_parse_register (char **sptr, unsigned int *symval_ptr,
unsigned int *channels_ptr)
{
char *s, *e, *m;
const char *q;
unsigned int channels, symval, bit;
/* Find end of name. */
s = e = *sptr;
if (is_name_beginner (*e))
++e;
while (is_part_of_name (*e))
++e;
channels = 0;
if (!mips_parse_register_1 (s, e, &symval))
{
if (!channels_ptr)
return FALSE;
/* Eat characters from the end of the string that are valid
channel suffixes. The preceding register must be $ACC or
end with a digit, so there is no ambiguity. */
bit = 1;
m = e;
for (q = "wzyx"; *q; q++, bit <<= 1)
if (m > s && m[-1] == *q)
{
--m;
channels |= bit;
}
if (channels == 0
|| !mips_parse_register_1 (s, m, &symval)
|| (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
return FALSE;
}
*sptr = e;
*symval_ptr = symval;
if (channels_ptr)
*channels_ptr = channels;
return TRUE;
}
/* Check if SPTR points at a valid register specifier according to TYPES.
If so, then return 1, advance S to consume the specifier and store
the register's number in REGNOP, otherwise return 0. */
static int
reg_lookup (char **s, unsigned int types, unsigned int *regnop)
{
unsigned int regno;
if (mips_parse_register (s, ®no, NULL))
{
if (types & RTYPE_VEC)
regno = mips_prefer_vec_regno (regno);
if (regno & types)
regno &= RNUM_MASK;
else
regno = ~0;
}
else
{
if (types & RWARN)
as_warn (_("unrecognized register name `%s'"), *s);
regno = ~0;
}
if (regnop)
*regnop = regno;
return regno <= RNUM_MASK;
}
/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
mask in *CHANNELS. Return a pointer to the first unconsumed character. */
static char *
mips_parse_vu0_channels (char *s, unsigned int *channels)
{
unsigned int i;
*channels = 0;
for (i = 0; i < 4; i++)
if (*s == "xyzw"[i])
{
*channels |= 1 << (3 - i);
++s;
}
return s;
}
/* Token types for parsed operand lists. */
enum mips_operand_token_type {
/* A plain register, e.g. $f2. */
OT_REG,
/* A 4-bit XYZW channel mask. */
OT_CHANNELS,
/* A constant vector index, e.g. [1]. */
OT_INTEGER_INDEX,
/* A register vector index, e.g. [$2]. */
OT_REG_INDEX,
/* A continuous range of registers, e.g. $s0-$s4. */
OT_REG_RANGE,
/* A (possibly relocated) expression. */
OT_INTEGER,
/* A floating-point value. */
OT_FLOAT,
/* A single character. This can be '(', ')' or ',', but '(' only appears
before OT_REGs. */
OT_CHAR,
/* A doubled character, either "--" or "++". */
OT_DOUBLE_CHAR,
/* The end of the operand list. */
OT_END
};
/* A parsed operand token. */
struct mips_operand_token
{
/* The type of token. */
enum mips_operand_token_type type;
union
{
/* The register symbol value for an OT_REG or OT_REG_INDEX. */
unsigned int regno;
/* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
unsigned int channels;
/* The integer value of an OT_INTEGER_INDEX. */
addressT index;
/* The two register symbol values involved in an OT_REG_RANGE. */
struct {
unsigned int regno1;
unsigned int regno2;
} reg_range;
/* The value of an OT_INTEGER. The value is represented as an
expression and the relocation operators that were applied to
that expression. The reloc entries are BFD_RELOC_UNUSED if no
relocation operators were used. */
struct {
expressionS value;
bfd_reloc_code_real_type relocs[3];
} integer;
/* The binary data for an OT_FLOAT constant, and the number of bytes
in the constant. */
struct {
unsigned char data[8];
int length;
} flt;
/* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
char ch;
} u;
};
/* An obstack used to construct lists of mips_operand_tokens. */
static struct obstack mips_operand_tokens;
/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
static void
mips_add_token (struct mips_operand_token *token,
enum mips_operand_token_type type)
{
token->type = type;
obstack_grow (&mips_operand_tokens, token, sizeof (*token));
}
/* Check whether S is '(' followed by a register name. Add OT_CHAR
and OT_REG tokens for them if so, and return a pointer to the first
unconsumed character. Return null otherwise. */
static char *
mips_parse_base_start (char *s)
{
struct mips_operand_token token;
unsigned int regno, channels;
bfd_boolean decrement_p;
if (*s != '(')
return 0;
++s;
SKIP_SPACE_TABS (s);
/* Only match "--" as part of a base expression. In other contexts "--X"
is a double negative. */
decrement_p = (s[0] == '-' && s[1] == '-');
if (decrement_p)
{
s += 2;
SKIP_SPACE_TABS (s);
}
/* Allow a channel specifier because that leads to better error messages
than treating something like "$vf0x++" as an expression. */
if (!mips_parse_register (&s, ®no, &channels))
return 0;
token.u.ch = '(';
mips_add_token (&token, OT_CHAR);
if (decrement_p)
{
token.u.ch = '-';
mips_add_token (&token, OT_DOUBLE_CHAR);
}
token.u.regno = regno;
mips_add_token (&token, OT_REG);
if (channels)
{
token.u.channels = channels;
mips_add_token (&token, OT_CHANNELS);
}
/* For consistency, only match "++" as part of base expressions too. */
SKIP_SPACE_TABS (s);
if (s[0] == '+' && s[1] == '+')
{
s += 2;
token.u.ch = '+';
mips_add_token (&token, OT_DOUBLE_CHAR);
}
return s;
}
/* Parse one or more tokens from S. Return a pointer to the first
unconsumed character on success. Return null if an error was found
and store the error text in insn_error. FLOAT_FORMAT is as for
mips_parse_arguments. */
static char *
mips_parse_argument_token (char *s, char float_format)
{
char *end, *save_in;
const char *err;
unsigned int regno1, regno2, channels;
struct mips_operand_token token;
/* First look for "($reg", since we want to treat that as an
OT_CHAR and OT_REG rather than an expression. */
end = mips_parse_base_start (s);
if (end)
return end;
/* Handle other characters that end up as OT_CHARs. */
if (*s == ')' || *s == ',')
{
token.u.ch = *s;
mips_add_token (&token, OT_CHAR);
++s;
return s;
}
/* Handle tokens that start with a register. */
if (mips_parse_register (&s, ®no1, &channels))
{
if (channels)
{
/* A register and a VU0 channel suffix. */
token.u.regno = regno1;
mips_add_token (&token, OT_REG);
token.u.channels = channels;
mips_add_token (&token, OT_CHANNELS);
return s;
}
SKIP_SPACE_TABS (s);
if (*s == '-')
{
/* A register range. */
++s;
SKIP_SPACE_TABS (s);
if (!mips_parse_register (&s, ®no2, NULL))
{
set_insn_error (0, _("invalid register range"));
return 0;
}
token.u.reg_range.regno1 = regno1;
token.u.reg_range.regno2 = regno2;
mips_add_token (&token, OT_REG_RANGE);
return s;
}
/* Add the register itself. */
token.u.regno = regno1;
mips_add_token (&token, OT_REG);
/* Check for a vector index. */
if (*s == '[')
{
++s;
SKIP_SPACE_TABS (s);
if (mips_parse_register (&s, &token.u.regno, NULL))
mips_add_token (&token, OT_REG_INDEX);
else
{
expressionS element;
my_getExpression (&element, s);
if (element.X_op != O_constant)
{
set_insn_error (0, _("vector element must be constant"));
return 0;
}
s = expr_end;
token.u.index = element.X_add_number;
mips_add_token (&token, OT_INTEGER_INDEX);
}
SKIP_SPACE_TABS (s);
if (*s != ']')
{
set_insn_error (0, _("missing `]'"));
return 0;
}
++s;
}
return s;
}
if (float_format)
{
/* First try to treat expressions as floats. */
save_in = input_line_pointer;
input_line_pointer = s;
err = md_atof (float_format, (char *) token.u.flt.data,
&token.u.flt.length);
end = input_line_pointer;
input_line_pointer = save_in;
if (err && *err)
{
set_insn_error (0, err);
return 0;
}
if (s != end)
{
mips_add_token (&token, OT_FLOAT);
return end;
}
}
/* Treat everything else as an integer expression. */
token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
s = expr_end;
mips_add_token (&token, OT_INTEGER);
return s;
}
/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
if expressions should be treated as 32-bit floating-point constants,
'd' if they should be treated as 64-bit floating-point constants,
or 0 if they should be treated as integer expressions (the usual case).
Return a list of tokens on success, otherwise return 0. The caller
must obstack_free the list after use. */
static struct mips_operand_token *
mips_parse_arguments (char *s, char float_format)
{
struct mips_operand_token token;
SKIP_SPACE_TABS (s);
while (*s)
{
s = mips_parse_argument_token (s, float_format);
if (!s)
{
obstack_free (&mips_operand_tokens,
obstack_finish (&mips_operand_tokens));
return 0;
}
SKIP_SPACE_TABS (s);
}
mips_add_token (&token, OT_END);
return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
}
/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
static bfd_boolean
is_opcode_valid (const struct mips_opcode *mo)
{
int isa = mips_opts.isa;
int ase = mips_opts.ase;
int fp_s, fp_d;
unsigned int i;
if (ISA_HAS_64BIT_REGS (isa))
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
ase |= mips_ases[i].flags64;
if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
return FALSE;
/* Check whether the instruction or macro requires single-precision or
double-precision floating-point support. Note that this information is
stored differently in the opcode table for insns and macros. */
if (mo->pinfo == INSN_MACRO)
{
fp_s = mo->pinfo2 & INSN2_M_FP_S;
fp_d = mo->pinfo2 & INSN2_M_FP_D;
}
else
{
fp_s = mo->pinfo & FP_S;
fp_d = mo->pinfo & FP_D;
}
if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
return FALSE;
if (fp_s && mips_opts.soft_float)
return FALSE;
return TRUE;
}
/* Return TRUE if the MIPS16 opcode MO is valid on the currently
selected ISA and architecture. */
static bfd_boolean
is_opcode_valid_16 (const struct mips_opcode *mo)
{
int isa = mips_opts.isa;
int ase = mips_opts.ase;
unsigned int i;
if (ISA_HAS_64BIT_REGS (isa))
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
ase |= mips_ases[i].flags64;
return opcode_is_member (mo, isa, ase, mips_opts.arch);
}
/* Return TRUE if the size of the microMIPS opcode MO matches one
explicitly requested. Always TRUE in the standard MIPS mode.
Use is_size_valid_16 for MIPS16 opcodes. */
static bfd_boolean
is_size_valid (const struct mips_opcode *mo)
{
if (!mips_opts.micromips)
return TRUE;
if (mips_opts.insn32)
{
if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
return FALSE;
if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
return FALSE;
}
if (!forced_insn_length)
return TRUE;
if (mo->pinfo == INSN_MACRO)
return FALSE;
return forced_insn_length == micromips_insn_length (mo);
}
/* Return TRUE if the size of the MIPS16 opcode MO matches one
explicitly requested. */
static bfd_boolean
is_size_valid_16 (const struct mips_opcode *mo)
{
if (!forced_insn_length)
return TRUE;
if (mo->pinfo == INSN_MACRO)
return FALSE;
if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
return FALSE;
if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
return FALSE;
return TRUE;
}
/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
of the preceding instruction. Always TRUE in the standard MIPS mode.
We don't accept macros in 16-bit delay slots to avoid a case where
a macro expansion fails because it relies on a preceding 32-bit real
instruction to have matched and does not handle the operands correctly.
The only macros that may expand to 16-bit instructions are JAL that
cannot be placed in a delay slot anyway, and corner cases of BALIGN
and BGT (that likewise cannot be placed in a delay slot) that decay to
a NOP. In all these cases the macros precede any corresponding real
instruction definitions in the opcode table, so they will match in the
second pass where the size of the delay slot is ignored and therefore
produce correct code. */
static bfd_boolean
is_delay_slot_valid (const struct mips_opcode *mo)
{
if (!mips_opts.micromips)
return TRUE;
if (mo->pinfo == INSN_MACRO)
return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
&& micromips_insn_length (mo) != 4)
return FALSE;
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
&& micromips_insn_length (mo) != 2)
return FALSE;
return TRUE;
}
/* For consistency checking, verify that all bits of OPCODE are specified
either by the match/mask part of the instruction definition, or by the
operand list. Also build up a list of operands in OPERANDS.
INSN_BITS says which bits of the instruction are significant.
If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
provides the mips_operand description of each operand. DECODE_OPERAND
is null for MIPS16 instructions. */
static int
validate_mips_insn (const struct mips_opcode *opcode,
unsigned long insn_bits,
const struct mips_operand *(*decode_operand) (const char *),
struct mips_operand_array *operands)
{
const char *s;
unsigned long used_bits, doubled, undefined, opno, mask;
const struct mips_operand *operand;
mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
if ((mask & opcode->match) != opcode->match)
{
as_bad (_("internal: bad mips opcode (mask error): %s %s"),
opcode->name, opcode->args);
return 0;
}
used_bits = 0;
opno = 0;
if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
for (s = opcode->args; *s; ++s)
switch (*s)
{
case ',':
case '(':
case ')':
break;
case '#':
s++;
break;
default:
if (!decode_operand)
operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
else
operand = decode_operand (s);
if (!operand && opcode->pinfo != INSN_MACRO)
{
as_bad (_("internal: unknown operand type: %s %s"),
opcode->name, opcode->args);
return 0;
}
gas_assert (opno < MAX_OPERANDS);
operands->operand[opno] = operand;
if (!decode_operand && operand
&& operand->type == OP_INT && operand->lsb == 0
&& mips_opcode_32bit_p (opcode))
used_bits |= mips16_immed_extend (-1, operand->size);
else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
{
used_bits = mips_insert_operand (operand, used_bits, -1);
if (operand->type == OP_MDMX_IMM_REG)
/* Bit 5 is the format selector (OB vs QH). The opcode table
has separate entries for each format. */
used_bits &= ~(1 << (operand->lsb + 5));
if (operand->type == OP_ENTRY_EXIT_LIST)
used_bits &= ~(mask & 0x700);
/* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
operand field that cannot be fully described with LSB/SIZE. */
if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
used_bits &= ~0x6000;
}
/* Skip prefix characters. */
if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
++s;
opno += 1;
break;
}
doubled = used_bits & mask & insn_bits;
if (doubled)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
" %s %s"), doubled, opcode->name, opcode->args);
return 0;
}
used_bits |= mask;
undefined = ~used_bits & insn_bits;
if (opcode->pinfo != INSN_MACRO && undefined)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
undefined, opcode->name, opcode->args);
return 0;
}
used_bits &= ~insn_bits;
if (used_bits)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
used_bits, opcode->name, opcode->args);
return 0;
}
return 1;
}
/* The MIPS16 version of validate_mips_insn. */
static int
validate_mips16_insn (const struct mips_opcode *opcode,
struct mips_operand_array *operands)
{
unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
return validate_mips_insn (opcode, insn_bits, 0, operands);
}
/* The microMIPS version of validate_mips_insn. */
static int
validate_micromips_insn (const struct mips_opcode *opc,
struct mips_operand_array *operands)
{
unsigned long insn_bits;
unsigned long major;
unsigned int length;
if (opc->pinfo == INSN_MACRO)
return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
operands);
length = micromips_insn_length (opc);
if (length != 2 && length != 4)
{
as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
"%s %s"), length, opc->name, opc->args);
return 0;
}
major = opc->match >> (10 + 8 * (length - 2));
if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
|| (length == 4 && (major & 7) != 0 && (major & 4) != 4))
{
as_bad (_("internal error: bad microMIPS opcode "
"(opcode/length mismatch): %s %s"), opc->name, opc->args);
return 0;
}
/* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
insn_bits = 1 << 4 * length;
insn_bits <<= 4 * length;
insn_bits -= 1;
return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
operands);
}
/* This function is called once, at assembler startup time. It should set up
all the tables, etc. that the MD part of the assembler will need. */
void
md_begin (void)
{
const char *retval = NULL;
int i = 0;
int broken = 0;
if (mips_pic != NO_PIC)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G may not be used in position-independent code"));
g_switch_value = 0;
}
else if (mips_abicalls)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G may not be used with abicalls"));
g_switch_value = 0;
}
if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
as_warn (_("could not set architecture and machine"));
op_hash = hash_new ();
mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
for (i = 0; i < NUMOPCODES;)
{
const char *name = mips_opcodes[i].name;
retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
if (retval != NULL)
{
fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
mips_opcodes[i].name, retval);
/* Probably a memory allocation problem? Give up now. */
as_fatal (_("broken assembler, no assembly attempted"));
}
do
{
if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
decode_mips_operand, &mips_operands[i]))
broken = 1;
if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
{
create_insn (&nop_insn, mips_opcodes + i);
if (mips_fix_loongson2f_nop)
nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
nop_insn.fixed_p = 1;
}
if (sync_insn.insn_mo == NULL && strcmp (name, "sync") == 0)
create_insn (&sync_insn, mips_opcodes + i);
++i;
}
while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
}
mips16_op_hash = hash_new ();
mips16_operands = XCNEWVEC (struct mips_operand_array,
bfd_mips16_num_opcodes);
i = 0;
while (i < bfd_mips16_num_opcodes)
{
const char *name = mips16_opcodes[i].name;
retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
if (retval != NULL)
as_fatal (_("internal: can't hash `%s': %s"),
mips16_opcodes[i].name, retval);
do
{
if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
broken = 1;
if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
{
create_insn (&mips16_nop_insn, mips16_opcodes + i);
mips16_nop_insn.fixed_p = 1;
}
++i;
}
while (i < bfd_mips16_num_opcodes
&& strcmp (mips16_opcodes[i].name, name) == 0);
}
micromips_op_hash = hash_new ();
micromips_operands = XCNEWVEC (struct mips_operand_array,
bfd_micromips_num_opcodes);
i = 0;
while (i < bfd_micromips_num_opcodes)
{
const char *name = micromips_opcodes[i].name;
retval = hash_insert (micromips_op_hash, name,
(void *) µmips_opcodes[i]);
if (retval != NULL)
as_fatal (_("internal: can't hash `%s': %s"),
micromips_opcodes[i].name, retval);
do
{
struct mips_cl_insn *micromips_nop_insn;
if (!validate_micromips_insn (µmips_opcodes[i],
µmips_operands[i]))
broken = 1;
if (micromips_opcodes[i].pinfo != INSN_MACRO)
{
if (micromips_insn_length (micromips_opcodes + i) == 2)
micromips_nop_insn = µmips_nop16_insn;
else if (micromips_insn_length (micromips_opcodes + i) == 4)
micromips_nop_insn = µmips_nop32_insn;
else
continue;
if (micromips_nop_insn->insn_mo == NULL
&& strcmp (name, "nop") == 0)
{
create_insn (micromips_nop_insn, micromips_opcodes + i);
micromips_nop_insn->fixed_p = 1;
}
}
}
while (++i < bfd_micromips_num_opcodes
&& strcmp (micromips_opcodes[i].name, name) == 0);
}
if (broken)
as_fatal (_("broken assembler, no assembly attempted"));
/* We add all the general register names to the symbol table. This
helps us detect invalid uses of them. */
for (i = 0; reg_names[i].name; i++)
symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
reg_names[i].num, /* & RNUM_MASK, */
&zero_address_frag));
if (HAVE_NEWABI)
for (i = 0; reg_names_n32n64[i].name; i++)
symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
reg_names_n32n64[i].num, /* & RNUM_MASK, */
&zero_address_frag));
else
for (i = 0; reg_names_o32[i].name; i++)
symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
reg_names_o32[i].num, /* & RNUM_MASK, */
&zero_address_frag));
for (i = 0; i < 32; i++)
{
char regname[6];
/* R5900 VU0 floating-point register. */
sprintf (regname, "$vf%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
RTYPE_VF | i, &zero_address_frag));
/* R5900 VU0 integer register. */
sprintf (regname, "$vi%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
RTYPE_VI | i, &zero_address_frag));
/* MSA register. */
sprintf (regname, "$w%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
RTYPE_MSA | i, &zero_address_frag));
}
obstack_init (&mips_operand_tokens);
mips_no_prev_insn ();
mips_gprmask = 0;
mips_cprmask[0] = 0;
mips_cprmask[1] = 0;
mips_cprmask[2] = 0;
mips_cprmask[3] = 0;
/* set the default alignment for the text section (2**2) */
record_alignment (text_section, 2);
bfd_set_gp_size (stdoutput, g_switch_value);
/* On a native system other than VxWorks, sections must be aligned
to 16 byte boundaries. When configured for an embedded ELF
target, we don't bother. */
if (strncmp (TARGET_OS, "elf", 3) != 0
&& strncmp (TARGET_OS, "vxworks", 7) != 0)
{
bfd_set_section_alignment (text_section, 4);
bfd_set_section_alignment (data_section, 4);
bfd_set_section_alignment (bss_section, 4);
}
/* Create a .reginfo section for register masks and a .mdebug
section for debugging information. */
{
segT seg;
subsegT subseg;
flagword flags;
segT sec;
seg = now_seg;
subseg = now_subseg;
/* The ABI says this section should be loaded so that the
running program can access it. However, we don't load it
if we are configured for an embedded target. */
flags = SEC_READONLY | SEC_DATA;
if (strncmp (TARGET_OS, "elf", 3) != 0)
flags |= SEC_ALLOC | SEC_LOAD;
if (mips_abi != N64_ABI)
{
sec = subseg_new (".reginfo", (subsegT) 0);
bfd_set_section_flags (sec, flags);
bfd_set_section_alignment (sec, HAVE_NEWABI ? 3 : 2);
mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
}
else
{
/* The 64-bit ABI uses a .MIPS.options section rather than
.reginfo section. */
sec = subseg_new (".MIPS.options", (subsegT) 0);
bfd_set_section_flags (sec, flags);
bfd_set_section_alignment (sec, 3);
/* Set up the option header. */
{
Elf_Internal_Options opthdr;
char *f;
opthdr.kind = ODK_REGINFO;
opthdr.size = (sizeof (Elf_External_Options)
+ sizeof (Elf64_External_RegInfo));
opthdr.section = 0;
opthdr.info = 0;
f = frag_more (sizeof (Elf_External_Options));
bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
(Elf_External_Options *) f);
mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
}
}
sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
bfd_set_section_flags (sec,
SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
bfd_set_section_alignment (sec, 3);
mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
if (ECOFF_DEBUGGING)
{
sec = subseg_new (".mdebug", (subsegT) 0);
bfd_set_section_flags (sec, SEC_HAS_CONTENTS | SEC_READONLY);
bfd_set_section_alignment (sec, 2);
}
else if (mips_flag_pdr)
{
pdr_seg = subseg_new (".pdr", (subsegT) 0);
bfd_set_section_flags (pdr_seg,
SEC_READONLY | SEC_RELOC | SEC_DEBUGGING);
bfd_set_section_alignment (pdr_seg, 2);
}
subseg_set (seg, subseg);
}
if (mips_fix_vr4120)
init_vr4120_conflicts ();
}
static inline void
fpabi_incompatible_with (int fpabi, const char *what)
{
as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
Tag_GNU_MIPS_ABI_FP, fpabi, what);
}
static inline void
fpabi_requires (int fpabi, const char *what)
{
as_warn (_(".gnu_attribute %d,%d requires `%s'"),
Tag_GNU_MIPS_ABI_FP, fpabi, what);
}
/* Check -mabi and register sizes against the specified FP ABI. */
static void
check_fpabi (int fpabi)
{
switch (fpabi)
{
case Val_GNU_MIPS_ABI_FP_DOUBLE:
if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
fpabi_incompatible_with (fpabi, "gp=64 fp=32");
else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
fpabi_incompatible_with (fpabi, "gp=32 fp=64");
break;
case Val_GNU_MIPS_ABI_FP_XX:
if (mips_abi != O32_ABI)
fpabi_requires (fpabi, "-mabi=32");
else if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
else if (file_mips_opts.fp != 0)
fpabi_requires (fpabi, "fp=xx");
break;
case Val_GNU_MIPS_ABI_FP_64A:
case Val_GNU_MIPS_ABI_FP_64:
if (mips_abi != O32_ABI)
fpabi_requires (fpabi, "-mabi=32");
else if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
else if (file_mips_opts.fp != 64)
fpabi_requires (fpabi, "fp=64");
else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
fpabi_incompatible_with (fpabi, "nooddspreg");
else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
fpabi_requires (fpabi, "nooddspreg");
break;
case Val_GNU_MIPS_ABI_FP_SINGLE:
if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (!file_mips_opts.single_float)
fpabi_requires (fpabi, "singlefloat");
break;
case Val_GNU_MIPS_ABI_FP_SOFT:
if (!file_mips_opts.soft_float)
fpabi_requires (fpabi, "softfloat");
break;
case Val_GNU_MIPS_ABI_FP_OLD_64:
as_warn (_(".gnu_attribute %d,%d is no longer supported"),
Tag_GNU_MIPS_ABI_FP, fpabi);
break;
case Val_GNU_MIPS_ABI_FP_NAN2008:
/* Silently ignore compatibility value. */
break;
default:
as_warn (_(".gnu_attribute %d,%d is not a recognized"
" floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
break;
}
}
/* Perform consistency checks on the current options. */
static void
mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
{
/* Check the size of integer registers agrees with the ABI and ISA. */
if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
as_bad (_("`gp=64' used with a 32-bit processor"));
else if (abi_checks
&& opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
as_bad (_("`gp=32' used with a 64-bit ABI"));
else if (abi_checks
&& opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
as_bad (_("`gp=64' used with a 32-bit ABI"));
/* Check the size of the float registers agrees with the ABI and ISA. */
switch (opts->fp)
{
case 0:
if (!CPU_HAS_LDC1_SDC1 (opts->arch))
as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
else if (opts->single_float == 1)
as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
break;
case 64:
if (!ISA_HAS_64BIT_FPRS (opts->isa))
as_bad (_("`fp=64' used with a 32-bit fpu"));
else if (abi_checks
&& ABI_NEEDS_32BIT_REGS (mips_abi)
&& !ISA_HAS_MXHC1 (opts->isa))
as_warn (_("`fp=64' used with a 32-bit ABI"));
break;
case 32:
if (abi_checks
&& ABI_NEEDS_64BIT_REGS (mips_abi))
as_warn (_("`fp=32' used with a 64-bit ABI"));
if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
as_bad (_("`fp=32' used with a MIPS R6 cpu"));
break;
default:
as_bad (_("Unknown size of floating point registers"));
break;
}
if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
if (opts->micromips == 1 && opts->mips16 == 1)
as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
else if (ISA_IS_R6 (opts->isa)
&& (opts->micromips == 1
|| opts->mips16 == 1))
as_fatal (_("`%s' cannot be used with `%s'"),
opts->micromips ? "micromips" : "mips16",
mips_cpu_info_from_isa (opts->isa)->name);
if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
as_fatal (_("branch relaxation is not supported in `%s'"),
mips_cpu_info_from_isa (opts->isa)->name);
}
/* Perform consistency checks on the module level options exactly once.
This is a deferred check that happens:
at the first .set directive
or, at the first pseudo op that generates code (inc .dc.a)
or, at the first instruction
or, at the end. */
static void
file_mips_check_options (void)
{
if (file_mips_opts_checked)
return;
/* The following code determines the register size.
Similar code was added to GCC 3.3 (see override_options() in
config/mips/mips.c). The GAS and GCC code should be kept in sync
as much as possible. */
if (file_mips_opts.gp < 0)
{
/* Infer the integer register size from the ABI and processor.
Restrict ourselves to 32-bit registers if that's all the
processor has, or if the ABI cannot handle 64-bit registers. */
file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
|| !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
? 32 : 64;
}
if (file_mips_opts.fp < 0)
{
/* No user specified float register size.
??? GAS treats single-float processors as though they had 64-bit
float registers (although it complains when double-precision
instructions are used). As things stand, saying they have 32-bit
registers would lead to spurious "register must be even" messages.
So here we assume float registers are never smaller than the
integer ones. */
if (file_mips_opts.gp == 64)
/* 64-bit integer registers implies 64-bit float registers. */
file_mips_opts.fp = 64;
else if ((file_mips_opts.ase & FP64_ASES)
&& ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
/* Handle ASEs that require 64-bit float registers, if possible. */
file_mips_opts.fp = 64;
else if (ISA_IS_R6 (mips_opts.isa))
/* R6 implies 64-bit float registers. */
file_mips_opts.fp = 64;
else
/* 32-bit float registers. */
file_mips_opts.fp = 32;
}
/* Disable operations on odd-numbered floating-point registers by default
when using the FPXX ABI. */
if (file_mips_opts.oddspreg < 0)
{
if (file_mips_opts.fp == 0)
file_mips_opts.oddspreg = 0;
else
file_mips_opts.oddspreg = 1;
}
/* End of GCC-shared inference code. */
/* This flag is set when we have a 64-bit capable CPU but use only
32-bit wide registers. Note that EABI does not use it. */
if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
&& ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
|| mips_abi == O32_ABI))
mips_32bitmode = 1;
if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
as_bad (_("trap exception not supported at ISA 1"));
/* If the selected architecture includes support for ASEs, enable
generation of code for them. */
if (file_mips_opts.mips16 == -1)
file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
if (file_mips_opts.micromips == -1)
file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
? 1 : 0;
if (mips_nan2008 == -1)
mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
as_fatal (_("`%s' does not support legacy NaN"),
mips_cpu_info_from_arch (file_mips_opts.arch)->name);
/* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
being selected implicitly. */
if (file_mips_opts.fp != 64)
file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
/* If the user didn't explicitly select or deselect a particular ASE,
use the default setting for the CPU. */
file_mips_opts.ase |= (file_mips_opts.init_ase & ~file_ase_explicit);
/* Set up the current options. These may change throughout assembly. */
mips_opts = file_mips_opts;
mips_check_isa_supports_ases ();
mips_check_options (&file_mips_opts, TRUE);
file_mips_opts_checked = TRUE;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
as_warn (_("could not set architecture and machine"));
}
void
md_assemble (char *str)
{
struct mips_cl_insn insn;
bfd_reloc_code_real_type unused_reloc[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
file_mips_check_options ();
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
mips_mark_labels ();
mips_assembling_insn = TRUE;
clear_insn_error ();
if (mips_opts.mips16)
mips16_ip (str, &insn);
else
{
mips_ip (str, &insn);
DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
str, insn.insn_opcode));
}
if (insn_error.msg)
report_insn_error (str);
else if (insn.insn_mo->pinfo == INSN_MACRO)
{
macro_start ();
if (mips_opts.mips16)
mips16_macro (&insn);
else
macro (&insn, str);
macro_end ();
}
else
{
if (offset_expr.X_op != O_absent)
append_insn (&insn, &offset_expr, offset_reloc, FALSE);
else
append_insn (&insn, NULL, unused_reloc, FALSE);
}
mips_assembling_insn = FALSE;
}
/* Convenience functions for abstracting away the differences between
MIPS16 and non-MIPS16 relocations. */
static inline bfd_boolean
mips16_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_MIPS16_JMP:
case BFD_RELOC_MIPS16_GPREL:
case BFD_RELOC_MIPS16_GOT16:
case BFD_RELOC_MIPS16_CALL16:
case BFD_RELOC_MIPS16_HI16_S:
case BFD_RELOC_MIPS16_HI16:
case BFD_RELOC_MIPS16_LO16:
case BFD_RELOC_MIPS16_16_PCREL_S1:
return TRUE;
default:
return FALSE;
}
}
static inline bfd_boolean
micromips_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_GPREL16:
case BFD_RELOC_MICROMIPS_JMP:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MICROMIPS_LITERAL:
case BFD_RELOC_MICROMIPS_GOT16:
case BFD_RELOC_MICROMIPS_CALL16:
case BFD_RELOC_MICROMIPS_GOT_HI16:
case BFD_RELOC_MICROMIPS_GOT_LO16:
case BFD_RELOC_MICROMIPS_CALL_HI16:
case BFD_RELOC_MICROMIPS_CALL_LO16:
case BFD_RELOC_MICROMIPS_SUB:
case BFD_RELOC_MICROMIPS_GOT_PAGE:
case BFD_RELOC_MICROMIPS_GOT_OFST:
case BFD_RELOC_MICROMIPS_GOT_DISP:
case BFD_RELOC_MICROMIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHER:
case BFD_RELOC_MICROMIPS_SCN_DISP:
case BFD_RELOC_MICROMIPS_JALR:
return TRUE;
default:
return FALSE;
}
}
static inline bfd_boolean
jmp_reloc_p (bfd_reloc_code_real_type reloc)
{
return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
}
static inline bfd_boolean
b_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
|| reloc == BFD_RELOC_MIPS_21_PCREL_S2
|| reloc == BFD_RELOC_16_PCREL_S2
|| reloc == BFD_RELOC_MIPS16_16_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
}
static inline bfd_boolean
got16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
|| reloc == BFD_RELOC_MICROMIPS_GOT16);
}
static inline bfd_boolean
hi16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
|| reloc == BFD_RELOC_MICROMIPS_HI16_S);
}
static inline bfd_boolean
lo16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
|| reloc == BFD_RELOC_MICROMIPS_LO16);
}
static inline bfd_boolean
jalr_reloc_p (bfd_reloc_code_real_type reloc)
{
return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
}
static inline bfd_boolean
gprel16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
|| reloc == BFD_RELOC_MICROMIPS_GPREL16);
}
/* Return true if RELOC is a PC-relative relocation that does not have
full address range. */
static inline bfd_boolean
limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
case BFD_RELOC_MIPS_18_PCREL_S3:
case BFD_RELOC_MIPS_19_PCREL_S2:
return TRUE;
case BFD_RELOC_32_PCREL:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_LO16_PCREL:
return HAVE_64BIT_ADDRESSES;
default:
return FALSE;
}
}
/* Return true if the given relocation might need a matching %lo().
This is only "might" because SVR4 R_MIPS_GOT16 relocations only
need a matching %lo() when applied to local symbols. */
static inline bfd_boolean
reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
{
return (HAVE_IN_PLACE_ADDENDS
&& (hi16_reloc_p (reloc)
/* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
all GOT16 relocations evaluate to "G". */
|| (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
}
/* Return the type of %lo() reloc needed by RELOC, given that
reloc_needs_lo_p. */
static inline bfd_reloc_code_real_type
matching_lo_reloc (bfd_reloc_code_real_type reloc)
{
return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
: (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
: BFD_RELOC_LO16));
}
/* Return true if the given fixup is followed by a matching R_MIPS_LO16
relocation. */
static inline bfd_boolean
fixup_has_matching_lo_p (fixS *fixp)
{
return (fixp->fx_next != NULL
&& fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
&& fixp->fx_addsy == fixp->fx_next->fx_addsy
&& fixp->fx_offset == fixp->fx_next->fx_offset);
}
/* Move all labels in LABELS to the current insertion point. TEXT_P
says whether the labels refer to text or data. */
static void
mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
{
struct insn_label_list *l;
valueT val;
for (l = labels; l != NULL; l = l->next)
{
gas_assert (S_GET_SEGMENT (l->label) == now_seg);
symbol_set_frag (l->label, frag_now);
val = (valueT) frag_now_fix ();
/* MIPS16/microMIPS text labels are stored as odd.
We just carry the ISA mode bit forward. */
if (text_p && HAVE_CODE_COMPRESSION)
val |= (S_GET_VALUE (l->label) & 0x1);
S_SET_VALUE (l->label, val);
}
}
/* Move all labels in insn_labels to the current insertion point
and treat them as text labels. */
static void
mips_move_text_labels (void)
{
mips_move_labels (seg_info (now_seg)->label_list, TRUE);
}
/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
static bfd_boolean
s_is_linkonce (symbolS *sym, segT from_seg)
{
bfd_boolean linkonce = FALSE;
segT symseg = S_GET_SEGMENT (sym);
if (symseg != from_seg && !S_IS_LOCAL (sym))
{
if ((bfd_section_flags (symseg) & SEC_LINK_ONCE))
linkonce = TRUE;
/* The GNU toolchain uses an extension for ELF: a section
beginning with the magic string .gnu.linkonce is a
linkonce section. */
if (strncmp (segment_name (symseg), ".gnu.linkonce",
sizeof ".gnu.linkonce" - 1) == 0)
linkonce = TRUE;
}
return linkonce;
}
/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
linker to handle them specially, such as generating jalx instructions
when needed. We also make them odd for the duration of the assembly,
in order to generate the right sort of code. We will make them even
in the adjust_symtab routine, while leaving them marked. This is
convenient for the debugger and the disassembler. The linker knows
to make them odd again. */
static void
mips_compressed_mark_label (symbolS *label)
{
gas_assert (HAVE_CODE_COMPRESSION);
if (mips_opts.mips16)
S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
else
S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
if ((S_GET_VALUE (label) & 1) == 0
/* Don't adjust the address if the label is global or weak, or
in a link-once section, since we'll be emitting symbol reloc
references to it which will be patched up by the linker, and
the final value of the symbol may or may not be MIPS16/microMIPS. */
&& !S_IS_WEAK (label)
&& !S_IS_EXTERNAL (label)
&& !s_is_linkonce (label, now_seg))
S_SET_VALUE (label, S_GET_VALUE (label) | 1);
}
/* Mark preceding MIPS16 or microMIPS instruction labels. */
static void
mips_compressed_mark_labels (void)
{
struct insn_label_list *l;
for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
mips_compressed_mark_label (l->label);
}
/* End the current frag. Make it a variant frag and record the
relaxation info. */
static void
relax_close_frag (void)
{
mips_macro_warning.first_frag = frag_now;
frag_var (rs_machine_dependent, 0, 0,
RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
mips_pic != NO_PIC),
mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
mips_relax.first_fixup = 0;
}
/* Start a new relaxation sequence whose expansion depends on SYMBOL.
See the comment above RELAX_ENCODE for more details. */
static void
relax_start (symbolS *symbol)
{
gas_assert (mips_relax.sequence == 0);
mips_relax.sequence = 1;
mips_relax.symbol = symbol;
}
/* Start generating the second version of a relaxable sequence.
See the comment above RELAX_ENCODE for more details. */
static void
relax_switch (void)
{
gas_assert (mips_relax.sequence == 1);
mips_relax.sequence = 2;
}
/* End the current relaxable sequence. */
static void
relax_end (void)
{
gas_assert (mips_relax.sequence == 2);
relax_close_frag ();
mips_relax.sequence = 0;
}
/* Return true if IP is a delayed branch or jump. */
static inline bfd_boolean
delayed_branch_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY)) != 0;
}
/* Return true if IP is a compact branch or jump. */
static inline bfd_boolean
compact_branch_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
| INSN2_COND_BRANCH)) != 0;
}
/* Return true if IP is an unconditional branch or jump. */
static inline bfd_boolean
uncond_branch_p (const struct mips_cl_insn *ip)
{
return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
|| (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
}
/* Return true if IP is a branch-likely instruction. */
static inline bfd_boolean
branch_likely_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
}
/* Return the type of nop that should be used to fill the delay slot
of delayed branch IP. */
static struct mips_cl_insn *
get_delay_slot_nop (const struct mips_cl_insn *ip)
{
if (mips_opts.micromips
&& (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
return µmips_nop32_insn;
return NOP_INSN;
}
/* Return a mask that has bit N set if OPCODE reads the register(s)
in operand N. */
static unsigned int
insn_read_mask (const struct mips_opcode *opcode)
{
return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
}
/* Return a mask that has bit N set if OPCODE writes to the register(s)
in operand N. */
static unsigned int
insn_write_mask (const struct mips_opcode *opcode)
{
return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
}
/* Return a mask of the registers specified by operand OPERAND of INSN.
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
is set. */
static unsigned int
operand_reg_mask (const struct mips_cl_insn *insn,
const struct mips_operand *operand,
unsigned int type_mask)
{
unsigned int uval, vsel;
switch (operand->type)
{
case OP_INT:
case OP_MAPPED_INT:
case OP_MSB:
case OP_PCREL:
case OP_PERF_REG:
case OP_ADDIUSP_INT:
case OP_ENTRY_EXIT_LIST:
case OP_REPEAT_DEST_REG:
case OP_REPEAT_PREV_REG:
case OP_PC:
case OP_VU0_SUFFIX:
case OP_VU0_MATCH_SUFFIX:
case OP_IMM_INDEX:
abort ();
case OP_REG28:
return 1 << 28;
case OP_REG:
case OP_OPTIONAL_REG:
{
const struct mips_reg_operand *reg_op;
reg_op = (const struct mips_reg_operand *) operand;
if (!(type_mask & (1 << reg_op->reg_type)))
return 0;
uval = insn_extract_operand (insn, operand);
return 1 << mips_decode_reg_operand (reg_op, uval);
}
case OP_REG_PAIR:
{
const struct mips_reg_pair_operand *pair_op;
pair_op = (const struct mips_reg_pair_operand *) operand;
if (!(type_mask & (1 << pair_op->reg_type)))
return 0;
uval = insn_extract_operand (insn, operand);
return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
}
case OP_CLO_CLZ_DEST:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
return (1 << (uval & 31)) | (1 << (uval >> 5));
case OP_SAME_RS_RT:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
gas_assert ((uval & 31) == (uval >> 5));
return 1 << (uval & 31);
case OP_CHECK_PREV:
case OP_NON_ZERO_REG:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
return 1 << (uval & 31);
case OP_LWM_SWM_LIST:
abort ();
case OP_SAVE_RESTORE_LIST:
abort ();
case OP_MDMX_IMM_REG:
if (!(type_mask & (1 << OP_REG_VEC)))
return 0;
uval = insn_extract_operand (insn, operand);
vsel = uval >> 5;
if ((vsel & 0x18) == 0x18)
return 0;
return 1 << (uval & 31);
case OP_REG_INDEX:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
return 1 << insn_extract_operand (insn, operand);
}
abort ();
}
/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
where bit N of OPNO_MASK is set if operand N should be included.
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
is set. */
static unsigned int
insn_reg_mask (const struct mips_cl_insn *insn,
unsigned int type_mask, unsigned int opno_mask)
{
unsigned int opno, reg_mask;
opno = 0;
reg_mask = 0;
while (opno_mask != 0)
{
if (opno_mask & 1)
reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
opno_mask >>= 1;
opno += 1;
}
return reg_mask;
}
/* Return the mask of core registers that IP reads. */
static unsigned int
gpr_read_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo, pinfo2;
unsigned int mask;
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
pinfo2 = ip->insn_mo->pinfo2;
if (pinfo & INSN_UDI)
{
/* UDI instructions have traditionally been assumed to read RS
and RT. */
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
}
if (pinfo & INSN_READ_GPR_24)
mask |= 1 << 24;
if (pinfo2 & INSN2_READ_GPR_16)
mask |= 1 << 16;
if (pinfo2 & INSN2_READ_SP)
mask |= 1 << SP;
if (pinfo2 & INSN2_READ_GPR_31)
mask |= 1u << 31;
/* Don't include register 0. */
return mask & ~1;
}
/* Return the mask of core registers that IP writes. */
static unsigned int
gpr_write_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo, pinfo2;
unsigned int mask;
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
pinfo2 = ip->insn_mo->pinfo2;
if (pinfo & INSN_WRITE_GPR_24)
mask |= 1 << 24;
if (pinfo & INSN_WRITE_GPR_31)
mask |= 1u << 31;
if (pinfo & INSN_UDI)
/* UDI instructions have traditionally been assumed to write to RD. */
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
if (pinfo2 & INSN2_WRITE_SP)
mask |= 1 << SP;
/* Don't include register 0. */
return mask & ~1;
}
/* Return the mask of floating-point registers that IP reads. */
static unsigned int
fpr_read_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo;
unsigned int mask;
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
| (1 << OP_REG_MSA)),
insn_read_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
/* Conservatively treat all operands to an FP_D instruction are doubles.
(This is overly pessimistic for things like cvt.d.s.) */
if (FPR_SIZE != 64 && (pinfo & FP_D))
mask |= mask << 1;
return mask;
}
/* Return the mask of floating-point registers that IP writes. */
static unsigned int
fpr_write_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo;
unsigned int mask;
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
| (1 << OP_REG_MSA)),
insn_write_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
/* Conservatively treat all operands to an FP_D instruction are doubles.
(This is overly pessimistic for things like cvt.s.d.) */
if (FPR_SIZE != 64 && (pinfo & FP_D))
mask |= mask << 1;
return mask;
}
/* Operand OPNUM of INSN is an odd-numbered floating-point register.
Check whether that is allowed. */
static bfd_boolean
mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
{
const char *s = insn->name;
bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
|| FPR_SIZE == 64)
&& mips_opts.oddspreg;
if (insn->pinfo == INSN_MACRO)
/* Let a macro pass, we'll catch it later when it is expanded. */
return TRUE;
/* Single-precision coprocessor loads and moves are OK for 32-bit registers,
otherwise it depends on oddspreg. */
if ((insn->pinfo & FP_S)
&& (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
| INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
return FPR_SIZE == 32 || oddspreg;
/* Allow odd registers for single-precision ops and double-precision if the
floating-point registers are 64-bit wide. */
switch (insn->pinfo & (FP_S | FP_D))
{
case FP_S:
case 0:
return oddspreg;
case FP_D:
return FPR_SIZE == 64;
default:
break;
}
/* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
s = strchr (insn->name, '.');
if (s != NULL && opnum == 2)
s = strchr (s + 1, '.');
if (s != NULL && (s[1] == 'w' || s[1] == 's'))
return oddspreg;
return FPR_SIZE == 64;
}
/* Information about an instruction argument that we're trying to match. */
struct mips_arg_info
{
/* The instruction so far. */
struct mips_cl_insn *insn;
/* The first unconsumed operand token. */
struct mips_operand_token *token;
/* The 1-based operand number, in terms of insn->insn_mo->args. */
int opnum;
/* The 1-based argument number, for error reporting. This does not
count elided optional registers, etc.. */
int argnum;
/* The last OP_REG operand seen, or ILLEGAL_REG if none. */
unsigned int last_regno;
/* If the first operand was an OP_REG, this is the register that it
specified, otherwise it is ILLEGAL_REG. */
unsigned int dest_regno;
/* The value of the last OP_INT operand. Only used for OP_MSB,
where it gives the lsb position. */
unsigned int last_op_int;
/* If true, match routines should assume that no later instruction
alternative matches and should therefore be as accommodating as
possible. Match routines should not report errors if something
is only invalid for !LAX_MATCH. */
bfd_boolean lax_match;
/* True if a reference to the current AT register was seen. */
bfd_boolean seen_at;
};
/* Record that the argument is out of range. */
static void
match_out_of_range (struct mips_arg_info *arg)
{
set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
}
/* Record that the argument isn't constant but needs to be. */
static void
match_not_constant (struct mips_arg_info *arg)
{
set_insn_error_i (arg->argnum, _("operand %d must be constant"),
arg->argnum);
}
/* Try to match an OT_CHAR token for character CH. Consume the token
and return true on success, otherwise return false. */
static bfd_boolean
match_char (struct mips_arg_info *arg, char ch)
{
if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
{
++arg->token;
if (ch == ',')
arg->argnum += 1;
return TRUE;
}
return FALSE;
}
/* Try to get an expression from the next tokens in ARG. Consume the
tokens and return true on success, storing the expression value in
VALUE and relocation types in R. */
static bfd_boolean
match_expression (struct mips_arg_info *arg, expressionS *value,
bfd_reloc_code_real_type *r)
{
/* If the next token is a '(' that was parsed as being part of a base
expression, assume we have an elided offset. The later match will fail
if this turns out to be wrong. */
if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
{
value->X_op = O_constant;
value->X_add_number = 0;
r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
return TRUE;
}
/* Reject register-based expressions such as "0+$2" and "(($2))".
For plain registers the default error seems more appropriate. */
if (arg->token->type == OT_INTEGER
&& arg->token->u.integer.value.X_op == O_register)
{
set_insn_error (arg->argnum, _("register value used as expression"));
return FALSE;
}
if (arg->token->type == OT_INTEGER)
{
*value = arg->token->u.integer.value;
memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
++arg->token;
return TRUE;
}
set_insn_error_i
(arg->argnum, _("operand %d must be an immediate expression"),
arg->argnum);
return FALSE;
}
/* Try to get a constant expression from the next tokens in ARG. Consume
the tokens and return true on success, storing the constant value
in *VALUE. */
static bfd_boolean
match_const_int (struct mips_arg_info *arg, offsetT *value)
{
expressionS ex;
bfd_reloc_code_real_type r[3];
if (!match_expression (arg, &ex, r))
return FALSE;
if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
*value = ex.X_add_number;
else
{
if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
match_out_of_range (arg);
else
match_not_constant (arg);
return FALSE;
}
return TRUE;
}
/* Return the RTYPE_* flags for a register operand of type TYPE that
appears in instruction OPCODE. */
static unsigned int
convert_reg_type (const struct mips_opcode *opcode,
enum mips_reg_operand_type type)
{
switch (type)
{
case OP_REG_GP:
return RTYPE_NUM | RTYPE_GP;
case OP_REG_FP:
/* Allow vector register names for MDMX if the instruction is a 64-bit
FPR load, store or move (including moves to and from GPRs). */
if ((mips_opts.ase & ASE_MDMX)
&& (opcode->pinfo & FP_D)
&& (opcode->pinfo & (INSN_COPROC_MOVE
| INSN_COPROC_MEMORY_DELAY
| INSN_LOAD_COPROC
| INSN_LOAD_MEMORY
| INSN_STORE_MEMORY)))
return RTYPE_FPU | RTYPE_VEC;
return RTYPE_FPU;
case OP_REG_CCC:
if (opcode->pinfo & (FP_D | FP_S))
return RTYPE_CCC | RTYPE_FCC;
return RTYPE_CCC;
case OP_REG_VEC:
if (opcode->membership & INSN_5400)
return RTYPE_FPU;
return RTYPE_FPU | RTYPE_VEC;
case OP_REG_ACC:
return RTYPE_ACC;
case OP_REG_COPRO:
if (opcode->name[strlen (opcode->name) - 1] == '0')
return RTYPE_NUM | RTYPE_CP0;
return RTYPE_NUM;
case OP_REG_HW:
return RTYPE_NUM;
case OP_REG_VI:
return RTYPE_NUM | RTYPE_VI;
case OP_REG_VF:
return RTYPE_NUM | RTYPE_VF;
case OP_REG_R5900_I:
return RTYPE_R5900_I;
case OP_REG_R5900_Q:
return RTYPE_R5900_Q;
case OP_REG_R5900_R:
return RTYPE_R5900_R;
case OP_REG_R5900_ACC:
return RTYPE_R5900_ACC;
case OP_REG_MSA:
return RTYPE_MSA;
case OP_REG_MSA_CTRL:
return RTYPE_NUM;
}
abort ();
}
/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
static void
check_regno (struct mips_arg_info *arg,
enum mips_reg_operand_type type, unsigned int regno)
{
if (AT && type == OP_REG_GP && regno == AT)
arg->seen_at = TRUE;
if (type == OP_REG_FP
&& (regno & 1) != 0
&& !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
{
/* This was a warning prior to introducing O32 FPXX and FP64 support
so maintain a warning for FP32 but raise an error for the new
cases. */
if (FPR_SIZE == 32)
as_warn (_("float register should be even, was %d"), regno);
else
as_bad (_("float register should be even, was %d"), regno);
}
if (type == OP_REG_CCC)
{
const char *name;
size_t length;
name = arg->insn->insn_mo->name;
length = strlen (name);
if ((regno & 1) != 0
&& ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
|| (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
as_warn (_("condition code register should be even for %s, was %d"),
name, regno);
if ((regno & 3) != 0
&& (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
name, regno);
}
}
/* ARG is a register with symbol value SYMVAL. Try to interpret it as
a register of type TYPE. Return true on success, storing the register
number in *REGNO and warning about any dubious uses. */
static bfd_boolean
match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int symval, unsigned int *regno)
{
if (type == OP_REG_VEC)
symval = mips_prefer_vec_regno (symval);
if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
return FALSE;
*regno = symval & RNUM_MASK;
check_regno (arg, type, *regno);
return TRUE;
}
/* Try to interpret the next token in ARG as a register of type TYPE.
Consume the token and return true on success, storing the register
number in *REGNO. Return false on failure. */
static bfd_boolean
match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int *regno)
{
if (arg->token->type == OT_REG
&& match_regno (arg, type, arg->token->u.regno, regno))
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* Try to interpret the next token in ARG as a range of registers of type TYPE.
Consume the token and return true on success, storing the register numbers
in *REGNO1 and *REGNO2. Return false on failure. */
static bfd_boolean
match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int *regno1, unsigned int *regno2)
{
if (match_reg (arg, type, regno1))
{
*regno2 = *regno1;
return TRUE;
}
if (arg->token->type == OT_REG_RANGE
&& match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
&& match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
&& *regno1 <= *regno2)
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* OP_INT matcher. */
static bfd_boolean
match_int_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_int_operand *operand;
unsigned int uval;
int min_val, max_val, factor;
offsetT sval;
operand = (const struct mips_int_operand *) operand_base;
factor = 1 << operand->shift;
min_val = mips_int_operand_min (operand);
max_val = mips_int_operand_max (operand);
if (operand_base->lsb == 0
&& operand_base->size == 16
&& operand->shift == 0
&& operand->bias == 0
&& (operand->max_val == 32767 || operand->max_val == 65535))
{
/* The operand can be relocated. */
if (!match_expression (arg, &offset_expr, offset_reloc))
return FALSE;
if (offset_expr.X_op == O_big)
{
match_out_of_range (arg);
return FALSE;
}
if (offset_reloc[0] != BFD_RELOC_UNUSED)
/* Relocation operators were used. Accept the argument and
leave the relocation value in offset_expr and offset_relocs
for the caller to process. */
return TRUE;
if (offset_expr.X_op != O_constant)
{
/* Accept non-constant operands if no later alternative matches,
leaving it for the caller to process. */
if (!arg->lax_match)
{
match_not_constant (arg);
return FALSE;
}
offset_reloc[0] = BFD_RELOC_LO16;
return TRUE;
}
/* Clear the global state; we're going to install the operand
ourselves. */
sval = offset_expr.X_add_number;
offset_expr.X_op = O_absent;
/* For compatibility with older assemblers, we accept
0x8000-0xffff as signed 16-bit numbers when only
signed numbers are allowed. */
if (sval > max_val)
{
max_val = ((1 << operand_base->size) - 1) << operand->shift;
if (!arg->lax_match && sval <= max_val)
{
match_out_of_range (arg);
return FALSE;
}
}
}
else
{
if (!match_const_int (arg, &sval))
return FALSE;
}
arg->last_op_int = sval;
if (sval < min_val || sval > max_val || sval % factor)
{
match_out_of_range (arg);
return FALSE;
}
uval = (unsigned int) sval >> operand->shift;
uval -= operand->bias;
/* Handle -mfix-cn63xxp1. */
if (arg->opnum == 1
&& mips_fix_cn63xxp1
&& !mips_opts.micromips
&& strcmp ("pref", arg->insn->insn_mo->name) == 0)
switch (uval)
{
case 5:
case 25:
case 26:
case 27:
case 28:
case 29:
case 30:
case 31:
/* These are ok. */
break;
default:
/* The rest must be changed to 28. */
uval = 28;
break;
}
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_MAPPED_INT matcher. */
static bfd_boolean
match_mapped_int_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_mapped_int_operand *operand;
unsigned int uval, num_vals;
offsetT sval;
operand = (const struct mips_mapped_int_operand *) operand_base;
if (!match_const_int (arg, &sval))
return FALSE;
num_vals = 1 << operand_base->size;
for (uval = 0; uval < num_vals; uval++)
if (operand->int_map[uval] == sval)
break;
if (uval == num_vals)
{
match_out_of_range (arg);
return FALSE;
}
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_MSB matcher. */
static bfd_boolean
match_msb_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_msb_operand *operand;
int min_val, max_val, max_high;
offsetT size, sval, high;
operand = (const struct mips_msb_operand *) operand_base;
min_val = operand->bias;
max_val = min_val + (1 << operand_base->size) - 1;
max_high = operand->opsize;
if (!match_const_int (arg, &size))
return FALSE;
high = size + arg->last_op_int;
sval = operand->add_lsb ? high : size;
if (size < 0 || high > max_high || sval < min_val || sval > max_val)
{
match_out_of_range (arg);
return FALSE;
}
insn_insert_operand (arg->insn, operand_base, sval - min_val);
return TRUE;
}
/* OP_REG matcher. */
static bfd_boolean
match_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_reg_operand *operand;
unsigned int regno, uval, num_vals;
operand = (const struct mips_reg_operand *) operand_base;
if (!match_reg (arg, operand->reg_type, ®no))
return FALSE;
if (operand->reg_map)
{
num_vals = 1 << operand->root.size;
for (uval = 0; uval < num_vals; uval++)
if (operand->reg_map[uval] == regno)
break;
if (num_vals == uval)
return FALSE;
}
else
uval = regno;
arg->last_regno = regno;
if (arg->opnum == 1)
arg->dest_regno = regno;
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_REG_PAIR matcher. */
static bfd_boolean
match_reg_pair_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_reg_pair_operand *operand;
unsigned int regno1, regno2, uval, num_vals;
operand = (const struct mips_reg_pair_operand *) operand_base;
if (!match_reg (arg, operand->reg_type, ®no1)
|| !match_char (arg, ',')
|| !match_reg (arg, operand->reg_type, ®no2))
return FALSE;
num_vals = 1 << operand_base->size;
for (uval = 0; uval < num_vals; uval++)
if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
break;
if (uval == num_vals)
return FALSE;
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_PCREL matcher. The caller chooses the relocation type. */
static bfd_boolean
match_pcrel_operand (struct mips_arg_info *arg)
{
bfd_reloc_code_real_type r[3];
return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
}
/* OP_PERF_REG matcher. */
static bfd_boolean
match_perf_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
offsetT sval;
if (!match_const_int (arg, &sval))
return FALSE;
if (sval != 0
&& (sval != 1
|| (mips_opts.arch == CPU_R5900
&& (strcmp (arg->insn->insn_mo->name, "mfps") == 0
|| strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
{
set_insn_error (arg->argnum, _("invalid performance register"));
return FALSE;
}
insn_insert_operand (arg->insn, operand, sval);
return TRUE;
}
/* OP_ADDIUSP matcher. */
static bfd_boolean
match_addiusp_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
offsetT sval;
unsigned int uval;
if (!match_const_int (arg, &sval))
return FALSE;
if (sval % 4)
{
match_out_of_range (arg);
return FALSE;
}
sval /= 4;
if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
{
match_out_of_range (arg);
return FALSE;
}
uval = (unsigned int) sval;
uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
insn_insert_operand (arg->insn, operand, uval);
return TRUE;
}
/* OP_CLO_CLZ_DEST matcher. */
static bfd_boolean
match_clo_clz_dest_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
insn_insert_operand (arg->insn, operand, regno | (regno << 5));
return TRUE;
}
/* OP_CHECK_PREV matcher. */
static bfd_boolean
match_check_prev_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_check_prev_operand *operand;
unsigned int regno;
operand = (const struct mips_check_prev_operand *) operand_base;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
if (!operand->zero_ok && regno == 0)
return FALSE;
if ((operand->less_than_ok && regno < arg->last_regno)
|| (operand->greater_than_ok && regno > arg->last_regno)
|| (operand->equal_ok && regno == arg->last_regno))
{
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand_base, regno);
return TRUE;
}
return FALSE;
}
/* OP_SAME_RS_RT matcher. */
static bfd_boolean
match_same_rs_rt_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
if (regno == 0)
{
set_insn_error (arg->argnum, _("the source register must not be $0"));
return FALSE;
}
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand, regno | (regno << 5));
return TRUE;
}
/* OP_LWM_SWM_LIST matcher. */
static bfd_boolean
match_lwm_swm_list_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int reglist, sregs, ra, regno1, regno2;
struct mips_arg_info reset;
reglist = 0;
if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
return FALSE;
do
{
if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
{
reglist |= 1 << FP;
regno2 = S7;
}
reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
reset = *arg;
}
while (match_char (arg, ',')
&& match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
*arg = reset;
if (operand->size == 2)
{
/* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
s0, ra
s0, s1, ra, s2, s3
s0-s2, ra
and any permutations of these. */
if ((reglist & 0xfff1ffff) != 0x80010000)
return FALSE;
sregs = (reglist >> 17) & 7;
ra = 0;
}
else
{
/* The list must include at least one of ra and s0-sN,
for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
which are $23 and $30 respectively.) E.g.:
ra
s0
ra, s0, s1, s2
s0-s8
s0-s5, ra
and any permutations of these. */
if ((reglist & 0x3f00ffff) != 0)
return FALSE;
ra = (reglist >> 27) & 0x10;
sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
}
sregs += 1;
if ((sregs & -sregs) != sregs)
return FALSE;
insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
return TRUE;
}
/* OP_ENTRY_EXIT_LIST matcher. */
static unsigned int
match_entry_exit_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int mask;
bfd_boolean is_exit;
/* The format is the same for both ENTRY and EXIT, but the constraints
are different. */
is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
mask = (is_exit ? 7 << 3 : 0);
do
{
unsigned int regno1, regno2;
bfd_boolean is_freg;
if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
is_freg = FALSE;
else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
is_freg = TRUE;
else
return FALSE;
if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
{
mask &= ~(7 << 3);
mask |= (5 + regno2) << 3;
}
else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
mask |= (regno2 - 3) << 3;
else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
mask |= (regno2 - 15) << 1;
else if (regno1 == RA && regno2 == RA)
mask |= 1;
else
return FALSE;
}
while (match_char (arg, ','));
insn_insert_operand (arg->insn, operand, mask);
return TRUE;
}
/* Encode regular MIPS SAVE/RESTORE instruction operands according to
the argument register mask AMASK, the number of static registers
saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
respectively, and the frame size FRAME_SIZE. */
static unsigned int
mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
unsigned int ra, unsigned int s0, unsigned int s1,
unsigned int frame_size)
{
return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
| (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
}
/* Encode MIPS16 SAVE/RESTORE instruction operands according to the
argument register mask AMASK, the number of static registers saved
NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
respectively, and the frame size FRAME_SIZE. */
static unsigned int
mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
unsigned int ra, unsigned int s0, unsigned int s1,
unsigned int frame_size)
{
unsigned int args;
args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
if (nsreg || amask || frame_size == 0 || frame_size > 16)
args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
| ((frame_size & 0xf0) << 16));
return args;
}
/* OP_SAVE_RESTORE_LIST matcher. */
static bfd_boolean
match_save_restore_list_operand (struct mips_arg_info *arg)
{
unsigned int opcode, args, statics, sregs;
unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
unsigned int arg_mask, ra, s0, s1;
offsetT frame_size;
opcode = arg->insn->insn_opcode;
frame_size = 0;
num_frame_sizes = 0;
args = 0;
statics = 0;
sregs = 0;
ra = 0;
s0 = 0;
s1 = 0;
do
{
unsigned int regno1, regno2;
if (arg->token->type == OT_INTEGER)
{
/* Handle the frame size. */
if (!match_const_int (arg, &frame_size))
return FALSE;
num_frame_sizes += 1;
}
else
{
if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
return FALSE;
while (regno1 <= regno2)
{
if (regno1 >= 4 && regno1 <= 7)
{
if (num_frame_sizes == 0)
/* args $a0-$a3 */
args |= 1 << (regno1 - 4);
else
/* statics $a0-$a3 */
statics |= 1 << (regno1 - 4);
}
else if (regno1 >= 16 && regno1 <= 23)
/* $s0-$s7 */
sregs |= 1 << (regno1 - 16);
else if (regno1 == 30)
/* $s8 */
sregs |= 1 << 8;
else if (regno1 == 31)
/* Add $ra to insn. */
ra = 1;
else
return FALSE;
regno1 += 1;
if (regno1 == 24)
regno1 = 30;
}
}
}
while (match_char (arg, ','));
/* Encode args/statics combination. */
if (args & statics)
return FALSE;
else if (args == 0xf)
/* All $a0-$a3 are args. */
arg_mask = MIPS_SVRS_ALL_ARGS;
else if (statics == 0xf)
/* All $a0-$a3 are statics. */
arg_mask = MIPS_SVRS_ALL_STATICS;
else
{
/* Count arg registers. */
num_args = 0;
while (args & 0x1)
{
args >>= 1;
num_args += 1;
}
if (args != 0)
return FALSE;
/* Count static registers. */
num_statics = 0;
while (statics & 0x8)
{
statics = (statics << 1) & 0xf;
num_statics += 1;
}
if (statics != 0)
return FALSE;
/* Encode args/statics. */
arg_mask = (num_args << 2) | num_statics;
}
/* Encode $s0/$s1. */
if (sregs & (1 << 0)) /* $s0 */
s0 = 1;
if (sregs & (1 << 1)) /* $s1 */
s1 = 1;
sregs >>= 2;
/* Encode $s2-$s8. */
num_sregs = 0;
while (sregs & 1)
{
sregs >>= 1;
num_sregs += 1;
}
if (sregs != 0)
return FALSE;
/* Encode frame size. */
if (num_frame_sizes == 0)
{
set_insn_error (arg->argnum, _("missing frame size"));
return FALSE;
}
if (num_frame_sizes > 1)
{
set_insn_error (arg->argnum, _("frame size specified twice"));
return FALSE;
}
if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
{
set_insn_error (arg->argnum, _("invalid frame size"));
return FALSE;
}
frame_size /= 8;
/* Finally build the instruction. */
if (mips_opts.mips16)
opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
frame_size);
else if (!mips_opts.micromips)
opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
frame_size);
else
abort ();
arg->insn->insn_opcode = opcode;
return TRUE;
}
/* OP_MDMX_IMM_REG matcher. */
static bfd_boolean
match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno, uval;
bfd_boolean is_qh;
const struct mips_opcode *opcode;
/* The mips_opcode records whether this is an octobyte or quadhalf
instruction. Start out with that bit in place. */
opcode = arg->insn->insn_mo;
uval = mips_extract_operand (operand, opcode->match);
is_qh = (uval != 0);
if (arg->token->type == OT_REG)
{
if ((opcode->membership & INSN_5400)
&& strcmp (opcode->name, "rzu.ob") == 0)
{
set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
arg->argnum);
return FALSE;
}
if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
return FALSE;
++arg->token;
/* Check whether this is a vector register or a broadcast of
a single element. */
if (arg->token->type == OT_INTEGER_INDEX)
{
if (arg->token->u.index > (is_qh ? 3 : 7))
{
set_insn_error (arg->argnum, _("invalid element selector"));
return FALSE;
}
uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
++arg->token;
}
else
{
/* A full vector. */
if ((opcode->membership & INSN_5400)
&& (strcmp (opcode->name, "sll.ob") == 0
|| strcmp (opcode->name, "srl.ob") == 0))
{
set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
arg->argnum);
return FALSE;
}
if (is_qh)
uval |= MDMX_FMTSEL_VEC_QH << 5;
else
uval |= MDMX_FMTSEL_VEC_OB << 5;
}
uval |= regno;
}
else
{
offsetT sval;
if (!match_const_int (arg, &sval))
return FALSE;
if (sval < 0 || sval > 31)
{
match_out_of_range (arg);
return FALSE;
}
uval |= (sval & 31);
if (is_qh)
uval |= MDMX_FMTSEL_IMM_QH << 5;
else
uval |= MDMX_FMTSEL_IMM_OB << 5;
}
insn_insert_operand (arg->insn, operand, uval);
return TRUE;
}
/* OP_IMM_INDEX matcher. */
static bfd_boolean
match_imm_index_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int max_val;
if (arg->token->type != OT_INTEGER_INDEX)
return FALSE;
max_val = (1 << operand->size) - 1;
if (arg->token->u.index > max_val)
{
match_out_of_range (arg);
return FALSE;
}
insn_insert_operand (arg->insn, operand, arg->token->u.index);
++arg->token;
return TRUE;
}
/* OP_REG_INDEX matcher. */
static bfd_boolean
match_reg_index_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (arg->token->type != OT_REG_INDEX)
return FALSE;
if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
return FALSE;
insn_insert_operand (arg->insn, operand, regno);
++arg->token;
return TRUE;
}
/* OP_PC matcher. */
static bfd_boolean
match_pc_operand (struct mips_arg_info *arg)
{
if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* OP_REG28 matcher. */
static bfd_boolean
match_reg28_operand (struct mips_arg_info *arg)
{
unsigned int regno;
if (arg->token->type == OT_REG
&& match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no)
&& regno == GP)
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* OP_NON_ZERO_REG matcher. */
static bfd_boolean
match_non_zero_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
if (regno == 0)
{
set_insn_error (arg->argnum, _("the source register must not be $0"));
return FALSE;
}
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand, regno);
return TRUE;
}
/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
register that we need to match. */
static bfd_boolean
match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
{
unsigned int regno;
return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
}
/* Try to match a floating-point constant from ARG for LI.S or LI.D.
LENGTH is the length of the value in bytes (4 for float, 8 for double)
and USING_GPRS says whether the destination is a GPR rather than an FPR.
Return the constant in IMM and OFFSET as follows:
- If the constant should be loaded via memory, set IMM to O_absent and
OFFSET to the memory address.
- Otherwise, if the constant should be loaded into two 32-bit registers,
set IMM to the O_constant to load into the high register and OFFSET
to the corresponding value for the low register.
- Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
These constants only appear as the last operand in an instruction,
and every instruction that accepts them in any variant accepts them
in all variants. This means we don't have to worry about backing out
any changes if the instruction does not match. We just match
unconditionally and report an error if the constant is invalid. */
static bfd_boolean
match_float_constant (struct mips_arg_info *arg, expressionS *imm,
expressionS *offset, int length, bfd_boolean using_gprs)
{
char *p;
segT seg, new_seg;
subsegT subseg;
const char *newname;
unsigned char *data;
/* Where the constant is placed is based on how the MIPS assembler
does things:
length == 4 && using_gprs -- immediate value only
length == 8 && using_gprs -- .rdata or immediate value
length == 4 && !using_gprs -- .lit4 or immediate value
length == 8 && !using_gprs -- .lit8 or immediate value
The .lit4 and .lit8 sections are only used if permitted by the
-G argument. */
if (arg->token->type != OT_FLOAT)
{
set_insn_error (arg->argnum, _("floating-point expression required"));
return FALSE;
}
gas_assert (arg->token->u.flt.length == length);
data = arg->token->u.flt.data;
++arg->token;
/* Handle 32-bit constants for which an immediate value is best. */
if (length == 4
&& (using_gprs
|| g_switch_value < 4
|| (data[0] == 0 && data[1] == 0)
|| (data[2] == 0 && data[3] == 0)))
{
imm->X_op = O_constant;
if (!target_big_endian)
imm->X_add_number = bfd_getl32 (data);
else
imm->X_add_number = bfd_getb32 (data);
offset->X_op = O_absent;
return TRUE;
}
/* Handle 64-bit constants for which an immediate value is best. */
if (length == 8
&& !mips_disable_float_construction
/* Constants can only be constructed in GPRs and copied to FPRs if the
GPRs are at least as wide as the FPRs or MTHC1 is available.
Unlike most tests for 32-bit floating-point registers this check
specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
permit 64-bit moves without MXHC1.
Force the constant into memory otherwise. */
&& (using_gprs
|| GPR_SIZE == 64
|| ISA_HAS_MXHC1 (mips_opts.isa)
|| FPR_SIZE == 32)
&& ((data[0] == 0 && data[1] == 0)
|| (data[2] == 0 && data[3] == 0))
&& ((data[4] == 0 && data[5] == 0)
|| (data[6] == 0 && data[7] == 0)))
{
/* The value is simple enough to load with a couple of instructions.
If using 32-bit registers, set IMM to the high order 32 bits and
OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
64 bit constant. */
if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
{
imm->X_op = O_constant;
offset->X_op = O_constant;
if (!target_big_endian)
{
imm->X_add_number = bfd_getl32 (data + 4);
offset->X_add_number = bfd_getl32 (data);
}
else
{
imm->X_add_number = bfd_getb32 (data);
offset->X_add_number = bfd_getb32 (data + 4);
}
if (offset->X_add_number == 0)
offset->X_op = O_absent;
}
else
{
imm->X_op = O_constant;
if (!target_big_endian)
imm->X_add_number = bfd_getl64 (data);
else
imm->X_add_number = bfd_getb64 (data);
offset->X_op = O_absent;
}
return TRUE;
}
/* Switch to the right section. */
seg = now_seg;
subseg = now_subseg;
if (length == 4)
{
gas_assert (!using_gprs && g_switch_value >= 4);
newname = ".lit4";
}
else
{
if (using_gprs || g_switch_value < 8)
newname = RDATA_SECTION_NAME;
else
newname = ".lit8";
}
new_seg = subseg_new (newname, (subsegT) 0);
bfd_set_section_flags (new_seg,
SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
frag_align (length == 4 ? 2 : 3, 0, 0);
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (new_seg, 4);
else
record_alignment (new_seg, length == 4 ? 2 : 3);
if (seg == now_seg)
as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
/* Set the argument to the current address in the section. */
imm->X_op = O_absent;
offset->X_op = O_symbol;
offset->X_add_symbol = symbol_temp_new_now ();
offset->X_add_number = 0;
/* Put the floating point number into the section. */
p = frag_more (length);
memcpy (p, data, length);
/* Switch back to the original section. */
subseg_set (seg, subseg);
return TRUE;
}
/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
them. */
static bfd_boolean
match_vu0_suffix_operand (struct mips_arg_info *arg,
const struct mips_operand *operand,
bfd_boolean match_p)
{
unsigned int uval;
/* The operand can be an XYZW mask or a single 2-bit channel index
(with X being 0). */
gas_assert (operand->size == 2 || operand->size == 4);
/* The suffix can be omitted when it is already part of the opcode. */
if (arg->token->type != OT_CHANNELS)
return match_p;
uval = arg->token->u.channels;
if (operand->size == 2)
{
/* Check that a single bit is set and convert it into a 2-bit index. */
if ((uval & -uval) != uval)
return FALSE;
uval = 4 - ffs (uval);
}
if (match_p && insn_extract_operand (arg->insn, operand) != uval)
return FALSE;
++arg->token;
if (!match_p)
insn_insert_operand (arg->insn, operand, uval);
return TRUE;
}
/* Try to match a token from ARG against OPERAND. Consume the token
and return true on success, otherwise return false. */
static bfd_boolean
match_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
switch (operand->type)
{
case OP_INT:
return match_int_operand (arg, operand);
case OP_MAPPED_INT:
return match_mapped_int_operand (arg, operand);
case OP_MSB:
return match_msb_operand (arg, operand);
case OP_REG:
case OP_OPTIONAL_REG:
return match_reg_operand (arg, operand);
case OP_REG_PAIR:
return match_reg_pair_operand (arg, operand);
case OP_PCREL:
return match_pcrel_operand (arg);
case OP_PERF_REG:
return match_perf_reg_operand (arg, operand);
case OP_ADDIUSP_INT:
return match_addiusp_operand (arg, operand);
case OP_CLO_CLZ_DEST:
return match_clo_clz_dest_operand (arg, operand);
case OP_LWM_SWM_LIST:
return match_lwm_swm_list_operand (arg, operand);
case OP_ENTRY_EXIT_LIST:
return match_entry_exit_operand (arg, operand);
case OP_SAVE_RESTORE_LIST:
return match_save_restore_list_operand (arg);
case OP_MDMX_IMM_REG:
return match_mdmx_imm_reg_operand (arg, operand);
case OP_REPEAT_DEST_REG:
return match_tied_reg_operand (arg, arg->dest_regno);
case OP_REPEAT_PREV_REG:
return match_tied_reg_operand (arg, arg->last_regno);
case OP_PC:
return match_pc_operand (arg);
case OP_REG28:
return match_reg28_operand (arg);
case OP_VU0_SUFFIX:
return match_vu0_suffix_operand (arg, operand, FALSE);
case OP_VU0_MATCH_SUFFIX:
return match_vu0_suffix_operand (arg, operand, TRUE);
case OP_IMM_INDEX:
return match_imm_index_operand (arg, operand);
case OP_REG_INDEX:
return match_reg_index_operand (arg, operand);
case OP_SAME_RS_RT:
return match_same_rs_rt_operand (arg, operand);
case OP_CHECK_PREV:
return match_check_prev_operand (arg, operand);
case OP_NON_ZERO_REG:
return match_non_zero_reg_operand (arg, operand);
}
abort ();
}
/* ARG is the state after successfully matching an instruction.
Issue any queued-up warnings. */
static void
check_completed_insn (struct mips_arg_info *arg)
{
if (arg->seen_at)
{
if (AT == ATREG)
as_warn (_("used $at without \".set noat\""));
else
as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
}
}
/* Return true if modifying general-purpose register REG needs a delay. */
static bfd_boolean
reg_needs_delay (unsigned int reg)
{
unsigned long prev_pinfo;
prev_pinfo = history[0].insn_mo->pinfo;
if (!mips_opts.noreorder
&& (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
|| ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
&& (gpr_write_mask (&history[0]) & (1 << reg)))
return TRUE;
return FALSE;
}
/* Classify an instruction according to the FIX_VR4120_* enumeration.
Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
by VR4120 errata. */
static unsigned int
classify_vr4120_insn (const char *name)
{
if (strncmp (name, "macc", 4) == 0)
return FIX_VR4120_MACC;
if (strncmp (name, "dmacc", 5) == 0)
return FIX_VR4120_DMACC;
if (strncmp (name, "mult", 4) == 0)
return FIX_VR4120_MULT;
if (strncmp (name, "dmult", 5) == 0)
return FIX_VR4120_DMULT;
if (strstr (name, "div"))
return FIX_VR4120_DIV;
if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
return FIX_VR4120_MTHILO;
return NUM_FIX_VR4120_CLASSES;
}
#define INSN_ERET 0x42000018
#define INSN_DERET 0x4200001f
#define INSN_DMULT 0x1c
#define INSN_DMULTU 0x1d
/* Return the number of instructions that must separate INSN1 and INSN2,
where INSN1 is the earlier instruction. Return the worst-case value
for any INSN2 if INSN2 is null. */
static unsigned int
insns_between (const struct mips_cl_insn *insn1,
const struct mips_cl_insn *insn2)
{
unsigned long pinfo1, pinfo2;
unsigned int mask;
/* If INFO2 is null, pessimistically assume that all flags are set for
the second instruction. */
pinfo1 = insn1->insn_mo->pinfo;
pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
/* For most targets, write-after-read dependencies on the HI and LO
registers must be separated by at least two instructions. */
if (!hilo_interlocks)
{
if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
return 2;
if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
return 2;
}
/* If we're working around r7000 errata, there must be two instructions
between an mfhi or mflo and any instruction that uses the result. */
if (mips_7000_hilo_fix
&& !mips_opts.micromips
&& MF_HILO_INSN (pinfo1)
&& (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
return 2;
/* If we're working around 24K errata, one instruction is required
if an ERET or DERET is followed by a branch instruction. */
if (mips_fix_24k && !mips_opts.micromips)
{
if (insn1->insn_opcode == INSN_ERET
|| insn1->insn_opcode == INSN_DERET)
{
if (insn2 == NULL
|| insn2->insn_opcode == INSN_ERET
|| insn2->insn_opcode == INSN_DERET
|| delayed_branch_p (insn2))
return 1;
}
}
/* If we're working around PMC RM7000 errata, there must be three
nops between a dmult and a load instruction. */
if (mips_fix_rm7000 && !mips_opts.micromips)
{
if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
|| (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
{
if (pinfo2 & INSN_LOAD_MEMORY)
return 3;
}
}
/* If working around VR4120 errata, check for combinations that need
a single intervening instruction. */
if (mips_fix_vr4120 && !mips_opts.micromips)
{
unsigned int class1, class2;
class1 = classify_vr4120_insn (insn1->insn_mo->name);
if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
{
if (insn2 == NULL)
return 1;
class2 = classify_vr4120_insn (insn2->insn_mo->name);
if (vr4120_conflicts[class1] & (1 << class2))
return 1;
}
}
if (!HAVE_CODE_COMPRESSION)
{
/* Check for GPR or coprocessor load delays. All such delays
are on the RT register. */
/* Itbl support may require additional care here. */
if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
|| (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
{
if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
return 1;
}
/* Check for generic coprocessor hazards.
This case is not handled very well. There is no special
knowledge of CP0 handling, and the coprocessors other than
the floating point unit are not distinguished at all. */
/* Itbl support may require additional care here. FIXME!
Need to modify this to include knowledge about
user specified delays! */
else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
|| (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
{
/* Handle cases where INSN1 writes to a known general coprocessor
register. There must be a one instruction delay before INSN2
if INSN2 reads that register, otherwise no delay is needed. */
mask = fpr_write_mask (insn1);
if (mask != 0)
{
if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
return 1;
}
else
{
/* Read-after-write dependencies on the control registers
require a two-instruction gap. */
if ((pinfo1 & INSN_WRITE_COND_CODE)
&& (pinfo2 & INSN_READ_COND_CODE))
return 2;
/* We don't know exactly what INSN1 does. If INSN2 is
also a coprocessor instruction, assume there must be
a one instruction gap. */
if (pinfo2 & INSN_COP)
return 1;
}
}
/* Check for read-after-write dependencies on the coprocessor
control registers in cases where INSN1 does not need a general
coprocessor delay. This means that INSN1 is a floating point
comparison instruction. */
/* Itbl support may require additional care here. */
else if (!cop_interlocks
&& (pinfo1 & INSN_WRITE_COND_CODE)
&& (pinfo2 & INSN_READ_COND_CODE))
return 1;
}
/* Forbidden slots can not contain Control Transfer Instructions (CTIs)
CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
and pause. */
if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
&& ((pinfo2 & INSN_NO_DELAY_SLOT)
|| (insn2 && delayed_branch_p (insn2))))
return 1;
return 0;
}
/* Return the number of nops that would be needed to work around the
VR4130 mflo/mfhi errata if instruction INSN immediately followed
the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
that are contained within the first IGNORE instructions of HIST. */
static int
nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int i, j;
unsigned int mask;
/* Check if the instruction writes to HI or LO. MTHI and MTLO
are not affected by the errata. */
if (insn != 0
&& ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
|| strcmp (insn->insn_mo->name, "mtlo") == 0
|| strcmp (insn->insn_mo->name, "mthi") == 0))
return 0;
/* Search for the first MFLO or MFHI. */
for (i = 0; i < MAX_VR4130_NOPS; i++)
if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
{
/* Extract the destination register. */
mask = gpr_write_mask (&hist[i]);
/* No nops are needed if INSN reads that register. */
if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
return 0;
/* ...or if any of the intervening instructions do. */
for (j = 0; j < i; j++)
if (gpr_read_mask (&hist[j]) & mask)
return 0;
if (i >= ignore)
return MAX_VR4130_NOPS - i;
}
return 0;
}
#define BASE_REG_EQ(INSN1, INSN2) \
((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
== (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
/* Return the minimum alignment for this store instruction. */
static int
fix_24k_align_to (const struct mips_opcode *mo)
{
if (strcmp (mo->name, "sh") == 0)
return 2;
if (strcmp (mo->name, "swc1") == 0
|| strcmp (mo->name, "swc2") == 0
|| strcmp (mo->name, "sw") == 0
|| strcmp (mo->name, "sc") == 0
|| strcmp (mo->name, "s.s") == 0)
return 4;
if (strcmp (mo->name, "sdc1") == 0
|| strcmp (mo->name, "sdc2") == 0
|| strcmp (mo->name, "s.d") == 0)
return 8;
/* sb, swl, swr */
return 1;
}
struct fix_24k_store_info
{
/* Immediate offset, if any, for this store instruction. */
short off;
/* Alignment required by this store instruction. */
int align_to;
/* True for register offsets. */
int register_offset;
};
/* Comparison function used by qsort. */
static int
fix_24k_sort (const void *a, const void *b)
{
const struct fix_24k_store_info *pos1 = a;
const struct fix_24k_store_info *pos2 = b;
return (pos1->off - pos2->off);
}
/* INSN is a store instruction. Try to record the store information
in STINFO. Return false if the information isn't known. */
static bfd_boolean
fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
const struct mips_cl_insn *insn)
{
/* The instruction must have a known offset. */
if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
return FALSE;
stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
stinfo->align_to = fix_24k_align_to (insn->insn_mo);
return TRUE;
}
/* Return the number of nops that would be needed to work around the 24k
"lost data on stores during refill" errata if instruction INSN
immediately followed the 2 instructions described by HIST.
Ignore hazards that are contained within the first IGNORE
instructions of HIST.
Problem: The FSB (fetch store buffer) acts as an intermediate buffer
for the data cache refills and store data. The following describes
the scenario where the store data could be lost.
* A data cache miss, due to either a load or a store, causing fill
data to be supplied by the memory subsystem
* The first three doublewords of fill data are returned and written
into the cache
* A sequence of four stores occurs in consecutive cycles around the
final doubleword of the fill:
* Store A
* Store B
* Store C
* Zero, One or more instructions
* Store D
The four stores A-D must be to different doublewords of the line that
is being filled. The fourth instruction in the sequence above permits
the fill of the final doubleword to be transferred from the FSB into
the cache. In the sequence above, the stores may be either integer
(sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
swxc1, sdxc1, suxc1) stores, as long as the four stores are to
different doublewords on the line. If the floating point unit is
running in 1:2 mode, it is not possible to create the sequence above
using only floating point store instructions.
In this case, the cache line being filled is incorrectly marked
invalid, thereby losing the data from any store to the line that
occurs between the original miss and the completion of the five
cycle sequence shown above.
The workarounds are:
* Run the data cache in write-through mode.
* Insert a non-store instruction between
Store A and Store B or Store B and Store C. */
static int
nops_for_24k (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
struct fix_24k_store_info pos[3];
int align, i, base_offset;
if (ignore >= 2)
return 0;
/* If the previous instruction wasn't a store, there's nothing to
worry about. */
if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
return 0;
/* If the instructions after the previous one are unknown, we have
to assume the worst. */
if (!insn)
return 1;
/* Check whether we are dealing with three consecutive stores. */
if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
|| (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
return 0;
/* If we don't know the relationship between the store addresses,
assume the worst. */
if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
|| !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
return 1;
if (!fix_24k_record_store_info (&pos[0], insn)
|| !fix_24k_record_store_info (&pos[1], &hist[0])
|| !fix_24k_record_store_info (&pos[2], &hist[1]))
return 1;
qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
/* Pick a value of ALIGN and X such that all offsets are adjusted by
X bytes and such that the base register + X is known to be aligned
to align bytes. */
if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
align = 8;
else
{
align = pos[0].align_to;
base_offset = pos[0].off;
for (i = 1; i < 3; i++)
if (align < pos[i].align_to)
{
align = pos[i].align_to;
base_offset = pos[i].off;
}
for (i = 0; i < 3; i++)
pos[i].off -= base_offset;
}
pos[0].off &= ~align + 1;
pos[1].off &= ~align + 1;
pos[2].off &= ~align + 1;
/* If any two stores write to the same chunk, they also write to the
same doubleword. The offsets are still sorted at this point. */
if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
return 0;
/* A range of at least 9 bytes is needed for the stores to be in
non-overlapping doublewords. */
if (pos[2].off - pos[0].off <= 8)
return 0;
if (pos[2].off - pos[1].off >= 24
|| pos[1].off - pos[0].off >= 24
|| pos[2].off - pos[0].off >= 32)
return 0;
return 1;
}
/* Return the number of nops that would be needed if instruction INSN
immediately followed the MAX_NOPS instructions given by HIST,
where HIST[0] is the most recent instruction. Ignore hazards
between INSN and the first IGNORE instructions in HIST.
If INSN is null, return the worse-case number of nops for any
instruction. */
static int
nops_for_insn (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int i, nops, tmp_nops;
nops = 0;
for (i = ignore; i < MAX_DELAY_NOPS; i++)
{
tmp_nops = insns_between (hist + i, insn) - i;
if (tmp_nops > nops)
nops = tmp_nops;
}
if (mips_fix_vr4130 && !mips_opts.micromips)
{
tmp_nops = nops_for_vr4130 (ignore, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
if (mips_fix_24k && !mips_opts.micromips)
{
tmp_nops = nops_for_24k (ignore, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
return nops;
}
/* The variable arguments provide NUM_INSNS extra instructions that
might be added to HIST. Return the largest number of nops that
would be needed after the extended sequence, ignoring hazards
in the first IGNORE instructions. */
static int
nops_for_sequence (int num_insns, int ignore,
const struct mips_cl_insn *hist, ...)
{
va_list args;
struct mips_cl_insn buffer[MAX_NOPS];
struct mips_cl_insn *cursor;
int nops;
va_start (args, hist);
cursor = buffer + num_insns;
memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
while (cursor > buffer)
*--cursor = *va_arg (args, const struct mips_cl_insn *);
nops = nops_for_insn (ignore, buffer, NULL);
va_end (args);
return nops;
}
/* Like nops_for_insn, but if INSN is a branch, take into account the
worst-case delay for the branch target. */
static int
nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int nops, tmp_nops;
nops = nops_for_insn (ignore, hist, insn);
if (delayed_branch_p (insn))
{
tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
hist, insn, get_delay_slot_nop (insn));
if (tmp_nops > nops)
nops = tmp_nops;
}
else if (compact_branch_p (insn))
{
tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
return nops;
}
/* Fix NOP issue: Replace nops by "or at,at,zero". */
static void
fix_loongson2f_nop (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
if (strcmp (ip->insn_mo->name, "nop") == 0)
ip->insn_opcode = LOONGSON2F_NOP_INSN;
}
/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
jr target pc &= 'hffff_ffff_cfff_ffff. */
static void
fix_loongson2f_jump (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
if (strcmp (ip->insn_mo->name, "j") == 0
|| strcmp (ip->insn_mo->name, "jr") == 0
|| strcmp (ip->insn_mo->name, "jalr") == 0)
{
int sreg;
expressionS ep;
if (! mips_opts.at)
return;
sreg = EXTRACT_OPERAND (0, RS, *ip);
if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
return;
ep.X_op = O_constant;
ep.X_add_number = 0xcfff0000;
macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
ep.X_add_number = 0xffff;
macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
}
}
static void
fix_loongson2f (struct mips_cl_insn * ip)
{
if (mips_fix_loongson2f_nop)
fix_loongson2f_nop (ip);
if (mips_fix_loongson2f_jump)
fix_loongson2f_jump (ip);
}
static bfd_boolean
has_label_name (const char *arr[], size_t len ,const char *s)
{
unsigned long i;
for (i = 0; i < len; i++)
{
if (!arr[i])
return FALSE;
if (streq (arr[i], s))
return TRUE;
}
return FALSE;
}
/* Fix loongson3 llsc errata: Insert sync before ll/lld. */
static void
fix_loongson3_llsc (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
/* If is an local label and the insn is not sync,
look forward that whether an branch between ll/sc jump to here
if so, insert a sync. */
if (seg_info (now_seg)->label_list
&& S_IS_LOCAL (seg_info (now_seg)->label_list->label)
&& (strcmp (ip->insn_mo->name, "sync") != 0))
{
unsigned long i;
valueT label_value;
const char *label_names[MAX_LABELS_SAME];
const char *label_name;
label_name = S_GET_NAME (seg_info (now_seg)->label_list->label);
label_names[0] = label_name;
struct insn_label_list *llist = seg_info (now_seg)->label_list;
label_value = S_GET_VALUE (llist->label);
for (i = 1; i < MAX_LABELS_SAME; i++)
{
llist = llist->next;
if (!llist)
break;
if (S_GET_VALUE (llist->label) == label_value)
label_names[i] = S_GET_NAME (llist->label);
else
break;
}
for (; i < MAX_LABELS_SAME; i++)
label_names[i] = NULL;
unsigned long lookback = ARRAY_SIZE (history);
for (i = 0; i < lookback; i++)
{
if (streq (history[i].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
if (streq (history[i].insn_mo->name, "sc")
|| streq (history[i].insn_mo->name, "scd"))
{
unsigned long j;
for (j = i + 1; j < lookback; j++)
{
if (streq (history[i].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
if (delayed_branch_p (&history[j]))
{
if (has_label_name (label_names,
MAX_LABELS_SAME,
history[j].target))
{
add_fixed_insn (&sync_insn);
insert_into_history (0, 1, &sync_insn);
i = lookback;
break;
}
}
}
}
}
}
/* If we find a sc, we look forward to look for an branch insn,
and see whether it jump back and out of ll/sc. */
else if (streq (ip->insn_mo->name, "sc") || streq (ip->insn_mo->name, "scd"))
{
unsigned long lookback = ARRAY_SIZE (history) - 1;
unsigned long i;
for (i = 0; i < lookback; i++)
{
if (streq (history[i].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
if (delayed_branch_p (&history[i]))
{
unsigned long j;
for (j = i + 1; j < lookback; j++)
{
if (streq (history[j].insn_mo->name, "ll")
|| streq (history[i].insn_mo->name, "lld"))
break;
}
for (; j < lookback; j++)
{
if (history[j].label[0] != '\0'
&& streq (history[j].label, history[i].target)
&& strcmp (history[j+1].insn_mo->name, "sync") != 0)
{
add_fixed_insn (&sync_insn);
insert_into_history (++j, 1, &sync_insn);
}
}
}
}
}
/* Skip if there is a sync before ll/lld. */
if ((strcmp (ip->insn_mo->name, "ll") == 0
|| strcmp (ip->insn_mo->name, "lld") == 0)
&& (strcmp (history[0].insn_mo->name, "sync") != 0))
{
add_fixed_insn (&sync_insn);
insert_into_history (0, 1, &sync_insn);
}
}
/* IP is a branch that has a delay slot, and we need to fill it
automatically. Return true if we can do that by swapping IP
with the previous instruction.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. */
static bfd_boolean
can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type)
{
unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
unsigned int fpr_read, prev_fpr_write;
/* -O2 and above is required for this optimization. */
if (mips_optimize < 2)
return FALSE;
/* If we have seen .set volatile or .set nomove, don't optimize. */
if (mips_opts.nomove)
return FALSE;
/* We can't swap if the previous instruction's position is fixed. */
if (history[0].fixed_p)
return FALSE;
/* If the previous previous insn was in a .set noreorder, we can't
swap. Actually, the MIPS assembler will swap in this situation.
However, gcc configured -with-gnu-as will generate code like
.set noreorder
lw $4,XXX
.set reorder
INSN
bne $4,$0,foo
in which we can not swap the bne and INSN. If gcc is not configured
-with-gnu-as, it does not output the .set pseudo-ops. */
if (history[1].noreorder_p)
return FALSE;
/* If the previous instruction had a fixup in mips16 mode, we can not swap.
This means that the previous instruction was a 4-byte one anyhow. */
if (mips_opts.mips16 && history[0].fixp[0])
return FALSE;
/* If the branch is itself the target of a branch, we can not swap.
We cheat on this; all we check for is whether there is a label on
this instruction. If there are any branches to anything other than
a label, users must use .set noreorder. */
if (seg_info (now_seg)->label_list)
return FALSE;
/* If the previous instruction is in a variant frag other than this
branch's one, we cannot do the swap. This does not apply to
MIPS16 code, which uses variant frags for different purposes. */
if (!mips_opts.mips16
&& history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent)
return FALSE;
/* We do not swap with instructions that cannot architecturally
be placed in a branch delay slot, such as SYNC or ERET. We
also refrain from swapping with a trap instruction, since it
complicates trap handlers to have the trap instruction be in
a delay slot. */
prev_pinfo = history[0].insn_mo->pinfo;
if (prev_pinfo & INSN_NO_DELAY_SLOT)
return FALSE;
/* Check for conflicts between the branch and the instructions
before the candidate delay slot. */
if (nops_for_insn (0, history + 1, ip) > 0)
return FALSE;
/* Check for conflicts between the swapped sequence and the
target of the branch. */
if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
return FALSE;
/* If the branch reads a register that the previous
instruction sets, we can not swap. */
gpr_read = gpr_read_mask (ip);
prev_gpr_write = gpr_write_mask (&history[0]);
if (gpr_read & prev_gpr_write)
return FALSE;
fpr_read = fpr_read_mask (ip);
prev_fpr_write = fpr_write_mask (&history[0]);
if (fpr_read & prev_fpr_write)
return FALSE;
/* If the branch writes a register that the previous
instruction sets, we can not swap. */
gpr_write = gpr_write_mask (ip);
if (gpr_write & prev_gpr_write)
return FALSE;
/* If the branch writes a register that the previous
instruction reads, we can not swap. */
prev_gpr_read = gpr_read_mask (&history[0]);
if (gpr_write & prev_gpr_read)
return FALSE;
/* If one instruction sets a condition code and the
other one uses a condition code, we can not swap. */
pinfo = ip->insn_mo->pinfo;
if ((pinfo & INSN_READ_COND_CODE)
&& (prev_pinfo & INSN_WRITE_COND_CODE))
return FALSE;
if ((pinfo & INSN_WRITE_COND_CODE)
&& (prev_pinfo & INSN_READ_COND_CODE))
return FALSE;
/* If the previous instruction uses the PC, we can not swap. */
prev_pinfo2 = history[0].insn_mo->pinfo2;
if (prev_pinfo2 & INSN2_READ_PC)
return FALSE;
/* If the previous instruction has an incorrect size for a fixed
branch delay slot in microMIPS mode, we cannot swap. */
pinfo2 = ip->insn_mo->pinfo2;
if (mips_opts.micromips
&& (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
&& insn_length (history) != 2)
return FALSE;
if (mips_opts.micromips
&& (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
&& insn_length (history) != 4)
return FALSE;
/* On the R5900 short loops need to be fixed by inserting a NOP in the
branch delay slot.
The short loop bug under certain conditions causes loops to execute
only once or twice. We must ensure that the assembler never
generates loops that satisfy all of the following conditions:
- a loop consists of less than or equal to six instructions
(including the branch delay slot);
- a loop contains only one conditional branch instruction at the end
of the loop;
- a loop does not contain any other branch or jump instructions;
- a branch delay slot of the loop is not NOP (EE 2.9 or later).
We need to do this because of a hardware bug in the R5900 chip. */
if (mips_fix_r5900
/* Check if instruction has a parameter, ignore "j $31". */
&& (address_expr != NULL)
/* Parameter must be 16 bit. */
&& (*reloc_type == BFD_RELOC_16_PCREL_S2)
/* Branch to same segment. */
&& (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
/* Branch to same code fragment. */
&& (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
/* Can only calculate branch offset if value is known. */
&& symbol_constant_p (address_expr->X_add_symbol)
/* Check if branch is really conditional. */
&& !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|| (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
|| (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
{
int distance;
/* Check if loop is shorter than or equal to 6 instructions
including branch and delay slot. */
distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
if (distance <= 20)
{
int i;
int rv;
rv = FALSE;
/* When the loop includes branches or jumps,
it is not a short loop. */
for (i = 0; i < (distance / 4); i++)
{
if ((history[i].cleared_p)
|| delayed_branch_p (&history[i]))
{
rv = TRUE;
break;
}
}
if (!rv)
{
/* Insert nop after branch to fix short loop. */
return FALSE;
}
}
}
return TRUE;
}
/* Decide how we should add IP to the instruction stream.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. */
static enum append_method
get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type)
{
/* The relaxed version of a macro sequence must be inherently
hazard-free. */
if (mips_relax.sequence == 2)
return APPEND_ADD;
/* We must not dabble with instructions in a ".set noreorder" block. */
if (mips_opts.noreorder)
return APPEND_ADD;
/* Otherwise, it's our responsibility to fill branch delay slots. */
if (delayed_branch_p (ip))
{
if (!branch_likely_p (ip)
&& can_swap_branch_p (ip, address_expr, reloc_type))
return APPEND_SWAP;
if (mips_opts.mips16
&& ISA_SUPPORTS_MIPS16E
&& gpr_read_mask (ip) != 0)
return APPEND_ADD_COMPACT;
if (mips_opts.micromips
&& ((ip->insn_opcode & 0xffe0) == 0x4580
|| (!forced_insn_length
&& ((ip->insn_opcode & 0xfc00) == 0xcc00
|| (ip->insn_opcode & 0xdc00) == 0x8c00))
|| (ip->insn_opcode & 0xdfe00000) == 0x94000000
|| (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
return APPEND_ADD_COMPACT;
return APPEND_ADD_WITH_NOP;
}
return APPEND_ADD;
}
/* IP is an instruction whose opcode we have just changed, END points
to the end of the opcode table processed. Point IP->insn_mo to the
new opcode's definition. */
static void
find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
{
const struct mips_opcode *mo;
for (mo = ip->insn_mo; mo < end; mo++)
if (mo->pinfo != INSN_MACRO
&& (ip->insn_opcode & mo->mask) == mo->match)
{
ip->insn_mo = mo;
return;
}
abort ();
}
/* IP is a MIPS16 instruction whose opcode we have just changed.
Point IP->insn_mo to the new opcode's definition. */
static void
find_altered_mips16_opcode (struct mips_cl_insn *ip)
{
find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
}
/* IP is a microMIPS instruction whose opcode we have just changed.
Point IP->insn_mo to the new opcode's definition. */
static void
find_altered_micromips_opcode (struct mips_cl_insn *ip)
{
find_altered_opcode (ip, µmips_opcodes[bfd_micromips_num_opcodes]);
}
/* For microMIPS macros, we need to generate a local number label
as the target of branches. */
#define MICROMIPS_LABEL_CHAR '\037'
static unsigned long micromips_target_label;
static char micromips_target_name[32];
static char *
micromips_label_name (void)
{
char *p = micromips_target_name;
char symbol_name_temporary[24];
unsigned long l;
int i;
if (*p)
return p;
i = 0;
l = micromips_target_label;
#ifdef LOCAL_LABEL_PREFIX
*p++ = LOCAL_LABEL_PREFIX;
#endif
*p++ = 'L';
*p++ = MICROMIPS_LABEL_CHAR;
do
{
symbol_name_temporary[i++] = l % 10 + '0';
l /= 10;
}
while (l != 0);
while (i > 0)
*p++ = symbol_name_temporary[--i];
*p = '\0';
return micromips_target_name;
}
static void
micromips_label_expr (expressionS *label_expr)
{
label_expr->X_op = O_symbol;
label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
label_expr->X_add_number = 0;
}
static void
micromips_label_inc (void)
{
micromips_target_label++;
*micromips_target_name = '\0';
}
static void
micromips_add_label (void)
{
symbolS *s;
s = colon (micromips_label_name ());
micromips_label_inc ();
S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
}
/* If assembling microMIPS code, then return the microMIPS reloc
corresponding to the requested one if any. Otherwise return
the reloc unchanged. */
static bfd_reloc_code_real_type
micromips_map_reloc (bfd_reloc_code_real_type reloc)
{
static const bfd_reloc_code_real_type relocs[][2] =
{
/* Keep sorted incrementally by the left-hand key. */
{ BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
{ BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
{ BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
{ BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
{ BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
{ BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
{ BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
{ BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
{ BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
{ BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
{ BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
{ BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
{ BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
{ BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
{ BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
{ BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
{ BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
{ BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
{ BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
{ BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
{ BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
{ BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
{ BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
{ BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
{ BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
{ BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
{ BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
};
bfd_reloc_code_real_type r;
size_t i;
if (!mips_opts.micromips)
return reloc;
for (i = 0; i < ARRAY_SIZE (relocs); i++)
{
r = relocs[i][0];
if (r > reloc)
return reloc;
if (r == reloc)
return relocs[i][1];
}
return reloc;
}
/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
Return true on success, storing the resolved value in RESULT. */
static bfd_boolean
calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
offsetT *result)
{
switch (reloc)
{
case BFD_RELOC_MIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHEST:
*result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
return TRUE;
case BFD_RELOC_MIPS_HIGHER:
case BFD_RELOC_MICROMIPS_HIGHER:
*result = ((operand + 0x80008000ull) >> 32) & 0xffff;
return TRUE;
case BFD_RELOC_HI16_S:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MIPS16_HI16_S:
*result = ((operand + 0x8000) >> 16) & 0xffff;
return TRUE;
case BFD_RELOC_HI16:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MIPS16_HI16:
*result = (operand >> 16) & 0xffff;
return TRUE;
case BFD_RELOC_LO16:
case BFD_RELOC_LO16_PCREL:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MIPS16_LO16:
*result = operand & 0xffff;
return TRUE;
case BFD_RELOC_UNUSED:
*result = operand;
return TRUE;
default:
return FALSE;
}
}
/* Output an instruction. IP is the instruction information.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. EXPANSIONP is true if the instruction is part of
a macro expansion. */
static void
append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
{
unsigned long prev_pinfo2, pinfo;
bfd_boolean relaxed_branch = FALSE;
enum append_method method;
bfd_boolean relax32;
int branch_disp;
if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
fix_loongson2f (ip);
ip->target[0] = '\0';
if (offset_expr.X_op == O_symbol)
strncpy (ip->target, S_GET_NAME (offset_expr.X_add_symbol), 15);
ip->label[0] = '\0';
if (seg_info (now_seg)->label_list)
strncpy (ip->label, S_GET_NAME (seg_info (now_seg)->label_list->label), 15);
if (mips_fix_loongson3_llsc && !HAVE_CODE_COMPRESSION)
fix_loongson3_llsc (ip);
file_ase_mips16 |= mips_opts.mips16;
file_ase_micromips |= mips_opts.micromips;
prev_pinfo2 = history[0].insn_mo->pinfo2;
pinfo = ip->insn_mo->pinfo;
/* Don't raise alarm about `nods' frags as they'll fill in the right
kind of nop in relaxation if required. */
if (mips_opts.micromips
&& !expansionp
&& !(history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent
&& RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
&& RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
&& (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
&& micromips_insn_length (ip->insn_mo) != 2)
|| ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
&& micromips_insn_length (ip->insn_mo) != 4)))
as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
(prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
if (address_expr == NULL)
ip->complete_p = 1;
else if (reloc_type[0] <= BFD_RELOC_UNUSED
&& reloc_type[1] == BFD_RELOC_UNUSED
&& reloc_type[2] == BFD_RELOC_UNUSED
&& address_expr->X_op == O_constant)
{
switch (*reloc_type)
{
case BFD_RELOC_MIPS_JMP:
{
int shift;
/* Shift is 2, unusually, for microMIPS JALX. */
shift = (mips_opts.micromips
&& strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("jump to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x3ffffff);
ip->complete_p = 1;
}
break;
case BFD_RELOC_MIPS16_JMP:
if ((address_expr->X_add_number & 3) != 0)
as_bad (_("jump to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |=
(((address_expr->X_add_number & 0x7c0000) << 3)
| ((address_expr->X_add_number & 0xf800000) >> 7)
| ((address_expr->X_add_number & 0x3fffc) >> 2));
ip->complete_p = 1;
break;
case BFD_RELOC_16_PCREL_S2:
{
int shift;
shift = mips_opts.micromips ? 1 : 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if (!mips_relax_branch)
{
if ((address_expr->X_add_number + (1 << (shift + 15)))
& ~((1 << (shift + 16)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0xffff);
}
}
break;
case BFD_RELOC_MIPS_21_PCREL_S2:
{
int shift;
shift = 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if ((address_expr->X_add_number + (1 << (shift + 20)))
& ~((1 << (shift + 21)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x1fffff);
}
break;
case BFD_RELOC_MIPS_26_PCREL_S2:
{
int shift;
shift = 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if ((address_expr->X_add_number + (1 << (shift + 25)))
& ~((1 << (shift + 26)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x3ffffff);
}
break;
default:
{
offsetT value;
if (calculate_reloc (*reloc_type, address_expr->X_add_number,
&value))
{
ip->insn_opcode |= value & 0xffff;
ip->complete_p = 1;
}
}
break;
}
}
if (mips_relax.sequence != 2 && !mips_opts.noreorder)
{
/* There are a lot of optimizations we could do that we don't.
In particular, we do not, in general, reorder instructions.
If you use gcc with optimization, it will reorder
instructions and generally do much more optimization then we
do here; repeating all that work in the assembler would only
benefit hand written assembly code, and does not seem worth
it. */
int nops = (mips_optimize == 0
? nops_for_insn (0, history, NULL)
: nops_for_insn_or_target (0, history, ip));
if (nops > 0)
{
fragS *old_frag;
unsigned long old_frag_offset;
int i;
old_frag = frag_now;
old_frag_offset = frag_now_fix ();
for (i = 0; i < nops; i++)
add_fixed_insn (NOP_INSN);
insert_into_history (0, nops, NOP_INSN);
if (listing)
{
listing_prev_line ();
/* We may be at the start of a variant frag. In case we
are, make sure there is enough space for the frag
after the frags created by listing_prev_line. The
argument to frag_grow here must be at least as large
as the argument to all other calls to frag_grow in
this file. We don't have to worry about being in the
middle of a variant frag, because the variants insert
all needed nop instructions themselves. */
frag_grow (40);
}
mips_move_text_labels ();
#ifndef NO_ECOFF_DEBUGGING
if (ECOFF_DEBUGGING)
ecoff_fix_loc (old_frag, old_frag_offset);
#endif
}
}
else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
{
int nops;
/* Work out how many nops in prev_nop_frag are needed by IP,
ignoring hazards generated by the first prev_nop_frag_since
instructions. */
nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
gas_assert (nops <= prev_nop_frag_holds);
/* Enforce NOPS as a minimum. */
if (nops > prev_nop_frag_required)
prev_nop_frag_required = nops;
if (prev_nop_frag_holds == prev_nop_frag_required)
{
/* Settle for the current number of nops. Update the history
accordingly (for the benefit of any future .set reorder code). */
prev_nop_frag = NULL;
insert_into_history (prev_nop_frag_since,
prev_nop_frag_holds, NOP_INSN);
}
else
{
/* Allow this instruction to replace one of the nops that was
tentatively added to prev_nop_frag. */
prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
prev_nop_frag_holds--;
prev_nop_frag_since++;
}
}
method = get_append_method (ip, address_expr, reloc_type);
branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
dwarf2_emit_insn (0);
/* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
so "move" the instruction address accordingly.
Also, it doesn't seem appropriate for the assembler to reorder .loc
entries. If this instruction is a branch that we are going to swap
with the previous instruction, the two instructions should be
treated as a unit, and the debug information for both instructions
should refer to the start of the branch sequence. Using the
current position is certainly wrong when swapping a 32-bit branch
and a 16-bit delay slot, since the current position would then be
in the middle of a branch. */
dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
relax32 = (mips_relax_branch
/* Don't try branch relaxation within .set nomacro, or within
.set noat if we use $at for PIC computations. If it turns
out that the branch was out-of-range, we'll get an error. */
&& !mips_opts.warn_about_macros
&& (mips_opts.at || mips_pic == NO_PIC)
/* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
as they have no complementing branches. */
&& !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
if (!HAVE_CODE_COMPRESSION
&& address_expr
&& relax32
&& *reloc_type == BFD_RELOC_16_PCREL_S2
&& delayed_branch_p (ip))
{
relaxed_branch = TRUE;
add_relaxed_insn (ip, (relaxed_branch_length
(NULL, NULL,
uncond_branch_p (ip) ? -1
: branch_likely_p (ip) ? 1
: 0)), 4,
RELAX_BRANCH_ENCODE
(AT, mips_pic != NO_PIC,
uncond_branch_p (ip),
branch_likely_p (ip),
pinfo & INSN_WRITE_GPR_31,
0),
address_expr->X_add_symbol,
address_expr->X_add_number);
*reloc_type = BFD_RELOC_UNUSED;
}
else if (mips_opts.micromips
&& address_expr
&& ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
|| *reloc_type > BFD_RELOC_UNUSED)
&& (delayed_branch_p (ip) || compact_branch_p (ip))
/* Don't try branch relaxation when users specify
16-bit/32-bit instructions. */
&& !forced_insn_length)
{
bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
&& *reloc_type > BFD_RELOC_UNUSED);
int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
int uncond = uncond_branch_p (ip) ? -1 : 0;
int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
int nods = method == APPEND_ADD_WITH_NOP;
int al = pinfo & INSN_WRITE_GPR_31;
int length32 = nods ? 8 : 4;
gas_assert (address_expr != NULL);
gas_assert (!mips_relax.sequence);
relaxed_branch = TRUE;
if (nods)
method = APPEND_ADD;
if (relax32)
length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
mips_pic != NO_PIC,
uncond, compact, al, nods,
relax32, 0, 0),
address_expr->X_add_symbol,
address_expr->X_add_number);
*reloc_type = BFD_RELOC_UNUSED;
}
else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
{
bfd_boolean require_unextended;
bfd_boolean require_extended;
symbolS *symbol;
offsetT offset;
if (forced_insn_length != 0)
{
require_unextended = forced_insn_length == 2;
require_extended = forced_insn_length == 4;
}
else
{
require_unextended = (mips_opts.noautoextend
&& !mips_opcode_32bit_p (ip->insn_mo));
require_extended = 0;
}
/* We need to set up a variant frag. */
gas_assert (address_expr != NULL);
/* Pass any `O_symbol' expression unchanged as an `expr_section'
symbol created by `make_expr_symbol' may not get a necessary
external relocation produced. */
if (address_expr->X_op == O_symbol)
{
symbol = address_expr->X_add_symbol;
offset = address_expr->X_add_number;
}
else
{
symbol = make_expr_symbol (address_expr);
symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
offset = 0;
}
add_relaxed_insn (ip, 12, 0,
RELAX_MIPS16_ENCODE
(*reloc_type - BFD_RELOC_UNUSED,
mips_opts.ase & ASE_MIPS16E2,
mips_pic != NO_PIC,
HAVE_32BIT_SYMBOLS,
mips_opts.warn_about_macros,
require_unextended, require_extended,
delayed_branch_p (&history[0]),
history[0].mips16_absolute_jump_p),
symbol, offset);
}
else if (mips_opts.mips16 && insn_length (ip) == 2)
{
if (!delayed_branch_p (ip))
/* Make sure there is enough room to swap this instruction with
a following jump instruction. */
frag_grow (6);
add_fixed_insn (ip);
}
else
{
if (mips_opts.mips16
&& mips_opts.noreorder
&& delayed_branch_p (&history[0]))
as_warn (_("extended instruction in delay slot"));
if (mips_relax.sequence)
{
/* If we've reached the end of this frag, turn it into a variant
frag and record the information for the instructions we've
written so far. */
if (frag_room () < 4)
relax_close_frag ();
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
}
if (mips_relax.sequence != 2)
{
if (mips_macro_warning.first_insn_sizes[0] == 0)
mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
mips_macro_warning.sizes[0] += insn_length (ip);
mips_macro_warning.insns[0]++;
}
if (mips_relax.sequence != 1)
{
if (mips_macro_warning.first_insn_sizes[1] == 0)
mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
mips_macro_warning.sizes[1] += insn_length (ip);
mips_macro_warning.insns[1]++;
}
if (mips_opts.mips16)
{
ip->fixed_p = 1;
ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
}
add_fixed_insn (ip);
}
if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
{
bfd_reloc_code_real_type final_type[3];
reloc_howto_type *howto0;
reloc_howto_type *howto;
int i;
/* Perform any necessary conversion to microMIPS relocations
and find out how many relocations there actually are. */
for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
final_type[i] = micromips_map_reloc (reloc_type[i]);
/* In a compound relocation, it is the final (outermost)
operator that determines the relocated field. */
howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
if (!howto)
abort ();
if (i > 1)
howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
bfd_get_reloc_size (howto),
address_expr,
howto0 && howto0->pc_relative,
final_type[0]);
/* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
/* Tag symbols that have a R_MIPS16_26 relocation against them. */
if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
*symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
/* These relocations can have an addend that won't fit in
4 octets for 64bit assembly. */
if (GPR_SIZE == 64
&& ! howto->partial_inplace
&& (reloc_type[0] == BFD_RELOC_16
|| reloc_type[0] == BFD_RELOC_32
|| reloc_type[0] == BFD_RELOC_MIPS_JMP
|| reloc_type[0] == BFD_RELOC_GPREL16
|| reloc_type[0] == BFD_RELOC_MIPS_LITERAL
|| reloc_type[0] == BFD_RELOC_GPREL32
|| reloc_type[0] == BFD_RELOC_64
|| reloc_type[0] == BFD_RELOC_CTOR
|| reloc_type[0] == BFD_RELOC_MIPS_SUB
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHER
|| reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
|| reloc_type[0] == BFD_RELOC_MIPS_REL16
|| reloc_type[0] == BFD_RELOC_MIPS_RELGOT
|| reloc_type[0] == BFD_RELOC_MIPS16_GPREL
|| hi16_reloc_p (reloc_type[0])
|| lo16_reloc_p (reloc_type[0])))
ip->fixp[0]->fx_no_overflow = 1;
/* These relocations can have an addend that won't fit in 2 octets. */
if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
|| reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
ip->fixp[0]->fx_no_overflow = 1;
if (mips_relax.sequence)
{
if (mips_relax.first_fixup == 0)
mips_relax.first_fixup = ip->fixp[0];
}
else if (reloc_needs_lo_p (*reloc_type))
{
struct mips_hi_fixup *hi_fixup;
/* Reuse the last entry if it already has a matching %lo. */
hi_fixup = mips_hi_fixup_list;
if (hi_fixup == 0
|| !fixup_has_matching_lo_p (hi_fixup->fixp))
{
hi_fixup = XNEW (struct mips_hi_fixup);
hi_fixup->next = mips_hi_fixup_list;
mips_hi_fixup_list = hi_fixup;
}
hi_fixup->fixp = ip->fixp[0];
hi_fixup->seg = now_seg;
}
/* Add fixups for the second and third relocations, if given.
Note that the ABI allows the second relocation to be
against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
moment we only use RSS_UNDEF, but we could add support
for the others if it ever becomes necessary. */
for (i = 1; i < 3; i++)
if (reloc_type[i] != BFD_RELOC_UNUSED)
{
ip->fixp[i] = fix_new (ip->frag, ip->where,
ip->fixp[0]->fx_size, NULL, 0,
FALSE, final_type[i]);
/* Use fx_tcbit to mark compound relocs. */
ip->fixp[0]->fx_tcbit = 1;
ip->fixp[i]->fx_tcbit = 1;
}
}
/* Update the register mask information. */
mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
switch (method)
{
case APPEND_ADD:
insert_into_history (0, 1, ip);
break;
case APPEND_ADD_WITH_NOP:
{
struct mips_cl_insn *nop;
insert_into_history (0, 1, ip);
nop = get_delay_slot_nop (ip);
add_fixed_insn (nop);
insert_into_history (0, 1, nop);
if (mips_relax.sequence)
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
}
break;
case APPEND_ADD_COMPACT:
/* Convert MIPS16 jr/jalr into a "compact" jump. */
if (mips_opts.mips16)
{
ip->insn_opcode |= 0x0080;
find_altered_mips16_opcode (ip);
}
/* Convert microMIPS instructions. */
else if (mips_opts.micromips)
{
/* jr16->jrc */
if ((ip->insn_opcode & 0xffe0) == 0x4580)
ip->insn_opcode |= 0x0020;
/* b16->bc */
else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
ip->insn_opcode = 0x40e00000;
/* beqz16->beqzc, bnez16->bnezc */
else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
{
unsigned long regno;
regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
regno &= MICROMIPSOP_MASK_MD;
regno = micromips_to_32_reg_d_map[regno];
ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
| (regno << MICROMIPSOP_SH_RS)
| 0x40a00000) ^ 0x00400000;
}
/* beqz->beqzc, bnez->bnezc */
else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
| ((ip->insn_opcode >> 7) & 0x00400000)
| 0x40a00000) ^ 0x00400000;
/* beq $0->beqzc, bne $0->bnezc */
else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
ip->insn_opcode = (((ip->insn_opcode >>
(MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
& (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
| ((ip->insn_opcode >> 7) & 0x00400000)
| 0x40a00000) ^ 0x00400000;
else
abort ();
find_altered_micromips_opcode (ip);
}
else
abort ();
install_insn (ip);
insert_into_history (0, 1, ip);
break;
case APPEND_SWAP:
{
struct mips_cl_insn delay = history[0];
if (relaxed_branch || delay.frag != ip->frag)
{
/* Add the delay slot instruction to the end of the
current frag and shrink the fixed part of the
original frag. If the branch occupies the tail of
the latter, move it backwards to cover the gap. */
delay.frag->fr_fix -= branch_disp;
if (delay.frag == ip->frag)
move_insn (ip, ip->frag, ip->where - branch_disp);
add_fixed_insn (&delay);
}
else
{
/* If this is not a relaxed branch and we are in the
same frag, then just swap the instructions. */
move_insn (ip, delay.frag, delay.where);
move_insn (&delay, ip->frag, ip->where + insn_length (ip));
}
history[0] = *ip;
delay.fixed_p = 1;
insert_into_history (0, 1, &delay);
}
break;
}
/* If we have just completed an unconditional branch, clear the history. */
if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
|| (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
{
unsigned int i;
mips_no_prev_insn ();
for (i = 0; i < ARRAY_SIZE (history); i++)
history[i].cleared_p = 1;
}
/* We need to emit a label at the end of branch-likely macros. */
if (emit_branch_likely_macro)
{
emit_branch_likely_macro = FALSE;
micromips_add_label ();
}
/* We just output an insn, so the next one doesn't have a label. */
mips_clear_insn_labels ();
}
/* Forget that there was any previous instruction or label.
When BRANCH is true, the branch history is also flushed. */
static void
mips_no_prev_insn (void)
{
prev_nop_frag = NULL;
insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
mips_clear_insn_labels ();
}
/* This function must be called before we emit something other than
instructions. It is like mips_no_prev_insn except that it inserts
any NOPS that might be needed by previous instructions. */
void
mips_emit_delays (void)
{
if (! mips_opts.noreorder)
{
int nops = nops_for_insn (0, history, NULL);
if (nops > 0)
{
while (nops-- > 0)
add_fixed_insn (NOP_INSN);
mips_move_text_labels ();
}
}
mips_no_prev_insn ();
}
/* Start a (possibly nested) noreorder block. */
static void
start_noreorder (void)
{
if (mips_opts.noreorder == 0)
{
unsigned int i;
int nops;
/* None of the instructions before the .set noreorder can be moved. */
for (i = 0; i < ARRAY_SIZE (history); i++)
history[i].fixed_p = 1;
/* Insert any nops that might be needed between the .set noreorder
block and the previous instructions. We will later remove any
nops that turn out not to be needed. */
nops = nops_for_insn (0, history, NULL);
if (nops > 0)
{
if (mips_optimize != 0)
{
/* Record the frag which holds the nop instructions, so
that we can remove them if we don't need them. */
frag_grow (nops * NOP_INSN_SIZE);
prev_nop_frag = frag_now;
prev_nop_frag_holds = nops;
prev_nop_frag_required = 0;
prev_nop_frag_since = 0;
}
for (; nops > 0; --nops)
add_fixed_insn (NOP_INSN);
/* Move on to a new frag, so that it is safe to simply
decrease the size of prev_nop_frag. */
frag_wane (frag_now);
frag_new (0);
mips_move_text_labels ();
}
mips_mark_labels ();
mips_clear_insn_labels ();
}
mips_opts.noreorder++;
mips_any_noreorder = 1;
}
/* End a nested noreorder block. */
static void
end_noreorder (void)
{
mips_opts.noreorder--;
if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
{
/* Commit to inserting prev_nop_frag_required nops and go back to
handling nop insertion the .set reorder way. */
prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
* NOP_INSN_SIZE);
insert_into_history (prev_nop_frag_since,
prev_nop_frag_required, NOP_INSN);
prev_nop_frag = NULL;
}
}
/* Sign-extend 32-bit mode constants that have bit 31 set and all
higher bits unset. */
static void
normalize_constant_expr (expressionS *ex)
{
if (ex->X_op == O_constant
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
- 0x80000000);
}
/* Sign-extend 32-bit mode address offsets that have bit 31 set and
all higher bits unset. */
static void
normalize_address_expr (expressionS *ex)
{
if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
|| (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
- 0x80000000);
}
/* Try to match TOKENS against OPCODE, storing the result in INSN.
Return true if the match was successful.
OPCODE_EXTRA is a value that should be ORed into the opcode
(used for VU0 channel suffixes, etc.). MORE_ALTS is true if
there are more alternatives after OPCODE and SOFT_MATCH is
as for mips_arg_info. */
static bfd_boolean
match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
struct mips_operand_token *tokens, unsigned int opcode_extra,
bfd_boolean lax_match, bfd_boolean complete_p)
{
const char *args;
struct mips_arg_info arg;
const struct mips_operand *operand;
char c;
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
create_insn (insn, opcode);
/* When no opcode suffix is specified, assume ".xyzw". */
if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
else
insn->insn_opcode |= opcode_extra;
memset (&arg, 0, sizeof (arg));
arg.insn = insn;
arg.token = tokens;
arg.argnum = 1;
arg.last_regno = ILLEGAL_REG;
arg.dest_regno = ILLEGAL_REG;
arg.lax_match = lax_match;
for (args = opcode->args;; ++args)
{
if (arg.token->type == OT_END)
{
/* Handle unary instructions in which only one operand is given.
The source is then the same as the destination. */
if (arg.opnum == 1 && *args == ',')
{
operand = (mips_opts.micromips
? decode_micromips_operand (args + 1)
: decode_mips_operand (args + 1));
if (operand && mips_optional_operand_p (operand))
{
arg.token = tokens;
arg.argnum = 1;
continue;
}
}
/* Treat elided base registers as $0. */
if (strcmp (args, "(b)") == 0)
args += 3;
if (args[0] == '+')
switch (args[1])
{
case 'K':
case 'N':
/* The register suffix is optional. */
args += 2;
break;
}
/* Fail the match if there were too few operands. */
if (*args)
return FALSE;
/* Successful match. */
if (!complete_p)
return TRUE;
clear_insn_error ();
if (arg.dest_regno == arg.last_regno
&& strncmp (insn->insn_mo->name, "jalr", 4) == 0)
{
if (arg.opnum == 2)
set_insn_error
(0, _("source and destination must be different"));
else if (arg.last_regno == 31)
set_insn_error
(0, _("a destination register must be supplied"));
}
else if (arg.last_regno == 31
&& (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
|| strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
set_insn_error (0, _("the source register must not be $31"));
check_completed_insn (&arg);
return TRUE;
}
/* Fail the match if the line has too many operands. */
if (*args == 0)
return FALSE;
/* Handle characters that need to match exactly. */
if (*args == '(' || *args == ')' || *args == ',')
{
if (match_char (&arg, *args))
continue;
return FALSE;
}
if (*args == '#')
{
++args;
if (arg.token->type == OT_DOUBLE_CHAR
&& arg.token->u.ch == *args)
{
++arg.token;
continue;
}
return FALSE;
}
/* Handle special macro operands. Work out the properties of
other operands. */
arg.opnum += 1;
switch (*args)
{
case '-':
switch (args[1])
{
case 'A':
*offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
break;
case 'B':
*offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
break;
}
break;
case '+':
switch (args[1])
{
case 'i':
*offset_reloc = BFD_RELOC_MIPS_JMP;
break;
case '\'':
*offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
break;
case '\"':
*offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
break;
}
break;
case 'I':
if (!match_const_int (&arg, &imm_expr.X_add_number))
return FALSE;
imm_expr.X_op = O_constant;
if (GPR_SIZE == 32)
normalize_constant_expr (&imm_expr);
continue;
case 'A':
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
{
/* Assume that the offset has been elided and that what
we saw was a base register. The match will fail later
if that assumption turns out to be wrong. */
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
}
else
{
if (!match_expression (&arg, &offset_expr, offset_reloc))
return FALSE;
normalize_address_expr (&offset_expr);
}
continue;
case 'F':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8, TRUE))
return FALSE;
continue;
case 'L':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8, FALSE))
return FALSE;
continue;
case 'f':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
4, TRUE))
return FALSE;
continue;
case 'l':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
4, FALSE))
return FALSE;
continue;
case 'p':
*offset_reloc = BFD_RELOC_16_PCREL_S2;
break;
case 'a':
*offset_reloc = BFD_RELOC_MIPS_JMP;
break;
case 'm':
gas_assert (mips_opts.micromips);
c = args[1];
switch (c)
{
case 'D':
case 'E':
if (!forced_insn_length)
*offset_reloc = (int) BFD_RELOC_UNUSED + c;
else if (c == 'D')
*offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
else
*offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
break;
}
break;
}
operand = (mips_opts.micromips
? decode_micromips_operand (args)
: decode_mips_operand (args));
if (!operand)
abort ();
/* Skip prefixes. */
if (*args == '+' || *args == 'm' || *args == '-')
args++;
if (mips_optional_operand_p (operand)
&& args[1] == ','
&& (arg.token[0].type != OT_REG
|| arg.token[1].type == OT_END))
{
/* Assume that the register has been elided and is the
same as the first operand. */
arg.token = tokens;
arg.argnum = 1;
}
if (!match_operand (&arg, operand))
return FALSE;
}
}
/* Like match_insn, but for MIPS16. */
static bfd_boolean
match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
struct mips_operand_token *tokens)
{
const char *args;
const struct mips_operand *operand;
const struct mips_operand *ext_operand;
bfd_boolean pcrel = FALSE;
int required_insn_length;
struct mips_arg_info arg;
int relax_char;
if (forced_insn_length)
required_insn_length = forced_insn_length;
else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
required_insn_length = 2;
else
required_insn_length = 0;
create_insn (insn, opcode);
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
relax_char = 0;
memset (&arg, 0, sizeof (arg));
arg.insn = insn;
arg.token = tokens;
arg.argnum = 1;
arg.last_regno = ILLEGAL_REG;
arg.dest_regno = ILLEGAL_REG;
relax_char = 0;
for (args = opcode->args;; ++args)
{
int c;
if (arg.token->type == OT_END)
{
offsetT value;
/* Handle unary instructions in which only one operand is given.
The source is then the same as the destination. */
if (arg.opnum == 1 && *args == ',')
{
operand = decode_mips16_operand (args[1], FALSE);
if (operand && mips_optional_operand_p (operand))
{
arg.token = tokens;
arg.argnum = 1;
continue;
}
}
/* Fail the match if there were too few operands. */
if (*args)
return FALSE;
/* Successful match. Stuff the immediate value in now, if
we can. */
clear_insn_error ();
if (opcode->pinfo == INSN_MACRO)
{
gas_assert (relax_char == 0 || relax_char == 'p');
gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
}
else if (relax_char
&& offset_expr.X_op == O_constant
&& !pcrel
&& calculate_reloc (*offset_reloc,
offset_expr.X_add_number,
&value))
{
mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
required_insn_length, &insn->insn_opcode);
offset_expr.X_op = O_absent;
*offset_reloc = BFD_RELOC_UNUSED;
}
else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
{
if (required_insn_length == 2)
set_insn_error (0, _("invalid unextended operand value"));
else if (!mips_opcode_32bit_p (opcode))
{
forced_insn_length = 4;
insn->insn_opcode |= MIPS16_EXTEND;
}
}
else if (relax_char)
*offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
check_completed_insn (&arg);
return TRUE;
}
/* Fail the match if the line has too many operands. */
if (*args == 0)
return FALSE;
/* Handle characters that need to match exactly. */
if (*args == '(' || *args == ')' || *args == ',')
{
if (match_char (&arg, *args))
continue;
return FALSE;
}
arg.opnum += 1;
c = *args;
switch (c)
{
case 'p':
case 'q':
case 'A':
case 'B':
case 'E':
case 'V':
case 'u':
relax_char = c;
break;
case 'I':
if (!match_const_int (&arg, &imm_expr.X_add_number))
return FALSE;
imm_expr.X_op = O_constant;
if (GPR_SIZE == 32)
normalize_constant_expr (&imm_expr);
continue;
case 'a':
case 'i':
*offset_reloc = BFD_RELOC_MIPS16_JMP;
break;
}
operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
if (!operand)
abort ();
if (operand->type == OP_PCREL)
pcrel = TRUE;
else
{
ext_operand = decode_mips16_operand (c, TRUE);
if (operand != ext_operand)
{
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
{
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
relax_char = c;
continue;
}
if (!match_expression (&arg, &offset_expr, offset_reloc))
return FALSE;
/* '8' is used for SLTI(U) and has traditionally not
been allowed to take relocation operators. */
if (offset_reloc[0] != BFD_RELOC_UNUSED
&& (ext_operand->size != 16 || c == '8'))
{
match_not_constant (&arg);
return FALSE;
}
if (offset_expr.X_op == O_big)
{
match_out_of_range (&arg);
return FALSE;
}
relax_char = c;
continue;
}
}
if (mips_optional_operand_p (operand)
&& args[1] == ','
&& (arg.token[0].type != OT_REG
|| arg.token[1].type == OT_END))
{
/* Assume that the register has been elided and is the
same as the first operand. */
arg.token = tokens;
arg.argnum = 1;
}
if (!match_operand (&arg, operand))
return FALSE;
}
}
/* Record that the current instruction is invalid for the current ISA. */
static void
match_invalid_for_isa (void)
{
set_insn_error_ss
(0, _("opcode not supported on this processor: %s (%s)"),
mips_cpu_info_from_arch (mips_opts.arch)->name,
mips_cpu_info_from_isa (mips_opts.isa)->name);
}
/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
Return true if a definite match or failure was found, storing any match
in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
(to handle things like VU0 suffixes). LAX_MATCH is true if we have already
tried and failed to match under normal conditions and now want to try a
more relaxed match. */
static bfd_boolean
match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
const struct mips_opcode *past, struct mips_operand_token *tokens,
int opcode_extra, bfd_boolean lax_match)
{
const struct mips_opcode *opcode;
const struct mips_opcode *invalid_delay_slot;
bfd_boolean seen_valid_for_isa, seen_valid_for_size;
/* Search for a match, ignoring alternatives that don't satisfy the
current ISA or forced_length. */
invalid_delay_slot = 0;
seen_valid_for_isa = FALSE;
seen_valid_for_size = FALSE;
opcode = first;
do
{
gas_assert (strcmp (opcode->name, first->name) == 0);
if (is_opcode_valid (opcode))
{
seen_valid_for_isa = TRUE;
if (is_size_valid (opcode))
{
bfd_boolean delay_slot_ok;
seen_valid_for_size = TRUE;
delay_slot_ok = is_delay_slot_valid (opcode);
if (match_insn (insn, opcode, tokens, opcode_extra,
lax_match, delay_slot_ok))
{
if (!delay_slot_ok)
{
if (!invalid_delay_slot)
invalid_delay_slot = opcode;
}
else
return TRUE;
}
}
}
++opcode;
}
while (opcode < past && strcmp (opcode->name, first->name) == 0);
/* If the only matches we found had the wrong length for the delay slot,
pick the first such match. We'll issue an appropriate warning later. */
if (invalid_delay_slot)
{
if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
lax_match, TRUE))
return TRUE;
abort ();
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were incompatible with the current ISA. */
if (!seen_valid_for_isa)
{
match_invalid_for_isa ();
return TRUE;
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were of the wrong size. */
if (!seen_valid_for_size)
{
if (mips_opts.insn32)
set_insn_error (0, _("opcode not supported in the `insn32' mode"));
else
set_insn_error_i
(0, _("unrecognized %d-bit version of microMIPS opcode"),
8 * forced_insn_length);
return TRUE;
}
return FALSE;
}
/* Like match_insns, but for MIPS16. */
static bfd_boolean
match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
struct mips_operand_token *tokens)
{
const struct mips_opcode *opcode;
bfd_boolean seen_valid_for_isa;
bfd_boolean seen_valid_for_size;
/* Search for a match, ignoring alternatives that don't satisfy the
current ISA. There are no separate entries for extended forms so
we deal with forced_length later. */
seen_valid_for_isa = FALSE;
seen_valid_for_size = FALSE;
opcode = first;
do
{
gas_assert (strcmp (opcode->name, first->name) == 0);
if (is_opcode_valid_16 (opcode))
{
seen_valid_for_isa = TRUE;
if (is_size_valid_16 (opcode))
{
seen_valid_for_size = TRUE;
if (match_mips16_insn (insn, opcode, tokens))
return TRUE;
}
}
++opcode;
}
while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
&& strcmp (opcode->name, first->name) == 0);
/* Handle the case where we didn't try to match an instruction because
all the alternatives were incompatible with the current ISA. */
if (!seen_valid_for_isa)
{
match_invalid_for_isa ();
return TRUE;
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were of the wrong size. */
if (!seen_valid_for_size)
{
if (forced_insn_length == 2)
set_insn_error
(0, _("unrecognized unextended version of MIPS16 opcode"));
else
set_insn_error
(0, _("unrecognized extended version of MIPS16 opcode"));
return TRUE;
}
return FALSE;
}
/* Set up global variables for the start of a new macro. */
static void
macro_start (void)
{
memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
memset (&mips_macro_warning.first_insn_sizes, 0,
sizeof (mips_macro_warning.first_insn_sizes));
memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
mips_macro_warning.delay_slot_p = (mips_opts.noreorder
&& delayed_branch_p (&history[0]));
if (history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent
&& RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
&& RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
mips_macro_warning.delay_slot_length = 0;
else
switch (history[0].insn_mo->pinfo2
& (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
{
case INSN2_BRANCH_DELAY_32BIT:
mips_macro_warning.delay_slot_length = 4;
break;
case INSN2_BRANCH_DELAY_16BIT:
mips_macro_warning.delay_slot_length = 2;
break;
default:
mips_macro_warning.delay_slot_length = 0;
break;
}
mips_macro_warning.first_frag = NULL;
}
/* Given that a macro is longer than one instruction or of the wrong size,
return the appropriate warning for it. Return null if no warning is
needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
and RELAX_NOMACRO. */
static const char *
macro_warning (relax_substateT subtype)
{
if (subtype & RELAX_DELAY_SLOT)
return _("macro instruction expanded into multiple instructions"
" in a branch delay slot");
else if (subtype & RELAX_NOMACRO)
return _("macro instruction expanded into multiple instructions");
else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND))
return ((subtype & RELAX_DELAY_SLOT_16BIT)
? _("macro instruction expanded into a wrong size instruction"
" in a 16-bit branch delay slot")
: _("macro instruction expanded into a wrong size instruction"
" in a 32-bit branch delay slot"));
else
return 0;
}
/* Finish up a macro. Emit warnings as appropriate. */
static void
macro_end (void)
{
/* Relaxation warning flags. */
relax_substateT subtype = 0;
/* Check delay slot size requirements. */
if (mips_macro_warning.delay_slot_length == 2)
subtype |= RELAX_DELAY_SLOT_16BIT;
if (mips_macro_warning.delay_slot_length != 0)
{
if (mips_macro_warning.delay_slot_length
!= mips_macro_warning.first_insn_sizes[0])
subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
if (mips_macro_warning.delay_slot_length
!= mips_macro_warning.first_insn_sizes[1])
subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
}
/* Check instruction count requirements. */
if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
{
if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
subtype |= RELAX_SECOND_LONGER;
if (mips_opts.warn_about_macros)
subtype |= RELAX_NOMACRO;
if (mips_macro_warning.delay_slot_p)
subtype |= RELAX_DELAY_SLOT;
}
/* If both alternatives fail to fill a delay slot correctly,
emit the warning now. */
if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
&& (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_DELAY_SLOT_16BIT
| RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND);
msg = macro_warning (s);
if (msg != NULL)
as_warn ("%s", msg);
subtype &= ~s;
}
/* If both implementations are longer than 1 instruction, then emit the
warning now. */
if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
msg = macro_warning (s);
if (msg != NULL)
as_warn ("%s", msg);
subtype &= ~s;
}
/* If any flags still set, then one implementation might need a warning
and the other either will need one of a different kind or none at all.
Pass any remaining flags over to relaxation. */
if (mips_macro_warning.first_frag != NULL)
mips_macro_warning.first_frag->fr_subtype |= subtype;
}
/* Instruction operand formats used in macros that vary between
standard MIPS and microMIPS code. */
static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
static const char * const jalr_fmt[2] = { "d,s", "t,s" };
static const char * const lui_fmt[2] = { "t,u", "s,u" };
static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
: cop12_fmt[mips_opts.micromips])
#define JALR_FMT (jalr_fmt[mips_opts.micromips])
#define LUI_FMT (lui_fmt[mips_opts.micromips])
#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
: mem12_fmt[mips_opts.micromips])
#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
#define SHFT_FMT (shft_fmt[mips_opts.micromips])
#define TRAP_FMT (trap_fmt[mips_opts.micromips])
/* Read a macro's relocation codes from *ARGS and store them in *R.
The first argument in *ARGS will be either the code for a single
relocation or -1 followed by the three codes that make up a
composite relocation. */
static void
macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
{
int i, next;
next = va_arg (*args, int);
if (next >= 0)
r[0] = (bfd_reloc_code_real_type) next;
else
{
for (i = 0; i < 3; i++)
r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
/* This function is only used for 16-bit relocation fields.
To make the macro code simpler, treat an unrelocated value
in the same way as BFD_RELOC_LO16. */
if (r[0] == BFD_RELOC_UNUSED)
r[0] = BFD_RELOC_LO16;
}
}
/* Build an instruction created by a macro expansion. This is passed
a pointer to the count of instructions created so far, an
expression, the name of the instruction to build, an operand format
string, and corresponding arguments. */
static void
macro_build (expressionS *ep, const char *name, const char *fmt, ...)
{
const struct mips_opcode *mo = NULL;
bfd_reloc_code_real_type r[3];
const struct mips_opcode *amo;
const struct mips_operand *operand;
struct hash_control *hash;
struct mips_cl_insn insn;
va_list args;
unsigned int uval;
va_start (args, fmt);
if (mips_opts.mips16)
{
mips16_macro_build (ep, name, fmt, &args);
va_end (args);
return;
}
r[0] = BFD_RELOC_UNUSED;
r[1] = BFD_RELOC_UNUSED;
r[2] = BFD_RELOC_UNUSED;
hash = mips_opts.micromips ? micromips_op_hash : op_hash;
amo = (struct mips_opcode *) hash_find (hash, name);
gas_assert (amo);
gas_assert (strcmp (name, amo->name) == 0);
do
{
/* Search until we get a match for NAME. It is assumed here that
macros will never generate MDMX, MIPS-3D, or MT instructions.
We try to match an instruction that fulfills the branch delay
slot instruction length requirement (if any) of the previous
instruction. While doing this we record the first instruction
seen that matches all the other conditions and use it anyway
if the requirement cannot be met; we will issue an appropriate
warning later on. */
if (strcmp (fmt, amo->args) == 0
&& amo->pinfo != INSN_MACRO
&& is_opcode_valid (amo)
&& is_size_valid (amo))
{
if (is_delay_slot_valid (amo))
{
mo = amo;
break;
}
else if (!mo)
mo = amo;
}
++amo;
gas_assert (amo->name);
}
while (strcmp (name, amo->name) == 0);
gas_assert (mo);
create_insn (&insn, mo);
for (; *fmt; ++fmt)
{
switch (*fmt)
{
case ',':
case '(':
case ')':
case 'z':
break;
case 'i':
case 'j':
macro_read_relocs (&args, r);
gas_assert (*r == BFD_RELOC_GPREL16
|| *r == BFD_RELOC_MIPS_HIGHER
|| *r == BFD_RELOC_HI16_S
|| *r == BFD_RELOC_LO16
|| *r == BFD_RELOC_MIPS_GOT_OFST
|| (mips_opts.micromips
&& (*r == BFD_RELOC_16
|| *r == BFD_RELOC_MIPS_GOT16
|| *r == BFD_RELOC_MIPS_CALL16
|| *r == BFD_RELOC_MIPS_GOT_HI16
|| *r == BFD_RELOC_MIPS_GOT_LO16
|| *r == BFD_RELOC_MIPS_CALL_HI16
|| *r == BFD_RELOC_MIPS_CALL_LO16
|| *r == BFD_RELOC_MIPS_SUB
|| *r == BFD_RELOC_MIPS_GOT_PAGE
|| *r == BFD_RELOC_MIPS_HIGHEST
|| *r == BFD_RELOC_MIPS_GOT_DISP
|| *r == BFD_RELOC_MIPS_TLS_GD
|| *r == BFD_RELOC_MIPS_TLS_LDM
|| *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
|| *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
|| *r == BFD_RELOC_MIPS_TLS_GOTTPREL
|| *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
|| *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
break;
case 'o':
macro_read_relocs (&args, r);
break;
case 'u':
macro_read_relocs (&args, r);
gas_assert (ep != NULL
&& (ep->X_op == O_constant
|| (ep->X_op == O_symbol
&& (*r == BFD_RELOC_MIPS_HIGHEST
|| *r == BFD_RELOC_HI16_S
|| *r == BFD_RELOC_HI16
|| *r == BFD_RELOC_GPREL16
|| *r == BFD_RELOC_MIPS_GOT_HI16
|| *r == BFD_RELOC_MIPS_CALL_HI16))));
break;
case 'p':
gas_assert (ep != NULL);
/*
* This allows macro() to pass an immediate expression for
* creating short branches without creating a symbol.
*
* We don't allow branch relaxation for these branches, as
* they should only appear in ".set nomacro" anyway.
*/
if (ep->X_op == O_constant)
{
/* For microMIPS we always use relocations for branches.
So we should not resolve immediate values. */
gas_assert (!mips_opts.micromips);
if ((ep->X_add_number & 3) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) ep->X_add_number);
if ((ep->X_add_number + 0x20000) & ~0x3ffff)
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) ep->X_add_number);
insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
ep = NULL;
}
else
*r = BFD_RELOC_16_PCREL_S2;
break;
case 'a':
gas_assert (ep != NULL);
*r = BFD_RELOC_MIPS_JMP;
break;
default:
operand = (mips_opts.micromips
? decode_micromips_operand (fmt)
: decode_mips_operand (fmt));
if (!operand)
abort ();
uval = va_arg (args, int);
if (operand->type == OP_CLO_CLZ_DEST)
uval |= (uval << 5);
insn_insert_operand (&insn, operand, uval);
if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
++fmt;
break;
}
}
va_end (args);
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r, TRUE);
}
static void
mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
va_list *args)
{
struct mips_opcode *mo;
struct mips_cl_insn insn;
const struct mips_operand *operand;
bfd_reloc_code_real_type r[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
gas_assert (mo);
gas_assert (strcmp (name, mo->name) == 0);
while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
{
++mo;
gas_assert (mo->name);
gas_assert (strcmp (name, mo->name) == 0);
}
create_insn (&insn, mo);
for (; *fmt; ++fmt)
{
int c;
c = *fmt;
switch (c)
{
case ',':
case '(':
case ')':
break;
case '.':
case 'S':
case 'P':
case 'R':
break;
case '<':
case '5':
case 'F':
case 'H':
case 'W':
case 'D':
case 'j':
case '8':
case 'V':
case 'C':
case 'U':
case 'k':
case 'K':
case 'p':
case 'q':
{
offsetT value;
gas_assert (ep != NULL);
if (ep->X_op != O_constant)
*r = (int) BFD_RELOC_UNUSED + c;
else if (calculate_reloc (*r, ep->X_add_number, &value))
{
mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
ep = NULL;
*r = BFD_RELOC_UNUSED;
}
}
break;
default:
operand = decode_mips16_operand (c, FALSE);
if (!operand)
abort ();
insn_insert_operand (&insn, operand, va_arg (*args, int));
break;
}
}
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r, TRUE);
}
/*
* Generate a "jalr" instruction with a relocation hint to the called
* function. This occurs in NewABI PIC code.
*/
static void
macro_build_jalr (expressionS *ep, int cprestore)
{
static const bfd_reloc_code_real_type jalr_relocs[2]
= { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
const char *jalr;
char *f = NULL;
if (MIPS_JALR_HINT_P (ep))
{
frag_grow (8);
f = frag_more (0);
}
if (mips_opts.micromips)
{
jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
? "jalr" : "jalrs");
if (MIPS_JALR_HINT_P (ep)
|| mips_opts.insn32
|| (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
else
macro_build (NULL, jalr, "mj", PIC_CALL_REG);
}
else
macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
if (MIPS_JALR_HINT_P (ep))
fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
}
/*
* Generate a "lui" instruction.
*/
static void
macro_build_lui (expressionS *ep, int regnum)
{
gas_assert (! mips_opts.mips16);
if (ep->X_op != O_constant)
{
gas_assert (ep->X_op == O_symbol);
/* _gp_disp is a special case, used from s_cpload.
__gnu_local_gp is used if mips_no_shared. */
gas_assert (mips_pic == NO_PIC
|| (! HAVE_NEWABI
&& strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
|| (! mips_in_shared
&& strcmp (S_GET_NAME (ep->X_add_symbol),
"__gnu_local_gp") == 0));
}
macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
}
/* Generate a sequence of instructions to do a load or store from a constant
offset off of a base register (breg) into/from a target register (treg),
using AT if necessary. */
static void
macro_build_ldst_constoffset (expressionS *ep, const char *op,
int treg, int breg, int dbl)
{
gas_assert (ep->X_op == O_constant);
/* Sign-extending 32-bit constants makes their handling easier. */
if (!dbl)
normalize_constant_expr (ep);
/* Right now, this routine can only handle signed 32-bit constants. */
if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
as_warn (_("operand overflow"));
if (IS_SEXT_16BIT_NUM(ep->X_add_number))
{
/* Signed 16-bit offset will fit in the op. Easy! */
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
}
else
{
/* 32-bit offset, need multiple instructions and AT, like:
lui $tempreg,const_hi (BFD_RELOC_HI16_S)
addu $tempreg,$tempreg,$breg
<op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
to handle the complete offset. */
macro_build_lui (ep, AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
if (!mips_opts.at)
as_bad (_("macro used $at after \".set noat\""));
}
}
/* set_at()
* Generates code to set the $at register to true (one)
* if reg is less than the immediate expression.
*/
static void
set_at (int reg, int unsignedp)
{
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
AT, reg, BFD_RELOC_LO16);
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
}
}
/* Count the leading zeroes by performing a binary chop. This is a
bulky bit of source, but performance is a LOT better for the
majority of values than a simple loop to count the bits:
for (lcnt = 0; (lcnt < 32); lcnt++)
if ((v) & (1 << (31 - lcnt)))
break;
However it is not code size friendly, and the gain will drop a bit
on certain cached systems.
*/
#define COUNT_TOP_ZEROES(v) \
(((v) & ~0xffff) == 0 \
? ((v) & ~0xff) == 0 \
? ((v) & ~0xf) == 0 \
? ((v) & ~0x3) == 0 \
? ((v) & ~0x1) == 0 \
? !(v) \
? 32 \
: 31 \
: 30 \
: ((v) & ~0x7) == 0 \
? 29 \
: 28 \
: ((v) & ~0x3f) == 0 \
? ((v) & ~0x1f) == 0 \
? 27 \
: 26 \
: ((v) & ~0x7f) == 0 \
? 25 \
: 24 \
: ((v) & ~0xfff) == 0 \
? ((v) & ~0x3ff) == 0 \
? ((v) & ~0x1ff) == 0 \
? 23 \
: 22 \
: ((v) & ~0x7ff) == 0 \
? 21 \
: 20 \
: ((v) & ~0x3fff) == 0 \
? ((v) & ~0x1fff) == 0 \
? 19 \
: 18 \
: ((v) & ~0x7fff) == 0 \
? 17 \
: 16 \
: ((v) & ~0xffffff) == 0 \
? ((v) & ~0xfffff) == 0 \
? ((v) & ~0x3ffff) == 0 \
? ((v) & ~0x1ffff) == 0 \
? 15 \
: 14 \
: ((v) & ~0x7ffff) == 0 \
? 13 \
: 12 \
: ((v) & ~0x3fffff) == 0 \
? ((v) & ~0x1fffff) == 0 \
? 11 \
: 10 \
: ((v) & ~0x7fffff) == 0 \
? 9 \
: 8 \
: ((v) & ~0xfffffff) == 0 \
? ((v) & ~0x3ffffff) == 0 \
? ((v) & ~0x1ffffff) == 0 \
? 7 \
: 6 \
: ((v) & ~0x7ffffff) == 0 \
? 5 \
: 4 \
: ((v) & ~0x3fffffff) == 0 \
? ((v) & ~0x1fffffff) == 0 \
? 3 \
: 2 \
: ((v) & ~0x7fffffff) == 0 \
? 1 \
: 0)
/* load_register()
* This routine generates the least number of instructions necessary to load
* an absolute expression value into a register.
*/
static void
load_register (int reg, expressionS *ep, int dbl)
{
int freg;
expressionS hi32, lo32;
if (ep->X_op != O_big)
{
gas_assert (ep->X_op == O_constant);
/* Sign-extending 32-bit constants makes their handling easier. */
if (!dbl)
normalize_constant_expr (ep);
if (IS_SEXT_16BIT_NUM (ep->X_add_number))
{
/* We can handle 16 bit signed values with an addiu to
$zero. No need to ever use daddiu here, since $zero and
the result are always correct in 32 bit mode. */
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
{
/* We can handle 16 bit unsigned values with an ori to
$zero. */
macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
return;
}
else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
{
/* 32 bit values require an lui. */
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
if ((ep->X_add_number & 0xffff) != 0)
macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
return;
}
}
/* The value is larger than 32 bits. */
if (!dbl || GPR_SIZE == 32)
{
char value[32];
sprintf_vma (value, ep->X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
if (ep->X_op != O_big)
{
hi32 = *ep;
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
hi32.X_add_number &= 0xffffffff;
lo32 = *ep;
lo32.X_add_number &= 0xffffffff;
}
else
{
gas_assert (ep->X_add_number > 2);
if (ep->X_add_number == 3)
generic_bignum[3] = 0;
else if (ep->X_add_number > 4)
as_bad (_("number larger than 64 bits"));
lo32.X_op = O_constant;
lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
hi32.X_op = O_constant;
hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
}
if (hi32.X_add_number == 0)
freg = 0;
else
{
int shift, bit;
unsigned long hi, lo;
if (hi32.X_add_number == (offsetT) 0xffffffff)
{
if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
{
macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
if (lo32.X_add_number & 0x80000000)
{
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
if (lo32.X_add_number & 0xffff)
macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
return;
}
}
/* Check for 16bit shifted constant. We know that hi32 is
non-zero, so start the mask on the first bit of the hi32
value. */
shift = 17;
do
{
unsigned long himask, lomask;
if (shift < 32)
{
himask = 0xffff >> (32 - shift);
lomask = (0xffff << shift) & 0xffffffff;
}
else
{
himask = 0xffff << (shift - 32);
lomask = 0;
}
if ((hi32.X_add_number & ~(offsetT) himask) == 0
&& (lo32.X_add_number & ~(offsetT) lomask) == 0)
{
expressionS tmp;
tmp.X_op = O_constant;
if (shift < 32)
tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
| (lo32.X_add_number >> shift));
else
tmp.X_add_number = hi32.X_add_number >> (shift - 32);
macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
++shift;
}
while (shift <= (64 - 16));
/* Find the bit number of the lowest one bit, and store the
shifted value in hi/lo. */
hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
if (lo != 0)
{
bit = 0;
while ((lo & 1) == 0)
{
lo >>= 1;
++bit;
}
lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
hi >>= bit;
}
else
{
bit = 32;
while ((hi & 1) == 0)
{
hi >>= 1;
++bit;
}
lo = hi;
hi = 0;
}
/* Optimize if the shifted value is a (power of 2) - 1. */
if ((hi == 0 && ((lo + 1) & lo) == 0)
|| (lo == 0xffffffff && ((hi + 1) & hi) == 0))
{
shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
if (shift != 0)
{
expressionS tmp;
/* This instruction will set the register to be all
ones. */
tmp.X_op = O_constant;
tmp.X_add_number = (offsetT) -1;
macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
if (bit != 0)
{
bit += shift;
macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
reg, reg, (bit >= 32) ? bit - 32 : bit);
}
macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
}
/* Sign extend hi32 before calling load_register, because we can
generally get better code when we load a sign extended value. */
if ((hi32.X_add_number & 0x80000000) != 0)
hi32.X_add_number |= ~(offsetT) 0xffffffff;
load_register (reg, &hi32, 0);
freg = reg;
}
if ((lo32.X_add_number & 0xffff0000) == 0)
{
if (freg != 0)
{
macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
freg = reg;
}
}
else
{
expressionS mid16;
if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
{
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
return;
}
if (freg != 0)
{
macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
freg = reg;
}
mid16 = lo32;
mid16.X_add_number >>= 16;
macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
freg = reg;
}
if ((lo32.X_add_number & 0xffff) != 0)
macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
}
static inline void
load_delay_nop (void)
{
if (!gpr_interlocks)
macro_build (NULL, "nop", "");
}
/* Load an address into a register. */
static void
load_address (int reg, expressionS *ep, int *used_at)
{
if (ep->X_op != O_constant
&& ep->X_op != O_symbol)
{
as_bad (_("expression too complex"));
ep->X_op = O_constant;
}
if (ep->X_op == O_constant)
{
load_register (reg, ep, HAVE_64BIT_ADDRESSES);
return;
}
if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, we want
addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
Otherwise we want
lui $reg,<sym> (BFD_RELOC_HI16_S)
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If we have an addend, we always use the latter form.
With 64bit address space and a usable $at we want
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddiu $at,<sym> (BFD_RELOC_LO16)
dsll32 $reg,0
daddu $reg,$reg,$at
If $at is already in use, we use a path which is suboptimal
on superscalar processors.
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $reg,16
daddiu $reg,<sym> (BFD_RELOC_HI16_S)
dsll $reg,16
daddiu $reg,<sym> (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (ep->X_add_symbol, 1))
{
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (*used_at == 0 && mips_opts.at)
{
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
macro_build (ep, "daddiu", "t,r,j", reg, reg,
BFD_RELOC_MIPS_HIGHER);
macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
*used_at = 1;
}
else
{
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
macro_build (ep, "daddiu", "t,r,j", reg, reg,
BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
}
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (ep->X_add_symbol, 1))
{
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
macro_build_lui (ep, reg);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got)
{
expressionS ex;
/* If this is a reference to an external symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
Otherwise we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after.
If we have NewABI, we want
lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
unless we're referencing a global symbol with a non-zero
offset, in which case cst must be added separately. */
if (HAVE_NEWABI)
{
if (ep->X_add_number)
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
ep->X_add_number = ex.X_add_number;
relax_switch ();
}
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (mips_relax.sequence)
relax_end ();
}
else
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
relax_start (ep->X_add_symbol);
relax_switch ();
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
relax_end ();
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
}
}
}
else if (mips_big_got)
{
expressionS ex;
/* This is the large GOT case. If this is a reference to an
external symbol, we want
lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $reg,$reg,$gp
lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
Otherwise, for a reference to a local symbol in old ABI, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after.
In the NewABI, for local symbols, with or without offsets, we want:
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
*/
if (HAVE_NEWABI)
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
reg, reg, mips_gp_register);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
else if (ex.X_add_number)
{
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
}
ep->X_add_number = ex.X_add_number;
relax_switch ();
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_MIPS_GOT_OFST);
relax_end ();
}
else
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
reg, reg, mips_gp_register);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
relax_switch ();
if (reg_needs_delay (mips_gp_register))
{
/* We need a nop before loading from $gp. This special
check is required because the lui which starts the main
instruction stream does not refer to $gp, and so will not
insert the nop which may be required. */
macro_build (NULL, "nop", "");
}
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
relax_end ();
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
}
}
}
else
abort ();
if (!mips_opts.at && *used_at == 1)
as_bad (_("macro used $at after \".set noat\""));
}
/* Move the contents of register SOURCE into register DEST. */
static void
move_register (int dest, int source)
{
/* Prefer to use a 16-bit microMIPS instruction unless the previous
instruction specifically requires a 32-bit one. */
if (mips_opts.micromips
&& !mips_opts.insn32
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, "move", "mp,mj", dest, source);
else
macro_build (NULL, "or", "d,v,t", dest, source, 0);
}
/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
The two alternatives are:
Global symbol Local symbol
------------- ------------
lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
... ...
addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
load_got_offset emits the first instruction and add_got_offset
emits the second for a 16-bit offset or add_got_offset_hilo emits
a sequence to add a 32-bit offset using a scratch register. */
static void
load_got_offset (int dest, expressionS *local)
{
expressionS global;
global = *local;
global.X_add_number = 0;
relax_start (local->X_add_symbol);
macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
relax_switch ();
macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
relax_end ();
}
static void
add_got_offset (int dest, expressionS *local)
{
expressionS global;
global.X_op = O_constant;
global.X_op_symbol = NULL;
global.X_add_symbol = NULL;
global.X_add_number = local->X_add_number;
relax_start (local->X_add_symbol);
macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
dest, dest, BFD_RELOC_LO16);
relax_switch ();
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
relax_end ();
}
static void
add_got_offset_hilo (int dest, expressionS *local, int tmp)
{
expressionS global;
int hold_mips_optimize;
global.X_op = O_constant;
global.X_op_symbol = NULL;
global.X_add_symbol = NULL;
global.X_add_number = local->X_add_number;
relax_start (local->X_add_symbol);
load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
relax_switch ();
/* Set mips_optimize around the lui instruction to avoid
inserting an unnecessary nop after the lw. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build_lui (&global, tmp);
mips_optimize = hold_mips_optimize;
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
relax_end ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
}
/* Emit a sequence of instructions to emulate a branch likely operation.
BR is an ordinary branch corresponding to one to be emulated. BRNEG
is its complementing branch with the original condition negated.
CALL is set if the original branch specified the link operation.
EP, FMT, SREG and TREG specify the usual macro_build() parameters.
Code like this is produced in the noreorder mode:
BRNEG <args>, 1f
nop
b <sym>
delay slot (executed only if branch taken)
1:
or, if CALL is set:
BRNEG <args>, 1f
nop
bal <sym>
delay slot (executed only if branch taken)
1:
In the reorder mode the delay slot would be filled with a nop anyway,
so code produced is simply:
BR <args>, <sym>
nop
This function is used when producing code for the microMIPS ASE that
does not implement branch likely instructions in hardware. */
static void
macro_build_branch_likely (const char *br, const char *brneg,
int call, expressionS *ep, const char *fmt,
unsigned int sreg, unsigned int treg)
{
int noreorder = mips_opts.noreorder;
expressionS expr1;
gas_assert (mips_opts.micromips);
start_noreorder ();
if (noreorder)
{
micromips_label_expr (&expr1);
macro_build (&expr1, brneg, fmt, sreg, treg);
macro_build (NULL, "nop", "");
macro_build (ep, call ? "bal" : "b", "p");
/* Set to true so that append_insn adds a label. */
emit_branch_likely_macro = TRUE;
}
else
{
macro_build (ep, br, fmt, sreg, treg);
macro_build (NULL, "nop", "");
}
end_noreorder ();
}
/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
the condition code tested. EP specifies the branch target. */
static void
macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
{
const int call = 0;
const char *brneg;
const char *br;
switch (type)
{
case M_BC1FL:
br = "bc1f";
brneg = "bc1t";
break;
case M_BC1TL:
br = "bc1t";
brneg = "bc1f";
break;
case M_BC2FL:
br = "bc2f";
brneg = "bc2t";
break;
case M_BC2TL:
br = "bc2t";
brneg = "bc2f";
break;
default:
abort ();
}
macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
}
/* Emit a two-argument branch macro specified by TYPE, using SREG as
the register tested. EP specifies the branch target. */
static void
macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
{
const char *brneg = NULL;
const char *br;
int call = 0;
switch (type)
{
case M_BGEZ:
br = "bgez";
break;
case M_BGEZL:
br = mips_opts.micromips ? "bgez" : "bgezl";
brneg = "bltz";
break;
case M_BGEZALL:
gas_assert (mips_opts.micromips);
br = mips_opts.insn32 ? "bgezal" : "bgezals";
brneg = "bltz";
call = 1;
break;
case M_BGTZ:
br = "bgtz";
break;
case M_BGTZL:
br = mips_opts.micromips ? "bgtz" : "bgtzl";
brneg = "blez";
break;
case M_BLEZ:
br = "blez";
break;
case M_BLEZL:
br = mips_opts.micromips ? "blez" : "blezl";
brneg = "bgtz";
break;
case M_BLTZ:
br = "bltz";
break;
case M_BLTZL:
br = mips_opts.micromips ? "bltz" : "bltzl";
brneg = "bgez";
break;
case M_BLTZALL:
gas_assert (mips_opts.micromips);
br = mips_opts.insn32 ? "bltzal" : "bltzals";
brneg = "bgez";
call = 1;
break;
default:
abort ();
}
if (mips_opts.micromips && brneg)
macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
else
macro_build (ep, br, "s,p", sreg);
}
/* Emit a three-argument branch macro specified by TYPE, using SREG and
TREG as the registers tested. EP specifies the branch target. */
static void
macro_build_branch_rsrt (int type, expressionS *ep,
unsigned int sreg, unsigned int treg)
{
const char *brneg = NULL;
const int call = 0;
const char *br;
switch (type)
{
case M_BEQ:
case M_BEQ_I:
br = "beq";
break;
case M_BEQL:
case M_BEQL_I:
br = mips_opts.micromips ? "beq" : "beql";
brneg = "bne";
break;
case M_BNE:
case M_BNE_I:
br = "bne";
break;
case M_BNEL:
case M_BNEL_I:
br = mips_opts.micromips ? "bne" : "bnel";
brneg = "beq";
break;
default:
abort ();
}
if (mips_opts.micromips && brneg)
macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
else
macro_build (ep, br, "s,t,p", sreg, treg);
}
/* Return the high part that should be loaded in order to make the low
part of VALUE accessible using an offset of OFFBITS bits. */
static offsetT
offset_high_part (offsetT value, unsigned int offbits)
{
offsetT bias;
addressT low_mask;
if (offbits == 0)
return value;
bias = 1 << (offbits - 1);
low_mask = bias * 2 - 1;
return (value + bias) & ~low_mask;
}
/* Return true if the value stored in offset_expr and offset_reloc
fits into a signed offset of OFFBITS bits. RANGE is the maximum
amount that the caller wants to add without inducing overflow
and ALIGN is the known alignment of the value in bytes. */
static bfd_boolean
small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
{
if (offbits == 16)
{
/* Accept any relocation operator if overflow isn't a concern. */
if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
return TRUE;
/* These relocations are guaranteed not to overflow in correct links. */
if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
|| gprel16_reloc_p (*offset_reloc))
return TRUE;
}
if (offset_expr.X_op == O_constant
&& offset_high_part (offset_expr.X_add_number, offbits) == 0
&& offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
return TRUE;
return FALSE;
}
/*
* Build macros
* This routine implements the seemingly endless macro or synthesized
* instructions and addressing modes in the mips assembly language. Many
* of these macros are simple and are similar to each other. These could
* probably be handled by some kind of table or grammar approach instead of
* this verbose method. Others are not simple macros but are more like
* optimizing code generation.
* One interesting optimization is when several store macros appear
* consecutively that would load AT with the upper half of the same address.
* The ensuing load upper instructions are omitted. This implies some kind
* of global optimization. We currently only optimize within a single macro.
* For many of the load and store macros if the address is specified as a
* constant expression in the first 64k of memory (ie ld $2,0x4000c) we
* first load register 'at' with zero and use it as the base register. The
* mips assembler simply uses register $zero. Just one tiny optimization
* we're missing.
*/
static void
macro (struct mips_cl_insn *ip, char *str)
{
const struct mips_operand_array *operands;
unsigned int breg, i;
unsigned int tempreg;
int mask;
int used_at = 0;
expressionS label_expr;
expressionS expr1;
expressionS *ep;
const char *s;
const char *s2;
const char *fmt;
int likely = 0;
int coproc = 0;
int offbits = 16;
int call = 0;
int jals = 0;
int dbl = 0;
int imm = 0;
int ust = 0;
int lp = 0;
int ll_sc_paired = 0;
bfd_boolean large_offset;
int off;
int hold_mips_optimize;
unsigned int align;
unsigned int op[MAX_OPERANDS];
gas_assert (! mips_opts.mips16);
operands = insn_operands (ip);
for (i = 0; i < MAX_OPERANDS; i++)
if (operands->operand[i])
op[i] = insn_extract_operand (ip, operands->operand[i]);
else
op[i] = -1;
mask = ip->insn_mo->mask;
label_expr.X_op = O_constant;
label_expr.X_op_symbol = NULL;
label_expr.X_add_symbol = NULL;
label_expr.X_add_number = 0;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
align = 1;
switch (mask)
{
case M_DABS:
dbl = 1;
/* Fall through. */
case M_ABS:
/* bgez $a0,1f
move v0,$a0
sub v0,$zero,$a0
1:
*/
start_noreorder ();
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bgez", "s,p", op[1]);
if (op[0] == op[1])
macro_build (NULL, "nop", "");
else
move_register (op[0], op[1]);
macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
if (mips_opts.micromips)
micromips_add_label ();
end_noreorder ();
break;
case M_ADD_I:
s = "addi";
s2 = "add";
if (ISA_IS_R6 (mips_opts.isa))
goto do_addi_i;
else
goto do_addi;
case M_ADDU_I:
s = "addiu";
s2 = "addu";
goto do_addi;
case M_DADD_I:
dbl = 1;
s = "daddi";
s2 = "dadd";
if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
goto do_addi;
if (imm_expr.X_add_number >= -0x200
&& imm_expr.X_add_number < 0x200
&& !ISA_IS_R6 (mips_opts.isa))
{
macro_build (NULL, s, "t,r,.", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
goto do_addi_i;
case M_DADDU_I:
dbl = 1;
s = "daddiu";
s2 = "daddu";
do_addi:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
do_addi_i:
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_AND_I:
s = "andi";
s2 = "and";
goto do_bit;
case M_OR_I:
s = "ori";
s2 = "or";
goto do_bit;
case M_NOR_I:
s = "";
s2 = "nor";
goto do_bit;
case M_XOR_I:
s = "xori";
s2 = "xor";
do_bit:
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
{
if (mask != M_NOR_I)
macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
else
{
macro_build (&imm_expr, "ori", "t,r,i",
op[0], op[1], BFD_RELOC_LO16);
macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
}
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_BALIGN:
switch (imm_expr.X_add_number)
{
case 0:
macro_build (NULL, "nop", "");
break;
case 2:
macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
break;
case 1:
case 3:
macro_build (NULL, "balign", "t,s,2", op[0], op[1],
(int) imm_expr.X_add_number);
break;
default:
as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
(unsigned long) imm_expr.X_add_number);
break;
}
break;
case M_BC1FL:
case M_BC1TL:
case M_BC2FL:
case M_BC2TL:
gas_assert (mips_opts.micromips);
macro_build_branch_ccl (mask, &offset_expr,
EXTRACT_OPERAND (1, BCC, *ip));
break;
case M_BEQ_I:
case M_BEQL_I:
case M_BNE_I:
case M_BNEL_I:
if (imm_expr.X_add_number == 0)
op[1] = 0;
else
{
op[1] = AT;
used_at = 1;
load_register (op[1], &imm_expr, GPR_SIZE == 64);
}
/* Fall through. */
case M_BEQL:
case M_BNEL:
macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
break;
case M_BGEL:
likely = 1;
/* Fall through. */
case M_BGE:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGEZL:
case M_BGEZALL:
case M_BGTZL:
case M_BLEZL:
case M_BLTZL:
case M_BLTZALL:
macro_build_branch_rs (mask, &offset_expr, op[0]);
break;
case M_BGTL_I:
likely = 1;
/* Fall through. */
case M_BGT_I:
/* Check for > max integer. */
if (imm_expr.X_add_number >= GPR_SMAX)
{
do_false:
/* Result is always false. */
if (! likely)
macro_build (NULL, "nop", "");
else
macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
break;
}
++imm_expr.X_add_number;
/* Fall through. */
case M_BGE_I:
case M_BGEL_I:
if (mask == M_BGEL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
{
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
&offset_expr, op[0]);
break;
}
if (imm_expr.X_add_number == 1)
{
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
&offset_expr, op[0]);
break;
}
if (imm_expr.X_add_number <= GPR_SMIN)
{
do_true:
/* Result is always true. */
as_warn (_("branch %s is always true"), ip->insn_mo->name);
macro_build (&offset_expr, "b", "p");
break;
}
used_at = 1;
set_at (op[0], 0);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
break;
case M_BGEUL:
likely = 1;
/* Fall through. */
case M_BGEU:
if (op[1] == 0)
goto do_true;
else if (op[0] == 0)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, ZERO, op[1]);
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGTUL_I:
likely = 1;
/* Fall through. */
case M_BGTU_I:
if (op[0] == 0
|| (GPR_SIZE == 32
&& imm_expr.X_add_number == -1))
goto do_false;
++imm_expr.X_add_number;
/* Fall through. */
case M_BGEU_I:
case M_BGEUL_I:
if (mask == M_BGEUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_true;
else if (imm_expr.X_add_number == 1)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, op[0], ZERO);
else
{
used_at = 1;
set_at (op[0], 1);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGTL:
likely = 1;
/* Fall through. */
case M_BGT:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BGTUL:
likely = 1;
/* Fall through. */
case M_BGTU:
if (op[1] == 0)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, op[0], ZERO);
else if (op[0] == 0)
goto do_false;
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLEL:
likely = 1;
/* Fall through. */
case M_BLE:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BLEL_I:
likely = 1;
/* Fall through. */
case M_BLE_I:
if (imm_expr.X_add_number >= GPR_SMAX)
goto do_true;
++imm_expr.X_add_number;
/* Fall through. */
case M_BLT_I:
case M_BLTL_I:
if (mask == M_BLTL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
else if (imm_expr.X_add_number == 1)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
else
{
used_at = 1;
set_at (op[0], 0);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLEUL:
likely = 1;
/* Fall through. */
case M_BLEU:
if (op[1] == 0)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, op[0], ZERO);
else if (op[0] == 0)
goto do_true;
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BLEUL_I:
likely = 1;
/* Fall through. */
case M_BLEU_I:
if (op[0] == 0
|| (GPR_SIZE == 32
&& imm_expr.X_add_number == -1))
goto do_true;
++imm_expr.X_add_number;
/* Fall through. */
case M_BLTU_I:
case M_BLTUL_I:
if (mask == M_BLTUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_false;
else if (imm_expr.X_add_number == 1)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, op[0], ZERO);
else
{
used_at = 1;
set_at (op[0], 1);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLTL:
likely = 1;
/* Fall through. */
case M_BLT:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLTUL:
likely = 1;
/* Fall through. */
case M_BLTU:
if (op[1] == 0)
goto do_false;
else if (op[0] == 0)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, ZERO, op[1]);
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_DDIV_3:
dbl = 1;
/* Fall through. */
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
/* Fall through. */
case M_REM_3:
s = "mfhi";
do_div3:
if (op[2] == 0)
{
as_warn (_("divide by zero"));
if (mips_trap)
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
else
macro_build (NULL, "break", BRK_FMT, 7);
break;
}
start_noreorder ();
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
macro_build (NULL, "break", BRK_FMT, 7);
if (mips_opts.micromips)
micromips_add_label ();
}
expr1.X_add_number = -1;
used_at = 1;
load_register (AT, &expr1, dbl);
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
if (dbl)
{
expr1.X_add_number = 1;
load_register (AT, &expr1, dbl);
macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
}
else
{
expr1.X_add_number = 0x80000000;
macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
}
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
macro_build (NULL, "nop", "");
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
macro_build (NULL, "break", BRK_FMT, 6);
}
if (mips_opts.micromips)
micromips_add_label ();
macro_build (NULL, s, MFHL_FMT, op[0]);
break;
case M_DIV_3I:
s = "div";
s2 = "mflo";
goto do_divi;
case M_DIVU_3I:
s = "divu";
s2 = "mflo";
goto do_divi;
case M_REM_3I:
s = "div";
s2 = "mfhi";
goto do_divi;
case M_REMU_3I:
s = "divu";
s2 = "mfhi";
goto do_divi;
case M_DDIV_3I:
dbl = 1;
s = "ddiv";
s2 = "mflo";
goto do_divi;
case M_DDIVU_3I:
dbl = 1;
s = "ddivu";
s2 = "mflo";
goto do_divi;
case M_DREM_3I:
dbl = 1;
s = "ddiv";
s2 = "mfhi";
goto do_divi;
case M_DREMU_3I:
dbl = 1;
s = "ddivu";
s2 = "mfhi";
do_divi:
if (imm_expr.X_add_number == 0)
{
as_warn (_("divide by zero"));
if (mips_trap)
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
else
macro_build (NULL, "break", BRK_FMT, 7);
break;
}
if (imm_expr.X_add_number == 1)
{
if (strcmp (s2, "mflo") == 0)
move_register (op[0], op[1]);
else
move_register (op[0], ZERO);
break;
}
if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
{
if (strcmp (s2, "mflo") == 0)
macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
else
move_register (op[0], ZERO);
break;
}
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s, "z,s,t", op[1], AT);
macro_build (NULL, s2, MFHL_FMT, op[0]);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
start_noreorder ();
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
macro_build (NULL, s, "z,s,t", op[1], op[2]);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
macro_build (NULL, s, "z,s,t", op[1], op[2]);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
macro_build (NULL, "break", BRK_FMT, 7);
if (mips_opts.micromips)
micromips_add_label ();
}
macro_build (NULL, s2, MFHL_FMT, op[0]);
break;
case M_DLCA_AB:
dbl = 1;
/* Fall through. */
case M_LCA_AB:
call = 1;
goto do_la;
case M_DLA_AB:
dbl = 1;
/* Fall through. */
case M_LA_AB:
do_la:
/* Load the address of a symbol into a register. If breg is not
zero, we then add a base register to it. */
breg = op[2];
if (dbl && GPR_SIZE == 32)
as_warn (_("dla used to load 32-bit register; recommend using la "
"instead"));
if (!dbl && HAVE_64BIT_OBJECTS)
as_warn (_("la used to load 64-bit address; recommend using dla "
"instead"));
if (small_offset_p (0, align, 16))
{
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
-1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
break;
}
if (mips_opts.at && (op[0] == breg))
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (offset_expr.X_op == O_constant)
load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
else if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, we want
addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we may as well always use the latter form.
With 64bit address space and a usable $at we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddiu $at,<sym> (BFD_RELOC_LO16)
dsll32 $tempreg,0
daddu $tempreg,$tempreg,$at
If $at is already in use, we use a path which is suboptimal
on superscalar processors.
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (used_at == 0 && mips_opts.at)
{
macro_build (&offset_expr, "lui", LUI_FMT,
tempreg, BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "lui", LUI_FMT,
AT, BFD_RELOC_HI16_S);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (&offset_expr, "daddiu", "t,r,j",
AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
used_at = 1;
}
else
{
macro_build (&offset_expr, "lui", LUI_FMT,
tempreg, BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
as_bad (_("offset too large"));
macro_build_lui (&offset_expr, tempreg);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got && !HAVE_NEWABI)
{
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* If this is a reference to an external symbol, and there
is no constant, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
or for lca or if tempreg is PIC_CALL_REG
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction.
If we have a large constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction.
*/
if (offset_expr.X_add_number == 0)
{
if (mips_pic == SVR4_PIC
&& breg == 0
&& (call || tempreg == PIC_CALL_REG))
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
lw_reloc_type, mips_gp_register);
if (breg != 0)
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
load_delay_nop ();
}
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
relax_end ();
/* FIXME: If breg == 0, and the next instruction uses
$tempreg, then if this variant case is used an extra
nop will be generated. */
}
else if (offset_expr.X_add_number >= -0x8000
&& offset_expr.X_add_number < 0x8000)
{
load_got_offset (tempreg, &offset_expr);
load_delay_nop ();
add_got_offset (tempreg, &offset_expr);
}
else
{
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number =
SEXT_16BIT (offset_expr.X_add_number);
load_got_offset (tempreg, &offset_expr);
offset_expr.X_add_number = expr1.X_add_number;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg == op[0])
{
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
breg = 0;
tempreg = op[0];
}
add_got_offset_hilo (tempreg, &offset_expr, AT);
used_at = 1;
}
}
else if (!mips_big_got && HAVE_NEWABI)
{
int add_breg_early = 0;
/* If this is a reference to an external, and there is no
constant, or local symbol (*), with or without a
constant, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
or for lca or if tempreg is PIC_CALL_REG
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
If we have a small constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
addiu $tempreg,$tempreg,<constant>
If we have a large constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
(*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
local symbols, even though it introduces an additional
instruction. */
if (offset_expr.X_add_number)
{
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
add_breg_early = 1;
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
dreg, dreg, AT);
used_at = 1;
}
else
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (add_breg_early)
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], tempreg, breg);
breg = 0;
tempreg = op[0];
}
relax_end ();
}
else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_CALL16, mips_gp_register);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
relax_end ();
}
else
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
}
}
else if (mips_big_got && !HAVE_NEWABI)
{
int gpdelay;
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* This is the large GOT case. If this is a reference to an
external symbol, and there is no constant, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
or for lca or if tempreg is PIC_CALL_REG
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
If we have a large constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
addu $tempreg,$tempreg,$at
*/
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
relax_start (offset_expr.X_add_symbol);
gpdelay = reg_needs_delay (mips_gp_register);
if (expr1.X_add_number == 0 && breg == 0
&& (call || tempreg == PIC_CALL_REG))
{
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
}
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, lw_reloc_type, tempreg);
if (expr1.X_add_number == 0)
{
if (breg != 0)
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
load_delay_nop ();
}
}
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
load_delay_nop ();
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
used_at = 1;
}
offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
relax_switch ();
if (gpdelay)
{
/* This is needed because this instruction uses $gp, but
the first instruction on the main stream does not. */
macro_build (NULL, "nop", "");
}
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
local_reloc_type, mips_gp_register);
if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
/* FIXME: If add_number is 0, and there was no base
register, the external symbol case ended with a load,
so if the symbol turns out to not be external, and
the next instruction uses tempreg, an unnecessary nop
will be inserted. */
}
else
{
if (breg == op[0])
{
/* We must add in the base register now, as in the
external symbol case. */
gas_assert (tempreg == AT);
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
tempreg = op[0];
/* We set breg to 0 because we have arranged to add
it in in both cases. */
breg = 0;
}
macro_build_lui (&expr1, AT);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
AT, AT, BFD_RELOC_LO16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, AT);
used_at = 1;
}
relax_end ();
}
else if (mips_big_got && HAVE_NEWABI)
{
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
int add_breg_early = 0;
/* This is the large GOT case. If this is a reference to an
external symbol, and there is no constant, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
or for lca or if tempreg is PIC_CALL_REG
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
addi $tempreg,$tempreg,<constant>
If we have a large constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
lui $at,<hiconstant>
addi $at,$at,<loconstant>
add $tempreg,$tempreg,$at
If we have NewABI, and we know it's a local symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
otherwise we have to resort to GOT_HI16/GOT_LO16. */
relax_start (offset_expr.X_add_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number == 0 && breg == 0
&& (call || tempreg == PIC_CALL_REG))
{
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
}
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, lw_reloc_type, tempreg);
if (expr1.X_add_number == 0)
;
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
add_breg_early = 1;
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
used_at = 1;
}
else
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_GOT_OFST);
if (add_breg_early)
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], tempreg, breg);
breg = 0;
tempreg = op[0];
}
relax_end ();
}
else
abort ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
break;
case M_MSGSND:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
break;
case M_MSGLD:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", 0x02);
break;
case M_MSGLD_T:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
break;
case M_MSGWAIT:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", 3);
break;
case M_MSGWAIT_T:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
break;
case M_J_A:
/* The j instruction may not be used in PIC code, since it
requires an absolute address. We convert it to a b
instruction. */
if (mips_pic == NO_PIC)
macro_build (&offset_expr, "j", "a");
else
macro_build (&offset_expr, "b", "p");
break;
/* The jal instructions must be handled as macros because when
generating PIC code they expand to multi-instruction
sequences. Normally they are simple instructions. */
case M_JALS_1:
op[1] = op[0];
op[0] = RA;
/* Fall through. */
case M_JALS_2:
gas_assert (mips_opts.micromips);
if (mips_opts.insn32)
{
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
break;
}
jals = 1;
goto jal;
case M_JAL_1:
op[1] = op[0];
op[0] = RA;
/* Fall through. */
case M_JAL_2:
jal:
if (mips_pic == NO_PIC)
{
s = jals ? "jalrs" : "jalr";
if (mips_opts.micromips
&& !mips_opts.insn32
&& op[0] == RA
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, s, "mj", op[1]);
else
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
}
else
{
int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
&& mips_cprestore_offset >= 0);
if (op[1] != PIC_CALL_REG)
as_warn (_("MIPS PIC call to register other than $25"));
s = ((mips_opts.micromips
&& !mips_opts.insn32
&& (!mips_opts.noreorder || cprestore))
? "jalrs" : "jalr");
if (mips_opts.micromips
&& !mips_opts.insn32
&& op[0] == RA
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, s, "mj", op[1]);
else
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
{
if (mips_cprestore_offset < 0)
as_warn (_("no .cprestore pseudo-op used in PIC code"));
else
{
if (!mips_frame_reg_valid)
{
as_warn (_("no .frame pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_frame_reg_valid = 1;
}
if (!mips_cprestore_valid)
{
as_warn (_("no .cprestore pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_cprestore_valid = 1;
}
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
expr1.X_add_number = mips_cprestore_offset;
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
mips_gp_register,
mips_frame_reg,
HAVE_64BIT_ADDRESSES);
}
}
}
break;
case M_JALS_A:
gas_assert (mips_opts.micromips);
if (mips_opts.insn32)
{
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
break;
}
jals = 1;
/* Fall through. */
case M_JAL_A:
if (mips_pic == NO_PIC)
macro_build (&offset_expr, jals ? "jals" : "jal", "a");
else if (mips_pic == SVR4_PIC)
{
/* If this is a reference to an external symbol, and we are
using a small GOT, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
nop
jalr $ra,$25
nop
lw $gp,cprestore($sp)
The cprestore value is set using the .cprestore
pseudo-op. If we are using a big GOT, we want
lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
addu $25,$25,$gp
lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
nop
jalr $ra,$25
nop
lw $gp,cprestore($sp)
If the symbol is not external, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $25,$25,<sym> (BFD_RELOC_LO16)
jalr $ra,$25
nop
lw $gp,cprestore($sp)
For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
sequences above, minus nops, unless the symbol is local,
which enables us to use GOT_PAGE/GOT_OFST (big got) or
GOT_DISP. */
if (HAVE_NEWABI)
{
if (!mips_big_got)
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
mips_gp_register);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
mips_gp_register);
relax_end ();
}
else
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
BFD_RELOC_MIPS_CALL_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
PIC_CALL_REG, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
PIC_CALL_REG);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
PIC_CALL_REG, PIC_CALL_REG,
BFD_RELOC_MIPS_GOT_OFST);
relax_end ();
}
macro_build_jalr (&offset_expr, 0);
}
else
{
relax_start (offset_expr.X_add_symbol);
if (!mips_big_got)
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
mips_gp_register);
load_delay_nop ();
relax_switch ();
}
else
{
int gpdelay;
gpdelay = reg_needs_delay (mips_gp_register);
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
BFD_RELOC_MIPS_CALL_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
PIC_CALL_REG, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
PIC_CALL_REG);
load_delay_nop ();
relax_switch ();
if (gpdelay)
macro_build (NULL, "nop", "");
}
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
relax_end ();
macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
if (mips_cprestore_offset < 0)
as_warn (_("no .cprestore pseudo-op used in PIC code"));
else
{
if (!mips_frame_reg_valid)
{
as_warn (_("no .frame pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_frame_reg_valid = 1;
}
if (!mips_cprestore_valid)
{
as_warn (_("no .cprestore pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_cprestore_valid = 1;
}
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
expr1.X_add_number = mips_cprestore_offset;
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
mips_gp_register,
mips_frame_reg,
HAVE_64BIT_ADDRESSES);
}
}
}
else if (mips_pic == VXWORKS_PIC)
as_bad (_("non-PIC jump used in PIC library"));
else
abort ();
break;
case M_LBUE_AB:
s = "lbue";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LHUE_AB:
s = "lhue";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LBE_AB:
s = "lbe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LHE_AB:
s = "lhe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LLE_AB:
s = "lle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWE_AB:
s = "lwe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWLE_AB:
s = "lwle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWRE_AB:
s = "lwre";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SBE_AB:
s = "sbe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SCE_AB:
s = "sce";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SHE_AB:
s = "she";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWE_AB:
s = "swe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWLE_AB:
s = "swle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWRE_AB:
s = "swre";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_ACLR_AB:
s = "aclr";
fmt = "\\,~(b)";
offbits = 12;
goto ld_st;
case M_ASET_AB:
s = "aset";
fmt = "\\,~(b)";
offbits = 12;
goto ld_st;
case M_LB_AB:
s = "lb";
fmt = "t,o(b)";
goto ld;
case M_LBU_AB:
s = "lbu";
fmt = "t,o(b)";
goto ld;
case M_LH_AB:
s = "lh";
fmt = "t,o(b)";
goto ld;
case M_LHU_AB:
s = "lhu";
fmt = "t,o(b)";
goto ld;
case M_LW_AB:
s = "lw";
fmt = "t,o(b)";
goto ld;
case M_LWC0_AB:
gas_assert (!mips_opts.micromips);
s = "lwc0";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC1_AB:
s = "lwc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC2_AB:
s = "lwc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC3_AB:
gas_assert (!mips_opts.micromips);
s = "lwc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWL_AB:
s = "lwl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LWR_AB:
s = "lwr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LDC1_AB:
s = "ldc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDC2_AB:
s = "ldc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LQC2_AB:
s = "lqc2";
fmt = "+7,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDC3_AB:
s = "ldc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDL_AB:
s = "ldl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LDR_AB:
s = "ldr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LL_AB:
s = "ll";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld;
case M_LLD_AB:
s = "lld";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld;
case M_LWU_AB:
s = "lwu";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld;
case M_LWP_AB:
gas_assert (mips_opts.micromips);
s = "lwp";
fmt = "t,~(b)";
offbits = 12;
lp = 1;
goto ld;
case M_LDP_AB:
gas_assert (mips_opts.micromips);
s = "ldp";
fmt = "t,~(b)";
offbits = 12;
lp = 1;
goto ld;
case M_LLDP_AB:
case M_LLWP_AB:
case M_LLWPE_AB:
s = ip->insn_mo->name;
fmt = "t,d,s";
ll_sc_paired = 1;
offbits = 0;
goto ld;
case M_LWM_AB:
gas_assert (mips_opts.micromips);
s = "lwm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
case M_LDM_AB:
gas_assert (mips_opts.micromips);
s = "ldm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
ld:
/* Try to use one the the load registers to compute the base address.
We don't want to use $0 as tempreg. */
if (ll_sc_paired)
{
if ((op[0] == ZERO && op[3] == op[1])
|| (op[1] == ZERO && op[3] == op[0])
|| (op[0] == ZERO && op[1] == ZERO))
goto ld_st;
else if (op[0] != op[3] && op[0] != ZERO)
tempreg = op[0];
else
tempreg = op[1];
}
else
{
if (op[2] == op[0] + lp || op[0] + lp == ZERO)
goto ld_st;
else
tempreg = op[0] + lp;
}
goto ld_noat;
case M_SB_AB:
s = "sb";
fmt = "t,o(b)";
goto ld_st;
case M_SH_AB:
s = "sh";
fmt = "t,o(b)";
goto ld_st;
case M_SW_AB:
s = "sw";
fmt = "t,o(b)";
goto ld_st;
case M_SWC0_AB:
gas_assert (!mips_opts.micromips);
s = "swc0";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC1_AB:
s = "swc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC2_AB:
s = "swc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC3_AB:
gas_assert (!mips_opts.micromips);
s = "swc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWL_AB:
s = "swl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SWR_AB:
s = "swr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SC_AB:
s = "sc";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_SCD_AB:
s = "scd";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_SCDP_AB:
case M_SCWP_AB:
case M_SCWPE_AB:
s = ip->insn_mo->name;
fmt = "t,d,s";
ll_sc_paired = 1;
offbits = 0;
goto ld_st;
case M_CACHE_AB:
s = "cache";
fmt = (mips_opts.micromips ? "k,~(b)"
: ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
: "k,o(b)");
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_CACHEE_AB:
s = "cachee";
fmt = "k,+j(b)";
offbits = 9;
goto ld_st;
case M_PREF_AB:
s = "pref";
fmt = (mips_opts.micromips ? "k,~(b)"
: ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
: "k,o(b)");
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_PREFE_AB:
s = "prefe";
fmt = "k,+j(b)";
offbits = 9;
goto ld_st;
case M_SDC1_AB:
s = "sdc1";
fmt = "T,o(b)";
coproc = 1;
/* Itbl support may require additional care here. */
goto ld_st;
case M_SDC2_AB:
s = "sdc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SQC2_AB:
s = "sqc2";
fmt = "+7,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SDC3_AB:
gas_assert (!mips_opts.micromips);
s = "sdc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SDL_AB:
s = "sdl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SDR_AB:
s = "sdr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SWP_AB:
gas_assert (mips_opts.micromips);
s = "swp";
fmt = "t,~(b)";
offbits = 12;
goto ld_st;
case M_SDP_AB:
gas_assert (mips_opts.micromips);
s = "sdp";
fmt = "t,~(b)";
offbits = 12;
goto ld_st;
case M_SWM_AB:
gas_assert (mips_opts.micromips);
s = "swm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
case M_SDM_AB:
gas_assert (mips_opts.micromips);
s = "sdm";
fmt = "n,~(b)";
offbits = 12;
ld_st:
tempreg = AT;
ld_noat:
breg = ll_sc_paired ? op[3] : op[2];
if (small_offset_p (0, align, 16))
{
/* The first case exists for M_LD_AB and M_SD_AB, which are
macros for o32 but which should act like normal instructions
otherwise. */
if (offbits == 16)
macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
else if (small_offset_p (0, align, offbits))
{
if (offbits == 0)
{
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], breg);
else
macro_build (NULL, s, fmt, op[0], breg);
}
else
macro_build (NULL, s, fmt, op[0],
(int) offset_expr.X_add_number, breg);
}
else
{
if (tempreg == AT)
used_at = 1;
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, breg, -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2]);
if (offbits == 0)
{
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], tempreg);
else
macro_build (NULL, s, fmt, op[0], tempreg);
}
else
macro_build (NULL, s, fmt, op[0], 0, tempreg);
}
break;
}
if (tempreg == AT)
used_at = 1;
if (offset_expr.X_op != O_constant
&& offset_expr.X_op != O_symbol)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (HAVE_32BIT_ADDRESSES
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
{
char value [32];
sprintf_vma (value, offset_expr.X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
}
/* A constant expression in PIC code can be handled just as it
is in non PIC code. */
if (offset_expr.X_op == O_constant)
{
expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
offbits == 0 ? 16 : offbits);
offset_expr.X_add_number -= expr1.X_add_number;
load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
if (offbits == 0)
{
if (offset_expr.X_add_number != 0)
macro_build (&offset_expr, ADDRESS_ADDI_INSN,
"t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], tempreg);
else
macro_build (NULL, s, fmt, op[0], tempreg);
}
else if (offbits == 16)
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
else
macro_build (NULL, s, fmt, op[0],
(int) offset_expr.X_add_number, tempreg);
}
else if (offbits != 16)
{
/* The offset field is too narrow to be used for a low-part
relocation, so load the whole address into the auxiliary
register. */
load_address (tempreg, &offset_expr, &used_at);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
if (offbits == 0)
{
if (ll_sc_paired)
macro_build (NULL, s, fmt, op[0], op[1], tempreg);
else
macro_build (NULL, s, fmt, op[0], tempreg);
}
else
macro_build (NULL, s, fmt, op[0], 0, tempreg);
}
else if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, and there
is no base register, we want
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
Otherwise, if there is no base register, we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we always use the latter form.
If we have a base register, and this is a reference to a
GP relative symbol, we want
addu $tempreg,$breg,$gp
<op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addu $tempreg,$tempreg,$breg
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
With a constant we always use the latter case.
With 64bit address space and no base register and $at usable,
we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll32 $tempreg,0
daddu $tempreg,$at
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a base register, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddu $at,$breg
dsll32 $tempreg,0
daddu $tempreg,$at
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
Without $at we can't generate the optimal path for superscalar
processors here since this would require two temporary registers.
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a base register, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
daddu $tempreg,$tempreg,$breg
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
if (breg == 0)
{
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, mips_gp_register);
}
else
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, breg, mips_gp_register);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, tempreg);
}
relax_switch ();
}
if (used_at == 0 && mips_opts.at)
{
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "lui", LUI_FMT, AT,
BFD_RELOC_HI16_S);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_HIGHER);
if (breg != 0)
macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
tempreg);
used_at = 1;
}
else
{
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
if (breg != 0)
macro_build (NULL, "daddu", "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
}
if (mips_relax.sequence)
relax_end ();
break;
}
if (breg == 0)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
mips_gp_register);
relax_switch ();
}
macro_build_lui (&offset_expr, tempreg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, breg, mips_gp_register);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, tempreg);
relax_switch ();
}
macro_build_lui (&offset_expr, tempreg);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got)
{
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* If this is a reference to an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> op[0],0($tempreg)
For NewABI, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
gas_assert (offset_expr.X_op == O_symbol);
if (HAVE_NEWABI)
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_MIPS_GOT_OFST, tempreg);
break;
}
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
lw_reloc_type, mips_gp_register);
load_delay_nop ();
relax_start (offset_expr.X_add_symbol);
relax_switch ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_LO16);
relax_end ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
}
else if (mips_big_got && !HAVE_NEWABI)
{
int gpdelay;
/* If this is a reference to an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
<op> op[0],0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> op[0],0($tempreg)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
gas_assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
gpdelay = reg_needs_delay (mips_gp_register);
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_LO16, tempreg);
relax_switch ();
if (gpdelay)
macro_build (NULL, "nop", "");
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_LO16);
relax_end ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
}
else if (mips_big_got && HAVE_NEWABI)
{
/* If this is a reference to an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
<op> op[0],<ofst>($tempreg)
Otherwise, for local symbols, we want:
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
gas_assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_LO16, tempreg);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_MIPS_GOT_OFST, tempreg);
relax_end ();
}
else
abort ();
break;
case M_JRADDIUSP:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
start_noreorder ();
macro_build (NULL, "jr", "s", RA);
expr1.X_add_number = op[0] << 2;
macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
end_noreorder ();
break;
case M_JRC:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
macro_build (NULL, "jr", "s", op[0]);
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
break;
case M_LI:
case M_LI_S:
load_register (op[0], &imm_expr, 0);
break;
case M_DLI:
load_register (op[0], &imm_expr, 1);
break;
case M_LI_SS:
if (imm_expr.X_op == O_constant)
{
used_at = 1;
load_register (AT, &imm_expr, 0);
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
break;
}
else
{
gas_assert (imm_expr.X_op == O_absent
&& offset_expr.X_op == O_symbol
&& strcmp (segment_name (S_GET_SEGMENT
(offset_expr.X_add_symbol)),
".lit4") == 0
&& offset_expr.X_add_number == 0);
macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
BFD_RELOC_MIPS_LITERAL, mips_gp_register);
break;
}
case M_LI_D:
/* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
order 32 bits of the value and the low order 32 bits are either
zero or in OFFSET_EXPR. */
if (imm_expr.X_op == O_constant)
{
if (GPR_SIZE == 64)
load_register (op[0], &imm_expr, 1);
else
{
int hreg, lreg;
if (target_big_endian)
{
hreg = op[0];
lreg = op[0] + 1;
}
else
{
hreg = op[0] + 1;
lreg = op[0];
}
if (hreg <= 31)
load_register (hreg, &imm_expr, 0);
if (lreg <= 31)
{
if (offset_expr.X_op == O_absent)
move_register (lreg, 0);
else
{
gas_assert (offset_expr.X_op == O_constant);
load_register (lreg, &offset_expr, 0);
}
}
}
break;
}
gas_assert (imm_expr.X_op == O_absent);
/* We know that sym is in the .rdata section. First we get the
upper 16 bits of the address. */
if (mips_pic == NO_PIC)
{
macro_build_lui (&offset_expr, AT);
used_at = 1;
}
else
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
used_at = 1;
}
/* Now we load the register(s). */
if (GPR_SIZE == 64)
{
used_at = 1;
macro_build (&offset_expr, "ld", "t,o(b)", op[0],
BFD_RELOC_LO16, AT);
}
else
{
used_at = 1;
macro_build (&offset_expr, "lw", "t,o(b)", op[0],
BFD_RELOC_LO16, AT);
if (op[0] != RA)
{
/* FIXME: How in the world do we deal with the possible
overflow here? */
offset_expr.X_add_number += 4;
macro_build (&offset_expr, "lw", "t,o(b)",
op[0] + 1, BFD_RELOC_LO16, AT);
}
}
break;
case M_LI_DD:
/* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
wide, IMM_EXPR is the entire value and the GPRs are known to be 64
bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
the value and the low order 32 bits are either zero or in
OFFSET_EXPR. */
if (imm_expr.X_op == O_constant)
{
tempreg = ZERO;
if (((FPR_SIZE == 64 && GPR_SIZE == 64)
|| !ISA_HAS_MXHC1 (mips_opts.isa))
&& imm_expr.X_add_number != 0)
{
used_at = 1;
tempreg = AT;
load_register (AT, &imm_expr, FPR_SIZE == 64);
}
if (FPR_SIZE == 64 && GPR_SIZE == 64)
macro_build (NULL, "dmtc1", "t,S", tempreg, op[0]);
else
{
if (!ISA_HAS_MXHC1 (mips_opts.isa))
{
if (FPR_SIZE != 32)
as_bad (_("Unable to generate `%s' compliant code "
"without mthc1"),
(FPR_SIZE == 64) ? "fp64" : "fpxx");
else
macro_build (NULL, "mtc1", "t,G", tempreg, op[0] + 1);
}
if (offset_expr.X_op == O_absent)
macro_build (NULL, "mtc1", "t,G", 0, op[0]);
else
{
gas_assert (offset_expr.X_op == O_constant);
load_register (AT, &offset_expr, 0);
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
}
if (ISA_HAS_MXHC1 (mips_opts.isa))
{
if (imm_expr.X_add_number != 0)
{
used_at = 1;
tempreg = AT;
load_register (AT, &imm_expr, 0);
}
macro_build (NULL, "mthc1", "t,G", tempreg, op[0]);
}
}
break;
}
gas_assert (imm_expr.X_op == O_absent
&& offset_expr.X_op == O_symbol
&& offset_expr.X_add_number == 0);
s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
if (strcmp (s, ".lit8") == 0)
{
op[2] = mips_gp_register;
offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
else
{
gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
used_at = 1;
if (mips_pic != NO_PIC)
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&offset_expr, AT);
}
op[2] = AT;
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
align = 8;
/* Fall through. */
case M_L_DAB:
/* The MIPS assembler seems to check for X_add_number not
being double aligned and generating:
lui at,%hi(foo+1)
addu at,at,v1
addiu at,at,%lo(foo+1)
lwc1 f2,0(at)
lwc1 f3,4(at)
But, the resulting address is the same after relocation so why
generate the extra instruction? */
/* Itbl support may require additional care here. */
coproc = 1;
fmt = "T,o(b)";
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
{
s = "ldc1";
goto ld_st;
}
s = "lwc1";
goto ldd_std;
case M_S_DAB:
gas_assert (!mips_opts.micromips);
/* Itbl support may require additional care here. */
coproc = 1;
fmt = "T,o(b)";
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
{
s = "sdc1";
goto ld_st;
}
s = "swc1";
goto ldd_std;
case M_LQ_AB:
fmt = "t,o(b)";
s = "lq";
goto ld;
case M_SQ_AB:
fmt = "t,o(b)";
s = "sq";
goto ld_st;
case M_LD_AB:
fmt = "t,o(b)";
if (GPR_SIZE == 64)
{
s = "ld";
goto ld;
}
s = "lw";
goto ldd_std;
case M_SD_AB:
fmt = "t,o(b)";
if (GPR_SIZE == 64)
{
s = "sd";
goto ld_st;
}
s = "sw";
ldd_std:
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when loading from memory. We set coproc if we must
load $fn+1 first. */
/* Itbl support may require additional care here. */
if (!target_big_endian)
coproc = 0;
breg = op[2];
if (small_offset_p (0, align, 16))
{
ep = &offset_expr;
if (!small_offset_p (4, align, 16))
{
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
-1, offset_reloc[0], offset_reloc[1],
offset_reloc[2]);
expr1.X_add_number = 0;
ep = &expr1;
breg = AT;
used_at = 1;
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
if (strcmp (s, "lw") == 0 && op[0] == breg)
{
ep->X_add_number += 4;
macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
ep->X_add_number -= 4;
macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
}
else
{
macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2],
breg);
ep->X_add_number += 4;
macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2],
breg);
}
break;
}
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (HAVE_32BIT_ADDRESSES
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
{
char value [32];
sprintf_vma (value, offset_expr.X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
}
if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
{
/* If this is a reference to a GP relative symbol, we want
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
<op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
If we have a base register, we use this
addu $at,$breg,$gp
<op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
If this is not a GP relative symbol, we want
lui $at,<sym> (BFD_RELOC_HI16_S)
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register, we add it to $at after the
lui instruction. If there is a constant, we always use
the last case. */
if (offset_expr.X_op == O_symbol
&& (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
if (breg == 0)
{
tempreg = mips_gp_register;
}
else
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
AT, breg, mips_gp_register);
tempreg = AT;
used_at = 1;
}
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_GPREL16, tempreg);
offset_expr.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an
undesired nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_GPREL16, tempreg);
mips_optimize = hold_mips_optimize;
relax_switch ();
offset_expr.X_add_number -= 4;
}
used_at = 1;
if (offset_high_part (offset_expr.X_add_number, 16)
!= offset_high_part (offset_expr.X_add_number + 4, 16))
{
load_address (AT, &offset_expr, &used_at);
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
}
else
macro_build_lui (&offset_expr, AT);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
/* FIXME: How do we handle overflow here? */
offset_expr.X_add_number += 4;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
if (mips_relax.sequence)
relax_end ();
}
else if (!mips_big_got)
{
/* If this is a reference to an external symbol, we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],0($at)
<op> op[0]+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
load_got_offset (AT, &offset_expr);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
relax_start (offset_expr.X_add_symbol);
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
relax_switch ();
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
offset_expr.X_add_number += 4;
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
relax_end ();
mips_optimize = hold_mips_optimize;
}
else if (mips_big_got)
{
int gpdelay;
/* If this is a reference to an external symbol, we want
lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $at,$at,$gp
lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
nop
<op> op[0],0($at)
<op> op[0]+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
gpdelay = reg_needs_delay (mips_gp_register);
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT,
AT, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
AT, AT, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
AT, BFD_RELOC_MIPS_GOT_LO16, AT);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
expr1.X_add_number -= 4;
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
if (gpdelay)
macro_build (NULL, "nop", "");
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
offset_expr.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
relax_end ();
}
else
abort ();
break;
case M_SAA_AB:
s = "saa";
goto saa_saad;
case M_SAAD_AB:
s = "saad";
saa_saad:
gas_assert (!mips_opts.micromips);
offbits = 0;
fmt = "t,(b)";
goto ld_st;
/* New code added to support COPZ instructions.
This code builds table entries out of the macros in mip_opcodes.
R4000 uses interlocks to handle coproc delays.
Other chips (like the R3000) require nops to be inserted for delays.
FIXME: Currently, we require that the user handle delays.
In order to fill delay slots for non-interlocked chips,
we must have a way to specify delays based on the coprocessor.
Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
What are the side-effects of the cop instruction?
What cache support might we have and what are its effects?
Both coprocessor & memory require delays. how long???
What registers are read/set/modified?
If an itbl is provided to interpret cop instructions,
this knowledge can be encoded in the itbl spec. */
case M_COP0:
s = "c0";
goto copz;
case M_COP1:
s = "c1";
goto copz;
case M_COP2:
s = "c2";
goto copz;
case M_COP3:
s = "c3";
copz:
gas_assert (!mips_opts.micromips);
/* For now we just do C (same as Cz). The parameter will be
stored in insn_opcode by mips_ip. */
macro_build (NULL, s, "C", (int) ip->insn_opcode);
break;
case M_MOVE:
move_register (op[0], op[1]);
break;
case M_MOVEP:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
move_register (micromips_to_32_reg_h_map1[op[0]],
micromips_to_32_reg_m_map[op[1]]);
move_register (micromips_to_32_reg_h_map2[op[0]],
micromips_to_32_reg_n_map[op[2]]);
break;
case M_DMUL:
dbl = 1;
/* Fall through. */
case M_MUL:
if (mips_opts.arch == CPU_R5900)
macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
op[2]);
else
{
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
}
break;
case M_DMUL_I:
dbl = 1;
/* Fall through. */
case M_MUL_I:
/* The MIPS assembler some times generates shifts and adds. I'm
not trying to be that fancy. GCC should do this for us
anyway. */
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
break;
case M_DMULO_I:
dbl = 1;
/* Fall through. */
case M_MULO_I:
imm = 1;
goto do_mulo;
case M_DMULO:
dbl = 1;
/* Fall through. */
case M_MULO:
do_mulo:
start_noreorder ();
used_at = 1;
if (imm)
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
op[1], imm ? AT : op[2]);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
macro_build (NULL, "mfhi", MFHL_FMT, AT);
if (mips_trap)
macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
macro_build (NULL, "nop", "");
macro_build (NULL, "break", BRK_FMT, 6);
if (mips_opts.micromips)
micromips_add_label ();
}
end_noreorder ();
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
break;
case M_DMULOU_I:
dbl = 1;
/* Fall through. */
case M_MULOU_I:
imm = 1;
goto do_mulou;
case M_DMULOU:
dbl = 1;
/* Fall through. */
case M_MULOU:
do_mulou:
start_noreorder ();
used_at = 1;
if (imm)
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
op[1], imm ? AT : op[2]);
macro_build (NULL, "mfhi", MFHL_FMT, AT);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
if (mips_trap)
macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
macro_build (NULL, "nop", "");
macro_build (NULL, "break", BRK_FMT, 6);
if (mips_opts.micromips)
micromips_add_label ();
}
end_noreorder ();
break;
case M_DROL:
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
if (op[0] == op[1])
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
break;
}
used_at = 1;
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_ROL:
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
if (op[0] == op[1])
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
macro_build (NULL, "negu", "d,w", tempreg, op[2]);
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
break;
}
used_at = 1;
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_DROL_I:
{
unsigned int rot;
const char *l;
const char *rr;
rot = imm_expr.X_add_number & 0x3f;
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
rot = (64 - rot) & 0x3f;
if (rot >= 32)
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
else
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
break;
}
l = (rot < 0x20) ? "dsll" : "dsll32";
rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
rot &= 0x1f;
used_at = 1;
macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_ROL_I:
{
unsigned int rot;
rot = imm_expr.X_add_number & 0x1f;
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
(32 - rot) & 0x1f);
break;
}
if (rot == 0)
{
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
break;
}
used_at = 1;
macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_DROR:
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
break;
}
used_at = 1;
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_ROR:
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
break;
}
used_at = 1;
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_DROR_I:
{
unsigned int rot;
const char *l;
const char *rr;
rot = imm_expr.X_add_number & 0x3f;
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
if (rot >= 32)
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
else
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
break;
}
rr = (rot < 0x20) ? "dsrl" : "dsrl32";
l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
rot &= 0x1f;
used_at = 1;
macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_ROR_I:
{
unsigned int rot;
rot = imm_expr.X_add_number & 0x1f;
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
break;
}
used_at = 1;
macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_SEQ:
if (op[1] == 0)
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
else if (op[2] == 0)
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
else
{
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
}
break;
case M_SEQ_I:
if (imm_expr.X_add_number == 0)
{
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
if (op[1] == 0)
{
as_warn (_("instruction %s: result is always false"),
ip->insn_mo->name);
move_register (op[0], 0);
break;
}
if (CPU_HAS_SEQ (mips_opts.arch)
&& -512 <= imm_expr.X_add_number
&& imm_expr.X_add_number < 512)
{
macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
else if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
}
else if (CPU_HAS_SEQ (mips_opts.arch))
{
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
break;
}
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
used_at = 1;
}
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGE: /* X >= Y <==> not (X < Y) */
s = "slt";
goto sge;
case M_SGEU:
s = "sltu";
sge:
macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGE_I: /* X >= I <==> not (X < I). */
case M_SGEU_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
op[0], op[1], BFD_RELOC_LO16);
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
op[0], op[1], AT);
used_at = 1;
}
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGT: /* X > Y <==> Y < X. */
s = "slt";
goto sgt;
case M_SGTU:
s = "sltu";
sgt:
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
break;
case M_SGT_I: /* X > I <==> I < X. */
s = "slt";
goto sgti;
case M_SGTU_I:
s = "sltu";
sgti:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
break;
case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X). */
s = "slt";
goto sle;
case M_SLEU:
s = "sltu";
sle:
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
s = "slt";
goto slei;
case M_SLEU_I:
s = "sltu";
slei:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SLT_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
BFD_RELOC_LO16);
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
break;
case M_SLTU_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
BFD_RELOC_LO16);
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
break;
case M_SNE:
if (op[1] == 0)
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
else if (op[2] == 0)
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
else
{
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
}
break;
case M_SNE_I:
if (imm_expr.X_add_number == 0)
{
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
break;
}
if (op[1] == 0)
{
as_warn (_("instruction %s: result is always true"),
ip->insn_mo->name);
macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
op[0], 0, BFD_RELOC_LO16);
break;
}
if (CPU_HAS_SEQ (mips_opts.arch)
&& -512 <= imm_expr.X_add_number
&& imm_expr.X_add_number < 512)
{
macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
{
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
BFD_RELOC_LO16);
}
else if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
}
else if (CPU_HAS_SEQ (mips_opts.arch))
{
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
break;
}
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
used_at = 1;
}
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
break;
case M_SUB_I:
s = "addi";
s2 = "sub";
if (ISA_IS_R6 (mips_opts.isa))
goto do_subi_i;
else
goto do_subi;
case M_SUBU_I:
s = "addiu";
s2 = "subu";
goto do_subi;
case M_DSUB_I:
dbl = 1;
s = "daddi";
s2 = "dsub";
if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
goto do_subi;
if (imm_expr.X_add_number > -0x200
&& imm_expr.X_add_number <= 0x200
&& !ISA_IS_R6 (mips_opts.isa))
{
macro_build (NULL, s, "t,r,.", op[0], op[1],
(int) -imm_expr.X_add_number);
break;
}
goto do_subi_i;
case M_DSUBU_I:
dbl = 1;
s = "daddiu";
s2 = "dsubu";
do_subi:
if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number <= 0x8000)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
do_subi_i:
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_TEQ_I:
s = "teq";
goto trap;
case M_TGE_I:
s = "tge";
goto trap;
case M_TGEU_I:
s = "tgeu";
goto trap;
case M_TLT_I:
s = "tlt";
goto trap;
case M_TLTU_I:
s = "tltu";
goto trap;
case M_TNE_I:
s = "tne";
trap:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "s,t", op[0], AT);
break;
case M_TRUNCWS:
case M_TRUNCWD:
gas_assert (!mips_opts.micromips);
gas_assert (mips_opts.isa == ISA_MIPS1);
used_at = 1;
/*
* Is the double cfc1 instruction a bug in the mips assembler;
* or is there a reason for it?
*/
start_noreorder ();
macro_build (NULL, "cfc1", "t,G", op[2], RA);
macro_build (NULL, "cfc1", "t,G", op[2], RA);
macro_build (NULL, "nop", "");
expr1.X_add_number = 3;
macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
expr1.X_add_number = 2;
macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "ctc1", "t,G", AT, RA);
macro_build (NULL, "nop", "");
macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
op[0], op[1]);
macro_build (NULL, "ctc1", "t,G", op[2], RA);
macro_build (NULL, "nop", "");
end_noreorder ();
break;
case M_ULH_AB:
s = "lb";
s2 = "lbu";
off = 1;
goto uld_st;
case M_ULHU_AB:
s = "lbu";
s2 = "lbu";
off = 1;
goto uld_st;
case M_ULW_AB:
s = "lwl";
s2 = "lwr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 3;
goto uld_st;
case M_ULD_AB:
s = "ldl";
s2 = "ldr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 7;
goto uld_st;
case M_USH_AB:
s = "sb";
s2 = "sb";
off = 1;
ust = 1;
goto uld_st;
case M_USW_AB:
s = "swl";
s2 = "swr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 3;
ust = 1;
goto uld_st;
case M_USD_AB:
s = "sdl";
s2 = "sdr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 7;
ust = 1;
uld_st:
breg = op[2];
large_offset = !small_offset_p (off, align, offbits);
ep = &offset_expr;
expr1.X_add_number = 0;
if (large_offset)
{
used_at = 1;
tempreg = AT;
if (small_offset_p (0, align, 16))
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2]);
else
{
load_address (tempreg, ep, &used_at);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
}
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
breg = tempreg;
tempreg = op[0];
ep = &expr1;
}
else if (!ust && op[0] == breg)
{
used_at = 1;
tempreg = AT;
}
else
tempreg = op[0];
if (off == 1)
goto ulh_sh;
if (!target_big_endian)
ep->X_add_number += off;
if (offbits == 12)
macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
else
macro_build (ep, s, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
if (!target_big_endian)
ep->X_add_number -= off;
else
ep->X_add_number += off;
if (offbits == 12)
macro_build (NULL, s2, "t,~(b)",
tempreg, (int) ep->X_add_number, breg);
else
macro_build (ep, s2, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* If necessary, move the result in tempreg to the final destination. */
if (!ust && op[0] != tempreg)
{
/* Protect second load's delay slot. */
load_delay_nop ();
move_register (op[0], tempreg);
}
break;
ulh_sh:
used_at = 1;
if (target_big_endian == ust)
ep->X_add_number += off;
tempreg = ust || large_offset ? op[0] : AT;
macro_build (ep, s, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* For halfword transfers we need a temporary register to shuffle
bytes. Unfortunately for M_USH_A we have none available before
the next store as AT holds the base address. We deal with this
case by clobbering TREG and then restoring it as with ULH. */
tempreg = ust == large_offset ? op[0] : AT;
if (ust)
macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
if (target_big_endian == ust)
ep->X_add_number -= off;
else
ep->X_add_number += off;
macro_build (ep, s2, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* For M_USH_A re-retrieve the LSB. */
if (ust && large_offset)
{
if (target_big_endian)
ep->X_add_number += off;
else
ep->X_add_number -= off;
macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
}
/* For ULH and M_USH_A OR the LSB in. */
if (!ust || large_offset)
{
tempreg = !large_offset ? AT : op[0];
macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
default:
/* FIXME: Check if this is one of the itbl macros, since they
are added dynamically. */
as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
break;
}
if (!mips_opts.at && used_at)
as_bad (_("macro used $at after \".set noat\""));
}
/* Implement macros in mips16 mode. */
static void
mips16_macro (struct mips_cl_insn *ip)
{
const struct mips_operand_array *operands;
int mask;
int tmp;
expressionS expr1;
int dbl;
const char *s, *s2, *s3;
unsigned int op[MAX_OPERANDS];
unsigned int i;
mask = ip->insn_mo->mask;
operands = insn_operands (ip);
for (i = 0; i < MAX_OPERANDS; i++)
if (operands->operand[i])
op[i] = insn_extract_operand (ip, operands->operand[i]);
else
op[i] = -1;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
dbl = 0;
switch (mask)
{
default:
abort ();
case M_DDIV_3:
dbl = 1;
/* Fall through. */
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
/* Fall through. */
case M_REM_3:
s = "mfhi";
do_div3:
start_noreorder ();
macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
expr1.X_add_number = 2;
macro_build (&expr1, "bnez", "x,p", op[2]);
macro_build (NULL, "break", "6", 7);
/* FIXME: The normal code checks for of -1 / -0x80000000 here,
since that causes an overflow. We should do that as well,
but I don't see how to do the comparisons without a temporary
register. */
end_noreorder ();
macro_build (NULL, s, "x", op[0]);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
start_noreorder ();
macro_build (NULL, s, ".,x,y", op[1], op[2]);
expr1.X_add_number = 2;
macro_build (&expr1, "bnez", "x,p", op[2]);
macro_build (NULL, "break", "6", 7);
end_noreorder ();
macro_build (NULL, s2, "x", op[0]);
break;
case M_DMUL:
dbl = 1;
/* Fall through. */
case M_MUL:
macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
macro_build (NULL, "mflo", "x", op[0]);
break;
case M_DSUBU_I:
dbl = 1;
goto do_subu;
case M_SUBU_I:
do_subu:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
break;
case M_SUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, "addiu", "x,k", op[0]);
break;
case M_DSUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, "daddiu", "y,j", op[0]);
break;
case M_BEQ:
s = "cmp";
s2 = "bteqz";
goto do_branch;
case M_BNE:
s = "cmp";
s2 = "btnez";
goto do_branch;
case M_BLT:
s = "slt";
s2 = "btnez";
goto do_branch;
case M_BLTU:
s = "sltu";
s2 = "btnez";
goto do_branch;
case M_BLE:
s = "slt";
s2 = "bteqz";
goto do_reverse_branch;
case M_BLEU:
s = "sltu";
s2 = "bteqz";
goto do_reverse_branch;
case M_BGE:
s = "slt";
s2 = "bteqz";
goto do_branch;
case M_BGEU:
s = "sltu";
s2 = "bteqz";
goto do_branch;
case M_BGT:
s = "slt";
s2 = "btnez";
goto do_reverse_branch;
case M_BGTU:
s = "sltu";
s2 = "btnez";
do_reverse_branch:
tmp = op[1];
op[1] = op[0];
op[0] = tmp;
do_branch:
macro_build (NULL, s, "x,y", op[0], op[1]);
macro_build (&offset_expr, s2, "p");
break;
case M_BEQ_I:
s = "cmpi";
s2 = "bteqz";
s3 = "x,U";
goto do_branch_i;
case M_BNE_I:
s = "cmpi";
s2 = "btnez";
s3 = "x,U";
goto do_branch_i;
case M_BLT_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLTU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLE_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BLEU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGE_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGEU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGT_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGTU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
do_addone_branch_i:
++imm_expr.X_add_number;
do_branch_i:
macro_build (&imm_expr, s, s3, op[0]);
macro_build (&offset_expr, s2, "p");
break;
case M_ABS:
expr1.X_add_number = 0;
macro_build (&expr1, "slti", "x,8", op[1]);
if (op[0] != op[1])
macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
expr1.X_add_number = 2;
macro_build (&expr1, "bteqz", "p");
macro_build (NULL, "neg", "x,w", op[0], op[0]);
break;
}
}
/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
opcode bits in *OPCODE_EXTRA. */
static struct mips_opcode *
mips_lookup_insn (struct hash_control *hash, const char *start,
ssize_t length, unsigned int *opcode_extra)
{
char *name, *dot, *p;
unsigned int mask, suffix;
ssize_t opend;
struct mips_opcode *insn;
/* Make a copy of the instruction so that we can fiddle with it. */
name = xstrndup (start, length);
/* Look up the instruction as-is. */
insn = (struct mips_opcode *) hash_find (hash, name);
if (insn)
goto end;
dot = strchr (name, '.');
if (dot && dot[1])
{
/* Try to interpret the text after the dot as a VU0 channel suffix. */
p = mips_parse_vu0_channels (dot + 1, &mask);
if (*p == 0 && mask != 0)
{
*dot = 0;
insn = (struct mips_opcode *) hash_find (hash, name);
*dot = '.';
if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
{
*opcode_extra |= mask << mips_vu0_channel_mask.lsb;
goto end;
}
}
}
if (mips_opts.micromips)
{
/* See if there's an instruction size override suffix,
either `16' or `32', at the end of the mnemonic proper,
that defines the operation, i.e. before the first `.'
character if any. Strip it and retry. */
opend = dot != NULL ? dot - name : length;
if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
suffix = 2;
else if (opend >= 2 && name[opend - 2] == '3' && name[opend - 1] == '2')
suffix = 4;
else
suffix = 0;
if (suffix)
{
memmove (name + opend - 2, name + opend, length - opend + 1);
insn = (struct mips_opcode *) hash_find (hash, name);
if (insn)
{
forced_insn_length = suffix;
goto end;
}
}
}
insn = NULL;
end:
free (name);
return insn;
}
/* Assemble an instruction into its binary format. If the instruction
is a macro, set imm_expr and offset_expr to the values associated
with "I" and "A" operands respectively. Otherwise store the value
of the relocatable field (if any) in offset_expr. In both cases
set offset_reloc to the relocation operators applied to offset_expr. */
static void
mips_ip (char *str, struct mips_cl_insn *insn)
{
const struct mips_opcode *first, *past;
struct hash_control *hash;
char format;
size_t end;
struct mips_operand_token *tokens;
unsigned int opcode_extra;
if (mips_opts.micromips)
{
hash = micromips_op_hash;
past = µmips_opcodes[bfd_micromips_num_opcodes];
}
else
{
hash = op_hash;
past = &mips_opcodes[NUMOPCODES];
}
forced_insn_length = 0;
opcode_extra = 0;
/* We first try to match an instruction up to a space or to the end. */
for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
continue;
first = mips_lookup_insn (hash, str, end, &opcode_extra);
if (first == NULL)
{
set_insn_error (0, _("unrecognized opcode"));
return;
}
if (strcmp (first->name, "li.s") == 0)
format = 'f';
else if (strcmp (first->name, "li.d") == 0)
format = 'd';
else
format = 0;
tokens = mips_parse_arguments (str + end, format);
if (!tokens)
return;
if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
&& !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
set_insn_error (0, _("invalid operands"));
obstack_free (&mips_operand_tokens, tokens);
}
/* As for mips_ip, but used when assembling MIPS16 code.
Also set forced_insn_length to the resulting instruction size in
bytes if the user explicitly requested a small or extended instruction. */
static void
mips16_ip (char *str, struct mips_cl_insn *insn)
{
char *end, *s, c;
struct mips_opcode *first;
struct mips_operand_token *tokens;
unsigned int l;
for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
;
end = s;
c = *end;
l = 0;
switch (c)
{
case '\0':
break;
case ' ':
s++;
break;
case '.':
s++;
if (*s == 't')
{
l = 2;
s++;
}
else if (*s == 'e')
{
l = 4;
s++;
}
if (*s == '\0')
break;
else if (*s++ == ' ')
break;
set_insn_error (0, _("unrecognized opcode"));
return;
}
forced_insn_length = l;
*end = 0;
first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
*end = c;
if (!first)
{
set_insn_error (0, _("unrecognized opcode"));
return;
}
tokens = mips_parse_arguments (s, 0);
if (!tokens)
return;
if (!match_mips16_insns (insn, first, tokens))
set_insn_error (0, _("invalid operands"));
obstack_free (&mips_operand_tokens, tokens);
}
/* Marshal immediate value VAL for an extended MIPS16 instruction.
NBITS is the number of significant bits in VAL. */
static unsigned long
mips16_immed_extend (offsetT val, unsigned int nbits)
{
int extval;
extval = 0;
val &= (1U << nbits) - 1;
if (nbits == 16 || nbits == 9)
{
extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
val &= 0x1f;
}
else if (nbits == 15)
{
extval = ((val >> 11) & 0xf) | (val & 0x7f0);
val &= 0xf;
}
else if (nbits == 6)
{
extval = ((val & 0x1f) << 6) | (val & 0x20);
val = 0;
}
return (extval << 16) | val;
}
/* Like decode_mips16_operand, but require the operand to be defined and
require it to be an integer. */
static const struct mips_int_operand *
mips16_immed_operand (int type, bfd_boolean extended_p)
{
const struct mips_operand *operand;
operand = decode_mips16_operand (type, extended_p);
if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
abort ();
return (const struct mips_int_operand *) operand;
}
/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
static bfd_boolean
mips16_immed_in_range_p (const struct mips_int_operand *operand,
bfd_reloc_code_real_type reloc, offsetT sval)
{
int min_val, max_val;
min_val = mips_int_operand_min (operand);
max_val = mips_int_operand_max (operand);
if (reloc != BFD_RELOC_UNUSED)
{
if (min_val < 0)
sval = SEXT_16BIT (sval);
else
sval &= 0xffff;
}
return (sval >= min_val
&& sval <= max_val
&& (sval & ((1 << operand->shift) - 1)) == 0);
}
/* Install immediate value VAL into MIPS16 instruction *INSN,
extending it if necessary. The instruction in *INSN may
already be extended.
RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
if none. In the former case, VAL is a 16-bit number with no
defined signedness.
TYPE is the type of the immediate field. USER_INSN_LENGTH
is the length that the user requested, or 0 if none. */
static void
mips16_immed (const char *file, unsigned int line, int type,
bfd_reloc_code_real_type reloc, offsetT val,
unsigned int user_insn_length, unsigned long *insn)
{
const struct mips_int_operand *operand;
unsigned int uval, length;
operand = mips16_immed_operand (type, FALSE);
if (!mips16_immed_in_range_p (operand, reloc, val))
{
/* We need an extended instruction. */
if (user_insn_length == 2)
as_bad_where (file, line, _("invalid unextended operand value"));
else
*insn |= MIPS16_EXTEND;
}
else if (user_insn_length == 4)
{
/* The operand doesn't force an unextended instruction to be extended.
Warn if the user wanted an extended instruction anyway. */
*insn |= MIPS16_EXTEND;
as_warn_where (file, line,
_("extended operand requested but not required"));
}
length = mips16_opcode_length (*insn);
if (length == 4)
{
operand = mips16_immed_operand (type, TRUE);
if (!mips16_immed_in_range_p (operand, reloc, val))
as_bad_where (file, line,
_("operand value out of range for instruction"));
}
uval = ((unsigned int) val >> operand->shift) - operand->bias;
if (length == 2 || operand->root.lsb != 0)
*insn = mips_insert_operand (&operand->root, *insn, uval);
else
*insn |= mips16_immed_extend (uval, operand->root.size);
}
struct percent_op_match
{
const char *str;
bfd_reloc_code_real_type reloc;
};
static const struct percent_op_match mips_percent_op[] =
{
{"%lo", BFD_RELOC_LO16},
{"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
{"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
{"%call16", BFD_RELOC_MIPS_CALL16},
{"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
{"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
{"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
{"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
{"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
{"%got", BFD_RELOC_MIPS_GOT16},
{"%gp_rel", BFD_RELOC_GPREL16},
{"%gprel", BFD_RELOC_GPREL16},
{"%half", BFD_RELOC_16},
{"%highest", BFD_RELOC_MIPS_HIGHEST},
{"%higher", BFD_RELOC_MIPS_HIGHER},
{"%neg", BFD_RELOC_MIPS_SUB},
{"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
{"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
{"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
{"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
{"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
{"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
{"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
{"%hi", BFD_RELOC_HI16_S},
{"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
{"%pcrel_lo", BFD_RELOC_LO16_PCREL}
};
static const struct percent_op_match mips16_percent_op[] =
{
{"%lo", BFD_RELOC_MIPS16_LO16},
{"%gp_rel", BFD_RELOC_MIPS16_GPREL},
{"%gprel", BFD_RELOC_MIPS16_GPREL},
{"%got", BFD_RELOC_MIPS16_GOT16},
{"%call16", BFD_RELOC_MIPS16_CALL16},
{"%hi", BFD_RELOC_MIPS16_HI16_S},
{"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
{"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
{"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
{"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
{"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
{"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
{"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
};
/* Return true if *STR points to a relocation operator. When returning true,
move *STR over the operator and store its relocation code in *RELOC.
Leave both *STR and *RELOC alone when returning false. */
static bfd_boolean
parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
{
const struct percent_op_match *percent_op;
size_t limit, i;
if (mips_opts.mips16)
{
percent_op = mips16_percent_op;
limit = ARRAY_SIZE (mips16_percent_op);
}
else
{
percent_op = mips_percent_op;
limit = ARRAY_SIZE (mips_percent_op);
}
for (i = 0; i < limit; i++)
if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
{
int len = strlen (percent_op[i].str);
if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
continue;
*str += strlen (percent_op[i].str);
*reloc = percent_op[i].reloc;
/* Check whether the output BFD supports this relocation.
If not, issue an error and fall back on something safe. */
if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
{
as_bad (_("relocation %s isn't supported by the current ABI"),
percent_op[i].str);
*reloc = BFD_RELOC_UNUSED;
}
return TRUE;
}
return FALSE;
}
/* Parse string STR as a 16-bit relocatable operand. Store the
expression in *EP and the relocations in the array starting
at RELOC. Return the number of relocation operators used.
On exit, EXPR_END points to the first character after the expression. */
static size_t
my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
char *str)
{
bfd_reloc_code_real_type reversed_reloc[3];
size_t reloc_index, i;
int crux_depth, str_depth;
char *crux;
/* Search for the start of the main expression, recoding relocations
in REVERSED_RELOC. End the loop with CRUX pointing to the start
of the main expression and with CRUX_DEPTH containing the number
of open brackets at that point. */
reloc_index = -1;
str_depth = 0;
do
{
reloc_index++;
crux = str;
crux_depth = str_depth;
/* Skip over whitespace and brackets, keeping count of the number
of brackets. */
while (*str == ' ' || *str == '\t' || *str == '(')
if (*str++ == '(')
str_depth++;
}
while (*str == '%'
&& reloc_index < (HAVE_NEWABI ? 3 : 1)
&& parse_relocation (&str, &reversed_reloc[reloc_index]));
my_getExpression (ep, crux);
str = expr_end;
/* Match every open bracket. */
while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
if (*str++ == ')')
crux_depth--;
if (crux_depth > 0)
as_bad (_("unclosed '('"));
expr_end = str;
if (reloc_index != 0)
{
prev_reloc_op_frag = frag_now;
for (i = 0; i < reloc_index; i++)
reloc[i] = reversed_reloc[reloc_index - 1 - i];
}
return reloc_index;
}
static void
my_getExpression (expressionS *ep, char *str)
{
char *save_in;
save_in = input_line_pointer;
input_line_pointer = str;
expression (ep);
expr_end = input_line_pointer;
input_line_pointer = save_in;
}
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, target_big_endian);
}
void
md_number_to_chars (char *buf, valueT val, int n)
{
if (target_big_endian)
number_to_chars_bigendian (buf, val, n);
else
number_to_chars_littleendian (buf, val, n);
}
static int support_64bit_objects(void)
{
const char **list, **l;
int yes;
list = bfd_target_list ();
for (l = list; *l != NULL; l++)
if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
|| strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
break;
yes = (*l != NULL);
free (list);
return yes;
}
/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
NEW_VALUE. Warn if another value was already specified. Note:
we have to defer parsing the -march and -mtune arguments in order
to handle 'from-abi' correctly, since the ABI might be specified
in a later argument. */
static void
mips_set_option_string (const char **string_ptr, const char *new_value)
{
if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
as_warn (_("a different %s was already specified, is now %s"),
string_ptr == &mips_arch_string ? "-march" : "-mtune",
new_value);
*string_ptr = new_value;
}
int
md_parse_option (int c, const char *arg)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
{
file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c == mips_ases[i].option_on);
return 1;
}
switch (c)
{
case OPTION_CONSTRUCT_FLOATS:
mips_disable_float_construction = 0;
break;
case OPTION_NO_CONSTRUCT_FLOATS:
mips_disable_float_construction = 1;
break;
case OPTION_TRAP:
mips_trap = 1;
break;
case OPTION_BREAK:
mips_trap = 0;
break;
case OPTION_EB:
target_big_endian = 1;
break;
case OPTION_EL:
target_big_endian = 0;
break;
case 'O':
if (arg == NULL)
mips_optimize = 1;
else if (arg[0] == '0')
mips_optimize = 0;
else if (arg[0] == '1')
mips_optimize = 1;
else
mips_optimize = 2;
break;
case 'g':
if (arg == NULL)
mips_debug = 2;
else
mips_debug = atoi (arg);
break;
case OPTION_MIPS1:
file_mips_opts.isa = ISA_MIPS1;
break;
case OPTION_MIPS2:
file_mips_opts.isa = ISA_MIPS2;
break;
case OPTION_MIPS3:
file_mips_opts.isa = ISA_MIPS3;
break;
case OPTION_MIPS4:
file_mips_opts.isa = ISA_MIPS4;
break;
case OPTION_MIPS5:
file_mips_opts.isa = ISA_MIPS5;
break;
case OPTION_MIPS32:
file_mips_opts.isa = ISA_MIPS32;
break;
case OPTION_MIPS32R2:
file_mips_opts.isa = ISA_MIPS32R2;
break;
case OPTION_MIPS32R3:
file_mips_opts.isa = ISA_MIPS32R3;
break;
case OPTION_MIPS32R5:
file_mips_opts.isa = ISA_MIPS32R5;
break;
case OPTION_MIPS32R6:
file_mips_opts.isa = ISA_MIPS32R6;
break;
case OPTION_MIPS64R2:
file_mips_opts.isa = ISA_MIPS64R2;
break;
case OPTION_MIPS64R3:
file_mips_opts.isa = ISA_MIPS64R3;
break;
case OPTION_MIPS64R5:
file_mips_opts.isa = ISA_MIPS64R5;
break;
case OPTION_MIPS64R6:
file_mips_opts.isa = ISA_MIPS64R6;
break;
case OPTION_MIPS64:
file_mips_opts.isa = ISA_MIPS64;
break;
case OPTION_MTUNE:
mips_set_option_string (&mips_tune_string, arg);
break;
case OPTION_MARCH:
mips_set_option_string (&mips_arch_string, arg);
break;
case OPTION_M4650:
mips_set_option_string (&mips_arch_string, "4650");
mips_set_option_string (&mips_tune_string, "4650");
break;
case OPTION_NO_M4650:
break;
case OPTION_M4010:
mips_set_option_string (&mips_arch_string, "4010");
mips_set_option_string (&mips_tune_string, "4010");
break;
case OPTION_NO_M4010:
break;
case OPTION_M4100:
mips_set_option_string (&mips_arch_string, "4100");
mips_set_option_string (&mips_tune_string, "4100");
break;
case OPTION_NO_M4100:
break;
case OPTION_M3900:
mips_set_option_string (&mips_arch_string, "3900");
mips_set_option_string (&mips_tune_string, "3900");
break;
case OPTION_NO_M3900:
break;
case OPTION_MICROMIPS:
if (file_mips_opts.mips16 == 1)
{
as_bad (_("-mmicromips cannot be used with -mips16"));
return 0;
}
file_mips_opts.micromips = 1;
mips_no_prev_insn ();
break;
case OPTION_NO_MICROMIPS:
file_mips_opts.micromips = 0;
mips_no_prev_insn ();
break;
case OPTION_MIPS16:
if (file_mips_opts.micromips == 1)
{
as_bad (_("-mips16 cannot be used with -micromips"));
return 0;
}
file_mips_opts.mips16 = 1;
mips_no_prev_insn ();
break;
case OPTION_NO_MIPS16:
file_mips_opts.mips16 = 0;
mips_no_prev_insn ();
break;
case OPTION_FIX_24K:
mips_fix_24k = 1;
break;
case OPTION_NO_FIX_24K:
mips_fix_24k = 0;
break;
case OPTION_FIX_RM7000:
mips_fix_rm7000 = 1;
break;
case OPTION_NO_FIX_RM7000:
mips_fix_rm7000 = 0;
break;
case OPTION_FIX_LOONGSON3_LLSC:
mips_fix_loongson3_llsc = TRUE;
break;
case OPTION_NO_FIX_LOONGSON3_LLSC:
mips_fix_loongson3_llsc = FALSE;
break;
case OPTION_FIX_LOONGSON2F_JUMP:
mips_fix_loongson2f_jump = TRUE;
break;
case OPTION_NO_FIX_LOONGSON2F_JUMP:
mips_fix_loongson2f_jump = FALSE;
break;
case OPTION_FIX_LOONGSON2F_NOP:
mips_fix_loongson2f_nop = TRUE;
break;
case OPTION_NO_FIX_LOONGSON2F_NOP:
mips_fix_loongson2f_nop = FALSE;
break;
case OPTION_FIX_VR4120:
mips_fix_vr4120 = 1;
break;
case OPTION_NO_FIX_VR4120:
mips_fix_vr4120 = 0;
break;
case OPTION_FIX_VR4130:
mips_fix_vr4130 = 1;
break;
case OPTION_NO_FIX_VR4130:
mips_fix_vr4130 = 0;
break;
case OPTION_FIX_CN63XXP1:
mips_fix_cn63xxp1 = TRUE;
break;
case OPTION_NO_FIX_CN63XXP1:
mips_fix_cn63xxp1 = FALSE;
break;
case OPTION_FIX_R5900:
mips_fix_r5900 = TRUE;
mips_fix_r5900_explicit = TRUE;
break;
case OPTION_NO_FIX_R5900:
mips_fix_r5900 = FALSE;
mips_fix_r5900_explicit = TRUE;
break;
case OPTION_RELAX_BRANCH:
mips_relax_branch = 1;
break;
case OPTION_NO_RELAX_BRANCH:
mips_relax_branch = 0;
break;
case OPTION_IGNORE_BRANCH_ISA:
mips_ignore_branch_isa = TRUE;
break;
case OPTION_NO_IGNORE_BRANCH_ISA:
mips_ignore_branch_isa = FALSE;
break;
case OPTION_INSN32:
file_mips_opts.insn32 = TRUE;
break;
case OPTION_NO_INSN32:
file_mips_opts.insn32 = FALSE;
break;
case OPTION_MSHARED:
mips_in_shared = TRUE;
break;
case OPTION_MNO_SHARED:
mips_in_shared = FALSE;
break;
case OPTION_MSYM32:
file_mips_opts.sym32 = TRUE;
break;
case OPTION_MNO_SYM32:
file_mips_opts.sym32 = FALSE;
break;
/* When generating ELF code, we permit -KPIC and -call_shared to
select SVR4_PIC, and -non_shared to select no PIC. This is
intended to be compatible with Irix 5. */
case OPTION_CALL_SHARED:
mips_pic = SVR4_PIC;
mips_abicalls = TRUE;
break;
case OPTION_CALL_NONPIC:
mips_pic = NO_PIC;
mips_abicalls = TRUE;
break;
case OPTION_NON_SHARED:
mips_pic = NO_PIC;
mips_abicalls = FALSE;
break;
/* The -xgot option tells the assembler to use 32 bit offsets
when accessing the got in SVR4_PIC mode. It is for Irix
compatibility. */
case OPTION_XGOT:
mips_big_got = 1;
break;
case 'G':
g_switch_value = atoi (arg);
g_switch_seen = 1;
break;
/* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
and -mabi=64. */
case OPTION_32:
mips_abi = O32_ABI;
break;
case OPTION_N32:
mips_abi = N32_ABI;
break;
case OPTION_64:
mips_abi = N64_ABI;
if (!support_64bit_objects())
as_fatal (_("no compiled in support for 64 bit object file format"));
break;
case OPTION_GP32:
file_mips_opts.gp = 32;
break;
case OPTION_GP64:
file_mips_opts.gp = 64;
break;
case OPTION_FP32:
file_mips_opts.fp = 32;
break;
case OPTION_FPXX:
file_mips_opts.fp = 0;
break;
case OPTION_FP64:
file_mips_opts.fp = 64;
break;
case OPTION_ODD_SPREG:
file_mips_opts.oddspreg = 1;
break;
case OPTION_NO_ODD_SPREG:
file_mips_opts.oddspreg = 0;
break;
case OPTION_SINGLE_FLOAT:
file_mips_opts.single_float = 1;
break;
case OPTION_DOUBLE_FLOAT:
file_mips_opts.single_float = 0;
break;
case OPTION_SOFT_FLOAT:
file_mips_opts.soft_float = 1;
break;
case OPTION_HARD_FLOAT:
file_mips_opts.soft_float = 0;
break;
case OPTION_MABI:
if (strcmp (arg, "32") == 0)
mips_abi = O32_ABI;
else if (strcmp (arg, "o64") == 0)
mips_abi = O64_ABI;
else if (strcmp (arg, "n32") == 0)
mips_abi = N32_ABI;
else if (strcmp (arg, "64") == 0)
{
mips_abi = N64_ABI;
if (! support_64bit_objects())
as_fatal (_("no compiled in support for 64 bit object file "
"format"));
}
else if (strcmp (arg, "eabi") == 0)
mips_abi = EABI_ABI;
else
{
as_fatal (_("invalid abi -mabi=%s"), arg);
return 0;
}
break;
case OPTION_M7000_HILO_FIX:
mips_7000_hilo_fix = TRUE;
break;
case OPTION_MNO_7000_HILO_FIX:
mips_7000_hilo_fix = FALSE;
break;
case OPTION_MDEBUG:
mips_flag_mdebug = TRUE;
break;
case OPTION_NO_MDEBUG:
mips_flag_mdebug = FALSE;
break;
case OPTION_PDR:
mips_flag_pdr = TRUE;
break;
case OPTION_NO_PDR:
mips_flag_pdr = FALSE;
break;
case OPTION_MVXWORKS_PIC:
mips_pic = VXWORKS_PIC;
break;
case OPTION_NAN:
if (strcmp (arg, "2008") == 0)
mips_nan2008 = 1;
else if (strcmp (arg, "legacy") == 0)
mips_nan2008 = 0;
else
{
as_fatal (_("invalid NaN setting -mnan=%s"), arg);
return 0;
}
break;
default:
return 0;
}
mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
return 1;
}
/* Set up globals to tune for the ISA or processor described by INFO. */
static void
mips_set_tune (const struct mips_cpu_info *info)
{
if (info != 0)
mips_tune = info->cpu;
}
void
mips_after_parse_args (void)
{
const struct mips_cpu_info *arch_info = 0;
const struct mips_cpu_info *tune_info = 0;
/* GP relative stuff not working for PE. */
if (strncmp (TARGET_OS, "pe", 2) == 0)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G not supported in this configuration"));
g_switch_value = 0;
}
if (mips_abi == NO_ABI)
mips_abi = MIPS_DEFAULT_ABI;
/* The following code determines the architecture.
Similar code was added to GCC 3.3 (see override_options() in
config/mips/mips.c). The GAS and GCC code should be kept in sync
as much as possible. */
if (mips_arch_string != 0)
arch_info = mips_parse_cpu ("-march", mips_arch_string);
if (file_mips_opts.isa != ISA_UNKNOWN)
{
/* Handle -mipsN. At this point, file_mips_opts.isa contains the
ISA level specified by -mipsN, while arch_info->isa contains
the -march selection (if any). */
if (arch_info != 0)
{
/* -march takes precedence over -mipsN, since it is more descriptive.
There's no harm in specifying both as long as the ISA levels
are the same. */
if (file_mips_opts.isa != arch_info->isa)
as_bad (_("-%s conflicts with the other architecture options,"
" which imply -%s"),
mips_cpu_info_from_isa (file_mips_opts.isa)->name,
mips_cpu_info_from_isa (arch_info->isa)->name);
}
else
arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
}
if (arch_info == 0)
{
arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
gas_assert (arch_info);
}
if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
as_bad (_("-march=%s is not compatible with the selected ABI"),
arch_info->name);
file_mips_opts.arch = arch_info->cpu;
file_mips_opts.isa = arch_info->isa;
file_mips_opts.init_ase = arch_info->ase;
/* The EVA Extension has instructions which are only valid when the R6 ISA
is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
present. */
if (((file_mips_opts.ase & ASE_EVA) != 0) && ISA_IS_R6 (file_mips_opts.isa))
file_mips_opts.ase |= ASE_EVA_R6;
/* Set up initial mips_opts state. */
mips_opts = file_mips_opts;
/* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
if (!mips_fix_r5900_explicit)
mips_fix_r5900 = file_mips_opts.arch == CPU_R5900;
/* The register size inference code is now placed in
file_mips_check_options. */
/* Optimize for file_mips_opts.arch, unless -mtune selects a different
processor. */
if (mips_tune_string != 0)
tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
if (tune_info == 0)
mips_set_tune (arch_info);
else
mips_set_tune (tune_info);
if (mips_flag_mdebug < 0)
mips_flag_mdebug = 0;
}
void
mips_init_after_args (void)
{
/* Initialize opcodes. */
bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
}
long
md_pcrel_from (fixS *fixP)
{
valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
/* Return the address of the delay slot. */
return addr + 2;
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_JMP:
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
case BFD_RELOC_MIPS_JMP:
/* Return the address of the delay slot. */
return addr + 4;
case BFD_RELOC_MIPS_18_PCREL_S3:
/* Return the aligned address of the doubleword containing
the instruction. */
return addr & ~7;
default:
return addr;
}
}
/* This is called before the symbol table is processed. In order to
work with gcc when using mips-tfile, we must keep all local labels.
However, in other cases, we want to discard them. If we were
called with -g, but we didn't see any debugging information, it may
mean that gcc is smuggling debugging information through to
mips-tfile, in which case we must generate all local labels. */
void
mips_frob_file_before_adjust (void)
{
#ifndef NO_ECOFF_DEBUGGING
if (ECOFF_DEBUGGING
&& mips_debug != 0
&& ! ecoff_debugging_seen)
flag_keep_locals = 1;
#endif
}
/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
the corresponding LO16 reloc. This is called before md_apply_fix and
tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
relocation operators.
For our purposes, a %lo() expression matches a %got() or %hi()
expression if:
(a) it refers to the same symbol; and
(b) the offset applied in the %lo() expression is no lower than
the offset applied in the %got() or %hi().
(b) allows us to cope with code like:
lui $4,%hi(foo)
lh $4,%lo(foo+2)($4)
...which is legal on RELA targets, and has a well-defined behaviour
if the user knows that adding 2 to "foo" will not induce a carry to
the high 16 bits.
When several %lo()s match a particular %got() or %hi(), we use the
following rules to distinguish them:
(1) %lo()s with smaller offsets are a better match than %lo()s with
higher offsets.
(2) %lo()s with no matching %got() or %hi() are better than those
that already have a matching %got() or %hi().
(3) later %lo()s are better than earlier %lo()s.
These rules are applied in order.
(1) means, among other things, that %lo()s with identical offsets are
chosen if they exist.
(2) means that we won't associate several high-part relocations with
the same low-part relocation unless there's no alternative. Having
several high parts for the same low part is a GNU extension; this rule
allows careful users to avoid it.
(3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
with the last high-part relocation being at the front of the list.
It therefore makes sense to choose the last matching low-part
relocation, all other things being equal. It's also easier
to code that way. */
void
mips_frob_file (void)
{
struct mips_hi_fixup *l;
bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
for (l = mips_hi_fixup_list; l != NULL; l = l->next)
{
segment_info_type *seginfo;
bfd_boolean matched_lo_p;
fixS **hi_pos, **lo_pos, **pos;
gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
/* If a GOT16 relocation turns out to be against a global symbol,
there isn't supposed to be a matching LO. Ignore %gots against
constants; we'll report an error for those later. */
if (got16_reloc_p (l->fixp->fx_r_type)
&& !(l->fixp->fx_addsy
&& pic_need_relax (l->fixp->fx_addsy)))
continue;
/* Check quickly whether the next fixup happens to be a matching %lo. */
if (fixup_has_matching_lo_p (l->fixp))
continue;
seginfo = seg_info (l->seg);
/* Set HI_POS to the position of this relocation in the chain.
Set LO_POS to the position of the chosen low-part relocation.
MATCHED_LO_P is true on entry to the loop if *POS is a low-part
relocation that matches an immediately-preceding high-part
relocation. */
hi_pos = NULL;
lo_pos = NULL;
matched_lo_p = FALSE;
looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
{
if (*pos == l->fixp)
hi_pos = pos;
if ((*pos)->fx_r_type == looking_for_rtype
&& symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
&& (*pos)->fx_offset >= l->fixp->fx_offset
&& (lo_pos == NULL
|| (*pos)->fx_offset < (*lo_pos)->fx_offset
|| (!matched_lo_p
&& (*pos)->fx_offset == (*lo_pos)->fx_offset)))
lo_pos = pos;
matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
&& fixup_has_matching_lo_p (*pos));
}
/* If we found a match, remove the high-part relocation from its
current position and insert it before the low-part relocation.
Make the offsets match so that fixup_has_matching_lo_p()
will return true.
We don't warn about unmatched high-part relocations since some
versions of gcc have been known to emit dead "lui ...%hi(...)"
instructions. */
if (lo_pos != NULL)
{
l->fixp->fx_offset = (*lo_pos)->fx_offset;
if (l->fixp->fx_next != *lo_pos)
{
*hi_pos = l->fixp->fx_next;
l->fixp->fx_next = *lo_pos;
*lo_pos = l->fixp;
}
}
}
}
int
mips_force_relocation (fixS *fixp)
{
if (generic_force_reloc (fixp))
return 1;
/* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
so that the linker relaxation can update targets. */
if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
return 1;
/* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
microMIPS symbols so that we can do cross-mode branch diagnostics
and BAL to JALX conversion by the linker. */
if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
&& fixp->fx_addsy
&& ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
return 1;
/* We want all PC-relative relocations to be kept for R6 relaxation. */
if (ISA_IS_R6 (file_mips_opts.isa)
&& (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
|| fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
|| fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
return 1;
return 0;
}
/* Implement TC_FORCE_RELOCATION_ABS. */
bfd_boolean
mips_force_relocation_abs (fixS *fixp)
{
if (generic_force_reloc (fixp))
return TRUE;
/* These relocations do not have enough bits in the in-place addend
to hold an arbitrary absolute section's offset. */
if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
return TRUE;
return FALSE;
}
/* Read the instruction associated with RELOC from BUF. */
static unsigned int
read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
{
if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
return read_compressed_insn (buf, 4);
else
return read_insn (buf);
}
/* Write instruction INSN to BUF, given that it has been relocated
by RELOC. */
static void
write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
unsigned long insn)
{
if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
write_compressed_insn (buf, insn, 4);
else
write_insn (buf, insn);
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
to a symbol in another ISA mode, which cannot be converted to JALX. */
static bfd_boolean
fix_bad_cross_mode_jump_p (fixS *fixP)
{
unsigned long opcode;
int other;
char *buf;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
other = S_GET_OTHER (fixP->fx_addsy);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MIPS_JMP:
return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MICROMIPS_JMP:
return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
default:
return FALSE;
}
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
jump to a symbol in the same ISA mode. */
static bfd_boolean
fix_bad_same_mode_jalx_p (fixS *fixP)
{
unsigned long opcode;
int other;
char *buf;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
other = S_GET_OTHER (fixP->fx_addsy);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MIPS_JMP:
return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MIPS16_JMP:
return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MICROMIPS_JMP:
return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
default:
return FALSE;
}
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
to a symbol whose value plus addend is not aligned according to the
ultimate (after linker relaxation) jump instruction's immediate field
requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
regular MIPS code, to (1 << 2). */
static bfd_boolean
fix_bad_misaligned_jump_p (fixS *fixP, int shift)
{
bfd_boolean micro_to_mips_p;
valueT val;
int other;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
other = S_GET_OTHER (fixP->fx_addsy);
val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
val += fixP->fx_offset;
micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
&& !ELF_ST_IS_MICROMIPS (other));
return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
!= ELF_ST_IS_COMPRESSED (other));
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
to a symbol whose annotation indicates another ISA mode. For absolute
symbols check the ISA bit instead.
We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
MIPS symbols and associated with BAL instructions as these instructions
may be converted to JALX by the linker. */
static bfd_boolean
fix_bad_cross_mode_branch_p (fixS *fixP)
{
bfd_boolean absolute_p;
unsigned long opcode;
asection *symsec;
valueT val;
int other;
char *buf;
if (mips_ignore_branch_isa)
return FALSE;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
symsec = S_GET_SEGMENT (fixP->fx_addsy);
absolute_p = bfd_is_abs_section (symsec);
val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
other = S_GET_OTHER (fixP->fx_addsy);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
switch (fixP->fx_r_type)
{
case BFD_RELOC_16_PCREL_S2:
return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
&& opcode != 0x0411);
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
&& opcode != 0x4060);
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MIPS16_16_PCREL_S1:
return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
default:
abort ();
}
}
/* Return TRUE if the symbol plus addend associated with a regular MIPS
branch instruction pointed to by FIXP is not aligned according to the
branch instruction's immediate field requirement. We need the addend
to preserve the ISA bit and also the sum must not have bit 2 set. We
must explicitly OR in the ISA bit from symbol annotation as the bit
won't be set in the symbol's value then. */
static bfd_boolean
fix_bad_misaligned_branch_p (fixS *fixP)
{
bfd_boolean absolute_p;
asection *symsec;
valueT isa_bit;
valueT val;
valueT off;
int other;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
symsec = S_GET_SEGMENT (fixP->fx_addsy);
absolute_p = bfd_is_abs_section (symsec);
val = S_GET_VALUE (fixP->fx_addsy);
other = S_GET_OTHER (fixP->fx_addsy);
off = fixP->fx_offset;
isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
val |= ELF_ST_IS_COMPRESSED (other);
val += off;
return (val & 0x3) != isa_bit;
}
/* Calculate the relocation target by masking off ISA mode bit before
combining symbol and addend. */
static valueT
fix_bad_misaligned_address (fixS *fixP)
{
valueT val;
valueT off;
unsigned isa_mode;
gas_assert (fixP != NULL && fixP->fx_addsy != NULL);
val = S_GET_VALUE (fixP->fx_addsy);
off = fixP->fx_offset;
isa_mode = (ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixP->fx_addsy))
? 1 : 0);
return ((val & ~isa_mode) + off);
}
/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
and its calculated value VAL. */
static void
fix_validate_branch (fixS *fixP, valueT val)
{
if (fixP->fx_done && (val & 0x3) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to misaligned address (0x%lx)"),
(long) (val + md_pcrel_from (fixP)));
else if (fix_bad_cross_mode_branch_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to a symbol in another ISA mode"));
else if (fix_bad_misaligned_branch_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to misaligned address (0x%lx)"),
(long) fix_bad_misaligned_address (fixP));
else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("cannot encode misaligned addend "
"in the relocatable field (0x%lx)"),
(long) fixP->fx_offset);
}
/* Apply a fixup to the object file. */
void
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
{
char *buf;
unsigned long insn;
reloc_howto_type *howto;
if (fixP->fx_pcrel)
switch (fixP->fx_r_type)
{
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_32_PCREL:
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
case BFD_RELOC_MIPS_18_PCREL_S3:
case BFD_RELOC_MIPS_19_PCREL_S2:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_LO16_PCREL:
break;
case BFD_RELOC_32:
fixP->fx_r_type = BFD_RELOC_32_PCREL;
break;
default:
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative reference to a different section"));
break;
}
/* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
that have no MIPS ELF equivalent. */
if (fixP->fx_r_type != BFD_RELOC_8)
{
howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
if (!howto)
return;
}
gas_assert (fixP->fx_size == 2
|| fixP->fx_size == 4
|| fixP->fx_r_type == BFD_RELOC_8
|| fixP->fx_r_type == BFD_RELOC_16
|| fixP->fx_r_type == BFD_RELOC_64
|| fixP->fx_r_type == BFD_RELOC_CTOR
|| fixP->fx_r_type == BFD_RELOC_MIPS_SUB
|| fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|| fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
|| fixP->fx_r_type == BFD_RELOC_NONE);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
/* Don't treat parts of a composite relocation as done. There are two
reasons for this:
(1) The second and third parts will be against 0 (RSS_UNDEF) but
should nevertheless be emitted if the first part is.
(2) In normal usage, composite relocations are never assembly-time
constants. The easiest way of dealing with the pathological
exceptions is to generate a relocation against STN_UNDEF and
leave everything up to the linker. */
if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
fixP->fx_done = 1;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MIPS_TLS_GD:
case BFD_RELOC_MIPS_TLS_LDM:
case BFD_RELOC_MIPS_TLS_DTPREL32:
case BFD_RELOC_MIPS_TLS_DTPREL64:
case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
case BFD_RELOC_MIPS_TLS_GOTTPREL:
case BFD_RELOC_MIPS_TLS_TPREL32:
case BFD_RELOC_MIPS_TLS_TPREL64:
case BFD_RELOC_MIPS_TLS_TPREL_HI16:
case BFD_RELOC_MIPS_TLS_TPREL_LO16:
case BFD_RELOC_MICROMIPS_TLS_GD:
case BFD_RELOC_MICROMIPS_TLS_LDM:
case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
case BFD_RELOC_MIPS16_TLS_GD:
case BFD_RELOC_MIPS16_TLS_LDM:
case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
case BFD_RELOC_MIPS16_TLS_GOTTPREL:
case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
if (fixP->fx_addsy)
S_SET_THREAD_LOCAL (fixP->fx_addsy);
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("TLS relocation against a constant"));
break;
case BFD_RELOC_MIPS_JMP:
case BFD_RELOC_MIPS16_JMP:
case BFD_RELOC_MICROMIPS_JMP:
{
int shift;
gas_assert (!fixP->fx_done);
/* Shift is 2, unusually, for microMIPS JALX. */
if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
&& (read_compressed_insn (buf, 4) >> 26) != 0x3c)
shift = 1;
else
shift = 2;
if (fix_bad_cross_mode_jump_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("jump to a symbol in another ISA mode"));
else if (fix_bad_same_mode_jalx_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("JALX to a symbol in the same ISA mode"));
else if (fix_bad_misaligned_jump_p (fixP, shift))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("jump to misaligned address (0x%lx)"),
(long) fix_bad_misaligned_address (fixP));
else if (HAVE_IN_PLACE_ADDENDS
&& (fixP->fx_offset & ((1 << shift) - 1)) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("cannot encode misaligned addend "
"in the relocatable field (0x%lx)"),
(long) fixP->fx_offset);
}
/* Fall through. */
case BFD_RELOC_MIPS_SHIFT5:
case BFD_RELOC_MIPS_SHIFT6:
case BFD_RELOC_MIPS_GOT_DISP:
case BFD_RELOC_MIPS_GOT_PAGE:
case BFD_RELOC_MIPS_GOT_OFST:
case BFD_RELOC_MIPS_SUB:
case BFD_RELOC_MIPS_INSERT_A:
case BFD_RELOC_MIPS_INSERT_B:
case BFD_RELOC_MIPS_DELETE:
case BFD_RELOC_MIPS_HIGHEST:
case BFD_RELOC_MIPS_HIGHER:
case BFD_RELOC_MIPS_SCN_DISP:
case BFD_RELOC_MIPS_REL16:
case BFD_RELOC_MIPS_RELGOT:
case BFD_RELOC_MIPS_JALR:
case BFD_RELOC_HI16:
case BFD_RELOC_HI16_S:
case BFD_RELOC_LO16:
case BFD_RELOC_GPREL16:
case BFD_RELOC_MIPS_LITERAL:
case BFD_RELOC_MIPS_CALL16:
case BFD_RELOC_MIPS_GOT16:
case BFD_RELOC_GPREL32:
case BFD_RELOC_MIPS_GOT_HI16:
case BFD_RELOC_MIPS_GOT_LO16:
case BFD_RELOC_MIPS_CALL_HI16:
case BFD_RELOC_MIPS_CALL_LO16:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_LO16_PCREL:
case BFD_RELOC_MIPS16_GPREL:
case BFD_RELOC_MIPS16_GOT16:
case BFD_RELOC_MIPS16_CALL16:
case BFD_RELOC_MIPS16_HI16:
case BFD_RELOC_MIPS16_HI16_S:
case BFD_RELOC_MIPS16_LO16:
case BFD_RELOC_MICROMIPS_GOT_DISP:
case BFD_RELOC_MICROMIPS_GOT_PAGE:
case BFD_RELOC_MICROMIPS_GOT_OFST:
case BFD_RELOC_MICROMIPS_SUB:
case BFD_RELOC_MICROMIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHER:
case BFD_RELOC_MICROMIPS_SCN_DISP:
case BFD_RELOC_MICROMIPS_JALR:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MICROMIPS_GPREL16:
case BFD_RELOC_MICROMIPS_LITERAL:
case BFD_RELOC_MICROMIPS_CALL16:
case BFD_RELOC_MICROMIPS_GOT16:
case BFD_RELOC_MICROMIPS_GOT_HI16:
case BFD_RELOC_MICROMIPS_GOT_LO16:
case BFD_RELOC_MICROMIPS_CALL_HI16:
case BFD_RELOC_MICROMIPS_CALL_LO16:
case BFD_RELOC_MIPS_EH:
if (fixP->fx_done)
{
offsetT value;
if (calculate_reloc (fixP->fx_r_type, *valP, &value))
{
insn = read_reloc_insn (buf, fixP->fx_r_type);
if (mips16_reloc_p (fixP->fx_r_type))
insn |= mips16_immed_extend (value, 16);
else
insn |= (value & 0xffff);
write_reloc_insn (buf, fixP->fx_r_type, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("unsupported constant in relocation"));
}
break;
case BFD_RELOC_64:
/* This is handled like BFD_RELOC_32, but we output a sign
extended value if we are only 32 bits. */
if (fixP->fx_done)
{
if (8 <= sizeof (valueT))
md_number_to_chars (buf, *valP, 8);
else
{
valueT hiv;
if ((*valP & 0x80000000) != 0)
hiv = 0xffffffff;
else
hiv = 0;
md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
}
}
break;
case BFD_RELOC_RVA:
case BFD_RELOC_32:
case BFD_RELOC_32_PCREL:
case BFD_RELOC_16:
case BFD_RELOC_8:
/* If we are deleting this reloc entry, we must fill in the
value now. This can happen if we have a .word which is not
resolved when it appears but is later defined. */
if (fixP->fx_done)
md_number_to_chars (buf, *valP, fixP->fx_size);
break;
case BFD_RELOC_MIPS_21_PCREL_S2:
fix_validate_branch (fixP, *valP);
if (!fixP->fx_done)
break;
if (*valP + 0x400000 <= 0x7fffff)
{
insn = read_insn (buf);
insn |= (*valP >> 2) & 0x1fffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
break;
case BFD_RELOC_MIPS_26_PCREL_S2:
fix_validate_branch (fixP, *valP);
if (!fixP->fx_done)
break;
if (*valP + 0x8000000 <= 0xfffffff)
{
insn = read_insn (buf);
insn |= (*valP >> 2) & 0x3ffffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
break;
case BFD_RELOC_MIPS_18_PCREL_S3:
if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access using misaligned symbol (%lx)"),
(long) S_GET_VALUE (fixP->fx_addsy));
if ((fixP->fx_offset & 0x7) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access using misaligned offset (%lx)"),
(long) fixP->fx_offset);
if (!fixP->fx_done)
break;
if (*valP + 0x100000 <= 0x1fffff)
{
insn = read_insn (buf);
insn |= (*valP >> 3) & 0x3ffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access out of range"));
break;
case BFD_RELOC_MIPS_19_PCREL_S2:
if ((*valP & 0x3) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access to misaligned address (%lx)"),
(long) *valP);
if (!fixP->fx_done)
break;
if (*valP + 0x100000 <= 0x1fffff)
{
insn = read_insn (buf);
insn |= (*valP >> 2) & 0x7ffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access out of range"));
break;
case BFD_RELOC_16_PCREL_S2:
fix_validate_branch (fixP, *valP);
/* We need to save the bits in the instruction since fixup_segment()
might be deleting the relocation entry (i.e., a branch within
the current segment). */
if (! fixP->fx_done)
break;
/* Update old instruction data. */
insn = read_insn (buf);
if (*valP + 0x20000 <= 0x3ffff)
{
insn |= (*valP >> 2) & 0xffff;
write_insn (buf, insn);
}
else if (fixP->fx_tcbit2
&& fixP->fx_done
&& fixP->fx_frag->fr_address >= text_section->vma
&& (fixP->fx_frag->fr_address
< text_section->vma + bfd_section_size (text_section))
&& ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|| (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
|| (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
{
/* The branch offset is too large. If this is an
unconditional branch, and we are not generating PIC code,
we can convert it to an absolute jump instruction. */
if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
insn = 0x0c000000; /* jal */
else
insn = 0x08000000; /* j */
fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
fixP->fx_done = 0;
fixP->fx_addsy = section_symbol (text_section);
*valP += md_pcrel_from (fixP);
write_insn (buf, insn);
}
else
{
/* If we got here, we have branch-relaxation disabled,
and there's nothing we can do to fix this instruction
without turning it into a longer sequence. */
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
}
break;
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
gas_assert (!fixP->fx_done);
if (fix_bad_cross_mode_branch_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to a symbol in another ISA mode"));
else if (fixP->fx_addsy
&& !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
&& !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
&& (fixP->fx_offset & 0x1) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to misaligned address (0x%lx)"),
(long) fix_bad_misaligned_address (fixP));
else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("cannot encode misaligned addend "
"in the relocatable field (0x%lx)"),
(long) fixP->fx_offset);
break;
case BFD_RELOC_VTABLE_INHERIT:
fixP->fx_done = 0;
if (fixP->fx_addsy
&& !S_IS_DEFINED (fixP->fx_addsy)
&& !S_IS_WEAK (fixP->fx_addsy))
S_SET_WEAK (fixP->fx_addsy);
break;
case BFD_RELOC_NONE:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
break;
default:
abort ();
}
/* Remember value for tc_gen_reloc. */
fixP->fx_addnumber = *valP;
}
static symbolS *
get_symbol (void)
{
int c;
char *name;
symbolS *p;
c = get_symbol_name (&name);
p = (symbolS *) symbol_find_or_make (name);
(void) restore_line_pointer (c);
return p;
}
/* Align the current frag to a given power of two. If a particular
fill byte should be used, FILL points to an integer that contains
that byte, otherwise FILL is null.
This function used to have the comment:
The MIPS assembler also automatically adjusts any preceding label.
The implementation therefore applied the adjustment to a maximum of
one label. However, other label adjustments are applied to batches
of labels, and adjusting just one caused problems when new labels
were added for the sake of debugging or unwind information.
We therefore adjust all preceding labels (given as LABELS) instead. */
static void
mips_align (int to, int *fill, struct insn_label_list *labels)
{
mips_emit_delays ();
mips_record_compressed_mode ();
if (fill == NULL && subseg_text_p (now_seg))
frag_align_code (to, 0);
else
frag_align (to, fill ? *fill : 0, 0);
record_alignment (now_seg, to);
mips_move_labels (labels, subseg_text_p (now_seg));
}
/* Align to a given power of two. .align 0 turns off the automatic
alignment used by the data creating pseudo-ops. */
static void
s_align (int x ATTRIBUTE_UNUSED)
{
int temp, fill_value, *fill_ptr;
long max_alignment = 28;
/* o Note that the assembler pulls down any immediately preceding label
to the aligned address.
o It's not documented but auto alignment is reinstated by
a .align pseudo instruction.
o Note also that after auto alignment is turned off the mips assembler
issues an error on attempt to assemble an improperly aligned data item.
We don't. */
temp = get_absolute_expression ();
if (temp > max_alignment)
as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
else if (temp < 0)
{
as_warn (_("alignment negative, 0 assumed"));
temp = 0;
}
if (*input_line_pointer == ',')
{
++input_line_pointer;
fill_value = get_absolute_expression ();
fill_ptr = &fill_value;
}
else
fill_ptr = 0;
if (temp)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l = si->label_list;
/* Auto alignment should be switched on by next section change. */
auto_align = 1;
mips_align (temp, fill_ptr, l);
}
else
{
auto_align = 0;
}
demand_empty_rest_of_line ();
}
static void
s_change_sec (int sec)
{
segT seg;
/* The ELF backend needs to know that we are changing sections, so
that .previous works correctly. We could do something like check
for an obj_section_change_hook macro, but that might be confusing
as it would not be appropriate to use it in the section changing
functions in read.c, since obj-elf.c intercepts those. FIXME:
This should be cleaner, somehow. */
obj_elf_section_change_hook ();
mips_emit_delays ();
switch (sec)
{
case 't':
s_text (0);
break;
case 'd':
s_data (0);
break;
case 'b':
subseg_set (bss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
break;
case 'r':
seg = subseg_new (RDATA_SECTION_NAME,
(subsegT) get_absolute_expression ());
bfd_set_section_flags (seg, (SEC_ALLOC | SEC_LOAD | SEC_READONLY
| SEC_RELOC | SEC_DATA));
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (seg, 4);
demand_empty_rest_of_line ();
break;
case 's':
seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
bfd_set_section_flags (seg, (SEC_ALLOC | SEC_LOAD | SEC_RELOC
| SEC_DATA | SEC_SMALL_DATA));
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (seg, 4);
demand_empty_rest_of_line ();
break;
case 'B':
seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
bfd_set_section_flags (seg, SEC_ALLOC | SEC_SMALL_DATA);
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (seg, 4);
demand_empty_rest_of_line ();
break;
}
auto_align = 1;
}
void
s_change_section (int ignore ATTRIBUTE_UNUSED)
{
char *saved_ilp;
char *section_name;
char c, endc;
char next_c = 0;
int section_type;
int section_flag;
int section_entry_size;
int section_alignment;
saved_ilp = input_line_pointer;
endc = get_symbol_name (§ion_name);
c = (endc == '"' ? input_line_pointer[1] : endc);
if (c)
next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
/* Do we have .section Name<,"flags">? */
if (c != ',' || (c == ',' && next_c == '"'))
{
/* Just after name is now '\0'. */
(void) restore_line_pointer (endc);
input_line_pointer = saved_ilp;
obj_elf_section (ignore);
return;
}
section_name = xstrdup (section_name);
c = restore_line_pointer (endc);
input_line_pointer++;
/* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
if (c == ',')
section_type = get_absolute_expression ();
else
section_type = 0;
if (*input_line_pointer++ == ',')
section_flag = get_absolute_expression ();
else
section_flag = 0;
if (*input_line_pointer++ == ',')
section_entry_size = get_absolute_expression ();
else
section_entry_size = 0;
if (*input_line_pointer++ == ',')
section_alignment = get_absolute_expression ();
else
section_alignment = 0;
/* FIXME: really ignore? */
(void) section_alignment;
/* When using the generic form of .section (as implemented by obj-elf.c),
there's no way to set the section type to SHT_MIPS_DWARF. Users have
traditionally had to fall back on the more common @progbits instead.
There's nothing really harmful in this, since bfd will correct
SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
means that, for backwards compatibility, the special_section entries
for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
Even so, we shouldn't force users of the MIPS .section syntax to
incorrectly label the sections as SHT_PROGBITS. The best compromise
seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
generic type-checking code. */
if (section_type == SHT_MIPS_DWARF)
section_type = SHT_PROGBITS;
obj_elf_change_section (section_name, section_type, section_flag,
section_entry_size, 0, 0, 0);
if (now_seg->name != section_name)
free (section_name);
}
void
mips_enable_auto_align (void)
{
auto_align = 1;
}
static void
s_cons (int log_size)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l = si->label_list;
mips_emit_delays ();
if (log_size > 0 && auto_align)
mips_align (log_size, 0, l);
cons (1 << log_size);
mips_clear_insn_labels ();
}
static void
s_float_cons (int type)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l = si->label_list;
mips_emit_delays ();
if (auto_align)
{
if (type == 'd')
mips_align (3, 0, l);
else
mips_align (2, 0, l);
}
float_cons (type);
mips_clear_insn_labels ();
}
/* Handle .globl. We need to override it because on Irix 5 you are
permitted to say
.globl foo .text
where foo is an undefined symbol, to mean that foo should be
considered to be the address of a function. */
static void
s_mips_globl (int x ATTRIBUTE_UNUSED)
{
char *name;
int c;
symbolS *symbolP;
do
{
c = get_symbol_name (&name);
symbolP = symbol_find_or_make (name);
S_SET_EXTERNAL (symbolP);
*input_line_pointer = c;
SKIP_WHITESPACE_AFTER_NAME ();
if (!is_end_of_line[(unsigned char) *input_line_pointer]
&& (*input_line_pointer != ','))
{
char *secname;
asection *sec;
c = get_symbol_name (&secname);
sec = bfd_get_section_by_name (stdoutput, secname);
if (sec == NULL)
as_bad (_("%s: no such section"), secname);
(void) restore_line_pointer (c);
if (sec != NULL && (sec->flags & SEC_CODE) != 0)
symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
}
c = *input_line_pointer;
if (c == ',')
{
input_line_pointer++;
SKIP_WHITESPACE ();
if (is_end_of_line[(unsigned char) *input_line_pointer])
c = '\n';
}
}
while (c == ',');
demand_empty_rest_of_line ();
}
#ifdef TE_IRIX
/* The Irix 5 and 6 assemblers set the type of any common symbol and
any undefined non-function symbol to STT_OBJECT. We try to be
compatible, since newer Irix 5 and 6 linkers care. */
void
mips_frob_symbol (symbolS *symp ATTRIBUTE_UNUSED)
{
/* This late in assembly we can set BSF_OBJECT indiscriminately
and let elf.c:swap_out_syms sort out the symbol type. */
flagword *flags = &symbol_get_bfdsym (symp)->flags;
if ((*flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|| !S_IS_DEFINED (symp))
*flags |= BSF_OBJECT;
}
#endif
static void
s_option (int x ATTRIBUTE_UNUSED)
{
char *opt;
char c;
c = get_symbol_name (&opt);
if (*opt == 'O')
{
/* FIXME: What does this mean? */
}
else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
{
int i;
i = atoi (opt + 3);
if (i != 0 && i != 2)
as_bad (_(".option pic%d not supported"), i);
else if (mips_pic == VXWORKS_PIC)
as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
else if (i == 0)
mips_pic = NO_PIC;
else if (i == 2)
{
mips_pic = SVR4_PIC;
mips_abicalls = TRUE;
}
if (mips_pic == SVR4_PIC)
{
if (g_switch_seen && g_switch_value != 0)
as_warn (_("-G may not be used with SVR4 PIC code"));
g_switch_value = 0;
bfd_set_gp_size (stdoutput, 0);
}
}
else
as_warn (_("unrecognized option \"%s\""), opt);
(void) restore_line_pointer (c);
demand_empty_rest_of_line ();
}
/* This structure is used to hold a stack of .set values. */
struct mips_option_stack
{
struct mips_option_stack *next;
struct mips_set_options options;
};
static struct mips_option_stack *mips_opts_stack;
/* Return status for .set/.module option handling. */
enum code_option_type
{
/* Unrecognized option. */
OPTION_TYPE_BAD = -1,
/* Ordinary option. */
OPTION_TYPE_NORMAL,
/* ISA changing option. */
OPTION_TYPE_ISA
};
/* Handle common .set/.module options. Return status indicating option
type. */
static enum code_option_type
parse_code_option (char * name)
{
bfd_boolean isa_set = FALSE;
const struct mips_ase *ase;
if (strncmp (name, "at=", 3) == 0)
{
char *s = name + 3;
if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
as_bad (_("unrecognized register name `%s'"), s);
}
else if (strcmp (name, "at") == 0)
mips_opts.at = ATREG;
else if (strcmp (name, "noat") == 0)
mips_opts.at = ZERO;
else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
mips_opts.nomove = 0;
else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
mips_opts.nomove = 1;
else if (strcmp (name, "bopt") == 0)
mips_opts.nobopt = 0;
else if (strcmp (name, "nobopt") == 0)
mips_opts.nobopt = 1;
else if (strcmp (name, "gp=32") == 0)
mips_opts.gp = 32;
else if (strcmp (name, "gp=64") == 0)
mips_opts.gp = 64;
else if (strcmp (name, "fp=32") == 0)
mips_opts.fp = 32;
else if (strcmp (name, "fp=xx") == 0)
mips_opts.fp = 0;
else if (strcmp (name, "fp=64") == 0)
mips_opts.fp = 64;
else if (strcmp (name, "softfloat") == 0)
mips_opts.soft_float = 1;
else if (strcmp (name, "hardfloat") == 0)
mips_opts.soft_float = 0;
else if (strcmp (name, "singlefloat") == 0)
mips_opts.single_float = 1;
else if (strcmp (name, "doublefloat") == 0)
mips_opts.single_float = 0;
else if (strcmp (name, "nooddspreg") == 0)
mips_opts.oddspreg = 0;
else if (strcmp (name, "oddspreg") == 0)
mips_opts.oddspreg = 1;
else if (strcmp (name, "mips16") == 0
|| strcmp (name, "MIPS-16") == 0)
mips_opts.mips16 = 1;
else if (strcmp (name, "nomips16") == 0
|| strcmp (name, "noMIPS-16") == 0)
mips_opts.mips16 = 0;
else if (strcmp (name, "micromips") == 0)
mips_opts.micromips = 1;
else if (strcmp (name, "nomicromips") == 0)
mips_opts.micromips = 0;
else if (name[0] == 'n'
&& name[1] == 'o'
&& (ase = mips_lookup_ase (name + 2)))
mips_set_ase (ase, &mips_opts, FALSE);
else if ((ase = mips_lookup_ase (name)))
mips_set_ase (ase, &mips_opts, TRUE);
else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
{
/* Permit the user to change the ISA and architecture on the fly.
Needless to say, misuse can cause serious problems. */
if (strncmp (name, "arch=", 5) == 0)
{
const struct mips_cpu_info *p;
p = mips_parse_cpu ("internal use", name + 5);
if (!p)
as_bad (_("unknown architecture %s"), name + 5);
else
{
mips_opts.arch = p->cpu;
mips_opts.isa = p->isa;
isa_set = TRUE;
mips_opts.init_ase = p->ase;
}
}
else if (strncmp (name, "mips", 4) == 0)
{
const struct mips_cpu_info *p;
p = mips_parse_cpu ("internal use", name);
if (!p)
as_bad (_("unknown ISA level %s"), name + 4);
else
{
mips_opts.arch = p->cpu;
mips_opts.isa = p->isa;
isa_set = TRUE;
mips_opts.init_ase = p->ase;
}
}
else
as_bad (_("unknown ISA or architecture %s"), name);
}
else if (strcmp (name, "autoextend") == 0)
mips_opts.noautoextend = 0;
else if (strcmp (name, "noautoextend") == 0)
mips_opts.noautoextend = 1;
else if (strcmp (name, "insn32") == 0)
mips_opts.insn32 = TRUE;
else if (strcmp (name, "noinsn32") == 0)
mips_opts.insn32 = FALSE;
else if (strcmp (name, "sym32") == 0)
mips_opts.sym32 = TRUE;
else if (strcmp (name, "nosym32") == 0)
mips_opts.sym32 = FALSE;
else
return OPTION_TYPE_BAD;
return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
}
/* Handle the .set pseudo-op. */
static void
s_mipsset (int x ATTRIBUTE_UNUSED)
{
enum code_option_type type = OPTION_TYPE_NORMAL;
char *name = input_line_pointer, ch;
file_mips_check_options ();
while (!is_end_of_line[(unsigned char) *input_line_pointer])
++input_line_pointer;
ch = *input_line_pointer;
*input_line_pointer = '\0';
if (strchr (name, ','))
{
/* Generic ".set" directive; use the generic handler. */
*input_line_pointer = ch;
input_line_pointer = name;
s_set (0);
return;
}
if (strcmp (name, "reorder") == 0)
{
if (mips_opts.noreorder)
end_noreorder ();
}
else if (strcmp (name, "noreorder") == 0)
{
if (!mips_opts.noreorder)
start_noreorder ();
}
else if (strcmp (name, "macro") == 0)
mips_opts.warn_about_macros = 0;
else if (strcmp (name, "nomacro") == 0)
{
if (mips_opts.noreorder == 0)
as_bad (_("`noreorder' must be set before `nomacro'"));
mips_opts.warn_about_macros = 1;
}
else if (strcmp (name, "gp=default") == 0)
mips_opts.gp = file_mips_opts.gp;
else if (strcmp (name, "fp=default") == 0)
mips_opts.fp = file_mips_opts.fp;
else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
{
mips_opts.isa = file_mips_opts.isa;
mips_opts.arch = file_mips_opts.arch;
mips_opts.init_ase = file_mips_opts.init_ase;
mips_opts.gp = file_mips_opts.gp;
mips_opts.fp = file_mips_opts.fp;
}
else if (strcmp (name, "push") == 0)
{
struct mips_option_stack *s;
s = XNEW (struct mips_option_stack);
s->next = mips_opts_stack;
s->options = mips_opts;
mips_opts_stack = s;
}
else if (strcmp (name, "pop") == 0)
{
struct mips_option_stack *s;
s = mips_opts_stack;
if (s == NULL)
as_bad (_(".set pop with no .set push"));
else
{
/* If we're changing the reorder mode we need to handle
delay slots correctly. */
if (s->options.noreorder && ! mips_opts.noreorder)
start_noreorder ();
else if (! s->options.noreorder && mips_opts.noreorder)
end_noreorder ();
mips_opts = s->options;
mips_opts_stack = s->next;
free (s);
}
}
else
{
type = parse_code_option (name);
if (type == OPTION_TYPE_BAD)
as_warn (_("tried to set unrecognized symbol: %s\n"), name);
}
/* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
registers based on what is supported by the arch/cpu. */
if (type == OPTION_TYPE_ISA)
{
switch (mips_opts.isa)
{
case 0:
break;
case ISA_MIPS1:
/* MIPS I cannot support FPXX. */
mips_opts.fp = 32;
/* fall-through. */
case ISA_MIPS2:
case ISA_MIPS32:
case ISA_MIPS32R2:
case ISA_MIPS32R3:
case ISA_MIPS32R5:
mips_opts.gp = 32;
if (mips_opts.fp != 0)
mips_opts.fp = 32;
break;
case ISA_MIPS32R6:
mips_opts.gp = 32;
mips_opts.fp = 64;
break;
case ISA_MIPS3:
case ISA_MIPS4:
case ISA_MIPS5:
case ISA_MIPS64:
case ISA_MIPS64R2:
case ISA_MIPS64R3:
case ISA_MIPS64R5:
case ISA_MIPS64R6:
mips_opts.gp = 64;
if (mips_opts.fp != 0)
{
if (mips_opts.arch == CPU_R5900)
mips_opts.fp = 32;
else
mips_opts.fp = 64;
}
break;
default:
as_bad (_("unknown ISA level %s"), name + 4);
break;
}
}
mips_check_options (&mips_opts, FALSE);
mips_check_isa_supports_ases ();
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* Handle the .module pseudo-op. */
static void
s_module (int ignore ATTRIBUTE_UNUSED)
{
char *name = input_line_pointer, ch;
while (!is_end_of_line[(unsigned char) *input_line_pointer])
++input_line_pointer;
ch = *input_line_pointer;
*input_line_pointer = '\0';
if (!file_mips_opts_checked)
{
if (parse_code_option (name) == OPTION_TYPE_BAD)
as_bad (_(".module used with unrecognized symbol: %s\n"), name);
/* Update module level settings from mips_opts. */
file_mips_opts = mips_opts;
}
else
as_bad (_(".module is not permitted after generating code"));
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* Handle the .abicalls pseudo-op. I believe this is equivalent to
.option pic2. It means to generate SVR4 PIC calls. */
static void
s_abicalls (int ignore ATTRIBUTE_UNUSED)
{
mips_pic = SVR4_PIC;
mips_abicalls = TRUE;
if (g_switch_seen && g_switch_value != 0)
as_warn (_("-G may not be used with SVR4 PIC code"));
g_switch_value = 0;
bfd_set_gp_size (stdoutput, 0);
demand_empty_rest_of_line ();
}
/* Handle the .cpload pseudo-op. This is used when generating SVR4
PIC code. It sets the $gp register for the function based on the
function address, which is in the register named in the argument.
This uses a relocation against _gp_disp, which is handled specially
by the linker. The result is:
lui $gp,%hi(_gp_disp)
addiu $gp,$gp,%lo(_gp_disp)
addu $gp,$gp,.cpload argument
The .cpload argument is normally $25 == $t9.
The -mno-shared option changes this to:
lui $gp,%hi(__gnu_local_gp)
addiu $gp,$gp,%lo(__gnu_local_gp)
and the argument is ignored. This saves an instruction, but the
resulting code is not position independent; it uses an absolute
address for __gnu_local_gp. Thus code assembled with -mno-shared
can go into an ordinary executable, but not into a shared library. */
static void
s_cpload (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
int reg;
int in_shared;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, or if this is NewABI code,
.cpload is ignored. */
if (mips_pic != SVR4_PIC || HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
ignore_rest_of_line ();
return;
}
/* .cpload should be in a .set noreorder section. */
if (mips_opts.noreorder == 0)
as_warn (_(".cpload not in noreorder section"));
reg = tc_get_register (0);
/* If we need to produce a 64-bit address, we are better off using
the default instruction sequence. */
in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
ex.X_op = O_symbol;
ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
"__gnu_local_gp");
ex.X_op_symbol = NULL;
ex.X_add_number = 0;
/* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
macro_build_lui (&ex, mips_gp_register);
macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
mips_gp_register, BFD_RELOC_LO16);
if (in_shared)
macro_build (NULL, "addu", "d,v,t", mips_gp_register,
mips_gp_register, reg);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
.cpsetup $reg1, offset|$reg2, label
If offset is given, this results in:
sd $gp, offset($sp)
lui $gp, %hi(%neg(%gp_rel(label)))
addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
daddu $gp, $gp, $reg1
If $reg2 is given, this results in:
or $reg2, $gp, $0
lui $gp, %hi(%neg(%gp_rel(label)))
addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
daddu $gp, $gp, $reg1
$reg1 is normally $25 == $t9.
The -mno-shared option replaces the last three instructions with
lui $gp,%hi(_gp)
addiu $gp,$gp,%lo(_gp) */
static void
s_cpsetup (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex_off;
expressionS ex_sym;
int reg1;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, .cpsetup is ignored.
We also need NewABI support. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
ignore_rest_of_line ();
return;
}
reg1 = tc_get_register (0);
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
as_bad (_("missing argument separator ',' for .cpsetup"));
return;
}
else
++input_line_pointer;
SKIP_WHITESPACE ();
if (*input_line_pointer == '$')
{
mips_cpreturn_register = tc_get_register (0);
mips_cpreturn_offset = -1;
}
else
{
mips_cpreturn_offset = get_absolute_expression ();
mips_cpreturn_register = -1;
}
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
as_bad (_("missing argument separator ',' for .cpsetup"));
return;
}
else
++input_line_pointer;
SKIP_WHITESPACE ();
expression (&ex_sym);
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
if (mips_cpreturn_register == -1)
{
ex_off.X_op = O_constant;
ex_off.X_add_symbol = NULL;
ex_off.X_op_symbol = NULL;
ex_off.X_add_number = mips_cpreturn_offset;
macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
BFD_RELOC_LO16, SP);
}
else
move_register (mips_cpreturn_register, mips_gp_register);
if (mips_in_shared || HAVE_64BIT_SYMBOLS)
{
macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
-1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
BFD_RELOC_HI16_S);
macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
mips_gp_register, -1, BFD_RELOC_GPREL16,
BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
mips_gp_register, reg1);
}
else
{
expressionS ex;
ex.X_op = O_symbol;
ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
ex.X_op_symbol = NULL;
ex.X_add_number = 0;
/* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
macro_build_lui (&ex, mips_gp_register);
macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
mips_gp_register, BFD_RELOC_LO16);
}
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
static void
s_cplocal (int ignore ATTRIBUTE_UNUSED)
{
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, or if this is not NewABI code,
.cplocal is ignored. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
ignore_rest_of_line ();
return;
}
mips_gp_register = tc_get_register (0);
demand_empty_rest_of_line ();
}
/* Handle the .cprestore pseudo-op. This stores $gp into a given
offset from $sp. The offset is remembered, and after making a PIC
call $gp is restored from that location. */
static void
s_cprestore (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, or if this is NewABI code,
.cprestore is ignored. */
if (mips_pic != SVR4_PIC || HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
ignore_rest_of_line ();
return;
}
mips_cprestore_offset = get_absolute_expression ();
mips_cprestore_valid = 1;
ex.X_op = O_constant;
ex.X_add_symbol = NULL;
ex.X_op_symbol = NULL;
ex.X_add_number = mips_cprestore_offset;
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
SP, HAVE_64BIT_ADDRESSES);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
was given in the preceding .cpsetup, it results in:
ld $gp, offset($sp)
If a register $reg2 was given there, it results in:
or $gp, $reg2, $0 */
static void
s_cpreturn (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, .cpreturn is ignored.
We also need NewABI support. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
ignore_rest_of_line ();
return;
}
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
if (mips_cpreturn_register == -1)
{
ex.X_op = O_constant;
ex.X_add_symbol = NULL;
ex.X_op_symbol = NULL;
ex.X_add_number = mips_cpreturn_offset;
macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
}
else
move_register (mips_gp_register, mips_cpreturn_register);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
debug information or MIPS16 TLS. */
static void
s_tls_rel_directive (const size_t bytes, const char *dirstr,
bfd_reloc_code_real_type rtype)
{
expressionS ex;
char *p;
expression (&ex);
if (ex.X_op != O_symbol)
{
as_bad (_("unsupported use of %s"), dirstr);
ignore_rest_of_line ();
}
p = frag_more (bytes);
md_number_to_chars (p, 0, bytes);
fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
demand_empty_rest_of_line ();
mips_clear_insn_labels ();
}
/* Handle .dtprelword. */
static void
s_dtprelword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
}
/* Handle .dtpreldword. */
static void
s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
}
/* Handle .tprelword. */
static void
s_tprelword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
}
/* Handle .tpreldword. */
static void
s_tpreldword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
}
/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
code. It sets the offset to use in gp_rel relocations. */
static void
s_gpvalue (int ignore ATTRIBUTE_UNUSED)
{
/* If we are not generating SVR4 PIC code, .gpvalue is ignored.
We also need NewABI support. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
mips_gprel_offset = get_absolute_expression ();
demand_empty_rest_of_line ();
}
/* Handle the .gpword pseudo-op. This is used when generating PIC
code. It generates a 32 bit GP relative reloc. */
static void
s_gpword (int ignore ATTRIBUTE_UNUSED)
{
segment_info_type *si;
struct insn_label_list *l;
expressionS ex;
char *p;
/* When not generating PIC code, this is treated as .word. */
if (mips_pic != SVR4_PIC)
{
s_cons (2);
return;
}
si = seg_info (now_seg);
l = si->label_list;
mips_emit_delays ();
if (auto_align)
mips_align (2, 0, l);
expression (&ex);
mips_clear_insn_labels ();
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("unsupported use of .gpword"));
ignore_rest_of_line ();
}
p = frag_more (4);
md_number_to_chars (p, 0, 4);
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
BFD_RELOC_GPREL32);
demand_empty_rest_of_line ();
}
static void
s_gpdword (int ignore ATTRIBUTE_UNUSED)
{
segment_info_type *si;
struct insn_label_list *l;
expressionS ex;
char *p;
/* When not generating PIC code, this is treated as .dword. */
if (mips_pic != SVR4_PIC)
{
s_cons (3);
return;
}
si = seg_info (now_seg);
l = si->label_list;
mips_emit_delays ();
if (auto_align)
mips_align (3, 0, l);
expression (&ex);
mips_clear_insn_labels ();
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("unsupported use of .gpdword"));
ignore_rest_of_line ();
}
p = frag_more (8);
md_number_to_chars (p, 0, 8);
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
BFD_RELOC_GPREL32)->fx_tcbit = 1;
/* GPREL32 composed with 64 gives a 64-bit GP offset. */
fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
FALSE, BFD_RELOC_64)->fx_tcbit = 1;
demand_empty_rest_of_line ();
}
/* Handle the .ehword pseudo-op. This is used when generating unwinding
tables. It generates a R_MIPS_EH reloc. */
static void
s_ehword (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
char *p;
mips_emit_delays ();
expression (&ex);
mips_clear_insn_labels ();
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("unsupported use of .ehword"));
ignore_rest_of_line ();
}
p = frag_more (4);
md_number_to_chars (p, 0, 4);
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
BFD_RELOC_32_PCREL);
demand_empty_rest_of_line ();
}
/* Handle the .cpadd pseudo-op. This is used when dealing with switch
tables in SVR4 PIC code. */
static void
s_cpadd (int ignore ATTRIBUTE_UNUSED)
{
int reg;
file_mips_check_options ();
/* This is ignored when not generating SVR4 PIC code. */
if (mips_pic != SVR4_PIC)
{
s_ignore (0);
return;
}
mips_mark_labels ();
mips_assembling_insn = TRUE;
/* Add $gp to the register named as an argument. */
macro_start ();
reg = tc_get_register (0);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle the .insn pseudo-op. This marks instruction labels in
mips16/micromips mode. This permits the linker to handle them specially,
such as generating jalx instructions when needed. We also make
them odd for the duration of the assembly, in order to generate the
right sort of code. We will make them even in the adjust_symtab
routine, while leaving them marked. This is convenient for the
debugger and the disassembler. The linker knows to make them odd
again. */
static void
s_insn (int ignore ATTRIBUTE_UNUSED)
{
file_mips_check_options ();
file_ase_mips16 |= mips_opts.mips16;
file_ase_micromips |= mips_opts.micromips;
mips_mark_labels ();
demand_empty_rest_of_line ();
}
/* Handle the .nan pseudo-op. */
static void
s_nan (int ignore ATTRIBUTE_UNUSED)
{
static const char str_legacy[] = "legacy";
static const char str_2008[] = "2008";
size_t i;
for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
if (i == sizeof (str_2008) - 1
&& memcmp (input_line_pointer, str_2008, i) == 0)
mips_nan2008 = 1;
else if (i == sizeof (str_legacy) - 1
&& memcmp (input_line_pointer, str_legacy, i) == 0)
{
if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
mips_nan2008 = 0;
else
as_bad (_("`%s' does not support legacy NaN"),
mips_cpu_info_from_isa (file_mips_opts.isa)->name);
}
else
as_bad (_("bad .nan directive"));
input_line_pointer += i;
demand_empty_rest_of_line ();
}
/* Handle a .stab[snd] directive. Ideally these directives would be
implemented in a transparent way, so that removing them would not
have any effect on the generated instructions. However, s_stab
internally changes the section, so in practice we need to decide
now whether the preceding label marks compressed code. We do not
support changing the compression mode of a label after a .stab*
directive, such as in:
foo:
.stabs ...
.set mips16
so the current mode wins. */
static void
s_mips_stab (int type)
{
file_mips_check_options ();
mips_mark_labels ();
s_stab (type);
}
/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
static void
s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
{
char *name;
int c;
symbolS *symbolP;
expressionS exp;
c = get_symbol_name (&name);
symbolP = symbol_find_or_make (name);
S_SET_WEAK (symbolP);
*input_line_pointer = c;
SKIP_WHITESPACE_AFTER_NAME ();
if (! is_end_of_line[(unsigned char) *input_line_pointer])
{
if (S_IS_DEFINED (symbolP))
{
as_bad (_("ignoring attempt to redefine symbol %s"),
S_GET_NAME (symbolP));
ignore_rest_of_line ();
return;
}
if (*input_line_pointer == ',')
{
++input_line_pointer;
SKIP_WHITESPACE ();
}
expression (&exp);
if (exp.X_op != O_symbol)
{
as_bad (_("bad .weakext directive"));
ignore_rest_of_line ();
return;
}
symbol_set_value_expression (symbolP, &exp);
}
demand_empty_rest_of_line ();
}
/* Parse a register string into a number. Called from the ECOFF code
to parse .frame. The argument is non-zero if this is the frame
register, so that we can record it in mips_frame_reg. */
int
tc_get_register (int frame)
{
unsigned int reg;
SKIP_WHITESPACE ();
if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
reg = 0;
if (frame)
{
mips_frame_reg = reg != 0 ? reg : SP;
mips_frame_reg_valid = 1;
mips_cprestore_valid = 0;
}
return reg;
}
valueT
md_section_align (asection *seg, valueT addr)
{
int align = bfd_section_alignment (seg);
/* We don't need to align ELF sections to the full alignment.
However, Irix 5 may prefer that we align them at least to a 16
byte boundary. We don't bother to align the sections if we
are targeted for an embedded system. */
if (strncmp (TARGET_OS, "elf", 3) == 0)
return addr;
if (align > 4)
align = 4;
return ((addr + (1 << align) - 1) & -(1 << align));
}
/* Utility routine, called from above as well. If called while the
input file is still being read, it's only an approximation. (For
example, a symbol may later become defined which appeared to be
undefined earlier.) */
static int
nopic_need_relax (symbolS *sym, int before_relaxing)
{
if (sym == 0)
return 0;
if (g_switch_value > 0)
{
const char *symname;
int change;
/* Find out whether this symbol can be referenced off the $gp
register. It can be if it is smaller than the -G size or if
it is in the .sdata or .sbss section. Certain symbols can
not be referenced off the $gp, although it appears as though
they can. */
symname = S_GET_NAME (sym);
if (symname != (const char *) NULL
&& (strcmp (symname, "eprol") == 0
|| strcmp (symname, "etext") == 0
|| strcmp (symname, "_gp") == 0
|| strcmp (symname, "edata") == 0
|| strcmp (symname, "_fbss") == 0
|| strcmp (symname, "_fdata") == 0
|| strcmp (symname, "_ftext") == 0
|| strcmp (symname, "end") == 0
|| strcmp (symname, "_gp_disp") == 0))
change = 1;
else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
&& (0
#ifndef NO_ECOFF_DEBUGGING
|| (symbol_get_obj (sym)->ecoff_extern_size != 0
&& (symbol_get_obj (sym)->ecoff_extern_size
<= g_switch_value))
#endif
/* We must defer this decision until after the whole
file has been read, since there might be a .extern
after the first use of this symbol. */
|| (before_relaxing
#ifndef NO_ECOFF_DEBUGGING
&& symbol_get_obj (sym)->ecoff_extern_size == 0
#endif
&& S_GET_VALUE (sym) == 0)
|| (S_GET_VALUE (sym) != 0
&& S_GET_VALUE (sym) <= g_switch_value)))
change = 0;
else
{
const char *segname;
segname = segment_name (S_GET_SEGMENT (sym));
gas_assert (strcmp (segname, ".lit8") != 0
&& strcmp (segname, ".lit4") != 0);
change = (strcmp (segname, ".sdata") != 0
&& strcmp (segname, ".sbss") != 0
&& strncmp (segname, ".sdata.", 7) != 0
&& strncmp (segname, ".sbss.", 6) != 0
&& strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
&& strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
}
return change;
}
else
/* We are not optimizing for the $gp register. */
return 1;
}
/* Return true if the given symbol should be considered local for SVR4 PIC. */
static bfd_boolean
pic_need_relax (symbolS *sym)
{
asection *symsec;
/* Handle the case of a symbol equated to another symbol. */
while (symbol_equated_reloc_p (sym))
{
symbolS *n;
/* It's possible to get a loop here in a badly written program. */
n = symbol_get_value_expression (sym)->X_add_symbol;
if (n == sym)
break;
sym = n;
}
if (symbol_section_p (sym))
return TRUE;
symsec = S_GET_SEGMENT (sym);
/* This must duplicate the test in adjust_reloc_syms. */
return (!bfd_is_und_section (symsec)
&& !bfd_is_abs_section (symsec)
&& !bfd_is_com_section (symsec)
/* A global or weak symbol is treated as external. */
&& (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
}
/* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
convert a section-relative value VAL to the equivalent PC-relative
value. */
static offsetT
mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
offsetT val, long stretch)
{
fragS *sym_frag;
addressT addr;
gas_assert (pcrel_op->root.root.type == OP_PCREL);
sym_frag = symbol_get_frag (fragp->fr_symbol);
/* If the relax_marker of the symbol fragment differs from the
relax_marker of this fragment, we have not yet adjusted the
symbol fragment fr_address. We want to add in STRETCH in
order to get a better estimate of the address. This
particularly matters because of the shift bits. */
if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
{
fragS *f;
/* Adjust stretch for any alignment frag. Note that if have
been expanding the earlier code, the symbol may be
defined in what appears to be an earlier frag. FIXME:
This doesn't handle the fr_subtype field, which specifies
a maximum number of bytes to skip when doing an
alignment. */
for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
{
if (f->fr_type == rs_align || f->fr_type == rs_align_code)
{
if (stretch < 0)
stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
else
stretch &= ~((1 << (int) f->fr_offset) - 1);
if (stretch == 0)
break;
}
}
if (f != NULL)
val += stretch;
}
addr = fragp->fr_address + fragp->fr_fix;
/* The base address rules are complicated. The base address of
a branch is the following instruction. The base address of a
PC relative load or add is the instruction itself, but if it
is in a delay slot (in which case it can not be extended) use
the address of the instruction whose delay slot it is in. */
if (pcrel_op->include_isa_bit)
{
addr += 2;
/* If we are currently assuming that this frag should be
extended, then the current address is two bytes higher. */
if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
addr += 2;
/* Ignore the low bit in the target, since it will be set
for a text label. */
val &= -2;
}
else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
addr -= 4;
else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
addr -= 2;
val -= addr & -(1 << pcrel_op->align_log2);
return val;
}
/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
extended opcode. SEC is the section the frag is in. */
static int
mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
{
const struct mips_int_operand *operand;
offsetT val;
segT symsec;
int type;
if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
return 0;
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
return 1;
symsec = S_GET_SEGMENT (fragp->fr_symbol);
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
operand = mips16_immed_operand (type, FALSE);
if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
|| (operand->root.type == OP_PCREL
? sec != symsec
: !bfd_is_abs_section (symsec)))
return 1;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
if (operand->root.type == OP_PCREL)
{
const struct mips_pcrel_operand *pcrel_op;
offsetT maxtiny;
if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
return 1;
pcrel_op = (const struct mips_pcrel_operand *) operand;
val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
/* If any of the shifted bits are set, we must use an extended
opcode. If the address depends on the size of this
instruction, this can lead to a loop, so we arrange to always
use an extended opcode. */
if ((val & ((1 << operand->shift) - 1)) != 0)
{
fragp->fr_subtype =
RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
return 1;
}
/* If we are about to mark a frag as extended because the value
is precisely the next value above maxtiny, then there is a
chance of an infinite loop as in the following code:
la $4,foo
.skip 1020
.align 2
foo:
In this case when the la is extended, foo is 0x3fc bytes
away, so the la can be shrunk, but then foo is 0x400 away, so
the la must be extended. To avoid this loop, we mark the
frag as extended if it was small, and is about to become
extended with the next value above maxtiny. */
maxtiny = mips_int_operand_max (operand);
if (val == maxtiny + (1 << operand->shift)
&& ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype =
RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
return 1;
}
}
return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
}
/* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
macro expansion. SEC is the section the frag is in. We only
support PC-relative instructions (LA, DLA, LW, LD) here, in
non-PIC code using 32-bit addressing. */
static int
mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
{
const struct mips_pcrel_operand *pcrel_op;
const struct mips_int_operand *operand;
offsetT val;
segT symsec;
int type;
gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
return 0;
if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
return 0;
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
switch (type)
{
case 'A':
case 'B':
case 'E':
symsec = S_GET_SEGMENT (fragp->fr_symbol);
if (bfd_is_abs_section (symsec))
return 1;
if (RELAX_MIPS16_PIC (fragp->fr_subtype))
return 0;
if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
return 1;
operand = mips16_immed_operand (type, TRUE);
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
pcrel_op = (const struct mips_pcrel_operand *) operand;
val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
default:
return 0;
}
}
/* Compute the length of a branch sequence, and adjust the
RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
worst-case length is computed, with UPDATE being used to indicate
whether an unconditional (-1), branch-likely (+1) or regular (0)
branch is to be computed. */
static int
relaxed_branch_length (fragS *fragp, asection *sec, int update)
{
bfd_boolean toofar;
int length;
if (fragp
&& S_IS_DEFINED (fragp->fr_symbol)
&& !S_IS_WEAK (fragp->fr_symbol)
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
{
addressT addr;
offsetT val;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
addr = fragp->fr_address + fragp->fr_fix + 4;
val -= addr;
toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
}
else
/* If the symbol is not defined or it's in a different segment,
we emit the long sequence. */
toofar = TRUE;
if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
fragp->fr_subtype
= RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
RELAX_BRANCH_PIC (fragp->fr_subtype),
RELAX_BRANCH_UNCOND (fragp->fr_subtype),
RELAX_BRANCH_LIKELY (fragp->fr_subtype),
RELAX_BRANCH_LINK (fragp->fr_subtype),
toofar);
length = 4;
if (toofar)
{
if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
length += 8;
if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
{
/* Additional space for PIC loading of target address. */
length += 8;
if (mips_opts.isa == ISA_MIPS1)
/* Additional space for $at-stabilizing nop. */
length += 4;
}
/* If branch is conditional. */
if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
length += 8;
}
return length;
}
/* Get a FRAG's branch instruction delay slot size, either from the
short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
or SHORT_INSN_SIZE otherwise. */
static int
frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
{
char *buf = fragp->fr_literal + fragp->fr_fix;
if (al)
return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
else
return short_insn_size;
}
/* Compute the length of a branch sequence, and adjust the
RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
worst-case length is computed, with UPDATE being used to indicate
whether an unconditional (-1), or regular (0) branch is to be
computed. */
static int
relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
{
bfd_boolean insn32 = TRUE;
bfd_boolean nods = TRUE;
bfd_boolean pic = TRUE;
bfd_boolean al = TRUE;
int short_insn_size;
bfd_boolean toofar;
int length;
if (fragp)
{
insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
}
short_insn_size = insn32 ? 4 : 2;
if (fragp
&& S_IS_DEFINED (fragp->fr_symbol)
&& !S_IS_WEAK (fragp->fr_symbol)
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
{
addressT addr;
offsetT val;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
/* Ignore the low bit in the target, since it will be set
for a text label. */
if ((val & 1) != 0)
--val;
addr = fragp->fr_address + fragp->fr_fix + 4;
val -= addr;
toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
}
else
/* If the symbol is not defined or it's in a different segment,
we emit the long sequence. */
toofar = TRUE;
if (fragp && update
&& toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
fragp->fr_subtype = (toofar
? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
: RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
length = 4;
if (toofar)
{
bfd_boolean compact_known = fragp != NULL;
bfd_boolean compact = FALSE;
bfd_boolean uncond;
if (fragp)
{
compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
}
else
uncond = update < 0;
/* If label is out of range, we turn branch <br>:
<br> label # 4 bytes
0:
into:
j label # 4 bytes
nop # 2/4 bytes if
# compact && (!PIC || insn32)
0:
*/
if ((!pic || insn32) && (!compact_known || compact))
length += short_insn_size;
/* If assembling PIC code, we further turn:
j label # 4 bytes
into:
lw/ld at, %got(label)(gp) # 4 bytes
d/addiu at, %lo(label) # 4 bytes
jr/c at # 2/4 bytes
*/
if (pic)
length += 4 + short_insn_size;
/* Add an extra nop if the jump has no compact form and we need
to fill the delay slot. */
if ((!pic || al) && nods)
length += (fragp
? frag_branch_delay_slot_size (fragp, al, short_insn_size)
: short_insn_size);
/* If branch <br> is conditional, we prepend negated branch <brneg>:
<brneg> 0f # 4 bytes
nop # 2/4 bytes if !compact
*/
if (!uncond)
length += (compact_known && compact) ? 4 : 4 + short_insn_size;
}
else if (nods)
{
/* Add an extra nop to fill the delay slot. */
gas_assert (fragp);
length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
}
return length;
}
/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
bit accordingly. */
static int
relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
{
bfd_boolean toofar;
if (fragp
&& S_IS_DEFINED (fragp->fr_symbol)
&& !S_IS_WEAK (fragp->fr_symbol)
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
{
addressT addr;
offsetT val;
int type;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
/* Ignore the low bit in the target, since it will be set
for a text label. */
if ((val & 1) != 0)
--val;
/* Assume this is a 2-byte branch. */
addr = fragp->fr_address + fragp->fr_fix + 2;
/* We try to avoid the infinite loop by not adding 2 more bytes for
long branches. */
val -= addr;
type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
if (type == 'D')
toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
else if (type == 'E')
toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
else
abort ();
}
else
/* If the symbol is not defined or it's in a different segment,
we emit a normal 32-bit branch. */
toofar = TRUE;
if (fragp && update
&& toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
fragp->fr_subtype
= toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
: RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
if (toofar)
return 4;
return 2;
}
/* Estimate the size of a frag before relaxing. Unless this is the
mips16, we are not really relaxing here, and the final size is
encoded in the subtype information. For the mips16, we have to
decide whether we are using an extended opcode or not. */
int
md_estimate_size_before_relax (fragS *fragp, asection *segtype)
{
int change;
if (RELAX_BRANCH_P (fragp->fr_subtype))
{
fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
return fragp->fr_var;
}
if (RELAX_MIPS16_P (fragp->fr_subtype))
{
/* We don't want to modify the EXTENDED bit here; it might get us
into infinite loops. We change it only in mips_relax_frag(). */
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
else
return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
}
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
{
int length = 4;
if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
fragp->fr_var = length;
return length;
}
if (mips_pic == VXWORKS_PIC)
/* For vxworks, GOT16 relocations never have a corresponding LO16. */
change = 0;
else if (RELAX_PIC (fragp->fr_subtype))
change = pic_need_relax (fragp->fr_symbol);
else
change = nopic_need_relax (fragp->fr_symbol, 0);
if (change)
{
fragp->fr_subtype |= RELAX_USE_SECOND;
return -RELAX_FIRST (fragp->fr_subtype);
}
else
return -RELAX_SECOND (fragp->fr_subtype);
}
/* This is called to see whether a reloc against a defined symbol
should be converted into a reloc against a section. */
int
mips_fix_adjustable (fixS *fixp)
{
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
if (fixp->fx_addsy == NULL)
return 1;
/* Allow relocs used for EH tables. */
if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
return 1;
/* If symbol SYM is in a mergeable section, relocations of the form
SYM + 0 can usually be made section-relative. The mergeable data
is then identified by the section offset rather than by the symbol.
However, if we're generating REL LO16 relocations, the offset is split
between the LO16 and partnering high part relocation. The linker will
need to recalculate the complete offset in order to correctly identify
the merge data.
The linker has traditionally not looked for the partnering high part
relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
placed anywhere. Rather than break backwards compatibility by changing
this, it seems better not to force the issue, and instead keep the
original symbol. This will work with either linker behavior. */
if ((lo16_reloc_p (fixp->fx_r_type)
|| reloc_needs_lo_p (fixp->fx_r_type))
&& HAVE_IN_PLACE_ADDENDS
&& (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
return 0;
/* There is no place to store an in-place offset for JALR relocations. */
if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
return 0;
/* Likewise an in-range offset of limited PC-relative relocations may
overflow the in-place relocatable field if recalculated against the
start address of the symbol's containing section.
Also, PC relative relocations for MIPS R6 need to be symbol rather than
section relative to allow linker relaxations to be performed later on. */
if (limited_pcrel_reloc_p (fixp->fx_r_type)
&& (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
return 0;
/* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
to a floating-point stub. The same is true for non-R_MIPS16_26
relocations against MIPS16 functions; in this case, the stub becomes
the function's canonical address.
Floating-point stubs are stored in unique .mips16.call.* or
.mips16.fn.* sections. If a stub T for function F is in section S,
the first relocation in section S must be against F; this is how the
linker determines the target function. All relocations that might
resolve to T must also be against F. We therefore have the following
restrictions, which are given in an intentionally-redundant way:
1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
symbols.
2. We cannot reduce a stub's relocations against non-MIPS16 symbols
if that stub might be used.
3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
symbols.
4. We cannot reduce a stub's relocations against MIPS16 symbols if
that stub might be used.
There is a further restriction:
5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
against MIPS16 or microMIPS symbols because we need to keep the
MIPS16 or microMIPS symbol for the purpose of mode mismatch
detection and JAL or BAL to JALX instruction conversion in the
linker.
For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
against a MIPS16 symbol. We deal with (5) by additionally leaving
alone any jump and branch relocations against a microMIPS symbol.
We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
relocation against some symbol R, no relocation against R may be
reduced. (Note that this deals with (2) as well as (1) because
relocations against global symbols will never be reduced on ELF
targets.) This approach is a little simpler than trying to detect
stub sections, and gives the "all or nothing" per-symbol consistency
that we have for MIPS16 symbols. */
if (fixp->fx_subsy == NULL
&& (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
|| (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
&& (jmp_reloc_p (fixp->fx_r_type)
|| b_reloc_p (fixp->fx_r_type)))
|| *symbol_get_tc (fixp->fx_addsy)))
return 0;
return 1;
}
/* Translate internal representation of relocation info to BFD target
format. */
arelent **
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
{
static arelent *retval[4];
arelent *reloc;
bfd_reloc_code_real_type code;
memset (retval, 0, sizeof(retval));
reloc = retval[0] = XCNEW (arelent);
reloc->sym_ptr_ptr = XNEW (asymbol *);
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (fixp->fx_pcrel)
{
gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_32_PCREL
|| fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
|| fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
|| fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
/* At this point, fx_addnumber is "symbol offset - pcrel address".
Relocations want only the symbol offset. */
switch (fixp->fx_r_type)
{
case BFD_RELOC_MIPS_18_PCREL_S3:
reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
break;
default:
reloc->addend = fixp->fx_addnumber + reloc->address;
break;
}
}
else if (HAVE_IN_PLACE_ADDENDS
&& fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
&& (read_compressed_insn (fixp->fx_frag->fr_literal
+ fixp->fx_where, 4) >> 26) == 0x3c)
{
/* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
addend accordingly. */
reloc->addend = fixp->fx_addnumber >> 1;
}
else
reloc->addend = fixp->fx_addnumber;
/* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
entry to be used in the relocation's section offset. */
if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
{
reloc->address = reloc->addend;
reloc->addend = 0;
}
code = fixp->fx_r_type;
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
if (reloc->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("cannot represent %s relocation in this object file"
" format"),
bfd_get_reloc_code_name (code));
retval[0] = NULL;
}
return retval;
}
/* Relax a machine dependent frag. This returns the amount by which
the current size of the frag should change. */
int
mips_relax_frag (asection *sec, fragS *fragp, long stretch)
{
if (RELAX_BRANCH_P (fragp->fr_subtype))
{
offsetT old_var = fragp->fr_var;
fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
return fragp->fr_var - old_var;
}
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
{
offsetT old_var = fragp->fr_var;
offsetT new_var = 4;
if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
fragp->fr_var = new_var;
return new_var - old_var;
}
if (! RELAX_MIPS16_P (fragp->fr_subtype))
return 0;
if (!mips16_extended_frag (fragp, sec, stretch))
{
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
}
else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
return -2;
}
else
return 0;
}
else if (!mips16_macro_frag (fragp, sec, stretch))
{
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
}
else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
return 2;
}
else
return 0;
}
else
{
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
return 0;
else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
}
else
{
fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
}
}
return 0;
}
/* Convert a machine dependent frag. */
void
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
{
if (RELAX_BRANCH_P (fragp->fr_subtype))
{
char *buf;
unsigned long insn;
fixS *fixp;
buf = fragp->fr_literal + fragp->fr_fix;
insn = read_insn (buf);
if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
{
/* We generate a fixup instead of applying it right now
because, if there are linker relaxations, we're going to
need the relocations. */
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_16_PCREL_S2);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
}
else
{
int i;
as_warn_where (fragp->fr_file, fragp->fr_line,
_("relaxed out-of-range branch into a jump"));
if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
goto uncond;
if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
{
/* Reverse the branch. */
switch ((insn >> 28) & 0xf)
{
case 4:
if ((insn & 0xff000000) == 0x47000000
|| (insn & 0xff600000) == 0x45600000)
{
/* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
reversed by tweaking bit 23. */
insn ^= 0x00800000;
}
else
{
/* bc[0-3][tf]l? instructions can have the condition
reversed by tweaking a single TF bit, and their
opcodes all have 0x4???????. */
gas_assert ((insn & 0xf3e00000) == 0x41000000);
insn ^= 0x00010000;
}
break;
case 0:
/* bltz 0x04000000 bgez 0x04010000
bltzal 0x04100000 bgezal 0x04110000 */
gas_assert ((insn & 0xfc0e0000) == 0x04000000);
insn ^= 0x00010000;
break;
case 1:
/* beq 0x10000000 bne 0x14000000
blez 0x18000000 bgtz 0x1c000000 */
insn ^= 0x04000000;
break;
default:
abort ();
}
}
if (RELAX_BRANCH_LINK (fragp->fr_subtype))
{
/* Clear the and-link bit. */
gas_assert ((insn & 0xfc1c0000) == 0x04100000);
/* bltzal 0x04100000 bgezal 0x04110000
bltzall 0x04120000 bgezall 0x04130000 */
insn &= ~0x00100000;
}
/* Branch over the branch (if the branch was likely) or the
full jump (not likely case). Compute the offset from the
current instruction to branch to. */
if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
i = 16;
else
{
/* How many bytes in instructions we've already emitted? */
i = buf - fragp->fr_literal - fragp->fr_fix;
/* How many bytes in instructions from here to the end? */
i = fragp->fr_var - i;
}
/* Convert to instruction count. */
i >>= 2;
/* Branch counts from the next instruction. */
i--;
insn |= i;
/* Branch over the jump. */
buf = write_insn (buf, insn);
/* nop */
buf = write_insn (buf, 0);
if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
{
/* beql $0, $0, 2f */
insn = 0x50000000;
/* Compute the PC offset from the current instruction to
the end of the variable frag. */
/* How many bytes in instructions we've already emitted? */
i = buf - fragp->fr_literal - fragp->fr_fix;
/* How many bytes in instructions from here to the end? */
i = fragp->fr_var - i;
/* Convert to instruction count. */
i >>= 2;
/* Don't decrement i, because we want to branch over the
delay slot. */
insn |= i;
buf = write_insn (buf, insn);
buf = write_insn (buf, 0);
}
uncond:
if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
{
/* j or jal. */
insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
? 0x0c000000 : 0x08000000);
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS_JMP);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
}
else
{
unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
/* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
insn |= at << OP_SH_RT;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS_GOT16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
if (mips_opts.isa == ISA_MIPS1)
/* nop */
buf = write_insn (buf, 0);
/* d/addiu $at, $at, <sym> R_MIPS_LO16 */
insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
insn |= at << OP_SH_RS | at << OP_SH_RT;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_LO16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
/* j(al)r $at. */
if (RELAX_BRANCH_LINK (fragp->fr_subtype))
insn = 0x0000f809;
else
insn = 0x00000008;
insn |= at << OP_SH_RS;
buf = write_insn (buf, insn);
}
}
fragp->fr_fix += fragp->fr_var;
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
/* Relax microMIPS branches. */
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
{
char *buf = fragp->fr_literal + fragp->fr_fix;
bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
bfd_boolean short_ds;
unsigned long insn;
fixS *fixp;
fragp->fr_fix += fragp->fr_var;
/* Handle 16-bit branches that fit or are forced to fit. */
if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
{
/* We generate a fixup instead of applying it right now,
because if there is linker relaxation, we're going to
need the relocations. */
switch (type)
{
case 'D':
fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
break;
case 'E':
fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
break;
default:
abort ();
}
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
/* These relocations can have an addend that won't fit in
2 octets. */
fixp->fx_no_overflow = 1;
return;
}
/* Handle 32-bit branches that fit or are forced to fit. */
if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
|| !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
{
/* We generate a fixup instead of applying it right now,
because if there is linker relaxation, we're going to
need the relocations. */
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
if (type == 0)
{
insn = read_compressed_insn (buf, 4);
buf += 4;
if (nods)
{
/* Check the short-delay-slot bit. */
if (!al || (insn & 0x02000000) != 0)
buf = write_compressed_insn (buf, 0x0c00, 2);
else
buf = write_compressed_insn (buf, 0x00000000, 4);
}
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
}
/* Relax 16-bit branches to 32-bit branches. */
if (type != 0)
{
insn = read_compressed_insn (buf, 2);
if ((insn & 0xfc00) == 0xcc00) /* b16 */
insn = 0x94000000; /* beq */
else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
{
unsigned long regno;
regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
regno = micromips_to_32_reg_d_map [regno];
insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
insn |= regno << MICROMIPSOP_SH_RS;
}
else
abort ();
/* Nothing else to do, just write it out. */
if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
|| !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
{
buf = write_compressed_insn (buf, insn, 4);
if (nods)
buf = write_compressed_insn (buf, 0x0c00, 2);
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
}
else
insn = read_compressed_insn (buf, 4);
/* Relax 32-bit branches to a sequence of instructions. */
as_warn_where (fragp->fr_file, fragp->fr_line,
_("relaxed out-of-range branch into a jump"));
/* Set the short-delay-slot bit. */
short_ds = !al || (insn & 0x02000000) != 0;
if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
{
symbolS *l;
/* Reverse the branch. */
if ((insn & 0xfc000000) == 0x94000000 /* beq */
|| (insn & 0xfc000000) == 0xb4000000) /* bne */
insn ^= 0x20000000;
else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
|| (insn & 0xffe00000) == 0x40400000 /* bgez */
|| (insn & 0xffe00000) == 0x40800000 /* blez */
|| (insn & 0xffe00000) == 0x40c00000 /* bgtz */
|| (insn & 0xffe00000) == 0x40a00000 /* bnezc */
|| (insn & 0xffe00000) == 0x40e00000 /* beqzc */
|| (insn & 0xffe00000) == 0x40200000 /* bltzal */
|| (insn & 0xffe00000) == 0x40600000 /* bgezal */
|| (insn & 0xffe00000) == 0x42200000 /* bltzals */
|| (insn & 0xffe00000) == 0x42600000) /* bgezals */
insn ^= 0x00400000;
else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
|| (insn & 0xffe30000) == 0x43a00000 /* bc1t */
|| (insn & 0xffe30000) == 0x42800000 /* bc2f */
|| (insn & 0xffe30000) == 0x42a00000) /* bc2t */
insn ^= 0x00200000;
else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
BNZ.df */
|| (insn & 0xff600000) == 0x81600000) /* BZ.V
BNZ.V */
insn ^= 0x00800000;
else
abort ();
if (al)
{
/* Clear the and-link and short-delay-slot bits. */
gas_assert ((insn & 0xfda00000) == 0x40200000);
/* bltzal 0x40200000 bgezal 0x40600000 */
/* bltzals 0x42200000 bgezals 0x42600000 */
insn &= ~0x02200000;
}
/* Make a label at the end for use with the branch. */
l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
micromips_label_inc ();
S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
/* Refer to it. */
fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
BFD_RELOC_MICROMIPS_16_PCREL_S1);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
/* Branch over the jump. */
buf = write_compressed_insn (buf, insn, 4);
if (!compact)
{
/* nop */
if (insn32)
buf = write_compressed_insn (buf, 0x00000000, 4);
else
buf = write_compressed_insn (buf, 0x0c00, 2);
}
}
if (!pic)
{
unsigned long jal = (short_ds || nods
? 0x74000000 : 0xf4000000); /* jal/s */
/* j/jal/jals <sym> R_MICROMIPS_26_S1 */
insn = al ? jal : 0xd4000000;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MICROMIPS_JMP);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_compressed_insn (buf, insn, 4);
if (compact || nods)
{
/* nop */
if (insn32)
buf = write_compressed_insn (buf, 0x00000000, 4);
else
buf = write_compressed_insn (buf, 0x0c00, 2);
}
}
else
{
unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
/* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
insn |= at << MICROMIPSOP_SH_RT;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MICROMIPS_GOT16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_compressed_insn (buf, insn, 4);
/* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MICROMIPS_LO16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_compressed_insn (buf, insn, 4);
if (insn32)
{
/* jr/jalr $at */
insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
insn |= at << MICROMIPSOP_SH_RS;
buf = write_compressed_insn (buf, insn, 4);
if (compact || nods)
/* nop */
buf = write_compressed_insn (buf, 0x00000000, 4);
}
else
{
/* jr/jrc/jalr/jalrs $at */
unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
insn = al ? jalr : jr;
insn |= at << MICROMIPSOP_SH_MJ;
buf = write_compressed_insn (buf, insn, 2);
if (al && nods)
{
/* nop */
if (short_ds)
buf = write_compressed_insn (buf, 0x0c00, 2);
else
buf = write_compressed_insn (buf, 0x00000000, 4);
}
}
}
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
if (RELAX_MIPS16_P (fragp->fr_subtype))
{
int type;
const struct mips_int_operand *operand;
offsetT val;
char *buf;
unsigned int user_length;
bfd_boolean need_reloc;
unsigned long insn;
bfd_boolean mac;
bfd_boolean ext;
segT symsec;
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
operand = mips16_immed_operand (type, FALSE);
mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
symsec = S_GET_SEGMENT (fragp->fr_symbol);
need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
|| (operand->root.type == OP_PCREL && !mac
? asec != symsec
: !bfd_is_abs_section (symsec)));
if (operand->root.type == OP_PCREL && !mac)
{
const struct mips_pcrel_operand *pcrel_op;
pcrel_op = (const struct mips_pcrel_operand *) operand;
if (pcrel_op->include_isa_bit && !need_reloc)
{
if (!mips_ignore_branch_isa
&& !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
as_bad_where (fragp->fr_file, fragp->fr_line,
_("branch to a symbol in another ISA mode"));
else if ((fragp->fr_offset & 0x1) != 0)
as_bad_where (fragp->fr_file, fragp->fr_line,
_("branch to misaligned address (0x%lx)"),
(long) (resolve_symbol_value (fragp->fr_symbol)
+ (fragp->fr_offset & ~1)));
}
val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
/* Make sure the section winds up with the alignment we have
assumed. */
if (operand->shift > 0)
record_alignment (asec, operand->shift);
}
if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
|| RELAX_MIPS16_DSLOT (fragp->fr_subtype))
{
if (mac)
as_warn_where (fragp->fr_file, fragp->fr_line,
_("macro instruction expanded into multiple "
"instructions in a branch delay slot"));
else if (ext)
as_warn_where (fragp->fr_file, fragp->fr_line,
_("extended instruction in a branch delay slot"));
}
else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
as_warn_where (fragp->fr_file, fragp->fr_line,
_("macro instruction expanded into multiple "
"instructions"));
buf = fragp->fr_literal + fragp->fr_fix;
insn = read_compressed_insn (buf, 2);
if (ext)
insn |= MIPS16_EXTEND;
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
user_length = 4;
else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
user_length = 2;
else
user_length = 0;
if (mac)
{
unsigned long reg;
unsigned long new;
unsigned long op;
bfd_boolean e2;
gas_assert (type == 'A' || type == 'B' || type == 'E');
gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
if (need_reloc)
{
fixS *fixp;
gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS16_HI16_S);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS16_LO16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
val = 0;
}
switch (insn & 0xf800)
{
case 0x0800: /* ADDIU */
reg = (insn >> 8) & 0x7;
op = 0xf0004800 | (reg << 8);
break;
case 0xb000: /* LW */
reg = (insn >> 8) & 0x7;
op = 0xf0009800 | (reg << 8) | (reg << 5);
break;
case 0xf800: /* I64 */
reg = (insn >> 5) & 0x7;
switch (insn & 0x0700)
{
case 0x0400: /* LD */
op = 0xf0003800 | (reg << 8) | (reg << 5);
break;
case 0x0600: /* DADDIU */
op = 0xf000fd00 | (reg << 5);
break;
default:
abort ();
}
break;
default:
abort ();
}
new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
buf = write_compressed_insn (buf, new, 4);
if (!e2)
{
new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
buf = write_compressed_insn (buf, new, 4);
}
op |= mips16_immed_extend (val, 16);
buf = write_compressed_insn (buf, op, 4);
fragp->fr_fix += e2 ? 8 : 12;
}
else
{
unsigned int length = ext ? 4 : 2;
if (need_reloc)
{
bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
fixS *fixp;
switch (type)
{
case 'p':
case 'q':
reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
break;
default:
break;
}
if (mac || reloc == BFD_RELOC_NONE)
as_bad_where (fragp->fr_file, fragp->fr_line,
_("unsupported relocation"));
else if (ext)
{
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
TRUE, reloc);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
}
else
as_bad_where (fragp->fr_file, fragp->fr_line,
_("invalid unextended operand value"));
}
else
mips16_immed (fragp->fr_file, fragp->fr_line, type,
BFD_RELOC_UNUSED, val, user_length, &insn);
gas_assert (mips16_opcode_length (insn) == length);
write_compressed_insn (buf, insn, length);
fragp->fr_fix += length;
}
}
else
{
relax_substateT subtype = fragp->fr_subtype;
bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
unsigned int first, second;
fixS *fixp;
first = RELAX_FIRST (subtype);
second = RELAX_SECOND (subtype);
fixp = (fixS *) fragp->fr_opcode;
/* If the delay slot chosen does not match the size of the instruction,
then emit a warning. */
if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
|| (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_DELAY_SLOT_16BIT
| RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND);
msg = macro_warning (s);
if (msg != NULL)
as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
subtype &= ~s;
}
/* Possibly emit a warning if we've chosen the longer option. */
if (use_second == second_longer)
{
relax_substateT s;
const char *msg;
s = (subtype
& (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
msg = macro_warning (s);
if (msg != NULL)
as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
subtype &= ~s;
}
/* Go through all the fixups for the first sequence. Disable them
(by marking them as done) if we're going to use the second
sequence instead. */
while (fixp
&& fixp->fx_frag == fragp
&& fixp->fx_where + second < fragp->fr_fix)
{
if (subtype & RELAX_USE_SECOND)
fixp->fx_done = 1;
fixp = fixp->fx_next;
}
/* Go through the fixups for the second sequence. Disable them if
we're going to use the first sequence, otherwise adjust their
addresses to account for the relaxation. */
while (fixp && fixp->fx_frag == fragp)
{
if (subtype & RELAX_USE_SECOND)
fixp->fx_where -= first;
else
fixp->fx_done = 1;
fixp = fixp->fx_next;
}
/* Now modify the frag contents. */
if (subtype & RELAX_USE_SECOND)
{
char *start;
start = fragp->fr_literal + fragp->fr_fix - first - second;
memmove (start, start + first, second);
fragp->fr_fix -= first;
}
else
fragp->fr_fix -= second;
}
}
/* This function is called after the relocs have been generated.
We've been storing mips16 text labels as odd. Here we convert them
back to even for the convenience of the debugger. */
void
mips_frob_file_after_relocs (void)
{
asymbol **syms;
unsigned int count, i;
syms = bfd_get_outsymbols (stdoutput);
count = bfd_get_symcount (stdoutput);
for (i = 0; i < count; i++, syms++)
if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
&& ((*syms)->value & 1) != 0)
{
(*syms)->value &= ~1;
/* If the symbol has an odd size, it was probably computed
incorrectly, so adjust that as well. */
if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
++elf_symbol (*syms)->internal_elf_sym.st_size;
}
}
/* This function is called whenever a label is defined, including fake
labels instantiated off the dot special symbol. It is used when
handling branch delays; if a branch has a label, we assume we cannot
move it. This also bumps the value of the symbol by 1 in compressed
code. */
static void
mips_record_label (symbolS *sym)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l;
if (free_insn_labels == NULL)
l = XNEW (struct insn_label_list);
else
{
l = free_insn_labels;
free_insn_labels = l->next;
}
l->label = sym;
l->next = si->label_list;
si->label_list = l;
}
/* This function is called as tc_frob_label() whenever a label is defined
and adds a DWARF-2 record we only want for true labels. */
void
mips_define_label (symbolS *sym)
{
mips_record_label (sym);
dwarf2_emit_label (sym);
}
/* This function is called by tc_new_dot_label whenever a new dot symbol
is defined. */
void
mips_add_dot_label (symbolS *sym)
{
mips_record_label (sym);
if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
mips_compressed_mark_label (sym);
}
/* Converting ASE flags from internal to .MIPS.abiflags values. */
static unsigned int
mips_convert_ase_flags (int ase)
{
unsigned int ext_ases = 0;
if (ase & ASE_DSP)
ext_ases |= AFL_ASE_DSP;
if (ase & ASE_DSPR2)
ext_ases |= AFL_ASE_DSPR2;
if (ase & ASE_DSPR3)
ext_ases |= AFL_ASE_DSPR3;
if (ase & ASE_EVA)
ext_ases |= AFL_ASE_EVA;
if (ase & ASE_MCU)
ext_ases |= AFL_ASE_MCU;
if (ase & ASE_MDMX)
ext_ases |= AFL_ASE_MDMX;
if (ase & ASE_MIPS3D)
ext_ases |= AFL_ASE_MIPS3D;
if (ase & ASE_MT)
ext_ases |= AFL_ASE_MT;
if (ase & ASE_SMARTMIPS)
ext_ases |= AFL_ASE_SMARTMIPS;
if (ase & ASE_VIRT)
ext_ases |= AFL_ASE_VIRT;
if (ase & ASE_MSA)
ext_ases |= AFL_ASE_MSA;
if (ase & ASE_XPA)
ext_ases |= AFL_ASE_XPA;
if (ase & ASE_MIPS16E2)
ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
if (ase & ASE_CRC)
ext_ases |= AFL_ASE_CRC;
if (ase & ASE_GINV)
ext_ases |= AFL_ASE_GINV;
if (ase & ASE_LOONGSON_MMI)
ext_ases |= AFL_ASE_LOONGSON_MMI;
if (ase & ASE_LOONGSON_CAM)
ext_ases |= AFL_ASE_LOONGSON_CAM;
if (ase & ASE_LOONGSON_EXT)
ext_ases |= AFL_ASE_LOONGSON_EXT;
if (ase & ASE_LOONGSON_EXT2)
ext_ases |= AFL_ASE_LOONGSON_EXT2;
return ext_ases;
}
/* Some special processing for a MIPS ELF file. */
void
mips_elf_final_processing (void)
{
int fpabi;
Elf_Internal_ABIFlags_v0 flags;
flags.version = 0;
flags.isa_rev = 0;
switch (file_mips_opts.isa)
{
case INSN_ISA1:
flags.isa_level = 1;
break;
case INSN_ISA2:
flags.isa_level = 2;
break;
case INSN_ISA3:
flags.isa_level = 3;
break;
case INSN_ISA4:
flags.isa_level = 4;
break;
case INSN_ISA5:
flags.isa_level = 5;
break;
case INSN_ISA32:
flags.isa_level = 32;
flags.isa_rev = 1;
break;
case INSN_ISA32R2:
flags.isa_level = 32;
flags.isa_rev = 2;
break;
case INSN_ISA32R3:
flags.isa_level = 32;
flags.isa_rev = 3;
break;
case INSN_ISA32R5:
flags.isa_level = 32;
flags.isa_rev = 5;
break;
case INSN_ISA32R6:
flags.isa_level = 32;
flags.isa_rev = 6;
break;
case INSN_ISA64:
flags.isa_level = 64;
flags.isa_rev = 1;
break;
case INSN_ISA64R2:
flags.isa_level = 64;
flags.isa_rev = 2;
break;
case INSN_ISA64R3:
flags.isa_level = 64;
flags.isa_rev = 3;
break;
case INSN_ISA64R5:
flags.isa_level = 64;
flags.isa_rev = 5;
break;
case INSN_ISA64R6:
flags.isa_level = 64;
flags.isa_rev = 6;
break;
}
flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
: (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
: (file_mips_opts.fp == 64) ? AFL_REG_64
: AFL_REG_32;
flags.cpr2_size = AFL_REG_NONE;
flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP);
flags.isa_ext = bfd_mips_isa_ext (stdoutput);
flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
if (file_ase_mips16)
flags.ases |= AFL_ASE_MIPS16;
if (file_ase_micromips)
flags.ases |= AFL_ASE_MICROMIPS;
flags.flags1 = 0;
if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
|| file_mips_opts.fp == 64)
&& file_mips_opts.oddspreg)
flags.flags1 |= AFL_FLAGS1_ODDSPREG;
flags.flags2 = 0;
bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
((Elf_External_ABIFlags_v0 *)
mips_flags_frag));
/* Write out the register information. */
if (mips_abi != N64_ABI)
{
Elf32_RegInfo s;
s.ri_gprmask = mips_gprmask;
s.ri_cprmask[0] = mips_cprmask[0];
s.ri_cprmask[1] = mips_cprmask[1];
s.ri_cprmask[2] = mips_cprmask[2];
s.ri_cprmask[3] = mips_cprmask[3];
/* The gp_value field is set by the MIPS ELF backend. */
bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
((Elf32_External_RegInfo *)
mips_regmask_frag));
}
else
{
Elf64_Internal_RegInfo s;
s.ri_gprmask = mips_gprmask;
s.ri_pad = 0;
s.ri_cprmask[0] = mips_cprmask[0];
s.ri_cprmask[1] = mips_cprmask[1];
s.ri_cprmask[2] = mips_cprmask[2];
s.ri_cprmask[3] = mips_cprmask[3];
/* The gp_value field is set by the MIPS ELF backend. */
bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
((Elf64_External_RegInfo *)
mips_regmask_frag));
}
/* Set the MIPS ELF flag bits. FIXME: There should probably be some
sort of BFD interface for this. */
if (mips_any_noreorder)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
if (mips_pic != NO_PIC)
{
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
}
if (mips_abicalls)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
/* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
defined at present; this might need to change in future. */
if (file_ase_mips16)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
if (file_ase_micromips)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
if (file_mips_opts.ase & ASE_MDMX)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
/* Set the MIPS ELF ABI flags. */
if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
else if (mips_abi == O64_ABI)
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
else if (mips_abi == EABI_ABI)
{
if (file_mips_opts.gp == 64)
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
else
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
}
/* Nothing to do for N32_ABI or N64_ABI. */
if (mips_32bitmode)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
if (mips_nan2008 == 1)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
/* 32 bit code with 64 bit FP registers. */
fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP);
if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
}
typedef struct proc {
symbolS *func_sym;
symbolS *func_end_sym;
unsigned long reg_mask;
unsigned long reg_offset;
unsigned long fpreg_mask;
unsigned long fpreg_offset;
unsigned long frame_offset;
unsigned long frame_reg;
unsigned long pc_reg;
} procS;
static procS cur_proc;
static procS *cur_proc_ptr;
static int numprocs;
/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
as "2", and a normal nop as "0". */
#define NOP_OPCODE_MIPS 0
#define NOP_OPCODE_MIPS16 1
#define NOP_OPCODE_MICROMIPS 2
char
mips_nop_opcode (void)
{
if (seg_info (now_seg)->tc_segment_info_data.micromips)
return NOP_OPCODE_MICROMIPS;
else if (seg_info (now_seg)->tc_segment_info_data.mips16)
return NOP_OPCODE_MIPS16;
else
return NOP_OPCODE_MIPS;
}
/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
32-bit microMIPS NOPs here (if applicable). */
void
mips_handle_align (fragS *fragp)
{
char nop_opcode;
char *p;
int bytes, size, excess;
valueT opcode;
if (fragp->fr_type != rs_align_code)
return;
p = fragp->fr_literal + fragp->fr_fix;
nop_opcode = *p;
switch (nop_opcode)
{
case NOP_OPCODE_MICROMIPS:
opcode = micromips_nop32_insn.insn_opcode;
size = 4;
break;
case NOP_OPCODE_MIPS16:
opcode = mips16_nop_insn.insn_opcode;
size = 2;
break;
case NOP_OPCODE_MIPS:
default:
opcode = nop_insn.insn_opcode;
size = 4;
break;
}
bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
excess = bytes % size;
/* Handle the leading part if we're not inserting a whole number of
instructions, and make it the end of the fixed part of the frag.
Try to fit in a short microMIPS NOP if applicable and possible,
and use zeroes otherwise. */
gas_assert (excess < 4);
fragp->fr_fix += excess;
switch (excess)
{
case 3:
*p++ = '\0';
/* Fall through. */
case 2:
if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
{
p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
break;
}
*p++ = '\0';
/* Fall through. */
case 1:
*p++ = '\0';
/* Fall through. */
case 0:
break;
}
md_number_to_chars (p, opcode, size);
fragp->fr_var = size;
}
static long
get_number (void)
{
int negative = 0;
long val = 0;
if (*input_line_pointer == '-')
{
++input_line_pointer;
negative = 1;
}
if (!ISDIGIT (*input_line_pointer))
as_bad (_("expected simple number"));
if (input_line_pointer[0] == '0')
{
if (input_line_pointer[1] == 'x')
{
input_line_pointer += 2;
while (ISXDIGIT (*input_line_pointer))
{
val <<= 4;
val |= hex_value (*input_line_pointer++);
}
return negative ? -val : val;
}
else
{
++input_line_pointer;
while (ISDIGIT (*input_line_pointer))
{
val <<= 3;
val |= *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
}
if (!ISDIGIT (*input_line_pointer))
{
printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
*input_line_pointer, *input_line_pointer);
as_warn (_("invalid number"));
return -1;
}
while (ISDIGIT (*input_line_pointer))
{
val *= 10;
val += *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
/* The .file directive; just like the usual .file directive, but there
is an initial number which is the ECOFF file index. In the non-ECOFF
case .file implies DWARF-2. */
static void
s_mips_file (int x ATTRIBUTE_UNUSED)
{
static int first_file_directive = 0;
if (ECOFF_DEBUGGING)
{
get_number ();
s_app_file (0);
}
else
{
char *filename;
filename = dwarf2_directive_filename ();
/* Versions of GCC up to 3.1 start files with a ".file"
directive even for stabs output. Make sure that this
".file" is handled. Note that you need a version of GCC
after 3.1 in order to support DWARF-2 on MIPS. */
if (filename != NULL && ! first_file_directive)
{
(void) new_logical_line (filename, -1);
s_app_file_string (filename, 0);
}
first_file_directive = 1;
}
}
/* The .loc directive, implying DWARF-2. */
static void
s_mips_loc (int x ATTRIBUTE_UNUSED)
{
if (!ECOFF_DEBUGGING)
dwarf2_directive_loc (0);
}
/* The .end directive. */
static void
s_mips_end (int x ATTRIBUTE_UNUSED)
{
symbolS *p;
/* Following functions need their own .frame and .cprestore directives. */
mips_frame_reg_valid = 0;
mips_cprestore_valid = 0;
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
p = get_symbol ();
demand_empty_rest_of_line ();
}
else
p = NULL;
if ((bfd_section_flags (now_seg) & SEC_CODE) == 0)
as_warn (_(".end not in text section"));
if (!cur_proc_ptr)
{
as_warn (_(".end directive without a preceding .ent directive"));
demand_empty_rest_of_line ();
return;
}
if (p != NULL)
{
gas_assert (S_GET_NAME (p));
if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
as_warn (_(".end symbol does not match .ent symbol"));
if (debug_type == DEBUG_STABS)
stabs_generate_asm_endfunc (S_GET_NAME (p),
S_GET_NAME (p));
}
else
as_warn (_(".end directive missing or unknown symbol"));
/* Create an expression to calculate the size of the function. */
if (p && cur_proc_ptr)
{
OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
expressionS *exp = XNEW (expressionS);
obj->size = exp;
exp->X_op = O_subtract;
exp->X_add_symbol = symbol_temp_new_now ();
exp->X_op_symbol = p;
exp->X_add_number = 0;
cur_proc_ptr->func_end_sym = exp->X_add_symbol;
}
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
/* Generate a .pdr section. */
if (!ECOFF_DEBUGGING && mips_flag_pdr)
{
segT saved_seg = now_seg;
subsegT saved_subseg = now_subseg;
expressionS exp;
char *fragp;
gas_assert (pdr_seg);
subseg_set (pdr_seg, 0);
/* Write the symbol. */
exp.X_op = O_symbol;
exp.X_add_symbol = p;
exp.X_add_number = 0;
emit_expr (&exp, 4);
fragp = frag_more (7 * 4);
md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
subseg_set (saved_seg, saved_subseg);
}
cur_proc_ptr = NULL;
}
/* The .aent and .ent directives. */
static void
s_mips_ent (int aent)
{
symbolS *symbolP;
symbolP = get_symbol ();
if (*input_line_pointer == ',')
++input_line_pointer;
SKIP_WHITESPACE ();
if (ISDIGIT (*input_line_pointer)
|| *input_line_pointer == '-')
get_number ();
if ((bfd_section_flags (now_seg) & SEC_CODE) == 0)
as_warn (_(".ent or .aent not in text section"));
if (!aent && cur_proc_ptr)
as_warn (_("missing .end"));
if (!aent)
{
/* This function needs its own .frame and .cprestore directives. */
mips_frame_reg_valid = 0;
mips_cprestore_valid = 0;
cur_proc_ptr = &cur_proc;
memset (cur_proc_ptr, '\0', sizeof (procS));
cur_proc_ptr->func_sym = symbolP;
++numprocs;
if (debug_type == DEBUG_STABS)
stabs_generate_asm_func (S_GET_NAME (symbolP),
S_GET_NAME (symbolP));
}
symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
demand_empty_rest_of_line ();
}
/* The .frame directive. If the mdebug section is present (IRIX 5 native)
then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
s_mips_frame is used so that we can set the PDR information correctly.
We can't use the ecoff routines because they make reference to the ecoff
symbol table (in the mdebug section). */
static void
s_mips_frame (int ignore ATTRIBUTE_UNUSED)
{
if (ECOFF_DEBUGGING)
s_ignore (ignore);
else
{
long val;
if (cur_proc_ptr == (procS *) NULL)
{
as_warn (_(".frame outside of .ent"));
demand_empty_rest_of_line ();
return;
}
cur_proc_ptr->frame_reg = tc_get_register (1);
SKIP_WHITESPACE ();
if (*input_line_pointer++ != ','
|| get_absolute_expression_and_terminator (&val) != ',')
{
as_warn (_("bad .frame directive"));
--input_line_pointer;
demand_empty_rest_of_line ();
return;
}
cur_proc_ptr->frame_offset = val;
cur_proc_ptr->pc_reg = tc_get_register (0);
demand_empty_rest_of_line ();
}
}
/* The .fmask and .mask directives. If the mdebug section is present
(IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
embedded targets, s_mips_mask is used so that we can set the PDR
information correctly. We can't use the ecoff routines because they
make reference to the ecoff symbol table (in the mdebug section). */
static void
s_mips_mask (int reg_type)
{
if (ECOFF_DEBUGGING)
s_ignore (reg_type);
else
{
long mask, off;
if (cur_proc_ptr == (procS *) NULL)
{
as_warn (_(".mask/.fmask outside of .ent"));
demand_empty_rest_of_line ();
return;
}
if (get_absolute_expression_and_terminator (&mask) != ',')
{
as_warn (_("bad .mask/.fmask directive"));
--input_line_pointer;
demand_empty_rest_of_line ();
return;
}
off = get_absolute_expression ();
if (reg_type == 'F')
{
cur_proc_ptr->fpreg_mask = mask;
cur_proc_ptr->fpreg_offset = off;
}
else
{
cur_proc_ptr->reg_mask = mask;
cur_proc_ptr->reg_offset = off;
}
demand_empty_rest_of_line ();
}
}
/* A table describing all the processors gas knows about. Names are
matched in the order listed.
To ease comparison, please keep this table in the same order as
gcc's mips_cpu_info_table[]. */
static const struct mips_cpu_info mips_cpu_info_table[] =
{
/* Entries for generic ISAs. */
{ "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
{ "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
{ "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
{ "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
{ "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
{ "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
{ "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
{ "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
{ "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
{ "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
{ "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
{ "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
{ "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
{ "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
/* MIPS I */
{ "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
{ "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
{ "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
/* MIPS II */
{ "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
/* MIPS III */
{ "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
{ "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
{ "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
{ "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
{ "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
{ "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
{ "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
{ "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
{ "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
{ "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
{ "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
{ "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
{ "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
/* ST Microelectronics Loongson 2E and 2F cores. */
{ "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
{ "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
/* MIPS IV */
{ "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
{ "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
{ "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
{ "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
{ "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
{ "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
{ "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
{ "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
{ "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
/* MIPS 32 */
{ "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
{ "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
{ "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
{ "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
/* MIPS 32 Release 2 */
{ "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 24KE is a 24K with DSP ASE, other ASEs are optional. */
{ "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
{ "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 34Kn is a 34kc without DSP. */
{ "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
{ "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 1004K cores are multiprocessor versions of the 34K. */
{ "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* interaptiv is the new name for 1004kf. */
{ "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "interaptiv-mr2", 0,
ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
/* M5100 family. */
{ "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
{ "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
/* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
{ "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
/* MIPS 64 */
{ "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
{ "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
{ "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
{ "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
/* Broadcom SB-1 CPU core. */
{ "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
/* Broadcom SB-1A CPU core. */
{ "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
/* MIPS 64 Release 2. */
/* Loongson CPU core. */
/* -march=loongson3a is an alias of -march=gs464 for compatibility. */
{ "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
ISA_MIPS64R2, CPU_GS464 },
{ "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
ISA_MIPS64R2, CPU_GS464 },
{ "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
| ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
{ "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
| ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
/* Cavium Networks Octeon CPU core. */
{ "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
{ "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
{ "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
{ "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
/* RMI Xlr */
{ "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
/* Broadcom XLP.
XLP is mostly like XLR, with the prominent exception that it is
MIPS64R2 rather than MIPS64. */
{ "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
/* MIPS 64 Release 6. */
{ "i6400", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
{ "i6500", 0, ASE_VIRT | ASE_MSA | ASE_CRC | ASE_GINV,
ISA_MIPS64R6, CPU_MIPS64R6},
{ "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
/* End marker. */
{ NULL, 0, 0, 0, 0 }
};
/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
with a final "000" replaced by "k". Ignore case.
Note: this function is shared between GCC and GAS. */
static bfd_boolean
mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
{
while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
given++, canonical++;
return ((*given == 0 && *canonical == 0)
|| (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
}
/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
CPU name. We've traditionally allowed a lot of variation here.
Note: this function is shared between GCC and GAS. */
static bfd_boolean
mips_matching_cpu_name_p (const char *canonical, const char *given)
{
/* First see if the name matches exactly, or with a final "000"
turned into "k". */
if (mips_strict_matching_cpu_name_p (canonical, given))
return TRUE;
/* If not, try comparing based on numerical designation alone.
See if GIVEN is an unadorned number, or 'r' followed by a number. */
if (TOLOWER (*given) == 'r')
given++;
if (!ISDIGIT (*given))
return FALSE;
/* Skip over some well-known prefixes in the canonical name,
hoping to find a number there too. */
if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
canonical += 2;
else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
canonical += 2;
else if (TOLOWER (canonical[0]) == 'r')
canonical += 1;
return mips_strict_matching_cpu_name_p (canonical, given);
}
/* Parse an option that takes the name of a processor as its argument.
OPTION is the name of the option and CPU_STRING is the argument.
Return the corresponding processor enumeration if the CPU_STRING is
recognized, otherwise report an error and return null.
A similar function exists in GCC. */
static const struct mips_cpu_info *
mips_parse_cpu (const char *option, const char *cpu_string)
{
const struct mips_cpu_info *p;
/* 'from-abi' selects the most compatible architecture for the given
ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
EABIs, we have to decide whether we're using the 32-bit or 64-bit
version. Look first at the -mgp options, if given, otherwise base
the choice on MIPS_DEFAULT_64BIT.
Treat NO_ABI like the EABIs. One reason to do this is that the
plain 'mips' and 'mips64' configs have 'from-abi' as their default
architecture. This code picks MIPS I for 'mips' and MIPS III for
'mips64', just as we did in the days before 'from-abi'. */
if (strcasecmp (cpu_string, "from-abi") == 0)
{
if (ABI_NEEDS_32BIT_REGS (mips_abi))
return mips_cpu_info_from_isa (ISA_MIPS1);
if (ABI_NEEDS_64BIT_REGS (mips_abi))
return mips_cpu_info_from_isa (ISA_MIPS3);
if (file_mips_opts.gp >= 0)
return mips_cpu_info_from_isa (file_mips_opts.gp == 32
? ISA_MIPS1 : ISA_MIPS3);
return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
? ISA_MIPS3
: ISA_MIPS1);
}
/* 'default' has traditionally been a no-op. Probably not very useful. */
if (strcasecmp (cpu_string, "default") == 0)
return 0;
for (p = mips_cpu_info_table; p->name != 0; p++)
if (mips_matching_cpu_name_p (p->name, cpu_string))
return p;
as_bad (_("bad value (%s) for %s"), cpu_string, option);
return 0;
}
/* Return the canonical processor information for ISA (a member of the
ISA_MIPS* enumeration). */
static const struct mips_cpu_info *
mips_cpu_info_from_isa (int isa)
{
int i;
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
&& isa == mips_cpu_info_table[i].isa)
return (&mips_cpu_info_table[i]);
return NULL;
}
static const struct mips_cpu_info *
mips_cpu_info_from_arch (int arch)
{
int i;
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
if (arch == mips_cpu_info_table[i].cpu)
return (&mips_cpu_info_table[i]);
return NULL;
}
static void
show (FILE *stream, const char *string, int *col_p, int *first_p)
{
if (*first_p)
{
fprintf (stream, "%24s", "");
*col_p = 24;
}
else
{
fprintf (stream, ", ");
*col_p += 2;
}
if (*col_p + strlen (string) > 72)
{
fprintf (stream, "\n%24s", "");
*col_p = 24;
}
fprintf (stream, "%s", string);
*col_p += strlen (string);
*first_p = 0;
}
void
md_show_usage (FILE *stream)
{
int column, first;
size_t i;
fprintf (stream, _("\
MIPS options:\n\
-EB generate big endian output\n\
-EL generate little endian output\n\
-g, -g2 do not remove unneeded NOPs or swap branches\n\
-G NUM allow referencing objects up to NUM bytes\n\
implicitly with the gp register [default 8]\n"));
fprintf (stream, _("\
-mips1 generate MIPS ISA I instructions\n\
-mips2 generate MIPS ISA II instructions\n\
-mips3 generate MIPS ISA III instructions\n\
-mips4 generate MIPS ISA IV instructions\n\
-mips5 generate MIPS ISA V instructions\n\
-mips32 generate MIPS32 ISA instructions\n\
-mips32r2 generate MIPS32 release 2 ISA instructions\n\
-mips32r3 generate MIPS32 release 3 ISA instructions\n\
-mips32r5 generate MIPS32 release 5 ISA instructions\n\
-mips32r6 generate MIPS32 release 6 ISA instructions\n\
-mips64 generate MIPS64 ISA instructions\n\
-mips64r2 generate MIPS64 release 2 ISA instructions\n\
-mips64r3 generate MIPS64 release 3 ISA instructions\n\
-mips64r5 generate MIPS64 release 5 ISA instructions\n\
-mips64r6 generate MIPS64 release 6 ISA instructions\n\
-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
first = 1;
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
show (stream, mips_cpu_info_table[i].name, &column, &first);
show (stream, "from-abi", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
-no-mCPU don't generate code specific to CPU.\n\
For -mCPU and -no-mCPU, CPU must be one of:\n"));
first = 1;
show (stream, "3900", &column, &first);
show (stream, "4010", &column, &first);
show (stream, "4100", &column, &first);
show (stream, "4650", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-mips16 generate mips16 instructions\n\
-no-mips16 do not generate mips16 instructions\n"));
fprintf (stream, _("\
-mmips16e2 generate MIPS16e2 instructions\n\
-mno-mips16e2 do not generate MIPS16e2 instructions\n"));
fprintf (stream, _("\
-mmicromips generate microMIPS instructions\n\
-mno-micromips do not generate microMIPS instructions\n"));
fprintf (stream, _("\
-msmartmips generate smartmips instructions\n\
-mno-smartmips do not generate smartmips instructions\n"));
fprintf (stream, _("\
-mdsp generate DSP instructions\n\
-mno-dsp do not generate DSP instructions\n"));
fprintf (stream, _("\
-mdspr2 generate DSP R2 instructions\n\
-mno-dspr2 do not generate DSP R2 instructions\n"));
fprintf (stream, _("\
-mdspr3 generate DSP R3 instructions\n\
-mno-dspr3 do not generate DSP R3 instructions\n"));
fprintf (stream, _("\
-mmt generate MT instructions\n\
-mno-mt do not generate MT instructions\n"));
fprintf (stream, _("\
-mmcu generate MCU instructions\n\
-mno-mcu do not generate MCU instructions\n"));
fprintf (stream, _("\
-mmsa generate MSA instructions\n\
-mno-msa do not generate MSA instructions\n"));
fprintf (stream, _("\
-mxpa generate eXtended Physical Address (XPA) instructions\n\
-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
fprintf (stream, _("\
-mvirt generate Virtualization instructions\n\
-mno-virt do not generate Virtualization instructions\n"));
fprintf (stream, _("\
-mcrc generate CRC instructions\n\
-mno-crc do not generate CRC instructions\n"));
fprintf (stream, _("\
-mginv generate Global INValidate (GINV) instructions\n\
-mno-ginv do not generate Global INValidate instructions\n"));
fprintf (stream, _("\
-mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
-mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
fprintf (stream, _("\
-mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
-mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
fprintf (stream, _("\
-mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
-mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
fprintf (stream, _("\
-mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
-mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
fprintf (stream, _("\
-minsn32 only generate 32-bit microMIPS instructions\n\
-mno-insn32 generate all microMIPS instructions\n"));
#if DEFAULT_MIPS_FIX_LOONGSON3_LLSC
fprintf (stream, _("\
-mfix-loongson3-llsc work around Loongson3 LL/SC errata, default\n\
-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n"));
#else
fprintf (stream, _("\
-mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata, default\n"));
#endif
fprintf (stream, _("\
-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
-mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
-mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n\
-mfix-vr4120 work around certain VR4120 errata\n\
-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
-mfix-24k insert a nop after ERET and DERET instructions\n\
-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
-mfix-r5900 work around R5900 short loop errata\n\
-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
-msym32 assume all symbols have 32-bit values\n\
-O0 do not remove unneeded NOPs, do not swap branches\n\
-O, -O1 remove unneeded NOPs, do not swap branches\n\
-O2 remove unneeded NOPs and swap branches\n\
--trap, --no-break trap exception on div by 0 and mult overflow\n\
--break, --no-trap break exception on div by 0 and mult overflow\n"));
fprintf (stream, _("\
-mhard-float allow floating-point instructions\n\
-msoft-float do not allow floating-point instructions\n\
-msingle-float only allow 32-bit floating-point operations\n\
-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
--[no-]construct-floats [dis]allow floating point values to be constructed\n\
--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
first = 1;
show (stream, "legacy", &column, &first);
show (stream, "2008", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-KPIC, -call_shared generate SVR4 position independent code\n\
-call_nonpic generate non-PIC code that can operate with DSOs\n\
-mvxworks-pic generate VxWorks position independent code\n\
-non_shared do not generate code that can operate with DSOs\n\
-xgot assume a 32 bit GOT\n\
-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
-mshared, -mno-shared disable/enable .cpload optimization for\n\
position dependent (non shared) code\n\
-mabi=ABI create ABI conformant object file for:\n"));
first = 1;
show (stream, "32", &column, &first);
show (stream, "o64", &column, &first);
show (stream, "n32", &column, &first);
show (stream, "64", &column, &first);
show (stream, "eabi", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-32 create o32 ABI object file%s\n"),
MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
fprintf (stream, _("\
-n32 create n32 ABI object file%s\n"),
MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
fprintf (stream, _("\
-64 create 64 ABI object file%s\n"),
MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
}
#ifdef TE_IRIX
enum dwarf2_format
mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
{
if (HAVE_64BIT_SYMBOLS)
return dwarf2_format_64bit_irix;
else
return dwarf2_format_32bit;
}
#endif
int
mips_dwarf2_addr_size (void)
{
if (HAVE_64BIT_OBJECTS)
return 8;
else
return 4;
}
/* Standard calling conventions leave the CFA at SP on entry. */
void
mips_cfi_frame_initial_instructions (void)
{
cfi_add_CFA_def_cfa_register (SP);
}
int
tc_mips_regname_to_dw2regnum (char *regname)
{
unsigned int regnum = -1;
unsigned int reg;
if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
regnum = reg;
return regnum;
}
/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
Given a symbolic attribute NAME, return the proper integer value.
Returns -1 if the attribute is not known. */
int
mips_convert_symbolic_attribute (const char *name)
{
static const struct
{
const char * name;
const int tag;
}
attribute_table[] =
{
#define T(tag) {#tag, tag}
T (Tag_GNU_MIPS_ABI_FP),
T (Tag_GNU_MIPS_ABI_MSA),
#undef T
};
unsigned int i;
if (name == NULL)
return -1;
for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
if (streq (name, attribute_table[i].name))
return attribute_table[i].tag;
return -1;
}
void
md_mips_end (void)
{
int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
mips_emit_delays ();
if (cur_proc_ptr)
as_warn (_("missing .end at end of assembly"));
/* Just in case no code was emitted, do the consistency check. */
file_mips_check_options ();
/* Set a floating-point ABI if the user did not. */
if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
{
/* Perform consistency checks on the floating-point ABI. */
fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP);
if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
check_fpabi (fpabi);
}
else
{
/* Soft-float gets precedence over single-float, the two options should
not be used together so this should not matter. */
if (file_mips_opts.soft_float == 1)
fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
/* Single-float gets precedence over all double_float cases. */
else if (file_mips_opts.single_float == 1)
fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
else
{
switch (file_mips_opts.fp)
{
case 32:
if (file_mips_opts.gp == 32)
fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
break;
case 0:
fpabi = Val_GNU_MIPS_ABI_FP_XX;
break;
case 64:
if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
fpabi = Val_GNU_MIPS_ABI_FP_64A;
else if (file_mips_opts.gp == 32)
fpabi = Val_GNU_MIPS_ABI_FP_64;
else
fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
break;
}
}
bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP, fpabi);
}
}
/* Returns the relocation type required for a particular CFI encoding. */
bfd_reloc_code_real_type
mips_cfi_reloc_for_encoding (int encoding)
{
if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
return BFD_RELOC_32_PCREL;
else return BFD_RELOC_NONE;
}
|