1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
|
// resolve.cc -- symbol resolution for gold
// Copyright (C) 2006-2020 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include "elfcpp.h"
#include "target.h"
#include "object.h"
#include "symtab.h"
#include "plugin.h"
namespace gold
{
// Symbol methods used in this file.
// This symbol is being overridden by another symbol whose version is
// VERSION. Update the VERSION_ field accordingly.
inline void
Symbol::override_version(const char* version)
{
if (version == NULL)
{
// This is the case where this symbol is NAME/VERSION, and the
// version was not marked as hidden. That makes it the default
// version, so we create NAME/NULL. Later we see another symbol
// NAME/NULL, and that symbol is overriding this one. In this
// case, since NAME/VERSION is the default, we make NAME/NULL
// override NAME/VERSION as well. They are already the same
// Symbol structure. Setting the VERSION_ field to NULL ensures
// that it will be output with the correct, empty, version.
this->version_ = version;
}
else
{
// This is the case where this symbol is NAME/VERSION_ONE, and
// now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
// overriding NAME. If VERSION_ONE and VERSION_TWO are
// different, then this can only happen when VERSION_ONE is NULL
// and VERSION_TWO is not hidden.
gold_assert(this->version_ == version || this->version_ == NULL);
this->version_ = version;
}
}
// This symbol is being overidden by another symbol whose visibility
// is VISIBILITY. Updated the VISIBILITY_ field accordingly.
inline void
Symbol::override_visibility(elfcpp::STV visibility)
{
// The rule for combining visibility is that we always choose the
// most constrained visibility. In order of increasing constraint,
// visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
// of the numeric values, so the effect is that we always want the
// smallest non-zero value.
if (visibility != elfcpp::STV_DEFAULT)
{
if (this->visibility_ == elfcpp::STV_DEFAULT)
this->visibility_ = visibility;
else if (this->visibility_ > visibility)
this->visibility_ = visibility;
}
}
// Override the fields in Symbol.
template<int size, bool big_endian>
void
Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
unsigned int st_shndx, bool is_ordinary,
Object* object, const char* version)
{
gold_assert(this->source_ == FROM_OBJECT);
this->u1_.object = object;
this->override_version(version);
this->u2_.shndx = st_shndx;
this->is_ordinary_shndx_ = is_ordinary;
// Don't override st_type from plugin placeholder symbols.
if (object->pluginobj() == NULL)
this->type_ = sym.get_st_type();
this->binding_ = sym.get_st_bind();
this->override_visibility(sym.get_st_visibility());
this->nonvis_ = sym.get_st_nonvis();
if (object->is_dynamic())
this->in_dyn_ = true;
else
this->in_reg_ = true;
}
// Override the fields in Sized_symbol.
template<int size>
template<bool big_endian>
void
Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
unsigned st_shndx, bool is_ordinary,
Object* object, const char* version)
{
this->override_base(sym, st_shndx, is_ordinary, object, version);
this->value_ = sym.get_st_value();
this->symsize_ = sym.get_st_size();
}
// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
// VERSION. This handles all aliases of TOSYM.
template<int size, bool big_endian>
void
Symbol_table::override(Sized_symbol<size>* tosym,
const elfcpp::Sym<size, big_endian>& fromsym,
unsigned int st_shndx, bool is_ordinary,
Object* object, const char* version)
{
tosym->override(fromsym, st_shndx, is_ordinary, object, version);
if (tosym->has_alias())
{
Symbol* sym = this->weak_aliases_[tosym];
gold_assert(sym != NULL);
Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
do
{
ssym->override(fromsym, st_shndx, is_ordinary, object, version);
sym = this->weak_aliases_[ssym];
gold_assert(sym != NULL);
ssym = this->get_sized_symbol<size>(sym);
}
while (ssym != tosym);
}
}
// The resolve functions build a little code for each symbol.
// Bit 0: 0 for global, 1 for weak.
// Bit 1: 0 for regular object, 1 for shared object
// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
// This gives us values from 0 to 11.
static const int global_or_weak_shift = 0;
static const unsigned int global_flag = 0 << global_or_weak_shift;
static const unsigned int weak_flag = 1 << global_or_weak_shift;
static const int regular_or_dynamic_shift = 1;
static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
static const int def_undef_or_common_shift = 2;
static const unsigned int def_flag = 0 << def_undef_or_common_shift;
static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
static const unsigned int common_flag = 2 << def_undef_or_common_shift;
// This convenience function combines all the flags based on facts
// about the symbol.
static unsigned int
symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
unsigned int shndx, bool is_ordinary)
{
unsigned int bits;
switch (binding)
{
case elfcpp::STB_GLOBAL:
case elfcpp::STB_GNU_UNIQUE:
bits = global_flag;
break;
case elfcpp::STB_WEAK:
bits = weak_flag;
break;
case elfcpp::STB_LOCAL:
// We should only see externally visible symbols in the symbol
// table.
gold_error(_("invalid STB_LOCAL symbol in external symbols"));
bits = global_flag;
break;
default:
// Any target which wants to handle STB_LOOS, etc., needs to
// define a resolve method.
gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
bits = global_flag;
}
if (is_dynamic)
bits |= dynamic_flag;
else
bits |= regular_flag;
switch (shndx)
{
case elfcpp::SHN_UNDEF:
bits |= undef_flag;
break;
case elfcpp::SHN_COMMON:
if (!is_ordinary)
bits |= common_flag;
break;
default:
if (!is_ordinary && Symbol::is_common_shndx(shndx))
bits |= common_flag;
else
bits |= def_flag;
break;
}
return bits;
}
// Resolve a symbol. This is called the second and subsequent times
// we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
// section index for SYM, possibly adjusted for many sections.
// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
// than a special code. ORIG_ST_SHNDX is the original section index,
// before any munging because of discarded sections, except that all
// non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
// the version of SYM.
template<int size, bool big_endian>
void
Symbol_table::resolve(Sized_symbol<size>* to,
const elfcpp::Sym<size, big_endian>& sym,
unsigned int st_shndx, bool is_ordinary,
unsigned int orig_st_shndx,
Object* object, const char* version,
bool is_default_version)
{
bool to_is_ordinary;
const unsigned int to_shndx = to->shndx(&to_is_ordinary);
// It's possible for a symbol to be defined in an object file
// using .symver to give it a version, and for there to also be
// a linker script giving that symbol the same version. We
// don't want to give a multiple-definition error for this
// harmless redefinition.
if (to->source() == Symbol::FROM_OBJECT
&& to->object() == object
&& to->is_defined()
&& is_ordinary
&& to_is_ordinary
&& to_shndx == st_shndx
&& to->value() == sym.get_st_value())
return;
// Likewise for an absolute symbol defined twice with the same value.
if (!is_ordinary
&& st_shndx == elfcpp::SHN_ABS
&& !to_is_ordinary
&& to_shndx == elfcpp::SHN_ABS
&& to->value() == sym.get_st_value())
return;
if (parameters->target().has_resolve())
{
Sized_target<size, big_endian>* sized_target;
sized_target = parameters->sized_target<size, big_endian>();
if (sized_target->resolve(to, sym, object, version))
return;
}
if (!object->is_dynamic())
{
if (sym.get_st_type() == elfcpp::STT_COMMON
&& (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
{
gold_warning(_("STT_COMMON symbol '%s' in %s "
"is not in a common section"),
to->demangled_name().c_str(),
to->object()->name().c_str());
return;
}
// Record that we've seen this symbol in a regular object.
to->set_in_reg();
}
else if (st_shndx == elfcpp::SHN_UNDEF
&& (to->visibility() == elfcpp::STV_HIDDEN
|| to->visibility() == elfcpp::STV_INTERNAL))
{
// The symbol is hidden, so a reference from a shared object
// cannot bind to it. We tried issuing a warning in this case,
// but that produces false positives when the symbol is
// actually resolved in a different shared object (PR 15574).
return;
}
else
{
// Record that we've seen this symbol in a dynamic object.
to->set_in_dyn();
}
// Record if we've seen this symbol in a real ELF object (i.e., the
// symbol is referenced from outside the world known to the plugin).
if (object->pluginobj() == NULL && !object->is_dynamic())
to->set_in_real_elf();
// If we're processing replacement files, allow new symbols to override
// the placeholders from the plugin objects.
// Treat common symbols specially since it is possible that an ELF
// file increased the size of the alignment.
if (to->source() == Symbol::FROM_OBJECT)
{
Pluginobj* obj = to->object()->pluginobj();
if (obj != NULL
&& parameters->options().plugins()->in_replacement_phase())
{
bool adjust_common = false;
typename Sized_symbol<size>::Size_type tosize = 0;
typename Sized_symbol<size>::Value_type tovalue = 0;
if (to->is_common()
&& !is_ordinary && Symbol::is_common_shndx(st_shndx))
{
adjust_common = true;
tosize = to->symsize();
tovalue = to->value();
}
this->override(to, sym, st_shndx, is_ordinary, object, version);
if (adjust_common)
{
if (tosize > to->symsize())
to->set_symsize(tosize);
if (tovalue > to->value())
to->set_value(tovalue);
}
return;
}
}
// A new weak undefined reference, merging with an old weak
// reference, could be a One Definition Rule (ODR) violation --
// especially if the types or sizes of the references differ. We'll
// store such pairs and look them up later to make sure they
// actually refer to the same lines of code. We also check
// combinations of weak and strong, which might occur if one case is
// inline and the other is not. (Note: not all ODR violations can
// be found this way, and not everything this finds is an ODR
// violation. But it's helpful to warn about.)
if (parameters->options().detect_odr_violations()
&& (sym.get_st_bind() == elfcpp::STB_WEAK
|| to->binding() == elfcpp::STB_WEAK)
&& orig_st_shndx != elfcpp::SHN_UNDEF
&& to_is_ordinary
&& to_shndx != elfcpp::SHN_UNDEF
&& sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
&& to->symsize() != 0
&& (sym.get_st_type() != to->type()
|| sym.get_st_size() != to->symsize())
// C does not have a concept of ODR, so we only need to do this
// on C++ symbols. These have (mangled) names starting with _Z.
&& to->name()[0] == '_' && to->name()[1] == 'Z')
{
Symbol_location fromloc
= { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
Symbol_location toloc = { to->object(), to_shndx,
static_cast<off_t>(to->value()) };
this->candidate_odr_violations_[to->name()].insert(fromloc);
this->candidate_odr_violations_[to->name()].insert(toloc);
}
// Plugins don't provide a symbol type, so adopt the existing type
// if the FROM symbol is from a plugin.
elfcpp::STT fromtype = (object->pluginobj() != NULL
? to->type()
: sym.get_st_type());
unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
object->is_dynamic(),
st_shndx, is_ordinary);
bool adjust_common_sizes;
bool adjust_dyndef;
typename Sized_symbol<size>::Size_type tosize = to->symsize();
if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
object, &adjust_common_sizes,
&adjust_dyndef, is_default_version))
{
elfcpp::STB orig_tobinding = to->binding();
typename Sized_symbol<size>::Value_type tovalue = to->value();
this->override(to, sym, st_shndx, is_ordinary, object, version);
if (adjust_common_sizes)
{
if (tosize > to->symsize())
to->set_symsize(tosize);
if (tovalue > to->value())
to->set_value(tovalue);
}
if (adjust_dyndef)
{
// We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
// Remember which kind of UNDEF it was for future reference.
to->set_undef_binding(orig_tobinding);
}
}
else
{
if (adjust_common_sizes)
{
if (sym.get_st_size() > tosize)
to->set_symsize(sym.get_st_size());
if (sym.get_st_value() > to->value())
to->set_value(sym.get_st_value());
}
if (adjust_dyndef)
{
// We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
// Remember which kind of UNDEF it was.
to->set_undef_binding(sym.get_st_bind());
}
// The ELF ABI says that even for a reference to a symbol we
// merge the visibility.
to->override_visibility(sym.get_st_visibility());
}
// If we have a non-WEAK reference from a regular object to a
// dynamic object, mark the dynamic object as needed.
if (to->is_from_dynobj() && to->in_reg() && !to->is_undef_binding_weak())
to->object()->set_is_needed();
if (adjust_common_sizes && parameters->options().warn_common())
{
if (tosize > sym.get_st_size())
Symbol_table::report_resolve_problem(false,
_("common of '%s' overriding "
"smaller common"),
to, OBJECT, object);
else if (tosize < sym.get_st_size())
Symbol_table::report_resolve_problem(false,
_("common of '%s' overidden by "
"larger common"),
to, OBJECT, object);
else
Symbol_table::report_resolve_problem(false,
_("multiple common of '%s'"),
to, OBJECT, object);
}
}
// Handle the core of symbol resolution. This is called with the
// existing symbol, TO, and a bitflag describing the new symbol. This
// returns true if we should override the existing symbol with the new
// one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
// true if we should set the symbol size to the maximum of the TO and
// FROM sizes. It handles error conditions.
bool
Symbol_table::should_override(const Symbol* to, unsigned int frombits,
elfcpp::STT fromtype, Defined defined,
Object* object, bool* adjust_common_sizes,
bool* adjust_dyndef, bool is_default_version)
{
*adjust_common_sizes = false;
*adjust_dyndef = false;
unsigned int tobits;
if (to->source() == Symbol::IS_UNDEFINED)
tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
else if (to->source() != Symbol::FROM_OBJECT)
tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
else
{
bool is_ordinary;
unsigned int shndx = to->shndx(&is_ordinary);
tobits = symbol_to_bits(to->binding(),
to->object()->is_dynamic(),
shndx,
is_ordinary);
}
if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
&& !to->is_placeholder())
Symbol_table::report_resolve_problem(true,
_("symbol '%s' used as both __thread "
"and non-__thread"),
to, defined, object);
// We use a giant switch table for symbol resolution. This code is
// unwieldy, but: 1) it is efficient; 2) we definitely handle all
// cases; 3) it is easy to change the handling of a particular case.
// The alternative would be a series of conditionals, but it is easy
// to get the ordering wrong. This could also be done as a table,
// but that is no easier to understand than this large switch
// statement.
// These are the values generated by the bit codes.
enum
{
DEF = global_flag | regular_flag | def_flag,
WEAK_DEF = weak_flag | regular_flag | def_flag,
DYN_DEF = global_flag | dynamic_flag | def_flag,
DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
UNDEF = global_flag | regular_flag | undef_flag,
WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
COMMON = global_flag | regular_flag | common_flag,
WEAK_COMMON = weak_flag | regular_flag | common_flag,
DYN_COMMON = global_flag | dynamic_flag | common_flag,
DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
};
switch (tobits * 16 + frombits)
{
case DEF * 16 + DEF:
// Two definitions of the same symbol.
// If either symbol is defined by an object included using
// --just-symbols, then don't warn. This is for compatibility
// with the GNU linker. FIXME: This is a hack.
if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
|| (object != NULL && object->just_symbols()))
return false;
if (!parameters->options().muldefs())
Symbol_table::report_resolve_problem(true,
_("multiple definition of '%s'"),
to, defined, object);
return false;
case WEAK_DEF * 16 + DEF:
// We've seen a weak definition, and now we see a strong
// definition. In the original SVR4 linker, this was treated as
// a multiple definition error. In the Solaris linker and the
// GNU linker, a weak definition followed by a regular
// definition causes the weak definition to be overridden. We
// are currently compatible with the GNU linker. In the future
// we should add a target specific option to change this.
// FIXME.
return true;
case DYN_DEF * 16 + DEF:
case DYN_WEAK_DEF * 16 + DEF:
// We've seen a definition in a dynamic object, and now we see a
// definition in a regular object. The definition in the
// regular object overrides the definition in the dynamic
// object.
return true;
case UNDEF * 16 + DEF:
case WEAK_UNDEF * 16 + DEF:
case DYN_UNDEF * 16 + DEF:
case DYN_WEAK_UNDEF * 16 + DEF:
// We've seen an undefined reference, and now we see a
// definition. We use the definition.
return true;
case COMMON * 16 + DEF:
case WEAK_COMMON * 16 + DEF:
case DYN_COMMON * 16 + DEF:
case DYN_WEAK_COMMON * 16 + DEF:
// We've seen a common symbol and now we see a definition. The
// definition overrides.
if (parameters->options().warn_common())
Symbol_table::report_resolve_problem(false,
_("definition of '%s' overriding "
"common"),
to, defined, object);
return true;
case DEF * 16 + WEAK_DEF:
case WEAK_DEF * 16 + WEAK_DEF:
// We've seen a definition and now we see a weak definition. We
// ignore the new weak definition.
return false;
case DYN_DEF * 16 + WEAK_DEF:
case DYN_WEAK_DEF * 16 + WEAK_DEF:
// We've seen a dynamic definition and now we see a regular weak
// definition. The regular weak definition overrides.
return true;
case UNDEF * 16 + WEAK_DEF:
case WEAK_UNDEF * 16 + WEAK_DEF:
case DYN_UNDEF * 16 + WEAK_DEF:
case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
// A weak definition of a currently undefined symbol.
return true;
case COMMON * 16 + WEAK_DEF:
case WEAK_COMMON * 16 + WEAK_DEF:
// A weak definition does not override a common definition.
return false;
case DYN_COMMON * 16 + WEAK_DEF:
case DYN_WEAK_COMMON * 16 + WEAK_DEF:
// A weak definition does override a definition in a dynamic
// object.
if (parameters->options().warn_common())
Symbol_table::report_resolve_problem(false,
_("definition of '%s' overriding "
"dynamic common definition"),
to, defined, object);
return true;
case DEF * 16 + DYN_DEF:
case WEAK_DEF * 16 + DYN_DEF:
// Ignore a dynamic definition if we already have a definition.
return false;
case DYN_DEF * 16 + DYN_DEF:
case DYN_WEAK_DEF * 16 + DYN_DEF:
// Ignore a dynamic definition if we already have a definition,
// unless the existing definition is an unversioned definition
// in the same dynamic object, and the new definition is a
// default version.
if (to->object() == object
&& to->version() == NULL
&& is_default_version)
return true;
// Or, if the existing definition is in an unused --as-needed library,
// and the reference is weak, let the new definition override.
if (to->in_reg()
&& to->is_undef_binding_weak()
&& to->object()->as_needed()
&& !to->object()->is_needed())
return true;
return false;
case UNDEF * 16 + DYN_DEF:
case DYN_UNDEF * 16 + DYN_DEF:
case DYN_WEAK_UNDEF * 16 + DYN_DEF:
// Use a dynamic definition if we have a reference.
return true;
case WEAK_UNDEF * 16 + DYN_DEF:
// When overriding a weak undef by a dynamic definition,
// we need to remember that the original undef was weak.
*adjust_dyndef = true;
return true;
case COMMON * 16 + DYN_DEF:
case WEAK_COMMON * 16 + DYN_DEF:
// Ignore a dynamic definition if we already have a common
// definition.
return false;
case DEF * 16 + DYN_WEAK_DEF:
case WEAK_DEF * 16 + DYN_WEAK_DEF:
// Ignore a weak dynamic definition if we already have a
// definition.
return false;
case UNDEF * 16 + DYN_WEAK_DEF:
// When overriding an undef by a dynamic weak definition,
// we need to remember that the original undef was not weak.
*adjust_dyndef = true;
return true;
case DYN_UNDEF * 16 + DYN_WEAK_DEF:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
// Use a weak dynamic definition if we have a reference.
return true;
case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
// When overriding a weak undef by a dynamic definition,
// we need to remember that the original undef was weak.
*adjust_dyndef = true;
return true;
case COMMON * 16 + DYN_WEAK_DEF:
case WEAK_COMMON * 16 + DYN_WEAK_DEF:
// Ignore a weak dynamic definition if we already have a common
// definition.
return false;
case DYN_COMMON * 16 + DYN_DEF:
case DYN_WEAK_COMMON * 16 + DYN_DEF:
case DYN_DEF * 16 + DYN_WEAK_DEF:
case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
case DYN_COMMON * 16 + DYN_WEAK_DEF:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
// If the existing definition is in an unused --as-needed library,
// and the reference is weak, let a new dynamic definition override.
if (to->in_reg()
&& to->is_undef_binding_weak()
&& to->object()->as_needed()
&& !to->object()->is_needed())
return true;
return false;
case DEF * 16 + UNDEF:
case WEAK_DEF * 16 + UNDEF:
case UNDEF * 16 + UNDEF:
// A new undefined reference tells us nothing.
return false;
case DYN_DEF * 16 + UNDEF:
case DYN_WEAK_DEF * 16 + UNDEF:
// For a dynamic def, we need to remember which kind of undef we see.
*adjust_dyndef = true;
return false;
case WEAK_UNDEF * 16 + UNDEF:
case DYN_UNDEF * 16 + UNDEF:
case DYN_WEAK_UNDEF * 16 + UNDEF:
// A strong undef overrides a dynamic or weak undef.
return true;
case COMMON * 16 + UNDEF:
case WEAK_COMMON * 16 + UNDEF:
case DYN_COMMON * 16 + UNDEF:
case DYN_WEAK_COMMON * 16 + UNDEF:
// A new undefined reference tells us nothing.
return false;
case DEF * 16 + WEAK_UNDEF:
case WEAK_DEF * 16 + WEAK_UNDEF:
case UNDEF * 16 + WEAK_UNDEF:
case WEAK_UNDEF * 16 + WEAK_UNDEF:
case DYN_UNDEF * 16 + WEAK_UNDEF:
case COMMON * 16 + WEAK_UNDEF:
case WEAK_COMMON * 16 + WEAK_UNDEF:
case DYN_COMMON * 16 + WEAK_UNDEF:
case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
// A new weak undefined reference tells us nothing unless the
// exisiting symbol is a dynamic weak reference.
return false;
case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
// A new weak reference overrides an existing dynamic weak reference.
// This is necessary because a dynamic weak reference remembers
// the old binding, which may not be weak. If we keeps the existing
// dynamic weak reference, the weakness may be dropped in the output.
return true;
case DYN_DEF * 16 + WEAK_UNDEF:
case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
// For a dynamic def, we need to remember which kind of undef we see.
*adjust_dyndef = true;
return false;
case DEF * 16 + DYN_UNDEF:
case WEAK_DEF * 16 + DYN_UNDEF:
case DYN_DEF * 16 + DYN_UNDEF:
case DYN_WEAK_DEF * 16 + DYN_UNDEF:
case UNDEF * 16 + DYN_UNDEF:
case WEAK_UNDEF * 16 + DYN_UNDEF:
case DYN_UNDEF * 16 + DYN_UNDEF:
case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
case COMMON * 16 + DYN_UNDEF:
case WEAK_COMMON * 16 + DYN_UNDEF:
case DYN_COMMON * 16 + DYN_UNDEF:
case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
// A new dynamic undefined reference tells us nothing.
return false;
case DEF * 16 + DYN_WEAK_UNDEF:
case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
case DYN_DEF * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
case UNDEF * 16 + DYN_WEAK_UNDEF:
case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
case COMMON * 16 + DYN_WEAK_UNDEF:
case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
// A new weak dynamic undefined reference tells us nothing.
return false;
case DEF * 16 + COMMON:
// A common symbol does not override a definition.
if (parameters->options().warn_common())
Symbol_table::report_resolve_problem(false,
_("common '%s' overridden by "
"previous definition"),
to, defined, object);
return false;
case WEAK_DEF * 16 + COMMON:
case DYN_DEF * 16 + COMMON:
case DYN_WEAK_DEF * 16 + COMMON:
// A common symbol does override a weak definition or a dynamic
// definition.
return true;
case UNDEF * 16 + COMMON:
case WEAK_UNDEF * 16 + COMMON:
case DYN_UNDEF * 16 + COMMON:
case DYN_WEAK_UNDEF * 16 + COMMON:
// A common symbol is a definition for a reference.
return true;
case COMMON * 16 + COMMON:
// Set the size to the maximum.
*adjust_common_sizes = true;
return false;
case WEAK_COMMON * 16 + COMMON:
// I'm not sure just what a weak common symbol means, but
// presumably it can be overridden by a regular common symbol.
return true;
case DYN_COMMON * 16 + COMMON:
case DYN_WEAK_COMMON * 16 + COMMON:
// Use the real common symbol, but adjust the size if necessary.
*adjust_common_sizes = true;
return true;
case DEF * 16 + WEAK_COMMON:
case WEAK_DEF * 16 + WEAK_COMMON:
case DYN_DEF * 16 + WEAK_COMMON:
case DYN_WEAK_DEF * 16 + WEAK_COMMON:
// Whatever a weak common symbol is, it won't override a
// definition.
return false;
case UNDEF * 16 + WEAK_COMMON:
case WEAK_UNDEF * 16 + WEAK_COMMON:
case DYN_UNDEF * 16 + WEAK_COMMON:
case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
// A weak common symbol is better than an undefined symbol.
return true;
case COMMON * 16 + WEAK_COMMON:
case WEAK_COMMON * 16 + WEAK_COMMON:
case DYN_COMMON * 16 + WEAK_COMMON:
case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
// Ignore a weak common symbol in the presence of a real common
// symbol.
return false;
case DEF * 16 + DYN_COMMON:
case WEAK_DEF * 16 + DYN_COMMON:
case DYN_DEF * 16 + DYN_COMMON:
case DYN_WEAK_DEF * 16 + DYN_COMMON:
// Ignore a dynamic common symbol in the presence of a
// definition.
return false;
case UNDEF * 16 + DYN_COMMON:
case WEAK_UNDEF * 16 + DYN_COMMON:
case DYN_UNDEF * 16 + DYN_COMMON:
case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
// A dynamic common symbol is a definition of sorts.
return true;
case COMMON * 16 + DYN_COMMON:
case WEAK_COMMON * 16 + DYN_COMMON:
case DYN_COMMON * 16 + DYN_COMMON:
case DYN_WEAK_COMMON * 16 + DYN_COMMON:
// Set the size to the maximum.
*adjust_common_sizes = true;
return false;
case DEF * 16 + DYN_WEAK_COMMON:
case WEAK_DEF * 16 + DYN_WEAK_COMMON:
case DYN_DEF * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
// A common symbol is ignored in the face of a definition.
return false;
case UNDEF * 16 + DYN_WEAK_COMMON:
case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
// I guess a weak common symbol is better than a definition.
return true;
case COMMON * 16 + DYN_WEAK_COMMON:
case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
case DYN_COMMON * 16 + DYN_WEAK_COMMON:
case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
// Set the size to the maximum.
*adjust_common_sizes = true;
return false;
default:
gold_unreachable();
}
}
// Issue an error or warning due to symbol resolution. IS_ERROR
// indicates an error rather than a warning. MSG is the error
// message; it is expected to have a %s for the symbol name. TO is
// the existing symbol. DEFINED/OBJECT is where the new symbol was
// found.
// FIXME: We should have better location information here. When the
// symbol is defined, we should be able to pull the location from the
// debug info if there is any.
void
Symbol_table::report_resolve_problem(bool is_error, const char* msg,
const Symbol* to, Defined defined,
Object* object)
{
std::string demangled(to->demangled_name());
size_t len = strlen(msg) + demangled.length() + 10;
char* buf = new char[len];
snprintf(buf, len, msg, demangled.c_str());
const char* objname;
switch (defined)
{
case OBJECT:
objname = object->name().c_str();
break;
case COPY:
objname = _("COPY reloc");
break;
case DEFSYM:
case UNDEFINED:
objname = _("command line");
break;
case SCRIPT:
objname = _("linker script");
break;
case PREDEFINED:
case INCREMENTAL_BASE:
objname = _("linker defined");
break;
default:
gold_unreachable();
}
if (is_error)
gold_error("%s: %s", objname, buf);
else
gold_warning("%s: %s", objname, buf);
delete[] buf;
if (to->source() == Symbol::FROM_OBJECT)
objname = to->object()->name().c_str();
else
objname = _("command line");
gold_info("%s: %s: previous definition here", program_name, objname);
}
// Completely override existing symbol. Everything bar name_,
// version_, and is_forced_local_ flag are copied. version_ is
// cleared if from->version_ is clear. Returns true if this symbol
// should be forced local.
bool
Symbol::clone(const Symbol* from)
{
// Don't allow cloning after dynamic linking info is attached to symbols.
// We aren't prepared to merge such.
gold_assert(!this->has_symtab_index() && !from->has_symtab_index());
gold_assert(!this->has_dynsym_index() && !from->has_dynsym_index());
gold_assert(this->got_offset_list() == NULL
&& from->got_offset_list() == NULL);
gold_assert(!this->has_plt_offset() && !from->has_plt_offset());
if (!from->version_)
this->version_ = from->version_;
this->u1_ = from->u1_;
this->u2_ = from->u2_;
this->type_ = from->type_;
this->binding_ = from->binding_;
this->visibility_ = from->visibility_;
this->nonvis_ = from->nonvis_;
this->source_ = from->source_;
this->is_def_ = from->is_def_;
this->is_forwarder_ = from->is_forwarder_;
this->has_alias_ = from->has_alias_;
this->needs_dynsym_entry_ = from->needs_dynsym_entry_;
this->in_reg_ = from->in_reg_;
this->in_dyn_ = from->in_dyn_;
this->needs_dynsym_value_ = from->needs_dynsym_value_;
this->has_warning_ = from->has_warning_;
this->is_copied_from_dynobj_ = from->is_copied_from_dynobj_;
this->is_ordinary_shndx_ = from->is_ordinary_shndx_;
this->in_real_elf_ = from->in_real_elf_;
this->is_defined_in_discarded_section_
= from->is_defined_in_discarded_section_;
this->undef_binding_set_ = from->undef_binding_set_;
this->undef_binding_weak_ = from->undef_binding_weak_;
this->is_predefined_ = from->is_predefined_;
this->is_protected_ = from->is_protected_;
this->non_zero_localentry_ = from->non_zero_localentry_;
return !this->is_forced_local_ && from->is_forced_local_;
}
template <int size>
bool
Sized_symbol<size>::clone(const Sized_symbol<size>* from)
{
this->value_ = from->value_;
this->symsize_ = from->symsize_;
return Symbol::clone(from);
}
// A special case of should_override which is only called for a strong
// defined symbol from a regular object file. This is used when
// defining special symbols.
bool
Symbol_table::should_override_with_special(const Symbol* to,
elfcpp::STT fromtype,
Defined defined)
{
bool adjust_common_sizes;
bool adjust_dyn_def;
unsigned int frombits = global_flag | regular_flag | def_flag;
bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
NULL, &adjust_common_sizes,
&adjust_dyn_def, false);
gold_assert(!adjust_common_sizes && !adjust_dyn_def);
return ret;
}
// Override symbol base with a special symbol.
void
Symbol::override_base_with_special(const Symbol* from)
{
bool same_name = this->name_ == from->name_;
gold_assert(same_name || this->has_alias());
// If we are overriding an undef, remember the original binding.
if (this->is_undefined())
this->set_undef_binding(this->binding_);
this->source_ = from->source_;
switch (from->source_)
{
case FROM_OBJECT:
case IN_OUTPUT_DATA:
case IN_OUTPUT_SEGMENT:
this->u1_ = from->u1_;
this->u2_ = from->u2_;
break;
case IS_CONSTANT:
case IS_UNDEFINED:
break;
default:
gold_unreachable();
break;
}
if (same_name)
{
// When overriding a versioned symbol with a special symbol, we
// may be changing the version. This will happen if we see a
// special symbol such as "_end" defined in a shared object with
// one version (from a version script), but we want to define it
// here with a different version (from a different version
// script).
this->version_ = from->version_;
}
this->type_ = from->type_;
this->binding_ = from->binding_;
this->override_visibility(from->visibility_);
this->nonvis_ = from->nonvis_;
// Special symbols are always considered to be regular symbols.
this->in_reg_ = true;
if (from->needs_dynsym_entry_)
this->needs_dynsym_entry_ = true;
if (from->needs_dynsym_value_)
this->needs_dynsym_value_ = true;
this->is_predefined_ = from->is_predefined_;
// We shouldn't see these flags. If we do, we need to handle them
// somehow.
gold_assert(!from->is_forwarder_);
gold_assert(!from->has_plt_offset());
gold_assert(!from->has_warning_);
gold_assert(!from->is_copied_from_dynobj_);
gold_assert(!from->is_forced_local_);
}
// Override a symbol with a special symbol.
template<int size>
void
Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
{
this->override_base_with_special(from);
this->value_ = from->value_;
this->symsize_ = from->symsize_;
}
// Override TOSYM with the special symbol FROMSYM. This handles all
// aliases of TOSYM.
template<int size>
void
Symbol_table::override_with_special(Sized_symbol<size>* tosym,
const Sized_symbol<size>* fromsym)
{
tosym->override_with_special(fromsym);
if (tosym->has_alias())
{
Symbol* sym = this->weak_aliases_[tosym];
gold_assert(sym != NULL);
Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
do
{
ssym->override_with_special(fromsym);
sym = this->weak_aliases_[ssym];
gold_assert(sym != NULL);
ssym = this->get_sized_symbol<size>(sym);
}
while (ssym != tosym);
}
if (tosym->binding() == elfcpp::STB_LOCAL
|| ((tosym->visibility() == elfcpp::STV_HIDDEN
|| tosym->visibility() == elfcpp::STV_INTERNAL)
&& (tosym->binding() == elfcpp::STB_GLOBAL
|| tosym->binding() == elfcpp::STB_GNU_UNIQUE
|| tosym->binding() == elfcpp::STB_WEAK)
&& !parameters->options().relocatable()))
this->force_local(tosym);
}
// Instantiate the templates we need. We could use the configure
// script to restrict this to only the ones needed for implemented
// targets.
// We have to instantiate both big and little endian versions because
// these are used by other templates that depends on size only.
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Symbol_table::resolve<32, false>(
Sized_symbol<32>* to,
const elfcpp::Sym<32, false>& sym,
unsigned int st_shndx,
bool is_ordinary,
unsigned int orig_st_shndx,
Object* object,
const char* version,
bool is_default_version);
template
void
Symbol_table::resolve<32, true>(
Sized_symbol<32>* to,
const elfcpp::Sym<32, true>& sym,
unsigned int st_shndx,
bool is_ordinary,
unsigned int orig_st_shndx,
Object* object,
const char* version,
bool is_default_version);
#endif
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Symbol_table::resolve<64, false>(
Sized_symbol<64>* to,
const elfcpp::Sym<64, false>& sym,
unsigned int st_shndx,
bool is_ordinary,
unsigned int orig_st_shndx,
Object* object,
const char* version,
bool is_default_version);
template
void
Symbol_table::resolve<64, true>(
Sized_symbol<64>* to,
const elfcpp::Sym<64, true>& sym,
unsigned int st_shndx,
bool is_ordinary,
unsigned int orig_st_shndx,
Object* object,
const char* version,
bool is_default_version);
#endif
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Symbol_table::override_with_special<32>(Sized_symbol<32>*,
const Sized_symbol<32>*);
#endif
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Symbol_table::override_with_special<64>(Sized_symbol<64>*,
const Sized_symbol<64>*);
#endif
template
bool
Sized_symbol<32>::clone(const Sized_symbol<32>*);
template
bool
Sized_symbol<64>::clone(const Sized_symbol<64>*);
} // End namespace gold.
|