1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
|
/* BFD back-end for HP PA-RISC ELF files.
Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 1997
Free Software Foundation, Inc.
Written by
Center for Software Science
Department of Computer Science
University of Utah
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
/* The internal type of a symbol table extension entry. */
typedef unsigned long symext_entryS;
/* The external type of a symbol table extension entry. */
#define ELF32_PARISC_SX_SIZE (4)
#define ELF32_PARISC_SX_GET(bfd, addr) bfd_h_get_32 ((bfd), (addr))
#define ELF32_PARISC_SX_PUT(bfd, val, addr) \
bfd_h_put_32 ((bfd), (val), (addr))
/* HPPA symbol table extension entry types */
enum elf32_hppa_symextn_types
{
PARISC_SXT_NULL,
PARISC_SXT_SYMNDX,
PARISC_SXT_ARG_RELOC,
};
/* These macros compose and decompose the value of a symextn entry:
entry_type = ELF32_PARISC_SX_TYPE(word);
entry_value = ELF32_PARISC_SX_VAL(word);
word = ELF32_PARISC_SX_WORD(type,val); */
#define ELF32_PARISC_SX_TYPE(p) ((p) >> 24)
#define ELF32_PARISC_SX_VAL(p) ((p) & 0xFFFFFF)
#define ELF32_PARISC_SX_WORD(type,val) (((type) << 24) + (val & 0xFFFFFF))
/* The following was added facilitate implementation of the .hppa_symextn
section. This section is built after the symbol table is built in the
elf_write_object_contents routine (called from bfd_close). It is built
so late because it requires information that is not known until
the symbol and string table sections have been allocated, and
the symbol table has been built. */
#define SYMEXTN_SECTION_NAME ".PARISC.symext"
struct symext_chain
{
symext_entryS entry;
struct symext_chain *next;
};
typedef struct symext_chain symext_chainS;
/* We use three different hash tables to hold information for
linking PA ELF objects.
The first is the elf32_hppa_link_hash_table which is derived
from the standard ELF linker hash table. We use this as a place to
attach other hash tables and static information.
The second is the stub hash table which is derived from the
base BFD hash table. The stub hash table holds the information
necessary to build the linker stubs during a link.
The last hash table keeps track of argument location information needed
to build hash tables. Each function with nonzero argument location
bits will have an entry in this table. */
/* Hash table for linker stubs. */
struct elf32_hppa_stub_hash_entry
{
/* Base hash table entry structure, we can get the name of the stub
(and thus know exactly what actions it performs) from the base
hash table entry. */
struct bfd_hash_entry root;
/* Offset of the beginning of this stub. */
bfd_vma offset;
/* Given the symbol's value and its section we can determine its final
value when building the stubs (so the stub knows where to jump. */
symvalue target_value;
asection *target_section;
};
struct elf32_hppa_stub_hash_table
{
/* The hash table itself. */
struct bfd_hash_table root;
/* The stub BFD. */
bfd *stub_bfd;
/* Where to place the next stub. */
bfd_byte *location;
/* Current offset in the stub section. */
unsigned int offset;
};
/* Hash table for argument location information. */
struct elf32_hppa_args_hash_entry
{
/* Base hash table entry structure. */
struct bfd_hash_entry root;
/* The argument location bits for this entry. */
int arg_bits;
};
struct elf32_hppa_args_hash_table
{
/* The hash table itself. */
struct bfd_hash_table root;
};
struct elf32_hppa_link_hash_entry
{
struct elf_link_hash_entry root;
};
struct elf32_hppa_link_hash_table
{
/* The main hash table. */
struct elf_link_hash_table root;
/* The stub hash table. */
struct elf32_hppa_stub_hash_table *stub_hash_table;
/* The argument relocation bits hash table. */
struct elf32_hppa_args_hash_table *args_hash_table;
/* A count of the number of output symbols. */
unsigned int output_symbol_count;
/* Stuff so we can handle DP relative relocations. */
long global_value;
int global_sym_defined;
};
/* FIXME. */
#define ARGUMENTS 0
#define RETURN_VALUE 1
/* The various argument relocations that may be performed. */
typedef enum
{
/* No relocation. */
NO,
/* Relocate 32 bits from GR to FP register. */
GF,
/* Relocate 64 bits from a GR pair to FP pair. */
GD,
/* Relocate 32 bits from FP to GR. */
FG,
/* Relocate 64 bits from FP pair to GR pair. */
DG,
} arg_reloc_type;
/* What is being relocated (eg which argument or the return value). */
typedef enum
{
ARG0, ARG1, ARG2, ARG3, RET,
} arg_reloc_location;
/* ELF32/HPPA relocation support
This file contains ELF32/HPPA relocation support as specified
in the Stratus FTX/Golf Object File Format (SED-1762) dated
February 1994. */
#include "elf32-hppa.h"
#include "hppa_stubs.h"
static bfd_reloc_status_type hppa_elf_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static unsigned long hppa_elf_relocate_insn
PARAMS ((bfd *, asection *, unsigned long, unsigned long, long,
long, unsigned long, unsigned long, unsigned long));
static bfd_reloc_status_type hppa_elf_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd*, char **));
static reloc_howto_type * elf_hppa_reloc_type_lookup
PARAMS ((bfd *, bfd_reloc_code_real_type));
static boolean elf32_hppa_set_section_contents
PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
static void elf32_hppa_info_to_howto
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
static boolean elf32_hppa_backend_symbol_table_processing
PARAMS ((bfd *, elf_symbol_type *, unsigned int));
static void elf32_hppa_backend_begin_write_processing
PARAMS ((bfd *, struct bfd_link_info *));
static void elf32_hppa_backend_final_write_processing
PARAMS ((bfd *, boolean));
static void add_entry_to_symext_chain
PARAMS ((bfd *, unsigned int, unsigned int, symext_chainS **,
symext_chainS **));
static void
elf_hppa_tc_make_sections PARAMS ((bfd *, symext_chainS *));
static boolean hppa_elf_is_local_label_name PARAMS ((bfd *, const char *));
static boolean elf32_hppa_add_symbol_hook
PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
const char **, flagword *, asection **, bfd_vma *));
static bfd_reloc_status_type elf32_hppa_bfd_final_link_relocate
PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *,
bfd_byte *, bfd_vma, bfd_vma, bfd_vma, struct bfd_link_info *,
asection *, const char *, int));
static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
PARAMS ((bfd *));
static struct bfd_hash_entry *
elf32_hppa_stub_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static struct bfd_hash_entry *
elf32_hppa_args_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static boolean
elf32_hppa_relocate_section
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
static boolean
elf32_hppa_stub_hash_table_init
PARAMS ((struct elf32_hppa_stub_hash_table *, bfd *,
struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
struct bfd_hash_table *,
const char *))));
static boolean
elf32_hppa_build_one_stub PARAMS ((struct bfd_hash_entry *, PTR));
static boolean
elf32_hppa_read_symext_info
PARAMS ((bfd *, Elf_Internal_Shdr *, struct elf32_hppa_args_hash_table *,
Elf_Internal_Sym *));
static unsigned int elf32_hppa_size_of_stub
PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, const char *));
static boolean elf32_hppa_arg_reloc_needed
PARAMS ((unsigned int, unsigned int, arg_reloc_type []));
static void elf32_hppa_name_of_stub
PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, char *));
static boolean elf32_hppa_size_symext PARAMS ((struct bfd_hash_entry *, PTR));
static boolean elf32_hppa_link_output_symbol_hook
PARAMS ((bfd *, struct bfd_link_info *, const char *,
Elf_Internal_Sym *, asection *));
/* ELF/PA relocation howto entries. */
static reloc_howto_type elf_hppa_howto_table[ELF_HOWTO_TABLE_SIZE] =
{
{R_PARISC_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_NONE"},
/* The values in DIR32 are to placate the check in
_bfd_stab_section_find_nearest_line. */
{R_PARISC_DIR32, 0, 2, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR32", false, 0, 0xffffffff, false},
{R_PARISC_DIR21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR21L"},
{R_PARISC_DIR17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17R"},
{R_PARISC_DIR17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17F"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DIR14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR14R"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_PCREL21L, 0, 0, 21, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL21L"},
{R_PARISC_PCREL17R, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17R"},
{R_PARISC_PCREL17F, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17F"},
{R_PARISC_PCREL17C, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17C"},
{R_PARISC_PCREL14R, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14R"},
{R_PARISC_PCREL14F, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14F"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DPREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL21L"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DPREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14R"},
{R_PARISC_DPREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14F"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DLTREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL21L"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DLTREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14R"},
{R_PARISC_DLTREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14F"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DLTIND21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND21L"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DLTIND14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14R"},
{R_PARISC_DLTIND14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14F"},
{R_PARISC_SETBASE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_SETBASE"},
{R_PARISC_BASEREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL32"},
{R_PARISC_BASEREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL21L"},
{R_PARISC_BASEREL17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17R"},
{R_PARISC_BASEREL17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17F"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_BASEREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14R"},
{R_PARISC_BASEREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14F"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_TEXTREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_TEXTREL32"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_DATAREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_PLABEL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL32"},
{R_PARISC_PLABEL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL21L"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_PLABEL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL14R"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_PLTIND21L, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND21L"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
{R_PARISC_PLTIND14R, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14R"},
{R_PARISC_PLTIND14F, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14F"},
{R_PARISC_COPY, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_COPY"},
{R_PARISC_GLOB_DAT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_GLOB_DAT"},
{R_PARISC_JMP_SLOT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_JMP_SLOT"},
{R_PARISC_RELATIVE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_RELATIVE"},
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_dont, NULL, "R_PARISC_UNIMPLEMENTED"},
};
/* Where (what register type) is an argument comming from? */
typedef enum
{
AR_NO,
AR_GR,
AR_FR,
AR_FU,
AR_FPDBL1,
AR_FPDBL2,
} arg_location;
/* Horizontal represents the callee's argument location information,
vertical represents caller's argument location information. Value at a
particular X,Y location represents what (if any) argument relocation
needs to be performed to make caller and callee agree. */
static CONST arg_reloc_type arg_mismatches[6][6] =
{
{NO, NO, NO, NO, NO, NO},
{NO, NO, GF, NO, GD, NO},
{NO, FG, NO, NO, NO, NO},
{NO, NO, NO, NO, NO, NO},
{NO, DG, NO, NO, NO, NO},
{NO, DG, NO, NO, NO, NO},
};
/* Likewise, but reversed for the return value. */
static CONST arg_reloc_type ret_mismatches[6][6] =
{
{NO, NO, NO, NO, NO, NO},
{NO, NO, FG, NO, DG, NO},
{NO, GF, NO, NO, NO, NO},
{NO, NO, NO, NO, NO, NO},
{NO, GD, NO, NO, NO, NO},
{NO, GD, NO, NO, NO, NO},
};
/* Misc static crud for symbol extension records. */
static symext_chainS *symext_rootP;
static symext_chainS *symext_lastP;
static bfd_size_type symext_chain_size;
/* FIXME: We should be able to try this static variable! */
static bfd_byte *symextn_contents;
/* For linker stub hash tables. */
#define elf32_hppa_stub_hash_lookup(table, string, create, copy) \
((struct elf32_hppa_stub_hash_entry *) \
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
#define elf32_hppa_stub_hash_traverse(table, func, info) \
(bfd_hash_traverse \
(&(table)->root, \
(boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \
(info)))
/* For linker args hash tables. */
#define elf32_hppa_args_hash_lookup(table, string, create, copy) \
((struct elf32_hppa_args_hash_entry *) \
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
#define elf32_hppa_args_hash_traverse(table, func, info) \
(bfd_hash_traverse \
(&(table)->root, \
(boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \
(info)))
#define elf32_hppa_args_hash_table_init(table, newfunc) \
(bfd_hash_table_init \
(&(table)->root, \
(struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *, \
struct bfd_hash_table *, \
const char *))) (newfunc)))
/* For HPPA linker hash table. */
#define elf32_hppa_link_hash_lookup(table, string, create, copy, follow)\
((struct elf32_hppa_link_hash_entry *) \
elf_link_hash_lookup (&(table)->root, (string), (create), \
(copy), (follow)))
#define elf32_hppa_link_hash_traverse(table, func, info) \
(elf_link_hash_traverse \
(&(table)->root, \
(boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
(info)))
/* Get the PA ELF linker hash table from a link_info structure. */
#define elf32_hppa_hash_table(p) \
((struct elf32_hppa_link_hash_table *) ((p)->hash))
/* Extract specific argument location bits for WHICH from
the full argument location in AR. */
#define EXTRACT_ARBITS(ar, which) ((ar) >> (8 - ((which) * 2))) & 3
/* Assorted hash table functions. */
/* Initialize an entry in the stub hash table. */
static struct bfd_hash_entry *
elf32_hppa_stub_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct elf32_hppa_stub_hash_entry *ret;
ret = (struct elf32_hppa_stub_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = ((struct elf32_hppa_stub_hash_entry *)
bfd_hash_allocate (table,
sizeof (struct elf32_hppa_stub_hash_entry)));
if (ret == NULL)
return NULL;
/* Call the allocation method of the superclass. */
ret = ((struct elf32_hppa_stub_hash_entry *)
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
if (ret)
{
/* Initialize the local fields. */
ret->offset = 0;
ret->target_value = 0;
ret->target_section = NULL;
}
return (struct bfd_hash_entry *) ret;
}
/* Initialize a stub hash table. */
static boolean
elf32_hppa_stub_hash_table_init (table, stub_bfd, newfunc)
struct elf32_hppa_stub_hash_table *table;
bfd *stub_bfd;
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
struct bfd_hash_table *,
const char *));
{
table->offset = 0;
table->location = 0;
table->stub_bfd = stub_bfd;
return (bfd_hash_table_init (&table->root, newfunc));
}
/* Initialize an entry in the argument location hash table. */
static struct bfd_hash_entry *
elf32_hppa_args_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct elf32_hppa_args_hash_entry *ret;
ret = (struct elf32_hppa_args_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = ((struct elf32_hppa_args_hash_entry *)
bfd_hash_allocate (table,
sizeof (struct elf32_hppa_args_hash_entry)));
if (ret == NULL)
return NULL;
/* Call the allocation method of the superclass. */
ret = ((struct elf32_hppa_args_hash_entry *)
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
/* Initialize the local fields. */
if (ret)
ret->arg_bits = 0;
return (struct bfd_hash_entry *) ret;
}
/* Create the derived linker hash table. The PA ELF port uses the derived
hash table to keep information specific to the PA ELF linker (without
using static variables). */
static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create (abfd)
bfd *abfd;
{
struct elf32_hppa_link_hash_table *ret;
ret = ((struct elf32_hppa_link_hash_table *)
bfd_alloc (abfd, sizeof (struct elf32_hppa_link_hash_table)));
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
_bfd_elf_link_hash_newfunc))
{
bfd_release (abfd, ret);
return NULL;
}
ret->stub_hash_table = NULL;
ret->args_hash_table = NULL;
ret->output_symbol_count = 0;
ret->global_value = 0;
ret->global_sym_defined = 0;
return &ret->root.root;
}
/* Relocate the given INSN given the various input parameters.
FIXME: endianness and sizeof (long) issues abound here. */
static unsigned long
hppa_elf_relocate_insn (abfd, input_sect, insn, address, sym_value,
r_addend, r_format, r_field, pcrel)
bfd *abfd;
asection *input_sect;
unsigned long insn;
unsigned long address;
long sym_value;
long r_addend;
unsigned long r_format;
unsigned long r_field;
unsigned long pcrel;
{
unsigned char opcode = get_opcode (insn);
long constant_value;
switch (opcode)
{
case LDO:
case LDB:
case LDH:
case LDW:
case LDWM:
case STB:
case STH:
case STW:
case STWM:
case COMICLR:
case SUBI:
case ADDIT:
case ADDI:
case LDIL:
case ADDIL:
constant_value = HPPA_R_CONSTANT (r_addend);
if (pcrel)
sym_value -= address;
sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
return hppa_rebuild_insn (abfd, insn, sym_value, r_format);
case BL:
case BE:
case BLE:
/* XXX computing constant_value is not needed??? */
constant_value = assemble_17 ((insn & 0x001f0000) >> 16,
(insn & 0x00001ffc) >> 2,
insn & 1);
constant_value = (constant_value << 15) >> 15;
if (pcrel)
{
sym_value -=
address + input_sect->output_offset
+ input_sect->output_section->vma;
sym_value = hppa_field_adjust (sym_value, -8, r_field);
}
else
sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
return hppa_rebuild_insn (abfd, insn, sym_value >> 2, r_format);
default:
if (opcode == 0)
{
constant_value = HPPA_R_CONSTANT (r_addend);
if (pcrel)
sym_value -= address;
return hppa_field_adjust (sym_value, constant_value, r_field);
}
else
abort ();
}
}
/* Relocate an HPPA ELF section. */
static boolean
elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
contents, relocs, local_syms, local_sections)
bfd *output_bfd;
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
Elf_Internal_Rela *relocs;
Elf_Internal_Sym *local_syms;
asection **local_sections;
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
asection *sym_sec;
bfd_vma relocation;
bfd_reloc_status_type r;
const char *sym_name;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
howto = elf_hppa_howto_table + r_type;
r_symndx = ELF32_R_SYM (rel->r_info);
if (info->relocateable)
{
/* This is a relocateable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
sym_sec = local_sections[r_symndx];
rel->r_addend += sym_sec->output_offset;
}
}
continue;
}
/* This is a final link. */
h = NULL;
sym = NULL;
sym_sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sym_sec = local_sections[r_symndx];
relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
? 0 : sym->st_value)
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else
{
long indx;
indx = r_symndx - symtab_hdr->sh_info;
h = elf_sym_hashes (input_bfd)[indx];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
sym_sec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else if (h->root.type == bfd_link_hash_undefweak)
relocation = 0;
else
{
if (!((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset)))
return false;
break;
}
}
if (h != NULL)
sym_name = h->root.root.string;
else
{
sym_name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (sym_name == NULL)
return false;
if (*sym_name == '\0')
sym_name = bfd_section_name (input_bfd, sym_sec);
}
/* If args_hash_table is NULL, then we have encountered some
kind of link error (ex. undefined symbols). Do not try to
apply any relocations, continue the loop so we can notify
the user of several errors in a single attempted link. */
if (elf32_hppa_hash_table (info)->args_hash_table == NULL)
continue;
r = elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd,
input_section, contents,
rel->r_offset, relocation,
rel->r_addend, info, sym_sec,
sym_name, h == NULL);
if (r != bfd_reloc_ok)
{
switch (r)
{
/* This can happen for DP relative relocs if $global$ is
undefined. This is a panic situation so we don't try
to continue. */
case bfd_reloc_undefined:
case bfd_reloc_notsupported:
if (!((*info->callbacks->undefined_symbol)
(info, "$global$", input_bfd,
input_section, rel->r_offset)))
return false;
return false;
case bfd_reloc_dangerous:
{
/* We use this return value to indicate that we performed
a "dangerous" relocation. This doesn't mean we did
the wrong thing, it just means there may be some cleanup
that needs to be done here.
In particular we had to swap the last call insn and its
delay slot. If the delay slot insn needed a relocation,
then we'll need to adjust the next relocation entry's
offset to account for the fact that the insn moved.
This hair wouldn't be necessary if we inserted stubs
between procedures and used a "bl" to get to the stub. */
if (rel != relend)
{
Elf_Internal_Rela *next_rel = rel + 1;
if (rel->r_offset + 4 == next_rel->r_offset)
next_rel->r_offset -= 4;
}
break;
}
default:
case bfd_reloc_outofrange:
case bfd_reloc_overflow:
{
if (!((*info->callbacks->reloc_overflow)
(info, sym_name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset)))
return false;
}
break;
}
}
}
return true;
}
/* Return one (or more) BFD relocations which implement the base
relocation with modifications based on format and field. */
elf32_hppa_reloc_type **
hppa_elf_gen_reloc_type (abfd, base_type, format, field, ignore, sym)
bfd *abfd;
elf32_hppa_reloc_type base_type;
int format;
int field;
int ignore;
asymbol *sym;
{
elf32_hppa_reloc_type *finaltype;
elf32_hppa_reloc_type **final_types;
/* Allocate slots for the BFD relocation. */
final_types = ((elf32_hppa_reloc_type **)
bfd_alloc (abfd, sizeof (elf32_hppa_reloc_type *) * 2));
if (final_types == NULL)
return NULL;
/* Allocate space for the relocation itself. */
finaltype = ((elf32_hppa_reloc_type *)
bfd_alloc (abfd, sizeof (elf32_hppa_reloc_type)));
if (finaltype == NULL)
return NULL;
/* Some reasonable defaults. */
final_types[0] = finaltype;
final_types[1] = NULL;
#define final_type finaltype[0]
final_type = base_type;
/* Just a tangle of nested switch statements to deal with the braindamage
that a different field selector means a completely different relocation
for PA ELF. */
switch (base_type)
{
case R_HPPA:
case R_HPPA_ABS_CALL:
switch (format)
{
case 14:
switch (field)
{
case e_rsel:
case e_rrsel:
final_type = R_PARISC_DIR14R;
break;
case e_rtsel:
final_type = R_PARISC_DLTREL14R;
break;
case e_tsel:
final_type = R_PARISC_DLTREL14F;
break;
case e_rpsel:
final_type = R_PARISC_PLABEL14R;
break;
default:
return NULL;
}
break;
case 17:
switch (field)
{
case e_fsel:
final_type = R_PARISC_DIR17F;
break;
case e_rsel:
case e_rrsel:
final_type = R_PARISC_DIR17R;
break;
default:
return NULL;
}
break;
case 21:
switch (field)
{
case e_lsel:
case e_lrsel:
final_type = R_PARISC_DIR21L;
break;
case e_ltsel:
final_type = R_PARISC_DLTREL21L;
break;
case e_lpsel:
final_type = R_PARISC_PLABEL21L;
break;
default:
return NULL;
}
break;
case 32:
switch (field)
{
case e_fsel:
final_type = R_PARISC_DIR32;
break;
case e_psel:
final_type = R_PARISC_PLABEL32;
break;
default:
return NULL;
}
break;
default:
return NULL;
}
break;
case R_HPPA_GOTOFF:
switch (format)
{
case 14:
switch (field)
{
case e_rsel:
case e_rrsel:
final_type = R_PARISC_DPREL14R;
break;
case e_fsel:
final_type = R_PARISC_DPREL14F;
break;
default:
return NULL;
}
break;
case 21:
switch (field)
{
case e_lrsel:
case e_lsel:
final_type = R_PARISC_DPREL21L;
break;
default:
return NULL;
}
break;
default:
return NULL;
}
break;
case R_HPPA_PCREL_CALL:
switch (format)
{
case 14:
switch (field)
{
case e_rsel:
case e_rrsel:
final_type = R_PARISC_PCREL14R;
break;
case e_fsel:
final_type = R_PARISC_PCREL14F;
break;
default:
return NULL;
}
break;
case 17:
switch (field)
{
case e_rsel:
case e_rrsel:
final_type = R_PARISC_PCREL17R;
break;
case e_fsel:
final_type = R_PARISC_PCREL17F;
break;
default:
return NULL;
}
break;
case 21:
switch (field)
{
case e_lsel:
case e_lrsel:
final_type = R_PARISC_PCREL21L;
break;
default:
return NULL;
}
break;
default:
return NULL;
}
break;
default:
return NULL;
}
return final_types;
}
#undef final_type
/* Set the contents of a particular section at a particular location. */
static boolean
elf32_hppa_set_section_contents (abfd, section, location, offset, count)
bfd *abfd;
sec_ptr section;
PTR location;
file_ptr offset;
bfd_size_type count;
{
/* Ignore write requests for the symbol extension section until we've
had the chance to rebuild it ourselves. */
if (!strcmp (section->name, ".PARISC.symextn") && !symext_chain_size)
return true;
else
return _bfd_elf_set_section_contents (abfd, section, location,
offset, count);
}
/* Translate from an elf into field into a howto relocation pointer. */
static void
elf32_hppa_info_to_howto (abfd, cache_ptr, dst)
bfd *abfd;
arelent *cache_ptr;
Elf32_Internal_Rela *dst;
{
BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_PARISC_UNIMPLEMENTED);
cache_ptr->howto = &elf_hppa_howto_table[ELF32_R_TYPE (dst->r_info)];
}
/* Actually perform a relocation. NOTE this is (mostly) superceeded
by elf32_hppa_bfd_final_link_relocate which is called by the new
fast linker. */
static bfd_reloc_status_type
hppa_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol_in;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
/* It is no longer valid to call hppa_elf_reloc when creating
a final executable. */
if (output_bfd)
{
reloc_entry->address += input_section->output_offset;
/* Work around lossage in generic elf code to write relocations.
(maps different section symbols into the same symbol index). */
if ((symbol_in->flags & BSF_SECTION_SYM)
&& symbol_in->section)
reloc_entry->addend += symbol_in->section->output_offset;
return bfd_reloc_ok;
}
else
{
*error_message = (char *) "Unsupported call to hppa_elf_reloc";
return bfd_reloc_notsupported;
}
}
/* Actually perform a relocation as part of a final link. This can get
rather hairy when linker stubs are needed. */
static bfd_reloc_status_type
elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd,
input_section, contents, offset, value,
addend, info, sym_sec, sym_name, is_local)
reloc_howto_type *howto;
bfd *input_bfd;
bfd *output_bfd;
asection *input_section;
bfd_byte *contents;
bfd_vma offset;
bfd_vma value;
bfd_vma addend;
struct bfd_link_info *info;
asection *sym_sec;
const char *sym_name;
int is_local;
{
unsigned long insn;
unsigned long r_type = howto->type;
unsigned long r_format = howto->bitsize;
unsigned long r_field = e_fsel;
bfd_byte *hit_data = contents + offset;
boolean r_pcrel = howto->pc_relative;
insn = bfd_get_32 (input_bfd, hit_data);
/* Make sure we have a value for $global$. FIXME isn't this effectively
just like the gp pointer on MIPS? Can we use those routines for this
purpose? */
if (!elf32_hppa_hash_table (info)->global_sym_defined)
{
struct elf_link_hash_entry *h;
asection *sec;
h = elf_link_hash_lookup (elf_hash_table (info), "$global$", false,
false, false);
/* If there isn't a $global$, then we're in deep trouble. */
if (h == NULL)
return bfd_reloc_notsupported;
/* If $global$ isn't a defined symbol, then we're still in deep
trouble. */
if (h->root.type != bfd_link_hash_defined)
return bfd_reloc_undefined;
sec = h->root.u.def.section;
elf32_hppa_hash_table (info)->global_value = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
elf32_hppa_hash_table (info)->global_sym_defined = 1;
}
switch (r_type)
{
case R_PARISC_NONE:
break;
case R_PARISC_DIR32:
case R_PARISC_DIR17F:
case R_PARISC_PCREL17C:
r_field = e_fsel;
goto do_basic_type_1;
case R_PARISC_DIR21L:
case R_PARISC_PCREL21L:
r_field = e_lrsel;
goto do_basic_type_1;
case R_PARISC_DIR17R:
case R_PARISC_PCREL17R:
case R_PARISC_DIR14R:
case R_PARISC_PCREL14R:
r_field = e_rrsel;
goto do_basic_type_1;
/* For all the DP relative relocations, we need to examine the symbol's
section. If it's a code section, then "data pointer relative" makes
no sense. In that case we don't adjust the "value", and for 21 bit
addil instructions, we change the source addend register from %dp to
%r0. */
case R_PARISC_DPREL21L:
r_field = e_lrsel;
if (sym_sec->flags & SEC_CODE)
{
if ((insn & 0xfc000000) >> 26 == 0xa
&& (insn & 0x03e00000) >> 21 == 0x1b)
insn &= ~0x03e00000;
}
else
value -= elf32_hppa_hash_table (info)->global_value;
goto do_basic_type_1;
case R_PARISC_DPREL14R:
r_field = e_rrsel;
if ((sym_sec->flags & SEC_CODE) == 0)
value -= elf32_hppa_hash_table (info)->global_value;
goto do_basic_type_1;
case R_PARISC_DPREL14F:
r_field = e_fsel;
if ((sym_sec->flags & SEC_CODE) == 0)
value -= elf32_hppa_hash_table (info)->global_value;
goto do_basic_type_1;
/* These cases are separate as they may involve a lot more work
to deal with linker stubs. */
case R_PARISC_PLABEL32:
case R_PARISC_PLABEL21L:
case R_PARISC_PLABEL14R:
case R_PARISC_PCREL17F:
{
bfd_vma location;
unsigned int len, caller_args, callee_args;
arg_reloc_type arg_reloc_types[5];
struct elf32_hppa_args_hash_table *args_hash_table;
struct elf32_hppa_args_hash_entry *args_hash;
char *new_name, *stub_name;
/* Get the field selector right. We'll need it in a minute. */
if (r_type == R_PARISC_PCREL17F
|| r_type == R_PARISC_PLABEL32)
r_field = e_fsel;
else if (r_type == R_PARISC_PLABEL21L)
r_field = e_lrsel;
else if (r_type == R_PARISC_PLABEL14R)
r_field = e_rrsel;
/* Find out where we are and where we're going. */
location = (offset +
input_section->output_offset +
input_section->output_section->vma);
/* Now look for the argument relocation bits associated with the
target. */
len = strlen (sym_name) + 1;
if (is_local)
len += 9;
new_name = bfd_malloc (len);
if (!new_name)
return bfd_reloc_notsupported;
strcpy (new_name, sym_name);
/* Local symbols have unique IDs. */
if (is_local)
sprintf (new_name + len - 10, "_%08x", (int)sym_sec);
args_hash_table = elf32_hppa_hash_table (info)->args_hash_table;
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
new_name, false, false);
if (args_hash == NULL)
callee_args = 0;
else
callee_args = args_hash->arg_bits;
/* If this is a CALL relocation, then get the caller's bits
from the addend. Else use the magic 0x155 value for PLABELS.
Also we don't care about the destination (value) for PLABELS. */
if (r_type == R_PARISC_PCREL17F)
caller_args = HPPA_R_ARG_RELOC (addend);
else
{
caller_args = 0x155;
location = value;
}
/* Any kind of linker stub needed? */
if (((int)(value - location) > 0x3ffff)
|| ((int)(value - location) < (int)0xfffc0000)
|| elf32_hppa_arg_reloc_needed (caller_args, callee_args,
arg_reloc_types))
{
struct elf32_hppa_stub_hash_table *stub_hash_table;
struct elf32_hppa_stub_hash_entry *stub_hash;
asection *stub_section;
/* Build a name for the stub. */
len = strlen (new_name);
len += 23;
stub_name = bfd_malloc (len);
if (!stub_name)
return bfd_reloc_notsupported;
elf32_hppa_name_of_stub (caller_args, callee_args,
location, value, stub_name);
strcat (stub_name, new_name);
free (new_name);
stub_hash_table = elf32_hppa_hash_table (info)->stub_hash_table;
stub_hash
= elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name,
false, false);
/* We're done with that name. */
free (stub_name);
/* The stub BFD only has one section. */
stub_section = stub_hash_table->stub_bfd->sections;
if (stub_hash != NULL)
{
if (r_type == R_PARISC_PCREL17F)
{
unsigned long delay_insn;
unsigned int opcode, rtn_reg, ldo_target_reg, ldo_src_reg;
/* We'll need to peek at the next insn. */
delay_insn = bfd_get_32 (input_bfd, hit_data + 4);
opcode = get_opcode (delay_insn);
/* We also need to know the return register for this
call. */
rtn_reg = (insn & 0x03e00000) >> 21;
ldo_src_reg = (delay_insn & 0x03e00000) >> 21;
ldo_target_reg = (delay_insn & 0x001f0000) >> 16;
/* Munge up the value and other parameters for
hppa_elf_relocate_insn. */
value = (stub_hash->offset
+ stub_section->output_offset
+ stub_section->output_section->vma);
r_format = 17;
r_field = e_fsel;
r_pcrel = 0;
addend = 0;
/* We need to peek at the delay insn and determine if
we'll need to swap the branch and its delay insn. */
if ((insn & 2)
|| (opcode == LDO
&& ldo_target_reg == rtn_reg)
|| (delay_insn == 0x08000240))
{
/* No need to swap the branch and its delay slot, but
we do need to make sure to jump past the return
pointer update in the stub. */
value += 4;
/* If the delay insn does a return pointer adjustment,
then we have to make sure it stays valid. */
if (opcode == LDO
&& ldo_target_reg == rtn_reg)
{
delay_insn &= 0xfc00ffff;
delay_insn |= ((31 << 21) | (31 << 16));
bfd_put_32 (input_bfd, delay_insn, hit_data + 4);
}
/* Use a BLE to reach the stub. */
insn = BLE_SR4_R0;
}
else
{
/* Wonderful, we have to swap the call insn and its
delay slot. */
bfd_put_32 (input_bfd, delay_insn, hit_data);
/* Use a BLE,n to reach the stub. */
insn = (BLE_SR4_R0 | 0x2);
bfd_put_32 (input_bfd, insn, hit_data + 4);
insn = hppa_elf_relocate_insn (input_bfd,
input_section,
insn, offset + 4,
value, addend,
r_format, r_field,
r_pcrel);
/* Update the instruction word. */
bfd_put_32 (input_bfd, insn, hit_data + 4);
return bfd_reloc_dangerous;
}
}
else
{
/* PLABEL stuff is easy. */
value = (stub_hash->offset
+ stub_section->output_offset
+ stub_section->output_section->vma);
/* We don't need the RP adjustment for PLABELs. */
value += 4;
if (r_type == R_PARISC_PLABEL32)
r_format = 32;
else if (r_type == R_PARISC_PLABEL21L)
r_format = 21;
else if (r_type == R_PARISC_PLABEL14R)
r_format = 14;
r_pcrel = 0;
addend = 0;
}
}
else
return bfd_reloc_notsupported;
}
goto do_basic_type_1;
}
do_basic_type_1:
insn = hppa_elf_relocate_insn (input_bfd, input_section, insn,
offset, value, addend, r_format,
r_field, r_pcrel);
break;
/* Something we don't know how to handle. */
default:
return bfd_reloc_notsupported;
}
/* Update the instruction word. */
bfd_put_32 (input_bfd, insn, hit_data);
return (bfd_reloc_ok);
}
/* Return the address of the howto table entry to perform the CODE
relocation for an ARCH machine. */
static reloc_howto_type *
elf_hppa_reloc_type_lookup (abfd, code)
bfd *abfd;
bfd_reloc_code_real_type code;
{
if ((int) code < (int) R_PARISC_UNIMPLEMENTED)
{
BFD_ASSERT ((int) elf_hppa_howto_table[(int) code].type == (int) code);
return &elf_hppa_howto_table[(int) code];
}
return NULL;
}
/* Return true if SYM represents a local label symbol. */
static boolean
hppa_elf_is_local_label_name (abfd, name)
bfd *abfd;
const char *name;
{
return (name[0] == 'L' && name[1] == '$');
}
/* Do any backend specific processing when beginning to write an object
file. For PA ELF we need to determine the size of the symbol extension
section *before* any other output processing happens. */
static void
elf32_hppa_backend_begin_write_processing (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
unsigned int i;
asection *symextn_sec;
/* Size up the symbol extension section. */
if ((abfd->outsymbols == NULL
&& info == NULL)
|| symext_chain_size != 0)
return;
if (info == NULL)
{
/* We were not called from the BFD ELF linker code, so we need
to examine the output BFD's outsymbols.
Note we can not build the symbol extensions now as the symbol
map hasn't been set up. */
for (i = 0; i < abfd->symcount; i++)
{
elf_symbol_type *symbol = (elf_symbol_type *)abfd->outsymbols[i];
/* Only functions ever need an entry in the symbol extension
section. */
if (!(symbol->symbol.flags & BSF_FUNCTION))
continue;
/* And only if they specify the locations of their arguments. */
if (symbol->tc_data.hppa_arg_reloc == 0)
continue;
/* Yup. This function symbol needs an entry. */
symext_chain_size += 2 * ELF32_PARISC_SX_SIZE;
}
}
else if (info->relocateable == true)
{
struct elf32_hppa_args_hash_table *table;
table = elf32_hppa_hash_table (info)->args_hash_table;
/* Determine the size of the symbol extension section. */
elf32_hppa_args_hash_traverse (table,
elf32_hppa_size_symext,
&symext_chain_size);
}
/* Now create the section and set its size. We'll fill in the
contents later. */
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
if (symextn_sec == NULL)
symextn_sec = bfd_make_section (abfd, SYMEXTN_SECTION_NAME);
bfd_set_section_flags (abfd, symextn_sec,
SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
symextn_sec->output_section = symextn_sec;
symextn_sec->output_offset = 0;
bfd_set_section_alignment (abfd, symextn_sec, 2);
bfd_set_section_size (abfd, symextn_sec, symext_chain_size);
}
/* Called for each entry in the args location hash table. For each
entry we bump the size pointer by 2 records (16 bytes). */
static boolean
elf32_hppa_size_symext (gen_entry, in_args)
struct bfd_hash_entry *gen_entry;
PTR in_args;
{
bfd_size_type *sizep = (bfd_size_type *)in_args;
*sizep += 2 * ELF32_PARISC_SX_SIZE;
return true;
}
/* Backend routine called by the linker for each output symbol.
For PA ELF we use this opportunity to add an appropriate entry
to the symbol extension chain for function symbols. */
static boolean
elf32_hppa_link_output_symbol_hook (abfd, info, name, sym, section)
bfd *abfd;
struct bfd_link_info *info;
const char *name;
Elf_Internal_Sym *sym;
asection *section;
{
char *new_name;
unsigned int len, index;
struct elf32_hppa_args_hash_table *args_hash_table;
struct elf32_hppa_args_hash_entry *args_hash;
/* If the args hash table is NULL, then we've encountered an error
of some sorts (for example, an undefined symbol). In that case
we've got nothing else to do.
NOTE: elf_link_output_symbol will abort if we return false here! */
if (elf32_hppa_hash_table (info)->args_hash_table == NULL)
return true;
index = elf32_hppa_hash_table (info)->output_symbol_count++;
/* We need to look up this symbol in the args hash table to see if
it has argument relocation bits. */
if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
return true;
/* We know it's a function symbol of some kind. */
len = strlen (name) + 1;
if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
len += 9;
new_name = bfd_malloc (len);
if (new_name == NULL)
return false;
strcpy (new_name, name);
if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
sprintf (new_name + len - 10, "_%08x", (int)section);
/* Now that we have the unique name, we can look it up in the
args hash table. */
args_hash_table = elf32_hppa_hash_table (info)->args_hash_table;
args_hash = elf32_hppa_args_hash_lookup (args_hash_table, new_name,
false, false);
free (new_name);
if (args_hash == NULL)
return true;
/* We know this symbol has arg reloc bits. */
add_entry_to_symext_chain (abfd, args_hash->arg_bits,
index, &symext_rootP, &symext_lastP);
return true;
}
/* Perform any processing needed late in the object file writing process.
For PA ELF we build and set the contents of the symbol extension
section. */
static void
elf32_hppa_backend_final_write_processing (abfd, linker)
bfd *abfd;
boolean linker;
{
asection *symextn_sec;
unsigned int i;
/* Now build the symbol extension section. */
if (symext_chain_size == 0)
return;
if (! linker)
{
/* We were not called from the backend linker, so we still need
to build the symbol extension chain.
Look at each symbol, adding the appropriate information to the
symbol extension section list as necessary. */
for (i = 0; i < abfd->symcount; i++)
{
elf_symbol_type *symbol = (elf_symbol_type *) abfd->outsymbols[i];
/* Only functions ever need an entry in the symbol extension
section. */
if (!(symbol->symbol.flags & BSF_FUNCTION))
continue;
/* And only if they specify the locations of their arguments. */
if (symbol->tc_data.hppa_arg_reloc == 0)
continue;
/* Add this symbol's information to the chain. */
add_entry_to_symext_chain (abfd, symbol->tc_data.hppa_arg_reloc,
symbol->symbol.udata.i, &symext_rootP,
&symext_lastP);
}
}
/* Now fill in the contents of the symbol extension section. */
elf_hppa_tc_make_sections (abfd, symext_rootP);
/* And attach that as the section's contents. */
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
if (symextn_sec == (asection *) 0)
abort();
symextn_sec->contents = (void *)symextn_contents;
bfd_set_section_contents (abfd, symextn_sec, symextn_sec->contents,
symextn_sec->output_offset, symextn_sec->_raw_size);
}
/* Update the symbol extention chain to include the symbol pointed to
by SYMBOLP if SYMBOLP is a function symbol. Used internally and by GAS. */
static void
add_entry_to_symext_chain (abfd, arg_reloc, sym_idx, symext_root, symext_last)
bfd *abfd;
unsigned int arg_reloc;
unsigned int sym_idx;
symext_chainS **symext_root;
symext_chainS **symext_last;
{
symext_chainS *symextP;
/* Allocate memory and initialize this entry. */
symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
if (!symextP)
abort(); /* FIXME */
symextP[0].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_SYMNDX, sym_idx);
symextP[0].next = &symextP[1];
symextP[1].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_ARG_RELOC, arg_reloc);
symextP[1].next = NULL;
/* Now update the chain itself so it can be walked later to build
the symbol extension section. */
if (*symext_root == NULL)
{
*symext_root = &symextP[0];
*symext_last = &symextP[1];
}
else
{
(*symext_last)->next = &symextP[0];
*symext_last = &symextP[1];
}
}
/* Build the symbol extension section. */
static void
elf_hppa_tc_make_sections (abfd, symext_root)
bfd *abfd;
symext_chainS *symext_root;
{
symext_chainS *symextP;
unsigned int i;
asection *symextn_sec;
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
/* Grab some memory for the contents of the symbol extension section
itself. */
symextn_contents = (bfd_byte *) bfd_zalloc (abfd,
symextn_sec->_raw_size);
if (!symextn_contents)
abort(); /* FIXME */
/* Fill in the contents of the symbol extension chain. */
for (i = 0, symextP = symext_root; symextP; symextP = symextP->next, ++i)
ELF32_PARISC_SX_PUT (abfd, (bfd_vma) symextP->entry,
symextn_contents + i * ELF32_PARISC_SX_SIZE);
return;
}
/* Do some PA ELF specific work after reading in the symbol table.
In particular attach the argument relocation from the
symbol extension section to the appropriate symbols. */
static boolean
elf32_hppa_backend_symbol_table_processing (abfd, esyms,symcnt)
bfd *abfd;
elf_symbol_type *esyms;
unsigned int symcnt;
{
Elf32_Internal_Shdr *symextn_hdr =
bfd_elf_find_section (abfd, SYMEXTN_SECTION_NAME);
unsigned int i, current_sym_idx = 0;
/* If no symbol extension existed, then all symbol extension information
is assumed to be zero. */
if (symextn_hdr == NULL)
{
for (i = 0; i < symcnt; i++)
esyms[i].tc_data.hppa_arg_reloc = 0;
return (true);
}
/* FIXME: Why not use bfd_get_section_contents here? Also should give
memory back when we're done. */
/* Allocate a buffer of the appropriate size for the symextn section. */
symextn_hdr->contents = bfd_zalloc(abfd,symextn_hdr->sh_size);
if (!symextn_hdr->contents)
return false;
/* Read in the symextn section. */
if (bfd_seek (abfd, symextn_hdr->sh_offset, SEEK_SET) == -1)
return false;
if (bfd_read ((PTR) symextn_hdr->contents, 1, symextn_hdr->sh_size, abfd)
!= symextn_hdr->sh_size)
return false;
/* Parse entries in the symbol extension section, updating the symtab
entries as we go */
for (i = 0; i < symextn_hdr->sh_size / ELF32_PARISC_SX_SIZE; i++)
{
symext_entryS se =
ELF32_PARISC_SX_GET (abfd,
((unsigned char *)symextn_hdr->contents
+ i * ELF32_PARISC_SX_SIZE));
unsigned int se_value = ELF32_PARISC_SX_VAL (se);
unsigned int se_type = ELF32_PARISC_SX_TYPE (se);
switch (se_type)
{
case PARISC_SXT_NULL:
break;
case PARISC_SXT_SYMNDX:
if (se_value >= symcnt)
{
bfd_set_error (bfd_error_bad_value);
return (false);
}
current_sym_idx = se_value - 1;
break;
case PARISC_SXT_ARG_RELOC:
esyms[current_sym_idx].tc_data.hppa_arg_reloc = se_value;
break;
default:
bfd_set_error (bfd_error_bad_value);
return (false);
}
}
return (true);
}
/* Read and attach the symbol extension information for the symbols
in INPUT_BFD to the argument location hash table. Handle locals
if DO_LOCALS is true; likewise for globals when DO_GLOBALS is true. */
static boolean
elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table, local_syms)
bfd *input_bfd;
Elf_Internal_Shdr *symtab_hdr;
struct elf32_hppa_args_hash_table *args_hash_table;
Elf_Internal_Sym *local_syms;
{
asection *symextn_sec;
bfd_byte *contents;
unsigned int i, n_entries, current_index = 0;
/* Get the symbol extension section for this BFD. If no section exists
then there's nothing to do. Likewise if the section exists, but
has no contents. */
symextn_sec = bfd_get_section_by_name (input_bfd, SYMEXTN_SECTION_NAME);
if (symextn_sec == NULL)
return true;
/* Done separately so we can turn off SEC_HAS_CONTENTS (see below). */
if (symextn_sec->_raw_size == 0)
{
symextn_sec->flags &= ~SEC_HAS_CONTENTS;
return true;
}
contents = (bfd_byte *) bfd_malloc ((size_t) symextn_sec->_raw_size);
if (contents == NULL)
return false;
/* How gross. We turn off SEC_HAS_CONTENTS for the input symbol extension
sections to keep the generic ELF/BFD code from trying to do anything
with them. We have to undo that hack temporarily so that we can read
in the contents with the generic code. */
symextn_sec->flags |= SEC_HAS_CONTENTS;
if (bfd_get_section_contents (input_bfd, symextn_sec, contents,
0, symextn_sec->_raw_size) == false)
{
symextn_sec->flags &= ~SEC_HAS_CONTENTS;
free (contents);
return false;
}
/* Gross. Turn off SEC_HAS_CONTENTS for the input symbol extension
sections (see above). */
symextn_sec->flags &= ~SEC_HAS_CONTENTS;
n_entries = symextn_sec->_raw_size / ELF32_PARISC_SX_SIZE;
for (i = 0; i < n_entries; i++)
{
symext_entryS entry =
ELF32_PARISC_SX_GET (input_bfd, contents + i * ELF32_PARISC_SX_SIZE);
unsigned int value = ELF32_PARISC_SX_VAL (entry);
unsigned int type = ELF32_PARISC_SX_TYPE (entry);
struct elf32_hppa_args_hash_entry *args_hash;
switch (type)
{
case PARISC_SXT_NULL:
break;
case PARISC_SXT_SYMNDX:
if (value >= symtab_hdr->sh_size / sizeof (Elf32_External_Sym))
{
bfd_set_error (bfd_error_bad_value);
free (contents);
return false;
}
current_index = value;
break;
case PARISC_SXT_ARG_RELOC:
if (current_index < symtab_hdr->sh_info)
{
Elf_Internal_Shdr *hdr;
char *new_name;
const char *sym_name;
asection *sym_sec;
unsigned int len;
hdr = elf_elfsections (input_bfd)[local_syms[current_index].st_shndx];
sym_sec = hdr->bfd_section;
sym_name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
local_syms[current_index].st_name);
len = strlen (sym_name) + 10;
new_name = bfd_malloc (len);
if (new_name == NULL)
{
free (contents);
return false;
}
strcpy (new_name, sym_name);
sprintf (new_name + len - 10, "_%08x", (int)sym_sec);
/* This is a global symbol with argument location info.
We need to enter it into the hash table. */
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
new_name, true,
true);
free (new_name);
if (args_hash == NULL)
{
free (contents);
return false;
}
args_hash->arg_bits = value;
break;
}
else if (current_index >= symtab_hdr->sh_info)
{
struct elf_link_hash_entry *h;
current_index -= symtab_hdr->sh_info;
h = elf_sym_hashes(input_bfd)[current_index];
/* This is a global symbol with argument location
information. We need to enter it into the hash table. */
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
h->root.root.string,
true, true);
if (args_hash == NULL)
{
bfd_set_error (bfd_error_bad_value);
free (contents);
return false;
}
args_hash->arg_bits = value;
break;
}
else
break;
default:
bfd_set_error (bfd_error_bad_value);
free (contents);
return false;
}
}
free (contents);
return true;
}
/* Undo the generic ELF code's subtraction of section->vma from the
value of each external symbol. */
static boolean
elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
bfd *abfd;
struct bfd_link_info *info;
const Elf_Internal_Sym *sym;
const char **namep;
flagword *flagsp;
asection **secp;
bfd_vma *valp;
{
*valp += (*secp)->vma;
return true;
}
/* Determine the name of the stub needed to perform a call assuming the
argument relocation bits for caller and callee are in CALLER and CALLEE
for a call from LOCATION to DESTINATION. Copy the name into STUB_NAME. */
static void
elf32_hppa_name_of_stub (caller, callee, location, destination, stub_name)
unsigned int caller, callee;
bfd_vma location, destination;
char *stub_name;
{
arg_reloc_type arg_reloc_types[5];
if (elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types))
{
arg_reloc_location i;
/* Fill in the basic template. */
strcpy (stub_name, "__XX_XX_XX_XX_XX_stub_");
/* Now fix the specifics. */
for (i = ARG0; i <= RET; i++)
switch (arg_reloc_types[i])
{
case NO:
stub_name[3 * i + 2] = 'N';
stub_name[3 * i + 3] = 'O';
break;
case GF:
stub_name[3 * i + 2] = 'G';
stub_name[3 * i + 3] = 'F';
break;
case FG:
stub_name[3 * i + 2] = 'F';
stub_name[3 * i + 3] = 'G';
break;
case GD:
stub_name[3 * i + 2] = 'G';
stub_name[3 * i + 3] = 'D';
break;
case DG:
stub_name[3 * i + 2] = 'D';
stub_name[3 * i + 3] = 'G';
break;
}
}
else
strcpy (stub_name, "_____long_branch_stub_");
}
/* Determine if an argument relocation stub is needed to perform a
call assuming the argument relocation bits for caller and callee
are in CALLER and CALLEE. Place the type of relocations (if any)
into stub_types_p. */
static boolean
elf32_hppa_arg_reloc_needed (caller, callee, stub_types)
unsigned int caller, callee;
arg_reloc_type stub_types[5];
{
/* Special case for no relocations. */
if (caller == 0 || callee == 0)
return 0;
else
{
arg_location caller_loc[5];
arg_location callee_loc[5];
/* Extract the location information for the argument and return
value on both the caller and callee sides. */
caller_loc[ARG0] = EXTRACT_ARBITS (caller, ARG0);
callee_loc[ARG0] = EXTRACT_ARBITS (callee, ARG0);
caller_loc[ARG1] = EXTRACT_ARBITS (caller, ARG1);
callee_loc[ARG1] = EXTRACT_ARBITS (callee, ARG1);
caller_loc[ARG2] = EXTRACT_ARBITS (caller, ARG2);
callee_loc[ARG2] = EXTRACT_ARBITS (callee, ARG2);
caller_loc[ARG3] = EXTRACT_ARBITS (caller, ARG3);
callee_loc[ARG3] = EXTRACT_ARBITS (callee, ARG3);
caller_loc[RET] = EXTRACT_ARBITS (caller, RET);
callee_loc[RET] = EXTRACT_ARBITS (callee, RET);
/* Check some special combinations. This is necessary to
deal with double precision FP arguments. */
if (caller_loc[ARG0] == AR_FU || caller_loc[ARG1] == AR_FU)
{
caller_loc[ARG0] = AR_FPDBL1;
caller_loc[ARG1] = AR_NO;
}
if (caller_loc[ARG2] == AR_FU || caller_loc[ARG3] == AR_FU)
{
caller_loc[ARG2] = AR_FPDBL2;
caller_loc[ARG3] = AR_NO;
}
if (callee_loc[ARG0] == AR_FU || callee_loc[ARG1] == AR_FU)
{
callee_loc[ARG0] = AR_FPDBL1;
callee_loc[ARG1] = AR_NO;
}
if (callee_loc[ARG2] == AR_FU || callee_loc[ARG3] == AR_FU)
{
callee_loc[ARG2] = AR_FPDBL2;
callee_loc[ARG3] = AR_NO;
}
/* Now look up any relocation needed for each argument and the
return value. */
stub_types[ARG0] = arg_mismatches[caller_loc[ARG0]][callee_loc[ARG0]];
stub_types[ARG1] = arg_mismatches[caller_loc[ARG1]][callee_loc[ARG1]];
stub_types[ARG2] = arg_mismatches[caller_loc[ARG2]][callee_loc[ARG2]];
stub_types[ARG3] = arg_mismatches[caller_loc[ARG3]][callee_loc[ARG3]];
stub_types[RET] = ret_mismatches[caller_loc[RET]][callee_loc[RET]];
return (stub_types[ARG0] != NO
|| stub_types[ARG1] != NO
|| stub_types[ARG2] != NO
|| stub_types[ARG3] != NO
|| stub_types[RET] != NO);
}
}
/* Compute the size of the stub needed to call from LOCATION to DESTINATION
(a function named SYM_NAME), with argument relocation bits CALLER and
CALLEE. Return zero if no stub is needed to perform such a call. */
static unsigned int
elf32_hppa_size_of_stub (callee, caller, location, destination, sym_name)
unsigned int callee, caller;
bfd_vma location, destination;
const char *sym_name;
{
arg_reloc_type arg_reloc_types[5];
/* Determine if a long branch or argument relocation stub is needed.
If an argument relocation stub is needed, the relocation will be
stored into arg_reloc_types. */
if (!(((int)(location - destination) > 0x3ffff)
|| ((int)(location - destination) < (int)0xfffc0000)
|| elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types)))
return 0;
/* Some kind of stub is needed. Determine how big it needs to be.
First check for argument relocation stubs as they also handle
long calls. Then check for long calls to millicode and finally
the normal long calls. */
if (arg_reloc_types[ARG0] != NO
|| arg_reloc_types[ARG1] != NO
|| arg_reloc_types[ARG2] != NO
|| arg_reloc_types[ARG3] != NO
|| arg_reloc_types[RET] != NO)
{
/* Some kind of argument relocation stub is needed. */
unsigned int len = 16;
arg_reloc_location i;
/* Each GR or FG relocation takes 2 insns, each GD or DG
relocation takes 3 insns. Plus 4 more insns for the
RP adjustment, ldil & (be | ble) and copy. */
for (i = ARG0; i <= RET; i++)
switch (arg_reloc_types[i])
{
case GF:
case FG:
len += 8;
break;
case GD:
case DG:
len += 12;
break;
default:
break;
}
/* Extra instructions are needed if we're relocating a return value. */
if (arg_reloc_types[RET] != NO)
len += 12;
return len;
}
else if (!strncmp ("$$", sym_name, 2)
&& strcmp ("$$dyncall", sym_name))
return 12;
else
return 16;
}
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
IN_ARGS contains the stub BFD and link info pointers. */
static boolean
elf32_hppa_build_one_stub (gen_entry, in_args)
struct bfd_hash_entry *gen_entry;
PTR in_args;
{
void **args = (void **)in_args;
bfd *stub_bfd = (bfd *)args[0];
struct bfd_link_info *info = (struct bfd_link_info *)args[1];
struct elf32_hppa_stub_hash_entry *entry;
struct elf32_hppa_stub_hash_table *stub_hash_table;
bfd_byte *loc;
symvalue sym_value;
const char *sym_name;
/* Initialize pointers to the stub hash table, the particular entry we
are building a stub for, and where (in memory) we should place the stub
instructions. */
entry = (struct elf32_hppa_stub_hash_entry *)gen_entry;
stub_hash_table = elf32_hppa_hash_table(info)->stub_hash_table;
loc = stub_hash_table->location;
/* Make a note of the offset within the stubs for this entry. */
entry->offset = stub_hash_table->offset;
/* The symbol's name starts at offset 22. */
sym_name = entry->root.string + 22;
sym_value = (entry->target_value
+ entry->target_section->output_offset
+ entry->target_section->output_section->vma);
if (strncmp ("_____long_branch_stub_", entry->root.string, 22))
{
/* This must be an argument or return value relocation stub. */
unsigned long insn;
arg_reloc_location i;
bfd_byte *begin_loc = loc;
/* First the return pointer adjustment. Depending on exact calling
sequence this instruction may be skipped. */
bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc);
loc += 4;
/* If we are relocating a return value, then we're going to have
to return into the stub. So we have to save off the user's
return pointer into the stack at RP'. */
if (strncmp (entry->root.string + 14, "NO", 2))
{
bfd_put_32 (stub_bfd, STW_R31_M8R30, loc);
loc += 4;
}
/* Iterate over the argument relocations, emitting instructions
to move them around as necessary. */
for (i = ARG0; i <= ARG3; i++)
{
if (!strncmp (entry->root.string + 3 * i + 2, "GF", 2))
{
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((26 - i) << 16), loc);
bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | (4 + i), loc + 4);
loc += 8;
}
else if (!strncmp (entry->root.string + 3 * i + 2, "FG", 2))
{
bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | (4 + i), loc);
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((26 - i) << 16), loc + 4);
loc += 8;
}
else if (!strncmp (entry->root.string + 3 * i + 2, "GD", 2))
{
bfd_put_32 (stub_bfd, STW_ARG_M12R30 | ((26 - i) << 16), loc);
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((25 - i) << 16), loc + 4);
bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | (5 + i), loc + 8);
loc += 12;
}
else if (!strncmp (entry->root.string + 3 * i + 2, "DG", 2))
{
bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | (5 + i), loc);
bfd_put_32 (stub_bfd, LDW_M12R30_ARG | ((26 - i) << 16), loc + 4);
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((25 - i) << 16), loc + 8);
loc += 12;
}
}
/* Load the high bits of the target address into %r1. */
insn = hppa_rebuild_insn (stub_bfd, LDIL_R1,
hppa_field_adjust (sym_value, 0, e_lrsel), 21);
bfd_put_32 (stub_bfd, insn, loc);
loc += 4;
/* If we are relocating a return value, then we're going to have
to return into the stub, then perform the return value relocation. */
if (strncmp (entry->root.string + 14, "NO", 2))
{
/* To return to the stub we "ble" to the target and copy the return
pointer from %r31 into %r2. */
insn = hppa_rebuild_insn (stub_bfd,
BLE_SR4_R1,
hppa_field_adjust (sym_value, 0,
e_rrsel) >> 2,
17);
bfd_put_32 (stub_bfd, insn, loc);
bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4);
/* Reload the return pointer for our caller from the stack. */
bfd_put_32 (stub_bfd, LDW_M8R30_R31, loc + 8);
loc += 12;
/* Perform the return value relocation. */
if (!strncmp (entry->root.string + 14, "GF", 2))
{
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (28 << 16), loc);
bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | 4, loc + 4);
loc += 8;
}
else if (!strncmp (entry->root.string + 14, "FG", 2))
{
bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | 4, loc);
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (28 << 16), loc + 4);
loc += 8;
}
else if (!strncmp (entry->root.string + 2, "GD", 2))
{
bfd_put_32 (stub_bfd, STW_ARG_M12R30 | (28 << 16), loc);
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (29 << 16), loc + 4);
bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | 4, loc + 8);
loc += 12;
}
else if (!strncmp (entry->root.string + 2, "DG", 2))
{
bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | 4, loc);
bfd_put_32 (stub_bfd, LDW_M12R30_ARG | (28 << 16), loc + 4);
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (29 << 16), loc + 8);
loc += 12;
}
/* Branch back to the user's code now. */
bfd_put_32 (stub_bfd, BV_N_0_R31, loc);
loc += 4;
}
else
{
/* No return value relocation, so we can simply "be" to the
target and copy out return pointer into %r2. */
insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1,
hppa_field_adjust (sym_value, 0,
e_rrsel) >> 2, 17);
bfd_put_32 (stub_bfd, insn, loc);
bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4);
loc += 8;
}
/* Update the location and offsets. */
stub_hash_table->location += (loc - begin_loc);
stub_hash_table->offset += (loc - begin_loc);
}
else
{
/* Create one of two variant long branch stubs. One for $$dyncall and
normal calls, the other for calls to millicode. */
unsigned long insn;
int millicode_call = 0;
if (!strncmp ("$$", sym_name, 2) && strcmp ("$$dyncall", sym_name))
millicode_call = 1;
/* First the return pointer adjustment. Depending on exact calling
sequence this instruction may be skipped. */
bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc);
/* The next two instructions are the long branch itself. A long branch
is formed with "ldil" loading the upper bits of the target address
into a register, then branching with "be" which adds in the lower bits.
Long branches to millicode nullify the delay slot of the "be". */
insn = hppa_rebuild_insn (stub_bfd, LDIL_R1,
hppa_field_adjust (sym_value, 0, e_lrsel), 21);
bfd_put_32 (stub_bfd, insn, loc + 4);
insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1 | (millicode_call ? 2 : 0),
hppa_field_adjust (sym_value, 0, e_rrsel) >> 2,
17);
bfd_put_32 (stub_bfd, insn, loc + 8);
if (!millicode_call)
{
/* The sequence to call this stub places the return pointer into %r31,
the final target expects the return pointer in %r2, so copy the
return pointer into the proper register. */
bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 12);
/* Update the location and offsets. */
stub_hash_table->location += 16;
stub_hash_table->offset += 16;
}
else
{
/* Update the location and offsets. */
stub_hash_table->location += 12;
stub_hash_table->offset += 12;
}
}
return true;
}
/* External entry points for sizing and building linker stubs. */
/* Build all the stubs associated with the current output file. The
stubs are kept in a hash table attached to the main linker hash
table. This is called via hppaelf_finish in the linker. */
boolean
elf32_hppa_build_stubs (stub_bfd, info)
bfd *stub_bfd;
struct bfd_link_info *info;
{
/* The stub BFD only has one section. */
asection *stub_sec = stub_bfd->sections;
struct elf32_hppa_stub_hash_table *table;
unsigned int size;
void *args[2];
/* So we can pass both the BFD for the stubs and the link info
structure to the routine which actually builds stubs. */
args[0] = stub_bfd;
args[1] = info;
/* Allocate memory to hold the linker stubs. */
size = bfd_section_size (stub_bfd, stub_sec);
stub_sec->contents = (unsigned char *) bfd_zalloc (stub_bfd, size);
if (stub_sec->contents == NULL)
return false;
table = elf32_hppa_hash_table(info)->stub_hash_table;
table->location = stub_sec->contents;
/* Build the stubs as directed by the stub hash table. */
elf32_hppa_stub_hash_traverse (table, elf32_hppa_build_one_stub, args);
return true;
}
/* Determine and set the size of the stub section for a final link.
The basic idea here is to examine all the relocations looking for
PC-relative calls to a target that is unreachable with a "bl"
instruction or calls where the caller and callee disagree on the
location of their arguments or return value. */
boolean
elf32_hppa_size_stubs (stub_bfd, output_bfd, link_info)
bfd *stub_bfd;
bfd *output_bfd;
struct bfd_link_info *link_info;
{
bfd *input_bfd;
asection *section, *stub_sec = 0;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Sym *local_syms, *isym, **all_local_syms;
Elf32_External_Sym *ext_syms, *esym;
unsigned int i, index, bfd_count = 0;
struct elf32_hppa_stub_hash_table *stub_hash_table = 0;
struct elf32_hppa_args_hash_table *args_hash_table = 0;
/* Create and initialize the stub hash table. */
stub_hash_table = ((struct elf32_hppa_stub_hash_table *)
bfd_malloc (sizeof (struct elf32_hppa_stub_hash_table)));
if (!stub_hash_table)
goto error_return;
if (!elf32_hppa_stub_hash_table_init (stub_hash_table, stub_bfd,
elf32_hppa_stub_hash_newfunc))
goto error_return;
/* Likewise for the argument location hash table. */
args_hash_table = ((struct elf32_hppa_args_hash_table *)
bfd_malloc (sizeof (struct elf32_hppa_args_hash_table)));
if (!args_hash_table)
goto error_return;
if (!elf32_hppa_args_hash_table_init (args_hash_table,
elf32_hppa_args_hash_newfunc))
goto error_return;
/* Attach the hash tables to the main hash table. */
elf32_hppa_hash_table(link_info)->stub_hash_table = stub_hash_table;
elf32_hppa_hash_table(link_info)->args_hash_table = args_hash_table;
/* Count the number of input BFDs. */
for (input_bfd = link_info->input_bfds;
input_bfd != NULL;
input_bfd = input_bfd->link_next)
bfd_count++;
/* We want to read in symbol extension records only once. To do this
we need to read in the local symbols in parallel and save them for
later use; so hold pointers to the local symbols in an array. */
all_local_syms
= (Elf_Internal_Sym **) bfd_malloc (sizeof (Elf_Internal_Sym *)
* bfd_count);
if (all_local_syms == NULL)
goto error_return;
memset (all_local_syms, 0, sizeof (Elf_Internal_Sym *) * bfd_count);
/* Walk over all the input BFDs adding entries to the args hash table
for all the external functions. */
for (input_bfd = link_info->input_bfds, index = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next, index++)
{
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
/* We need an array of the local symbols attached to the input bfd.
Unfortunately, we're going to have to read & swap them in. */
local_syms
= (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
* sizeof (Elf_Internal_Sym));
if (local_syms == NULL)
{
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
all_local_syms[index] = local_syms;
ext_syms
= (Elf32_External_Sym *) bfd_malloc (symtab_hdr->sh_info
* sizeof (Elf32_External_Sym));
if (ext_syms == NULL)
{
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|| bfd_read (ext_syms, 1,
(symtab_hdr->sh_info
* sizeof (Elf32_External_Sym)), input_bfd)
!= (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)))
{
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
free (ext_syms);
goto error_return;
}
/* Swap the local symbols in. */
isym = local_syms;
esym = ext_syms;
for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
/* Now we can free the external symbols. */
free (ext_syms);
if (elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table,
local_syms) == false)
{
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
}
/* Magic as we know the stub bfd only has one section. */
stub_sec = stub_bfd->sections;
/* If generating a relocateable output file, then we don't
have to examine the relocs. */
if (link_info->relocateable)
{
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
return true;
}
/* Now that we have argument location information for all the global
functions we can start looking for stubs. */
for (input_bfd = link_info->input_bfds, index = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next, index++)
{
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
local_syms = all_local_syms[index];
/* Walk over each section attached to the input bfd. */
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
Elf_Internal_Shdr *input_rel_hdr;
Elf32_External_Rela *external_relocs, *erelaend, *erela;
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
/* If there aren't any relocs, then there's nothing to do. */
if ((section->flags & SEC_RELOC) == 0
|| section->reloc_count == 0)
continue;
/* Allocate space for the external relocations. */
external_relocs
= ((Elf32_External_Rela *)
bfd_malloc (section->reloc_count
* sizeof (Elf32_External_Rela)));
if (external_relocs == NULL)
{
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
/* Likewise for the internal relocations. */
internal_relocs
= ((Elf_Internal_Rela *)
bfd_malloc (section->reloc_count * sizeof (Elf_Internal_Rela)));
if (internal_relocs == NULL)
{
free (external_relocs);
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
/* Read in the external relocs. */
input_rel_hdr = &elf_section_data (section)->rel_hdr;
if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
|| bfd_read (external_relocs, 1, input_rel_hdr->sh_size,
input_bfd) != input_rel_hdr->sh_size)
{
free (external_relocs);
free (internal_relocs);
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
/* Swap in the relocs. */
erela = external_relocs;
erelaend = erela + section->reloc_count;
irela = internal_relocs;
for (; erela < erelaend; erela++, irela++)
bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
/* We're done with the external relocs, free them. */
free (external_relocs);
/* Now examine each relocation. */
irela = internal_relocs;
irelaend = irela + section->reloc_count;
for (; irela < irelaend; irela++)
{
long r_type, callee_args, caller_args, size_of_stub;
unsigned long r_index;
struct elf_link_hash_entry *hash;
struct elf32_hppa_stub_hash_entry *stub_hash;
struct elf32_hppa_args_hash_entry *args_hash;
Elf_Internal_Sym *sym;
asection *sym_sec;
const char *sym_name;
symvalue sym_value;
bfd_vma location, destination;
char *new_name = NULL;
r_type = ELF32_R_TYPE (irela->r_info);
r_index = ELF32_R_SYM (irela->r_info);
if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
{
bfd_set_error (bfd_error_bad_value);
free (internal_relocs);
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
/* Only look for stubs on call instructions or plabel
references. */
if (r_type != R_PARISC_PCREL17F
&& r_type != R_PARISC_PLABEL32
&& r_type != R_PARISC_PLABEL21L
&& r_type != R_PARISC_PLABEL14R)
continue;
/* Now determine the call target, its name, value, section
and argument relocation bits. */
hash = NULL;
sym = NULL;
sym_sec = NULL;
if (r_index < symtab_hdr->sh_info)
{
/* It's a local symbol. */
Elf_Internal_Shdr *hdr;
sym = local_syms + r_index;
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
sym_sec = hdr->bfd_section;
sym_name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
sym_value = (ELF_ST_TYPE (sym->st_info) == STT_SECTION
? 0 : sym->st_value);
destination = (sym_value
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
/* Tack on an ID so we can uniquely identify this local
symbol in the stub or arg info hash tables. */
new_name = bfd_malloc (strlen (sym_name) + 10);
if (new_name == 0)
{
free (internal_relocs);
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
sym_name = new_name;
}
else
{
/* It's an external symbol. */
long index;
index = r_index - symtab_hdr->sh_info;
hash = elf_sym_hashes (input_bfd)[index];
if (hash->root.type == bfd_link_hash_defined
|| hash->root.type == bfd_link_hash_defweak)
{
sym_sec = hash->root.u.def.section;
sym_name = hash->root.root.string;
sym_value = hash->root.u.def.value;
destination = (sym_value
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else
{
bfd_set_error (bfd_error_bad_value);
free (internal_relocs);
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
}
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
sym_name, false, false);
/* Get both caller and callee argument information. */
if (args_hash == NULL)
callee_args = 0;
else
callee_args = args_hash->arg_bits;
/* For calls get the caller's bits from the addend of
the call relocation. For PLABELS the caller's bits
are assumed to have all args & return values in general
registers (0x155). */
if (r_type == R_PARISC_PCREL17F)
caller_args = HPPA_R_ARG_RELOC (irela->r_addend);
else
caller_args = 0x155;
/* Now determine where the call point is. */
location = (section->output_offset
+ section->output_section->vma
+ irela->r_offset);
/* We only care about the destination for PCREL function
calls (eg. we don't care for PLABELS). */
if (r_type != R_PARISC_PCREL17F)
location = destination;
/* Determine what (if any) linker stub is needed and its
size (in bytes). */
size_of_stub = elf32_hppa_size_of_stub (callee_args,
caller_args,
location,
destination,
sym_name);
if (size_of_stub != 0)
{
char *stub_name;
unsigned int len;
/* Get the name of this stub. */
len = strlen (sym_name);
len += 23;
stub_name = bfd_malloc (len);
if (!stub_name)
{
/* Because sym_name was mallocd above for local
symbols. */
if (r_index < symtab_hdr->sh_info)
free (new_name);
free (internal_relocs);
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
elf32_hppa_name_of_stub (caller_args, callee_args,
location, destination, stub_name);
strcat (stub_name + 22, sym_name);
/* Because sym_name was malloced above for local symbols. */
if (r_index < symtab_hdr->sh_info)
free (new_name);
stub_hash
= elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name,
false, false);
if (stub_hash != NULL)
{
/* The proper stub has already been created, nothing
else to do. */
free (stub_name);
}
else
{
bfd_set_section_size (stub_bfd, stub_sec,
(bfd_section_size (stub_bfd,
stub_sec)
+ size_of_stub));
/* Enter this entry into the linker stub hash table. */
stub_hash
= elf32_hppa_stub_hash_lookup (stub_hash_table,
stub_name, true, true);
if (stub_hash == NULL)
{
free (stub_name);
free (internal_relocs);
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
goto error_return;
}
/* We'll need these to determine the address that the
stub will branch to. */
stub_hash->target_value = sym_value;
stub_hash->target_section = sym_sec;
}
free (stub_name);
}
}
/* We're done with the internal relocs, free them. */
free (internal_relocs);
}
}
/* We're done with the local symbols, free them. */
for (i = 0; i < bfd_count; i++)
if (all_local_syms[i])
free (all_local_syms[i]);
free (all_local_syms);
return true;
error_return:
/* Return gracefully, avoiding dangling references to the hash tables. */
if (stub_hash_table)
{
elf32_hppa_hash_table(link_info)->stub_hash_table = NULL;
free (stub_hash_table);
}
if (args_hash_table)
{
elf32_hppa_hash_table(link_info)->args_hash_table = NULL;
free (args_hash_table);
}
/* Set the size of the stub section to zero since we're never going
to create them. Avoids losing when we try to get its contents
too. */
bfd_set_section_size (stub_bfd, stub_sec, 0);
return false;
}
/* Misc BFD support code. */
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
#define bfd_elf32_bfd_is_local_label_name hppa_elf_is_local_label_name
/* Symbol extension stuff. */
#define bfd_elf32_set_section_contents elf32_hppa_set_section_contents
#define elf_info_to_howto elf32_hppa_info_to_howto
#define elf_backend_symbol_table_processing \
elf32_hppa_backend_symbol_table_processing
#define elf_backend_begin_write_processing \
elf32_hppa_backend_begin_write_processing
#define elf_backend_final_write_processing \
elf32_hppa_backend_final_write_processing
/* Stuff for the BFD linker. */
#define elf_backend_relocate_section elf32_hppa_relocate_section
#define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
#define elf_backend_link_output_symbol_hook \
elf32_hppa_link_output_symbol_hook
#define bfd_elf32_bfd_link_hash_table_create \
elf32_hppa_link_hash_table_create
#define TARGET_BIG_SYM bfd_elf32_hppa_vec
#define TARGET_BIG_NAME "elf32-hppa"
#define ELF_ARCH bfd_arch_hppa
#define ELF_MACHINE_CODE EM_PARISC
#define ELF_MAXPAGESIZE 0x1000
#include "elf32-target.h"
|