File: output.h

package info (click to toggle)
binutils 2.28-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 271,848 kB
  • sloc: ansic: 1,419,727; asm: 623,424; cpp: 125,042; exp: 64,226; makefile: 56,536; sh: 21,234; lisp: 15,206; yacc: 14,889; perl: 2,111; ada: 1,681; lex: 1,645; pascal: 1,438; cs: 879; sed: 195; python: 154; xml: 95; awk: 25
file content (4932 lines) | stat: -rw-r--r-- 149,573 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
// output.h -- manage the output file for gold   -*- C++ -*-

// Copyright (C) 2006-2017 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_OUTPUT_H
#define GOLD_OUTPUT_H

#include <algorithm>
#include <list>
#include <vector>

#include "elfcpp.h"
#include "mapfile.h"
#include "layout.h"
#include "reloc-types.h"

namespace gold
{

class General_options;
class Object;
class Symbol;
class Output_merge_base;
class Output_section;
class Relocatable_relocs;
class Target;
template<int size, bool big_endian>
class Sized_target;
template<int size, bool big_endian>
class Sized_relobj;
template<int size, bool big_endian>
class Sized_relobj_file;

// This class represents the output file.

class Output_file
{
 public:
  Output_file(const char* name);

  // Indicate that this is a temporary file which should not be
  // output.
  void
  set_is_temporary()
  { this->is_temporary_ = true; }

  // Try to open an existing file. Returns false if the file doesn't
  // exist, has a size of 0 or can't be mmaped.  This method is
  // thread-unsafe.  If BASE_NAME is not NULL, use the contents of
  // that file as the base for incremental linking.
  bool
  open_base_file(const char* base_name, bool writable);

  // Open the output file.  FILE_SIZE is the final size of the file.
  // If the file already exists, it is deleted/truncated.  This method
  // is thread-unsafe.
  void
  open(off_t file_size);

  // Resize the output file.  This method is thread-unsafe.
  void
  resize(off_t file_size);

  // Close the output file (flushing all buffered data) and make sure
  // there are no errors.  This method is thread-unsafe.
  void
  close();

  // Return the size of this file.
  off_t
  filesize()
  { return this->file_size_; }

  // Return the name of this file.
  const char*
  filename()
  { return this->name_; }

  // We currently always use mmap which makes the view handling quite
  // simple.  In the future we may support other approaches.

  // Write data to the output file.
  void
  write(off_t offset, const void* data, size_t len)
  { memcpy(this->base_ + offset, data, len); }

  // Get a buffer to use to write to the file, given the offset into
  // the file and the size.
  unsigned char*
  get_output_view(off_t start, size_t size)
  {
    gold_assert(start >= 0
		&& start + static_cast<off_t>(size) <= this->file_size_);
    return this->base_ + start;
  }

  // VIEW must have been returned by get_output_view.  Write the
  // buffer to the file, passing in the offset and the size.
  void
  write_output_view(off_t, size_t, unsigned char*)
  { }

  // Get a read/write buffer.  This is used when we want to write part
  // of the file, read it in, and write it again.
  unsigned char*
  get_input_output_view(off_t start, size_t size)
  { return this->get_output_view(start, size); }

  // Write a read/write buffer back to the file.
  void
  write_input_output_view(off_t, size_t, unsigned char*)
  { }

  // Get a read buffer.  This is used when we just want to read part
  // of the file back it in.
  const unsigned char*
  get_input_view(off_t start, size_t size)
  { return this->get_output_view(start, size); }

  // Release a read bfufer.
  void
  free_input_view(off_t, size_t, const unsigned char*)
  { }

 private:
  // Map the file into memory or, if that fails, allocate anonymous
  // memory.
  void
  map();

  // Allocate anonymous memory for the file.
  bool
  map_anonymous();

  // Map the file into memory.
  bool
  map_no_anonymous(bool);

  // Unmap the file from memory (and flush to disk buffers).
  void
  unmap();

  // File name.
  const char* name_;
  // File descriptor.
  int o_;
  // File size.
  off_t file_size_;
  // Base of file mapped into memory.
  unsigned char* base_;
  // True iff base_ points to a memory buffer rather than an output file.
  bool map_is_anonymous_;
  // True if base_ was allocated using new rather than mmap.
  bool map_is_allocated_;
  // True if this is a temporary file which should not be output.
  bool is_temporary_;
};

// An abtract class for data which has to go into the output file.

class Output_data
{
 public:
  explicit Output_data()
    : address_(0), data_size_(0), offset_(-1),
      is_address_valid_(false), is_data_size_valid_(false),
      is_offset_valid_(false), is_data_size_fixed_(false),
      has_dynamic_reloc_(false)
  { }

  virtual
  ~Output_data();

  // Return the address.  For allocated sections, this is only valid
  // after Layout::finalize is finished.
  uint64_t
  address() const
  {
    gold_assert(this->is_address_valid_);
    return this->address_;
  }

  // Return the size of the data.  For allocated sections, this must
  // be valid after Layout::finalize calls set_address, but need not
  // be valid before then.
  off_t
  data_size() const
  {
    gold_assert(this->is_data_size_valid_);
    return this->data_size_;
  }

  // Get the current data size.
  off_t
  current_data_size() const
  { return this->current_data_size_for_child(); }

  // Return true if data size is fixed.
  bool
  is_data_size_fixed() const
  { return this->is_data_size_fixed_; }

  // Return the file offset.  This is only valid after
  // Layout::finalize is finished.  For some non-allocated sections,
  // it may not be valid until near the end of the link.
  off_t
  offset() const
  {
    gold_assert(this->is_offset_valid_);
    return this->offset_;
  }

  // Reset the address, file offset and data size.  This essentially
  // disables the sanity testing about duplicate and unknown settings.
  void
  reset_address_and_file_offset()
  {
    this->is_address_valid_ = false;
    this->is_offset_valid_ = false;
    if (!this->is_data_size_fixed_)
      this->is_data_size_valid_ = false;
    this->do_reset_address_and_file_offset();
  }

  // As above, but just for data size.
  void
  reset_data_size()
  {
    if (!this->is_data_size_fixed_)
      this->is_data_size_valid_ = false;
  }

  // Return true if address and file offset already have reset values. In
  // other words, calling reset_address_and_file_offset will not change them.
  bool
  address_and_file_offset_have_reset_values() const
  { return this->do_address_and_file_offset_have_reset_values(); }

  // Return the required alignment.
  uint64_t
  addralign() const
  { return this->do_addralign(); }

  // Return whether this has a load address.
  bool
  has_load_address() const
  { return this->do_has_load_address(); }

  // Return the load address.
  uint64_t
  load_address() const
  { return this->do_load_address(); }

  // Return whether this is an Output_section.
  bool
  is_section() const
  { return this->do_is_section(); }

  // Return whether this is an Output_section of the specified type.
  bool
  is_section_type(elfcpp::Elf_Word stt) const
  { return this->do_is_section_type(stt); }

  // Return whether this is an Output_section with the specified flag
  // set.
  bool
  is_section_flag_set(elfcpp::Elf_Xword shf) const
  { return this->do_is_section_flag_set(shf); }

  // Return the output section that this goes in, if there is one.
  Output_section*
  output_section()
  { return this->do_output_section(); }

  const Output_section*
  output_section() const
  { return this->do_output_section(); }

  // Return the output section index, if there is an output section.
  unsigned int
  out_shndx() const
  { return this->do_out_shndx(); }

  // Set the output section index, if this is an output section.
  void
  set_out_shndx(unsigned int shndx)
  { this->do_set_out_shndx(shndx); }

  // Set the address and file offset of this data, and finalize the
  // size of the data.  This is called during Layout::finalize for
  // allocated sections.
  void
  set_address_and_file_offset(uint64_t addr, off_t off)
  {
    this->set_address(addr);
    this->set_file_offset(off);
    this->finalize_data_size();
  }

  // Set the address.
  void
  set_address(uint64_t addr)
  {
    gold_assert(!this->is_address_valid_);
    this->address_ = addr;
    this->is_address_valid_ = true;
  }

  // Set the file offset.
  void
  set_file_offset(off_t off)
  {
    gold_assert(!this->is_offset_valid_);
    this->offset_ = off;
    this->is_offset_valid_ = true;
  }

  // Update the data size without finalizing it.
  void
  pre_finalize_data_size()
  {
    if (!this->is_data_size_valid_)
      {
	// Tell the child class to update the data size.
	this->update_data_size();
      }
  }

  // Finalize the data size.
  void
  finalize_data_size()
  {
    if (!this->is_data_size_valid_)
      {
	// Tell the child class to set the data size.
	this->set_final_data_size();
	gold_assert(this->is_data_size_valid_);
      }
  }

  // Set the TLS offset.  Called only for SHT_TLS sections.
  void
  set_tls_offset(uint64_t tls_base)
  { this->do_set_tls_offset(tls_base); }

  // Return the TLS offset, relative to the base of the TLS segment.
  // Valid only for SHT_TLS sections.
  uint64_t
  tls_offset() const
  { return this->do_tls_offset(); }

  // Write the data to the output file.  This is called after
  // Layout::finalize is complete.
  void
  write(Output_file* file)
  { this->do_write(file); }

  // This is called by Layout::finalize to note that the sizes of
  // allocated sections must now be fixed.
  static void
  layout_complete()
  { Output_data::allocated_sizes_are_fixed = true; }

  // Used to check that layout has been done.
  static bool
  is_layout_complete()
  { return Output_data::allocated_sizes_are_fixed; }

  // Note that a dynamic reloc has been applied to this data.
  void
  add_dynamic_reloc()
  { this->has_dynamic_reloc_ = true; }

  // Return whether a dynamic reloc has been applied.
  bool
  has_dynamic_reloc() const
  { return this->has_dynamic_reloc_; }

  // Whether the address is valid.
  bool
  is_address_valid() const
  { return this->is_address_valid_; }

  // Whether the file offset is valid.
  bool
  is_offset_valid() const
  { return this->is_offset_valid_; }

  // Whether the data size is valid.
  bool
  is_data_size_valid() const
  { return this->is_data_size_valid_; }

  // Print information to the map file.
  void
  print_to_mapfile(Mapfile* mapfile) const
  { return this->do_print_to_mapfile(mapfile); }

 protected:
  // Functions that child classes may or in some cases must implement.

  // Write the data to the output file.
  virtual void
  do_write(Output_file*) = 0;

  // Return the required alignment.
  virtual uint64_t
  do_addralign() const = 0;

  // Return whether this has a load address.
  virtual bool
  do_has_load_address() const
  { return false; }

  // Return the load address.
  virtual uint64_t
  do_load_address() const
  { gold_unreachable(); }

  // Return whether this is an Output_section.
  virtual bool
  do_is_section() const
  { return false; }

  // Return whether this is an Output_section of the specified type.
  // This only needs to be implement by Output_section.
  virtual bool
  do_is_section_type(elfcpp::Elf_Word) const
  { return false; }

  // Return whether this is an Output_section with the specific flag
  // set.  This only needs to be implemented by Output_section.
  virtual bool
  do_is_section_flag_set(elfcpp::Elf_Xword) const
  { return false; }

  // Return the output section, if there is one.
  virtual Output_section*
  do_output_section()
  { return NULL; }

  virtual const Output_section*
  do_output_section() const
  { return NULL; }

  // Return the output section index, if there is an output section.
  virtual unsigned int
  do_out_shndx() const
  { gold_unreachable(); }

  // Set the output section index, if this is an output section.
  virtual void
  do_set_out_shndx(unsigned int)
  { gold_unreachable(); }

  // This is a hook for derived classes to set the preliminary data size.
  // This is called by pre_finalize_data_size, normally called during
  // Layout::finalize, before the section address is set, and is used
  // during an incremental update, when we need to know the size of a
  // section before allocating space in the output file.  For classes
  // where the current data size is up to date, this default version of
  // the method can be inherited.
  virtual void
  update_data_size()
  { }

  // This is a hook for derived classes to set the data size.  This is
  // called by finalize_data_size, normally called during
  // Layout::finalize, when the section address is set.
  virtual void
  set_final_data_size()
  { gold_unreachable(); }

  // A hook for resetting the address and file offset.
  virtual void
  do_reset_address_and_file_offset()
  { }

  // Return true if address and file offset already have reset values. In
  // other words, calling reset_address_and_file_offset will not change them.
  // A child class overriding do_reset_address_and_file_offset may need to
  // also override this.
  virtual bool
  do_address_and_file_offset_have_reset_values() const
  { return !this->is_address_valid_ && !this->is_offset_valid_; }

  // Set the TLS offset.  Called only for SHT_TLS sections.
  virtual void
  do_set_tls_offset(uint64_t)
  { gold_unreachable(); }

  // Return the TLS offset, relative to the base of the TLS segment.
  // Valid only for SHT_TLS sections.
  virtual uint64_t
  do_tls_offset() const
  { gold_unreachable(); }

  // Print to the map file.  This only needs to be implemented by
  // classes which may appear in a PT_LOAD segment.
  virtual void
  do_print_to_mapfile(Mapfile*) const
  { gold_unreachable(); }

  // Functions that child classes may call.

  // Reset the address.  The Output_section class needs this when an
  // SHF_ALLOC input section is added to an output section which was
  // formerly not SHF_ALLOC.
  void
  mark_address_invalid()
  { this->is_address_valid_ = false; }

  // Set the size of the data.
  void
  set_data_size(off_t data_size)
  {
    gold_assert(!this->is_data_size_valid_
		&& !this->is_data_size_fixed_);
    this->data_size_ = data_size;
    this->is_data_size_valid_ = true;
  }

  // Fix the data size.  Once it is fixed, it cannot be changed
  // and the data size remains always valid.
  void
  fix_data_size()
  {
    gold_assert(this->is_data_size_valid_);
    this->is_data_size_fixed_ = true;
  }

  // Get the current data size--this is for the convenience of
  // sections which build up their size over time.
  off_t
  current_data_size_for_child() const
  { return this->data_size_; }

  // Set the current data size--this is for the convenience of
  // sections which build up their size over time.
  void
  set_current_data_size_for_child(off_t data_size)
  {
    gold_assert(!this->is_data_size_valid_);
    this->data_size_ = data_size;
  }

  // Return default alignment for the target size.
  static uint64_t
  default_alignment();

  // Return default alignment for a specified size--32 or 64.
  static uint64_t
  default_alignment_for_size(int size);

 private:
  Output_data(const Output_data&);
  Output_data& operator=(const Output_data&);

  // This is used for verification, to make sure that we don't try to
  // change any sizes of allocated sections after we set the section
  // addresses.
  static bool allocated_sizes_are_fixed;

  // Memory address in output file.
  uint64_t address_;
  // Size of data in output file.
  off_t data_size_;
  // File offset of contents in output file.
  off_t offset_;
  // Whether address_ is valid.
  bool is_address_valid_ : 1;
  // Whether data_size_ is valid.
  bool is_data_size_valid_ : 1;
  // Whether offset_ is valid.
  bool is_offset_valid_ : 1;
  // Whether data size is fixed.
  bool is_data_size_fixed_ : 1;
  // Whether any dynamic relocs have been applied to this section.
  bool has_dynamic_reloc_ : 1;
};

// Output the section headers.

class Output_section_headers : public Output_data
{
 public:
  Output_section_headers(const Layout*,
			 const Layout::Segment_list*,
			 const Layout::Section_list*,
			 const Layout::Section_list*,
			 const Stringpool*,
			 const Output_section*);

 protected:
  // Write the data to the file.
  void
  do_write(Output_file*);

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return Output_data::default_alignment(); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** section headers")); }

  // Update the data size.
  void
  update_data_size()
  { this->set_data_size(this->do_size()); }

  // Set final data size.
  void
  set_final_data_size()
  { this->set_data_size(this->do_size()); }

 private:
  // Write the data to the file with the right size and endianness.
  template<int size, bool big_endian>
  void
  do_sized_write(Output_file*);

  // Compute data size.
  off_t
  do_size() const;

  const Layout* layout_;
  const Layout::Segment_list* segment_list_;
  const Layout::Section_list* section_list_;
  const Layout::Section_list* unattached_section_list_;
  const Stringpool* secnamepool_;
  const Output_section* shstrtab_section_;
};

// Output the segment headers.

class Output_segment_headers : public Output_data
{
 public:
  Output_segment_headers(const Layout::Segment_list& segment_list);

 protected:
  // Write the data to the file.
  void
  do_write(Output_file*);

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return Output_data::default_alignment(); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** segment headers")); }

  // Set final data size.
  void
  set_final_data_size()
  { this->set_data_size(this->do_size()); }

 private:
  // Write the data to the file with the right size and endianness.
  template<int size, bool big_endian>
  void
  do_sized_write(Output_file*);

  // Compute the current size.
  off_t
  do_size() const;

  const Layout::Segment_list& segment_list_;
};

// Output the ELF file header.

class Output_file_header : public Output_data
{
 public:
  Output_file_header(Target*,
		     const Symbol_table*,
		     const Output_segment_headers*);

  // Add information about the section headers.  We lay out the ELF
  // file header before we create the section headers.
  void set_section_info(const Output_section_headers*,
			const Output_section* shstrtab);

 protected:
  // Write the data to the file.
  void
  do_write(Output_file*);

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return Output_data::default_alignment(); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** file header")); }

  // Set final data size.
  void
  set_final_data_size(void)
  { this->set_data_size(this->do_size()); }

 private:
  // Write the data to the file with the right size and endianness.
  template<int size, bool big_endian>
  void
  do_sized_write(Output_file*);

  // Return the value to use for the entry address.
  template<int size>
  typename elfcpp::Elf_types<size>::Elf_Addr
  entry();

  // Compute the current data size.
  off_t
  do_size() const;

  Target* target_;
  const Symbol_table* symtab_;
  const Output_segment_headers* segment_header_;
  const Output_section_headers* section_header_;
  const Output_section* shstrtab_;
};

// Output sections are mainly comprised of input sections.  However,
// there are cases where we have data to write out which is not in an
// input section.  Output_section_data is used in such cases.  This is
// an abstract base class.

class Output_section_data : public Output_data
{
 public:
  Output_section_data(off_t data_size, uint64_t addralign,
		      bool is_data_size_fixed)
    : Output_data(), output_section_(NULL), addralign_(addralign)
  {
    this->set_data_size(data_size);
    if (is_data_size_fixed)
      this->fix_data_size();
  }

  Output_section_data(uint64_t addralign)
    : Output_data(), output_section_(NULL), addralign_(addralign)
  { }

  // Return the output section.
  Output_section*
  output_section()
  { return this->output_section_; }

  const Output_section*
  output_section() const
  { return this->output_section_; }

  // Record the output section.
  void
  set_output_section(Output_section* os);

  // Add an input section, for SHF_MERGE sections.  This returns true
  // if the section was handled.
  bool
  add_input_section(Relobj* object, unsigned int shndx)
  { return this->do_add_input_section(object, shndx); }

  // Given an input OBJECT, an input section index SHNDX within that
  // object, and an OFFSET relative to the start of that input
  // section, return whether or not the corresponding offset within
  // the output section is known.  If this function returns true, it
  // sets *POUTPUT to the output offset.  The value -1 indicates that
  // this input offset is being discarded.
  bool
  output_offset(const Relobj* object, unsigned int shndx,
		section_offset_type offset,
		section_offset_type* poutput) const
  { return this->do_output_offset(object, shndx, offset, poutput); }

  // Write the contents to a buffer.  This is used for sections which
  // require postprocessing, such as compression.
  void
  write_to_buffer(unsigned char* buffer)
  { this->do_write_to_buffer(buffer); }

  // Print merge stats to stderr.  This should only be called for
  // SHF_MERGE sections.
  void
  print_merge_stats(const char* section_name)
  { this->do_print_merge_stats(section_name); }

 protected:
  // The child class must implement do_write.

  // The child class may implement specific adjustments to the output
  // section.
  virtual void
  do_adjust_output_section(Output_section*)
  { }

  // May be implemented by child class.  Return true if the section
  // was handled.
  virtual bool
  do_add_input_section(Relobj*, unsigned int)
  { gold_unreachable(); }

  // The child class may implement output_offset.
  virtual bool
  do_output_offset(const Relobj*, unsigned int, section_offset_type,
		   section_offset_type*) const
  { return false; }

  // The child class may implement write_to_buffer.  Most child
  // classes can not appear in a compressed section, and they do not
  // implement this.
  virtual void
  do_write_to_buffer(unsigned char*)
  { gold_unreachable(); }

  // Print merge statistics.
  virtual void
  do_print_merge_stats(const char*)
  { gold_unreachable(); }

  // Return the required alignment.
  uint64_t
  do_addralign() const
  { return this->addralign_; }

  // Return the output section.
  Output_section*
  do_output_section()
  { return this->output_section_; }

  const Output_section*
  do_output_section() const
  { return this->output_section_; }

  // Return the section index of the output section.
  unsigned int
  do_out_shndx() const;

  // Set the alignment.
  void
  set_addralign(uint64_t addralign);

 private:
  // The output section for this section.
  Output_section* output_section_;
  // The required alignment.
  uint64_t addralign_;
};

// Some Output_section_data classes build up their data step by step,
// rather than all at once.  This class provides an interface for
// them.

class Output_section_data_build : public Output_section_data
{
 public:
  Output_section_data_build(uint64_t addralign)
    : Output_section_data(addralign)
  { }

  Output_section_data_build(off_t data_size, uint64_t addralign)
    : Output_section_data(data_size, addralign, false)
  { }

  // Set the current data size.
  void
  set_current_data_size(off_t data_size)
  { this->set_current_data_size_for_child(data_size); }

 protected:
  // Set the final data size.
  virtual void
  set_final_data_size()
  { this->set_data_size(this->current_data_size_for_child()); }
};

// A simple case of Output_data in which we have constant data to
// output.

class Output_data_const : public Output_section_data
{
 public:
  Output_data_const(const std::string& data, uint64_t addralign)
    : Output_section_data(data.size(), addralign, true), data_(data)
  { }

  Output_data_const(const char* p, off_t len, uint64_t addralign)
    : Output_section_data(len, addralign, true), data_(p, len)
  { }

  Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
    : Output_section_data(len, addralign, true),
      data_(reinterpret_cast<const char*>(p), len)
  { }

 protected:
  // Write the data to the output file.
  void
  do_write(Output_file*);

  // Write the data to a buffer.
  void
  do_write_to_buffer(unsigned char* buffer)
  { memcpy(buffer, this->data_.data(), this->data_.size()); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** fill")); }

 private:
  std::string data_;
};

// Another version of Output_data with constant data, in which the
// buffer is allocated by the caller.

class Output_data_const_buffer : public Output_section_data
{
 public:
  Output_data_const_buffer(const unsigned char* p, off_t len,
			   uint64_t addralign, const char* map_name)
    : Output_section_data(len, addralign, true),
      p_(p), map_name_(map_name)
  { }

 protected:
  // Write the data the output file.
  void
  do_write(Output_file*);

  // Write the data to a buffer.
  void
  do_write_to_buffer(unsigned char* buffer)
  { memcpy(buffer, this->p_, this->data_size()); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(this->map_name_)); }

 private:
  // The data to output.
  const unsigned char* p_;
  // Name to use in a map file.  Maps are a rarely used feature, but
  // the space usage is minor as aren't very many of these objects.
  const char* map_name_;
};

// A place holder for a fixed amount of data written out via some
// other mechanism.

class Output_data_fixed_space : public Output_section_data
{
 public:
  Output_data_fixed_space(off_t data_size, uint64_t addralign,
			  const char* map_name)
    : Output_section_data(data_size, addralign, true),
      map_name_(map_name)
  { }

 protected:
  // Write out the data--the actual data must be written out
  // elsewhere.
  void
  do_write(Output_file*)
  { }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(this->map_name_)); }

 private:
  // Name to use in a map file.  Maps are a rarely used feature, but
  // the space usage is minor as aren't very many of these objects.
  const char* map_name_;
};

// A place holder for variable sized data written out via some other
// mechanism.

class Output_data_space : public Output_section_data_build
{
 public:
  explicit Output_data_space(uint64_t addralign, const char* map_name)
    : Output_section_data_build(addralign),
      map_name_(map_name)
  { }

  explicit Output_data_space(off_t data_size, uint64_t addralign,
			     const char* map_name)
    : Output_section_data_build(data_size, addralign),
      map_name_(map_name)
  { }

  // Set the alignment.
  void
  set_space_alignment(uint64_t align)
  { this->set_addralign(align); }

 protected:
  // Write out the data--the actual data must be written out
  // elsewhere.
  void
  do_write(Output_file*)
  { }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(this->map_name_)); }

 private:
  // Name to use in a map file.  Maps are a rarely used feature, but
  // the space usage is minor as aren't very many of these objects.
  const char* map_name_;
};

// Fill fixed space with zeroes.  This is just like
// Output_data_fixed_space, except that the map name is known.

class Output_data_zero_fill : public Output_section_data
{
 public:
  Output_data_zero_fill(off_t data_size, uint64_t addralign)
    : Output_section_data(data_size, addralign, true)
  { }

 protected:
  // There is no data to write out.
  void
  do_write(Output_file*)
  { }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, "** zero fill"); }
};

// A string table which goes into an output section.

class Output_data_strtab : public Output_section_data
{
 public:
  Output_data_strtab(Stringpool* strtab)
    : Output_section_data(1), strtab_(strtab)
  { }

 protected:
  // This is called to update the section size prior to assigning
  // the address and file offset.
  void
  update_data_size()
  { this->set_final_data_size(); }

  // This is called to set the address and file offset.  Here we make
  // sure that the Stringpool is finalized.
  void
  set_final_data_size();

  // Write out the data.
  void
  do_write(Output_file*);

  // Write the data to a buffer.
  void
  do_write_to_buffer(unsigned char* buffer)
  { this->strtab_->write_to_buffer(buffer, this->data_size()); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** string table")); }

 private:
  Stringpool* strtab_;
};

// This POD class is used to represent a single reloc in the output
// file.  This could be a private class within Output_data_reloc, but
// the templatization is complex enough that I broke it out into a
// separate class.  The class is templatized on either elfcpp::SHT_REL
// or elfcpp::SHT_RELA, and also on whether this is a dynamic
// relocation or an ordinary relocation.

// A relocation can be against a global symbol, a local symbol, a
// local section symbol, an output section, or the undefined symbol at
// index 0.  We represent the latter by using a NULL global symbol.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_reloc;

template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
{
 public:
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;

  static const Address invalid_address = static_cast<Address>(0) - 1;

  // An uninitialized entry.  We need this because we want to put
  // instances of this class into an STL container.
  Output_reloc()
    : local_sym_index_(INVALID_CODE)
  { }

  // We have a bunch of different constructors.  They come in pairs
  // depending on how the address of the relocation is specified.  It
  // can either be an offset in an Output_data or an offset in an
  // input section.

  // A reloc against a global symbol.

  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
	       Address address, bool is_relative, bool is_symbolless,
	       bool use_plt_offset);

  Output_reloc(Symbol* gsym, unsigned int type,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, bool is_relative,
	       bool is_symbolless, bool use_plt_offset);

  // A reloc against a local symbol or local section symbol.

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       Output_data* od, Address address, bool is_relative,
	       bool is_symbolless, bool is_section_symbol,
	       bool use_plt_offset);

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       unsigned int shndx, Address address, bool is_relative,
	       bool is_symbolless, bool is_section_symbol,
	       bool use_plt_offset);

  // A reloc against the STT_SECTION symbol of an output section.

  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
	       Address address, bool is_relative);

  Output_reloc(Output_section* os, unsigned int type,
	       Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
	       Address address, bool is_relative);

  // An absolute or relative relocation with no symbol.

  Output_reloc(unsigned int type, Output_data* od, Address address,
	       bool is_relative);

  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, bool is_relative);

  // A target specific relocation.  The target will be called to get
  // the symbol index, passing ARG.  The type and offset will be set
  // as for other relocation types.

  Output_reloc(unsigned int type, void* arg, Output_data* od,
	       Address address);

  Output_reloc(unsigned int type, void* arg,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address);

  // Return the reloc type.
  unsigned int
  type() const
  { return this->type_; }

  // Return whether this is a RELATIVE relocation.
  bool
  is_relative() const
  { return this->is_relative_; }

  // Return whether this is a relocation which should not use
  // a symbol, but which obtains its addend from a symbol.
  bool
  is_symbolless() const
  { return this->is_symbolless_; }

  // Return whether this is against a local section symbol.
  bool
  is_local_section_symbol() const
  {
    return (this->local_sym_index_ != GSYM_CODE
	    && this->local_sym_index_ != SECTION_CODE
	    && this->local_sym_index_ != INVALID_CODE
	    && this->local_sym_index_ != TARGET_CODE
	    && this->is_section_symbol_);
  }

  // Return whether this is a target specific relocation.
  bool
  is_target_specific() const
  { return this->local_sym_index_ == TARGET_CODE; }

  // Return the argument to pass to the target for a target specific
  // relocation.
  void*
  target_arg() const
  {
    gold_assert(this->local_sym_index_ == TARGET_CODE);
    return this->u1_.arg;
  }

  // For a local section symbol, return the offset of the input
  // section within the output section.  ADDEND is the addend being
  // applied to the input section.
  Address
  local_section_offset(Addend addend) const;

  // Get the value of the symbol referred to by a Rel relocation when
  // we are adding the given ADDEND.
  Address
  symbol_value(Addend addend) const;

  // If this relocation is against an input section, return the
  // relocatable object containing the input section.
  Sized_relobj<size, big_endian>*
  get_relobj() const
  {
    if (this->shndx_ == INVALID_CODE)
      return NULL;
    return this->u2_.relobj;
  }

  // Write the reloc entry to an output view.
  void
  write(unsigned char* pov) const;

  // Write the offset and info fields to Write_rel.
  template<typename Write_rel>
  void write_rel(Write_rel*) const;

  // This is used when sorting dynamic relocs.  Return -1 to sort this
  // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
  int
  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
    const;

  // Return whether this reloc should be sorted before the argument
  // when sorting dynamic relocs.
  bool
  sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
	      r2) const
  { return this->compare(r2) < 0; }

  // Return the symbol index.
  unsigned int
  get_symbol_index() const;

  // Return the output address.
  Address
  get_address() const;

 private:
  // Record that we need a dynamic symbol index.
  void
  set_needs_dynsym_index();

  // Codes for local_sym_index_.
  enum
  {
    // Global symbol.
    GSYM_CODE = -1U,
    // Output section.
    SECTION_CODE = -2U,
    // Target specific.
    TARGET_CODE = -3U,
    // Invalid uninitialized entry.
    INVALID_CODE = -4U
  };

  union
  {
    // For a local symbol or local section symbol
    // (this->local_sym_index_ >= 0), the object.  We will never
    // generate a relocation against a local symbol in a dynamic
    // object; that doesn't make sense.  And our callers will always
    // be templatized, so we use Sized_relobj here.
    Sized_relobj<size, big_endian>* relobj;
    // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
    // symbol.  If this is NULL, it indicates a relocation against the
    // undefined 0 symbol.
    Symbol* gsym;
    // For a relocation against an output section
    // (this->local_sym_index_ == SECTION_CODE), the output section.
    Output_section* os;
    // For a target specific relocation, an argument to pass to the
    // target.
    void* arg;
  } u1_;
  union
  {
    // If this->shndx_ is not INVALID CODE, the object which holds the
    // input section being used to specify the reloc address.
    Sized_relobj<size, big_endian>* relobj;
    // If this->shndx_ is INVALID_CODE, the output data being used to
    // specify the reloc address.  This may be NULL if the reloc
    // address is absolute.
    Output_data* od;
  } u2_;
  // The address offset within the input section or the Output_data.
  Address address_;
  // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
  // relocation against an output section, or TARGET_CODE for a target
  // specific relocation, or INVALID_CODE for an uninitialized value.
  // Otherwise, for a local symbol (this->is_section_symbol_ is
  // false), the local symbol index.  For a local section symbol
  // (this->is_section_symbol_ is true), the section index in the
  // input file.
  unsigned int local_sym_index_;
  // The reloc type--a processor specific code.
  unsigned int type_ : 28;
  // True if the relocation is a RELATIVE relocation.
  bool is_relative_ : 1;
  // True if the relocation is one which should not use
  // a symbol, but which obtains its addend from a symbol.
  bool is_symbolless_ : 1;
  // True if the relocation is against a section symbol.
  bool is_section_symbol_ : 1;
  // True if the addend should be the PLT offset.
  // (Used only for RELA, but stored here for space.)
  bool use_plt_offset_ : 1;
  // If the reloc address is an input section in an object, the
  // section index.  This is INVALID_CODE if the reloc address is
  // specified in some other way.
  unsigned int shndx_;
};

// The SHT_RELA version of Output_reloc<>.  This is just derived from
// the SHT_REL version of Output_reloc, but it adds an addend.

template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
 public:
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;

  // An uninitialized entry.
  Output_reloc()
    : rel_()
  { }

  // A reloc against a global symbol.

  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
	       Address address, Addend addend, bool is_relative,
	       bool is_symbolless, bool use_plt_offset)
    : rel_(gsym, type, od, address, is_relative, is_symbolless,
	   use_plt_offset),
      addend_(addend)
  { }

  Output_reloc(Symbol* gsym, unsigned int type,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, Addend addend,
	       bool is_relative, bool is_symbolless, bool use_plt_offset)
    : rel_(gsym, type, relobj, shndx, address, is_relative,
	   is_symbolless, use_plt_offset), addend_(addend)
  { }

  // A reloc against a local symbol.

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       Output_data* od, Address address,
	       Addend addend, bool is_relative,
	       bool is_symbolless, bool is_section_symbol,
	       bool use_plt_offset)
    : rel_(relobj, local_sym_index, type, od, address, is_relative,
	   is_symbolless, is_section_symbol, use_plt_offset),
      addend_(addend)
  { }

  Output_reloc(Sized_relobj<size, big_endian>* relobj,
	       unsigned int local_sym_index, unsigned int type,
	       unsigned int shndx, Address address,
	       Addend addend, bool is_relative,
	       bool is_symbolless, bool is_section_symbol,
	       bool use_plt_offset)
    : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
	   is_symbolless, is_section_symbol, use_plt_offset),
      addend_(addend)
  { }

  // A reloc against the STT_SECTION symbol of an output section.

  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
	       Address address, Addend addend, bool is_relative)
    : rel_(os, type, od, address, is_relative), addend_(addend)
  { }

  Output_reloc(Output_section* os, unsigned int type,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, Addend addend,
	       bool is_relative)
    : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
  { }

  // An absolute or relative relocation with no symbol.

  Output_reloc(unsigned int type, Output_data* od, Address address,
	       Addend addend, bool is_relative)
    : rel_(type, od, address, is_relative), addend_(addend)
  { }

  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, Addend addend,
	       bool is_relative)
    : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
  { }

  // A target specific relocation.  The target will be called to get
  // the symbol index and the addend, passing ARG.  The type and
  // offset will be set as for other relocation types.

  Output_reloc(unsigned int type, void* arg, Output_data* od,
	       Address address, Addend addend)
    : rel_(type, arg, od, address), addend_(addend)
  { }

  Output_reloc(unsigned int type, void* arg,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, Addend addend)
    : rel_(type, arg, relobj, shndx, address), addend_(addend)
  { }

  // Return whether this is a RELATIVE relocation.
  bool
  is_relative() const
  { return this->rel_.is_relative(); }

  // Return whether this is a relocation which should not use
  // a symbol, but which obtains its addend from a symbol.
  bool
  is_symbolless() const
  { return this->rel_.is_symbolless(); }

  // If this relocation is against an input section, return the
  // relocatable object containing the input section.
  Sized_relobj<size, big_endian>*
  get_relobj() const
  { return this->rel_.get_relobj(); }

  // Write the reloc entry to an output view.
  void
  write(unsigned char* pov) const;

  // Return whether this reloc should be sorted before the argument
  // when sorting dynamic relocs.
  bool
  sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
	      r2) const
  {
    int i = this->rel_.compare(r2.rel_);
    if (i < 0)
      return true;
    else if (i > 0)
      return false;
    else
      return this->addend_ < r2.addend_;
  }

 private:
  // The basic reloc.
  Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
  // The addend.
  Addend addend_;
};

// Output_data_reloc_generic is a non-template base class for
// Output_data_reloc_base.  This gives the generic code a way to hold
// a pointer to a reloc section.

class Output_data_reloc_generic : public Output_section_data_build
{
 public:
  Output_data_reloc_generic(int size, bool sort_relocs)
    : Output_section_data_build(Output_data::default_alignment_for_size(size)),
      relative_reloc_count_(0), sort_relocs_(sort_relocs)
  { }

  // Return the number of relative relocs in this section.
  size_t
  relative_reloc_count() const
  { return this->relative_reloc_count_; }

  // Whether we should sort the relocs.
  bool
  sort_relocs() const
  { return this->sort_relocs_; }

  // Add a reloc of type TYPE against the global symbol GSYM.  The
  // relocation applies to the data at offset ADDRESS within OD.
  virtual void
  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
		     uint64_t address, uint64_t addend) = 0;

  // Add a reloc of type TYPE against the global symbol GSYM.  The
  // relocation applies to data at offset ADDRESS within section SHNDX
  // of object file RELOBJ.  OD is the associated output section.
  virtual void
  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
		     Relobj* relobj, unsigned int shndx, uint64_t address,
		     uint64_t addend) = 0;

  // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
  // in RELOBJ.  The relocation applies to the data at offset ADDRESS
  // within OD.
  virtual void
  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
		    unsigned int type, Output_data* od, uint64_t address,
		    uint64_t addend) = 0;

  // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
  // in RELOBJ.  The relocation applies to the data at offset ADDRESS
  // within section SHNDX of RELOBJ.  OD is the associated output
  // section.
  virtual void
  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
		    unsigned int type, Output_data* od, unsigned int shndx,
		    uint64_t address, uint64_t addend) = 0;

  // Add a reloc of type TYPE against the STT_SECTION symbol of the
  // output section OS.  The relocation applies to the data at offset
  // ADDRESS within OD.
  virtual void
  add_output_section_generic(Output_section *os, unsigned int type,
			     Output_data* od, uint64_t address,
			     uint64_t addend) = 0;

  // Add a reloc of type TYPE against the STT_SECTION symbol of the
  // output section OS.  The relocation applies to the data at offset
  // ADDRESS within section SHNDX of RELOBJ.  OD is the associated
  // output section.
  virtual void
  add_output_section_generic(Output_section* os, unsigned int type,
			     Output_data* od, Relobj* relobj,
			     unsigned int shndx, uint64_t address,
			     uint64_t addend) = 0;

 protected:
  // Note that we've added another relative reloc.
  void
  bump_relative_reloc_count()
  { ++this->relative_reloc_count_; }

 private:
  // The number of relative relocs added to this section.  This is to
  // support DT_RELCOUNT.
  size_t relative_reloc_count_;
  // Whether to sort the relocations when writing them out, to make
  // the dynamic linker more efficient.
  bool sort_relocs_;
};

// Output_data_reloc is used to manage a section containing relocs.
// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
// indicates whether this is a dynamic relocation or a normal
// relocation.  Output_data_reloc_base is a base class.
// Output_data_reloc is the real class, which we specialize based on
// the reloc type.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc_base : public Output_data_reloc_generic
{
 public:
  typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
  typedef typename Output_reloc_type::Address Address;
  static const int reloc_size =
    Reloc_types<sh_type, size, big_endian>::reloc_size;

  // Construct the section.
  Output_data_reloc_base(bool sort_relocs)
    : Output_data_reloc_generic(size, sort_relocs)
  { }

 protected:
  // Write out the data.
  void
  do_write(Output_file*);

  // Generic implementation of do_write, allowing a customized
  // class for writing the output relocation (e.g., for MIPS-64).
  template<class Output_reloc_writer>
  void
  do_write_generic(Output_file* of)
  {
    const off_t off = this->offset();
    const off_t oview_size = this->data_size();
    unsigned char* const oview = of->get_output_view(off, oview_size);

    if (this->sort_relocs())
      {
	gold_assert(dynamic);
	std::sort(this->relocs_.begin(), this->relocs_.end(),
		  Sort_relocs_comparison());
      }

    unsigned char* pov = oview;
    for (typename Relocs::const_iterator p = this->relocs_.begin();
	 p != this->relocs_.end();
	 ++p)
      {
	Output_reloc_writer::write(p, pov);
	pov += reloc_size;
      }

    gold_assert(pov - oview == oview_size);

    of->write_output_view(off, oview_size, oview);

    // We no longer need the relocation entries.
    this->relocs_.clear();
  }

  // Set the entry size and the link.
  void
  do_adjust_output_section(Output_section* os);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  {
    mapfile->print_output_data(this,
			       (dynamic
				? _("** dynamic relocs")
				: _("** relocs")));
  }

  // Add a relocation entry.
  void
  add(Output_data* od, const Output_reloc_type& reloc)
  {
    this->relocs_.push_back(reloc);
    this->set_current_data_size(this->relocs_.size() * reloc_size);
    if (dynamic)
      od->add_dynamic_reloc();
    if (reloc.is_relative())
      this->bump_relative_reloc_count();
    Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
    if (relobj != NULL)
      relobj->add_dyn_reloc(this->relocs_.size() - 1);
  }

 private:
  typedef std::vector<Output_reloc_type> Relocs;

  // The class used to sort the relocations.
  struct Sort_relocs_comparison
  {
    bool
    operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
    { return r1.sort_before(r2); }
  };

  // The relocations in this section.
  Relocs relocs_;
};

// The class which callers actually create.

template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc;

// The SHT_REL version of Output_data_reloc.

template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
  : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
{
 private:
  typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
				 big_endian> Base;

 public:
  typedef typename Base::Output_reloc_type Output_reloc_type;
  typedef typename Output_reloc_type::Address Address;

  Output_data_reloc(bool sr)
    : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
  { }

  // Add a reloc against a global symbol.

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(gsym, type, od, address,
				    false, false, false));
  }

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
	     Sized_relobj<size, big_endian>* relobj,
	     unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
				    false, false, false));
  }

  void
  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
		     uint64_t address, uint64_t addend)
  {
    gold_assert(addend == 0);
    this->add(od, Output_reloc_type(gsym, type, od,
				    convert_types<Address, uint64_t>(address),
				    false, false, false));
  }

  void
  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
		     Relobj* relobj, unsigned int shndx, uint64_t address,
		     uint64_t addend)
  {
    gold_assert(addend == 0);
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian>*>(relobj);
    this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
				    convert_types<Address, uint64_t>(address),
				    false, false, false));
  }

  // Add a RELATIVE reloc against a global symbol.  The final relocation
  // will not reference the symbol.

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
		      Address address)
  {
    this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
				    false));
  }

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
		      Sized_relobj<size, big_endian>* relobj,
		      unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
				    true, true, false));
  }

  // Add a global relocation which does not use a symbol for the relocation,
  // but which gets its addend from a symbol.

  void
  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
			       Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
				    false));
  }

  void
  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
			       Output_data* od,
			       Sized_relobj<size, big_endian>* relobj,
			       unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
				    false, true, false));
  }

  // Add a reloc against a local symbol.

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
				    address, false, false, false, false));
  }

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, false, false, false, false));
  }

  void
  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
		    unsigned int type, Output_data* od, uint64_t address,
		    uint64_t addend)
  {
    gold_assert(addend == 0);
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian> *>(relobj);
    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
				    convert_types<Address, uint64_t>(address),
				    false, false, false, false));
  }

  void
  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
		    unsigned int type, Output_data* od, unsigned int shndx,
		    uint64_t address, uint64_t addend)
  {
    gold_assert(addend == 0);
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian>*>(relobj);
    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
				    convert_types<Address, uint64_t>(address),
				    false, false, false, false));
  }

  // Add a RELATIVE reloc against a local symbol.

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
		     unsigned int local_sym_index, unsigned int type,
		     Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
				    address, true, true, false, false));
  }

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
		     unsigned int local_sym_index, unsigned int type,
		     Output_data* od, unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, true, true, false, false));
  }

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
		     unsigned int local_sym_index, unsigned int type,
		     Output_data* od, unsigned int shndx, Address address,
		     bool use_plt_offset)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, true, true, false,
				    use_plt_offset));
  }

  // Add a local relocation which does not use a symbol for the relocation,
  // but which gets its addend from a symbol.

  void
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
			      unsigned int local_sym_index, unsigned int type,
			      Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
				    address, false, true, false, false));
  }

  void
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
			      unsigned int local_sym_index, unsigned int type,
			      Output_data* od, unsigned int shndx,
			      Address address)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, false, true, false, false));
  }

  // Add a reloc against a local section symbol.  This will be
  // converted into a reloc against the STT_SECTION symbol of the
  // output section.

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
		    unsigned int input_shndx, unsigned int type,
		    Output_data* od, Address address)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
				    address, false, false, true, false));
  }

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
		    unsigned int input_shndx, unsigned int type,
		    Output_data* od, unsigned int shndx, Address address)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
				    address, false, false, true, false));
  }

  // A reloc against the STT_SECTION symbol of an output section.
  // OS is the Output_section that the relocation refers to; OD is
  // the Output_data object being relocated.

  void
  add_output_section(Output_section* os, unsigned int type,
		     Output_data* od, Address address)
  { this->add(od, Output_reloc_type(os, type, od, address, false)); }

  void
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
		     Sized_relobj<size, big_endian>* relobj,
		     unsigned int shndx, Address address)
  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }

  void
  add_output_section_generic(Output_section* os, unsigned int type,
			     Output_data* od, uint64_t address,
			     uint64_t addend)
  {
    gold_assert(addend == 0);
    this->add(od, Output_reloc_type(os, type, od,
				    convert_types<Address, uint64_t>(address),
				    false));
  }

  void
  add_output_section_generic(Output_section* os, unsigned int type,
			     Output_data* od, Relobj* relobj,
			     unsigned int shndx, uint64_t address,
			     uint64_t addend)
  {
    gold_assert(addend == 0);
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian>*>(relobj);
    this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
				    convert_types<Address, uint64_t>(address),
				    false));
  }

  // As above, but the reloc TYPE is relative

  void
  add_output_section_relative(Output_section* os, unsigned int type,
			      Output_data* od, Address address)
  { this->add(od, Output_reloc_type(os, type, od, address, true)); }

  void
  add_output_section_relative(Output_section* os, unsigned int type,
			      Output_data* od,
			      Sized_relobj<size, big_endian>* relobj,
			      unsigned int shndx, Address address)
  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }

  // Add an absolute relocation.

  void
  add_absolute(unsigned int type, Output_data* od, Address address)
  { this->add(od, Output_reloc_type(type, od, address, false)); }

  void
  add_absolute(unsigned int type, Output_data* od,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address)
  { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }

  // Add a relative relocation

  void
  add_relative(unsigned int type, Output_data* od, Address address)
  { this->add(od, Output_reloc_type(type, od, address, true)); }

  void
  add_relative(unsigned int type, Output_data* od,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address)
  { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }

  // Add a target specific relocation.  A target which calls this must
  // define the reloc_symbol_index and reloc_addend virtual functions.

  void
  add_target_specific(unsigned int type, void* arg, Output_data* od,
		      Address address)
  { this->add(od, Output_reloc_type(type, arg, od, address)); }

  void
  add_target_specific(unsigned int type, void* arg, Output_data* od,
		      Sized_relobj<size, big_endian>* relobj,
		      unsigned int shndx, Address address)
  { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
};

// The SHT_RELA version of Output_data_reloc.

template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
  : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
 private:
  typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
				 big_endian> Base;

 public:
  typedef typename Base::Output_reloc_type Output_reloc_type;
  typedef typename Output_reloc_type::Address Address;
  typedef typename Output_reloc_type::Addend Addend;

  Output_data_reloc(bool sr)
    : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
  { }

  // Add a reloc against a global symbol.

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
	     Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(gsym, type, od, address, addend,
				    false, false, false));
  }

  void
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
	     Sized_relobj<size, big_endian>* relobj,
	     unsigned int shndx, Address address,
	     Addend addend)
  {
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
				    addend, false, false, false));
  }

  void
  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
		     uint64_t address, uint64_t addend)
  {
    this->add(od, Output_reloc_type(gsym, type, od,
				    convert_types<Address, uint64_t>(address),
				    convert_types<Addend, uint64_t>(addend),
				    false, false, false));
  }

  void
  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
		     Relobj* relobj, unsigned int shndx, uint64_t address,
		     uint64_t addend)
  {
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian>*>(relobj);
    this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
				    convert_types<Address, uint64_t>(address),
				    convert_types<Addend, uint64_t>(addend),
				    false, false, false));
  }

  // Add a RELATIVE reloc against a global symbol.  The final output
  // relocation will not reference the symbol, but we must keep the symbol
  // information long enough to set the addend of the relocation correctly
  // when it is written.

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
		      Address address, Addend addend, bool use_plt_offset)
  {
    this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
				    true, use_plt_offset));
  }

  void
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
		      Sized_relobj<size, big_endian>* relobj,
		      unsigned int shndx, Address address, Addend addend,
		      bool use_plt_offset)
  {
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
				    addend, true, true, use_plt_offset));
  }

  // Add a global relocation which does not use a symbol for the relocation,
  // but which gets its addend from a symbol.

  void
  add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
			       Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(gsym, type, od, address, addend,
				    false, true, false));
  }

  void
  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
			       Output_data* od,
			       Sized_relobj<size, big_endian>* relobj,
			       unsigned int shndx, Address address,
			       Addend addend)
  {
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
				    addend, false, true, false));
  }

  // Add a reloc against a local symbol.

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
				    addend, false, false, false, false));
  }

  void
  add_local(Sized_relobj<size, big_endian>* relobj,
	    unsigned int local_sym_index, unsigned int type,
	    Output_data* od, unsigned int shndx, Address address,
	    Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, addend, false, false, false,
				    false));
  }

  void
  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
		    unsigned int type, Output_data* od, uint64_t address,
		    uint64_t addend)
  {
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian> *>(relobj);
    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
				    convert_types<Address, uint64_t>(address),
				    convert_types<Addend, uint64_t>(addend),
				    false, false, false, false));
  }

  void
  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
		    unsigned int type, Output_data* od, unsigned int shndx,
		    uint64_t address, uint64_t addend)
  {
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian>*>(relobj);
    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
				    convert_types<Address, uint64_t>(address),
				    convert_types<Addend, uint64_t>(addend),
				    false, false, false, false));
  }

  // Add a RELATIVE reloc against a local symbol.

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
		     unsigned int local_sym_index, unsigned int type,
		     Output_data* od, Address address, Addend addend,
		     bool use_plt_offset)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
				    addend, true, true, false,
				    use_plt_offset));
  }

  void
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
		     unsigned int local_sym_index, unsigned int type,
		     Output_data* od, unsigned int shndx, Address address,
		     Addend addend, bool use_plt_offset)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, addend, true, true, false,
				    use_plt_offset));
  }

  // Add a local relocation which does not use a symbol for the relocation,
  // but which gets it's addend from a symbol.

  void
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
			      unsigned int local_sym_index, unsigned int type,
			      Output_data* od, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
				    addend, false, true, false, false));
  }

  void
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
			      unsigned int local_sym_index, unsigned int type,
			      Output_data* od, unsigned int shndx,
			      Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
				    address, addend, false, true, false,
				    false));
  }

  // Add a reloc against a local section symbol.  This will be
  // converted into a reloc against the STT_SECTION symbol of the
  // output section.

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
		    unsigned int input_shndx, unsigned int type,
		    Output_data* od, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
				    addend, false, false, true, false));
  }

  void
  add_local_section(Sized_relobj<size, big_endian>* relobj,
		    unsigned int input_shndx, unsigned int type,
		    Output_data* od, unsigned int shndx, Address address,
		    Addend addend)
  {
    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
				    address, addend, false, false, true,
				    false));
  }

  // A reloc against the STT_SECTION symbol of an output section.

  void
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
		     Address address, Addend addend)
  { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }

  void
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
		     Sized_relobj<size, big_endian>* relobj,
		     unsigned int shndx, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
				    addend, false));
  }

  void
  add_output_section_generic(Output_section* os, unsigned int type,
			     Output_data* od, uint64_t address,
			     uint64_t addend)
  {
    this->add(od, Output_reloc_type(os, type, od,
				    convert_types<Address, uint64_t>(address),
				    convert_types<Addend, uint64_t>(addend),
				    false));
  }

  void
  add_output_section_generic(Output_section* os, unsigned int type,
			     Output_data* od, Relobj* relobj,
			     unsigned int shndx, uint64_t address,
			     uint64_t addend)
  {
    Sized_relobj<size, big_endian>* sized_relobj =
      static_cast<Sized_relobj<size, big_endian>*>(relobj);
    this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
				    convert_types<Address, uint64_t>(address),
				    convert_types<Addend, uint64_t>(addend),
				    false));
  }

  // As above, but the reloc TYPE is relative

  void
  add_output_section_relative(Output_section* os, unsigned int type,
			      Output_data* od, Address address, Addend addend)
  { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }

  void
  add_output_section_relative(Output_section* os, unsigned int type,
			      Output_data* od,
			      Sized_relobj<size, big_endian>* relobj,
			      unsigned int shndx, Address address,
			      Addend addend)
  {
    this->add(od, Output_reloc_type(os, type, relobj, shndx,
				    address, addend, true));
  }

  // Add an absolute relocation.

  void
  add_absolute(unsigned int type, Output_data* od, Address address,
	       Addend addend)
  { this->add(od, Output_reloc_type(type, od, address, addend, false)); }

  void
  add_absolute(unsigned int type, Output_data* od,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
				    false));
  }

  // Add a relative relocation

  void
  add_relative(unsigned int type, Output_data* od, Address address,
	       Addend addend)
  { this->add(od, Output_reloc_type(type, od, address, addend, true)); }

  void
  add_relative(unsigned int type, Output_data* od,
	       Sized_relobj<size, big_endian>* relobj,
	       unsigned int shndx, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
				    true));
  }

  // Add a target specific relocation.  A target which calls this must
  // define the reloc_symbol_index and reloc_addend virtual functions.

  void
  add_target_specific(unsigned int type, void* arg, Output_data* od,
		      Address address, Addend addend)
  { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }

  void
  add_target_specific(unsigned int type, void* arg, Output_data* od,
		      Sized_relobj<size, big_endian>* relobj,
		      unsigned int shndx, Address address, Addend addend)
  {
    this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
				    addend));
  }
};

// Output_relocatable_relocs represents a relocation section in a
// relocatable link.  The actual data is written out in the target
// hook relocate_relocs.  This just saves space for it.

template<int sh_type, int size, bool big_endian>
class Output_relocatable_relocs : public Output_section_data
{
 public:
  Output_relocatable_relocs(Relocatable_relocs* rr)
    : Output_section_data(Output_data::default_alignment_for_size(size)),
      rr_(rr)
  { }

  void
  set_final_data_size();

  // Write out the data.  There is nothing to do here.
  void
  do_write(Output_file*)
  { }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** relocs")); }

 private:
  // The relocs associated with this input section.
  Relocatable_relocs* rr_;
};

// Handle a GROUP section.

template<int size, bool big_endian>
class Output_data_group : public Output_section_data
{
 public:
  // The constructor clears *INPUT_SHNDXES.
  Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
		    section_size_type entry_count,
		    elfcpp::Elf_Word flags,
		    std::vector<unsigned int>* input_shndxes);

  void
  do_write(Output_file*);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** group")); }

  // Set final data size.
  void
  set_final_data_size()
  { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }

 private:
  // The input object.
  Sized_relobj_file<size, big_endian>* relobj_;
  // The group flag word.
  elfcpp::Elf_Word flags_;
  // The section indexes of the input sections in this group.
  std::vector<unsigned int> input_shndxes_;
};

// Output_data_got is used to manage a GOT.  Each entry in the GOT is
// for one symbol--either a global symbol or a local symbol in an
// object.  The target specific code adds entries to the GOT as
// needed.  The GOT_SIZE template parameter is the size in bits of a
// GOT entry, typically 32 or 64.

class Output_data_got_base : public Output_section_data_build
{
 public:
  Output_data_got_base(uint64_t align)
    : Output_section_data_build(align)
  { }

  Output_data_got_base(off_t data_size, uint64_t align)
    : Output_section_data_build(data_size, align)
  { }

  // Reserve the slot at index I in the GOT.
  void
  reserve_slot(unsigned int i)
  { this->do_reserve_slot(i); }

 protected:
  // Reserve the slot at index I in the GOT.
  virtual void
  do_reserve_slot(unsigned int i) = 0;
};

template<int got_size, bool big_endian>
class Output_data_got : public Output_data_got_base
{
 public:
  typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;

  Output_data_got()
    : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
      entries_(), free_list_()
  { }

  Output_data_got(off_t data_size)
    : Output_data_got_base(data_size,
			   Output_data::default_alignment_for_size(got_size)),
      entries_(), free_list_()
  {
    // For an incremental update, we have an existing GOT section.
    // Initialize the list of entries and the free list.
    this->entries_.resize(data_size / (got_size / 8));
    this->free_list_.init(data_size, false);
  }

  // Add an entry for a global symbol to the GOT.  Return true if this
  // is a new GOT entry, false if the symbol was already in the GOT.
  bool
  add_global(Symbol* gsym, unsigned int got_type);

  // Like add_global, but use the PLT offset of the global symbol if
  // it has one.
  bool
  add_global_plt(Symbol* gsym, unsigned int got_type);

  // Like add_global, but for a TLS symbol where the value will be
  // offset using Target::tls_offset_for_global.
  bool
  add_global_tls(Symbol* gsym, unsigned int got_type)
  { return add_global_plt(gsym, got_type); }

  // Add an entry for a global symbol to the GOT, and add a dynamic
  // relocation of type R_TYPE for the GOT entry.
  void
  add_global_with_rel(Symbol* gsym, unsigned int got_type,
		      Output_data_reloc_generic* rel_dyn, unsigned int r_type);

  // Add a pair of entries for a global symbol to the GOT, and add
  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
  void
  add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
			   Output_data_reloc_generic* rel_dyn,
			   unsigned int r_type_1, unsigned int r_type_2);

  // Add an entry for a local symbol to the GOT.  This returns true if
  // this is a new GOT entry, false if the symbol already has a GOT
  // entry.
  bool
  add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);

  // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
  // true if this is a new GOT entry, false if the symbol already has a GOT
  // entry.
  bool
  add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
	    uint64_t addend);

  // Like add_local, but use the PLT offset of the local symbol if it
  // has one.
  bool
  add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);

  // Like add_local, but for a TLS symbol where the value will be
  // offset using Target::tls_offset_for_local.
  bool
  add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
  { return add_local_plt(object, sym_index, got_type); }

  // Add an entry for a local symbol to the GOT, and add a dynamic
  // relocation of type R_TYPE for the GOT entry.
  void
  add_local_with_rel(Relobj* object, unsigned int sym_index,
		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
		     unsigned int r_type);

  // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
  // relocation of type R_TYPE for the GOT entry.
  void
  add_local_with_rel(Relobj* object, unsigned int sym_index,
		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
		     unsigned int r_type, uint64_t addend);

  // Add a pair of entries for a local symbol to the GOT, and add
  // a dynamic relocation of type R_TYPE using the section symbol of
  // the output section to which input section SHNDX maps, on the first.
  // The first got entry will have a value of zero, the second the
  // value of the local symbol.
  void
  add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
			  unsigned int shndx, unsigned int got_type,
			  Output_data_reloc_generic* rel_dyn,
			  unsigned int r_type);

  // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
  // a dynamic relocation of type R_TYPE using the section symbol of
  // the output section to which input section SHNDX maps, on the first.
  // The first got entry will have a value of zero, the second the
  // value of the local symbol.
  void
  add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
			  unsigned int shndx, unsigned int got_type,
			  Output_data_reloc_generic* rel_dyn,
			  unsigned int r_type, uint64_t addend);

  // Add a pair of entries for a local symbol to the GOT, and add
  // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
  // The first got entry will have a value of zero, the second the
  // value of the local symbol offset by Target::tls_offset_for_local.
  void
  add_local_tls_pair(Relobj* object, unsigned int sym_index,
		     unsigned int got_type,
		     Output_data_reloc_generic* rel_dyn,
		     unsigned int r_type);

  // Add a constant to the GOT.  This returns the offset of the new
  // entry from the start of the GOT.
  unsigned int
  add_constant(Valtype constant)
  { return this->add_got_entry(Got_entry(constant)); }

  // Add a pair of constants to the GOT.  This returns the offset of
  // the new entry from the start of the GOT.
  unsigned int
  add_constant_pair(Valtype c1, Valtype c2)
  { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }

  // Replace GOT entry I with a new constant.
  void
  replace_constant(unsigned int i, Valtype constant)
  {
    this->replace_got_entry(i, Got_entry(constant));
  }

  // Reserve a slot in the GOT for a local symbol.
  void
  reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
		unsigned int got_type);

  // Reserve a slot in the GOT for a global symbol.
  void
  reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);

 protected:
  // Write out the GOT table.
  void
  do_write(Output_file*);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** GOT")); }

  // Reserve the slot at index I in the GOT.
  virtual void
  do_reserve_slot(unsigned int i)
  { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }

  // Return the number of words in the GOT.
  unsigned int
  num_entries () const
  { return this->entries_.size(); }

  // Return the offset into the GOT of GOT entry I.
  unsigned int
  got_offset(unsigned int i) const
  { return i * (got_size / 8); }

 private:
  // This POD class holds a single GOT entry.
  class Got_entry
  {
   public:
    // Create a zero entry.
    Got_entry()
      : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
	addend_(0)
    { this->u_.constant = 0; }

    // Create a global symbol entry.
    Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
      : local_sym_index_(GSYM_CODE),
	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
    { this->u_.gsym = gsym; }

    // Create a local symbol entry.
    Got_entry(Relobj* object, unsigned int local_sym_index,
	      bool use_plt_or_tls_offset)
      : local_sym_index_(local_sym_index),
	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
    {
      gold_assert(local_sym_index != GSYM_CODE
		  && local_sym_index != CONSTANT_CODE
		  && local_sym_index != RESERVED_CODE
		  && local_sym_index == this->local_sym_index_);
      this->u_.object = object;
    }

    // Create a local symbol entry plus addend.
    Got_entry(Relobj* object, unsigned int local_sym_index,
	bool use_plt_or_tls_offset, uint64_t addend)
      : local_sym_index_(local_sym_index),
	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
    {
      gold_assert(local_sym_index != GSYM_CODE
      && local_sym_index != CONSTANT_CODE
      && local_sym_index != RESERVED_CODE
      && local_sym_index == this->local_sym_index_);
      this->u_.object = object;
    }

    // Create a constant entry.  The constant is a host value--it will
    // be swapped, if necessary, when it is written out.
    explicit Got_entry(Valtype constant)
      : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
    { this->u_.constant = constant; }

    // Write the GOT entry to an output view.
    void
    write(unsigned int got_indx, unsigned char* pov) const;

   private:
    enum
    {
      GSYM_CODE = 0x7fffffff,
      CONSTANT_CODE = 0x7ffffffe,
      RESERVED_CODE = 0x7ffffffd
    };

    union
    {
      // For a local symbol, the object.
      Relobj* object;
      // For a global symbol, the symbol.
      Symbol* gsym;
      // For a constant, the constant.
      Valtype constant;
    } u_;
    // For a local symbol, the local symbol index.  This is GSYM_CODE
    // for a global symbol, or CONSTANT_CODE for a constant.
    unsigned int local_sym_index_ : 31;
    // Whether to use the PLT offset of the symbol if it has one.
    // For TLS symbols, whether to offset the symbol value.
    bool use_plt_or_tls_offset_ : 1;
    // The addend.
    uint64_t addend_;
  };

  typedef std::vector<Got_entry> Got_entries;

  // Create a new GOT entry and return its offset.
  unsigned int
  add_got_entry(Got_entry got_entry);

  // Create a pair of new GOT entries and return the offset of the first.
  unsigned int
  add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);

  // Replace GOT entry I with a new value.
  void
  replace_got_entry(unsigned int i, Got_entry got_entry);

  // Return the offset into the GOT of the last entry added.
  unsigned int
  last_got_offset() const
  { return this->got_offset(this->num_entries() - 1); }

  // Set the size of the section.
  void
  set_got_size()
  { this->set_current_data_size(this->got_offset(this->num_entries())); }

  // The list of GOT entries.
  Got_entries entries_;

  // List of available regions within the section, for incremental
  // update links.
  Free_list free_list_;
};

// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
// section.

class Output_data_dynamic : public Output_section_data
{
 public:
  Output_data_dynamic(Stringpool* pool)
    : Output_section_data(Output_data::default_alignment()),
      entries_(), pool_(pool)
  { }

  // Add a new dynamic entry with a fixed numeric value.
  void
  add_constant(elfcpp::DT tag, unsigned int val)
  { this->add_entry(Dynamic_entry(tag, val)); }

  // Add a new dynamic entry with the address of output data.
  void
  add_section_address(elfcpp::DT tag, const Output_data* od)
  { this->add_entry(Dynamic_entry(tag, od, false)); }

  // Add a new dynamic entry with the address of output data
  // plus a constant offset.
  void
  add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
			  unsigned int offset)
  { this->add_entry(Dynamic_entry(tag, od, offset)); }

  // Add a new dynamic entry with the size of output data.
  void
  add_section_size(elfcpp::DT tag, const Output_data* od)
  { this->add_entry(Dynamic_entry(tag, od, true)); }

  // Add a new dynamic entry with the total size of two output datas.
  void
  add_section_size(elfcpp::DT tag, const Output_data* od,
		   const Output_data* od2)
  { this->add_entry(Dynamic_entry(tag, od, od2)); }

  // Add a new dynamic entry with the address of a symbol.
  void
  add_symbol(elfcpp::DT tag, const Symbol* sym)
  { this->add_entry(Dynamic_entry(tag, sym)); }

  // Add a new dynamic entry with a string.
  void
  add_string(elfcpp::DT tag, const char* str)
  { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }

  void
  add_string(elfcpp::DT tag, const std::string& str)
  { this->add_string(tag, str.c_str()); }

  // Add a new dynamic entry with custom value.
  void
  add_custom(elfcpp::DT tag)
  { this->add_entry(Dynamic_entry(tag)); }

  // Get a dynamic entry offset.
  unsigned int
  get_entry_offset(elfcpp::DT tag) const;

 protected:
  // Adjust the output section to set the entry size.
  void
  do_adjust_output_section(Output_section*);

  // Set the final data size.
  void
  set_final_data_size();

  // Write out the dynamic entries.
  void
  do_write(Output_file*);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** dynamic")); }

 private:
  // This POD class holds a single dynamic entry.
  class Dynamic_entry
  {
   public:
    // Create an entry with a fixed numeric value.
    Dynamic_entry(elfcpp::DT tag, unsigned int val)
      : tag_(tag), offset_(DYNAMIC_NUMBER)
    { this->u_.val = val; }

    // Create an entry with the size or address of a section.
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
      : tag_(tag),
	offset_(section_size
		? DYNAMIC_SECTION_SIZE
		: DYNAMIC_SECTION_ADDRESS)
    {
      this->u_.od = od;
      this->od2 = NULL;
    }

    // Create an entry with the size of two sections.
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
      : tag_(tag),
	offset_(DYNAMIC_SECTION_SIZE)
    {
      this->u_.od = od;
      this->od2 = od2;
    }

    // Create an entry with the address of a section plus a constant offset.
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
      : tag_(tag),
	offset_(offset)
    { this->u_.od = od; }

    // Create an entry with the address of a symbol.
    Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
      : tag_(tag), offset_(DYNAMIC_SYMBOL)
    { this->u_.sym = sym; }

    // Create an entry with a string.
    Dynamic_entry(elfcpp::DT tag, const char* str)
      : tag_(tag), offset_(DYNAMIC_STRING)
    { this->u_.str = str; }

    // Create an entry with a custom value.
    Dynamic_entry(elfcpp::DT tag)
      : tag_(tag), offset_(DYNAMIC_CUSTOM)
    { }

    // Return the tag of this entry.
    elfcpp::DT
    tag() const
    { return this->tag_; }

    // Write the dynamic entry to an output view.
    template<int size, bool big_endian>
    void
    write(unsigned char* pov, const Stringpool*) const;

   private:
    // Classification is encoded in the OFFSET field.
    enum Classification
    {
      // Section address.
      DYNAMIC_SECTION_ADDRESS = 0,
      // Number.
      DYNAMIC_NUMBER = -1U,
      // Section size.
      DYNAMIC_SECTION_SIZE = -2U,
      // Symbol address.
      DYNAMIC_SYMBOL = -3U,
      // String.
      DYNAMIC_STRING = -4U,
      // Custom value.
      DYNAMIC_CUSTOM = -5U
      // Any other value indicates a section address plus OFFSET.
    };

    union
    {
      // For DYNAMIC_NUMBER.
      unsigned int val;
      // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
      const Output_data* od;
      // For DYNAMIC_SYMBOL.
      const Symbol* sym;
      // For DYNAMIC_STRING.
      const char* str;
    } u_;
    // For DYNAMIC_SYMBOL with two sections.
    const Output_data* od2;
    // The dynamic tag.
    elfcpp::DT tag_;
    // The type of entry (Classification) or offset within a section.
    unsigned int offset_;
  };

  // Add an entry to the list.
  void
  add_entry(const Dynamic_entry& entry)
  { this->entries_.push_back(entry); }

  // Sized version of write function.
  template<int size, bool big_endian>
  void
  sized_write(Output_file* of);

  // The type of the list of entries.
  typedef std::vector<Dynamic_entry> Dynamic_entries;

  // The entries.
  Dynamic_entries entries_;
  // The pool used for strings.
  Stringpool* pool_;
};

// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
// which may be required if the object file has more than
// SHN_LORESERVE sections.

class Output_symtab_xindex : public Output_section_data
{
 public:
  Output_symtab_xindex(size_t symcount)
    : Output_section_data(symcount * 4, 4, true),
      entries_()
  { }

  // Add an entry: symbol number SYMNDX has section SHNDX.
  void
  add(unsigned int symndx, unsigned int shndx)
  { this->entries_.push_back(std::make_pair(symndx, shndx)); }

 protected:
  void
  do_write(Output_file*);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** symtab xindex")); }

 private:
  template<bool big_endian>
  void
  endian_do_write(unsigned char*);

  // It is likely that most symbols will not require entries.  Rather
  // than keep a vector for all symbols, we keep pairs of symbol index
  // and section index.
  typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;

  // The entries we need.
  Xindex_entries entries_;
};

// A relaxed input section.
class Output_relaxed_input_section : public Output_section_data_build
{
 public:
  // We would like to call relobj->section_addralign(shndx) to get the
  // alignment but we do not want the constructor to fail.  So callers
  // are repsonsible for ensuring that.
  Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
			       uint64_t addralign)
    : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
  { }

  // Return the Relobj of this relaxed input section.
  Relobj*
  relobj() const
  { return this->relobj_; }

  // Return the section index of this relaxed input section.
  unsigned int
  shndx() const
  { return this->shndx_; }

 protected:
  void
  set_relobj(Relobj* relobj)
  { this->relobj_ = relobj; }

  void
  set_shndx(unsigned int shndx)
  { this->shndx_ = shndx; }

 private:
  Relobj* relobj_;
  unsigned int shndx_;
};

// This class describes properties of merge data sections.  It is used
// as a key type for maps.
class Merge_section_properties
{
 public:
  Merge_section_properties(bool is_string, uint64_t entsize,
			     uint64_t addralign)
    : is_string_(is_string), entsize_(entsize), addralign_(addralign)
  { }

  // Whether this equals to another Merge_section_properties MSP.
  bool
  eq(const Merge_section_properties& msp) const
  {
    return ((this->is_string_ == msp.is_string_)
	    && (this->entsize_ == msp.entsize_)
	    && (this->addralign_ == msp.addralign_));
  }

  // Compute a hash value for this using 64-bit FNV-1a hash.
  size_t
  hash_value() const
  {
    uint64_t h = 14695981039346656037ULL;	// FNV offset basis.
    uint64_t prime = 1099511628211ULL;
    h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
    h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
    h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
    return h;
  }

  // Functors for associative containers.
  struct equal_to
  {
    bool
    operator()(const Merge_section_properties& msp1,
	       const Merge_section_properties& msp2) const
    { return msp1.eq(msp2); }
  };

  struct hash
  {
    size_t
    operator()(const Merge_section_properties& msp) const
    { return msp.hash_value(); }
  };

 private:
  // Whether this merge data section is for strings.
  bool is_string_;
  // Entsize of this merge data section.
  uint64_t entsize_;
  // Address alignment.
  uint64_t addralign_;
};

// This class is used to speed up look up of special input sections in an
// Output_section.

class Output_section_lookup_maps
{
 public:
  Output_section_lookup_maps()
    : is_valid_(true), merge_sections_by_properties_(),
      relaxed_input_sections_by_id_()
  { }

  // Whether the maps are valid.
  bool
  is_valid() const
  { return this->is_valid_; }

  // Invalidate the maps.
  void
  invalidate()
  { this->is_valid_ = false; }

  // Clear the maps.
  void
  clear()
  {
    this->merge_sections_by_properties_.clear();
    this->relaxed_input_sections_by_id_.clear();
    // A cleared map is valid.
    this->is_valid_ = true;
  }

  // Find a merge section by merge section properties.  Return NULL if none
  // is found.
  Output_merge_base*
  find_merge_section(const Merge_section_properties& msp) const
  {
    gold_assert(this->is_valid_);
    Merge_sections_by_properties::const_iterator p =
      this->merge_sections_by_properties_.find(msp);
    return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
  }

  // Add a merge section pointed by POMB with properties MSP.
  void
  add_merge_section(const Merge_section_properties& msp,
		    Output_merge_base* pomb)
  {
    std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
    std::pair<Merge_sections_by_properties::iterator, bool> result =
      this->merge_sections_by_properties_.insert(value);
    gold_assert(result.second);
  }

  // Find a relaxed input section of OBJECT with index SHNDX.
  Output_relaxed_input_section*
  find_relaxed_input_section(const Relobj* object, unsigned int shndx) const
  {
    gold_assert(this->is_valid_);
    Relaxed_input_sections_by_id::const_iterator p =
      this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
    return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
  }

  // Add a relaxed input section pointed by POMB and whose original input
  // section is in OBJECT with index SHNDX.
  void
  add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
			    Output_relaxed_input_section* poris)
  {
    Const_section_id csid(relobj, shndx);
    std::pair<Const_section_id, Output_relaxed_input_section*>
      value(csid, poris);
    std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
      this->relaxed_input_sections_by_id_.insert(value);
    gold_assert(result.second);
  }

 private:
  typedef Unordered_map<Merge_section_properties, Output_merge_base*,
			Merge_section_properties::hash,
			Merge_section_properties::equal_to>
    Merge_sections_by_properties;

  typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
			Const_section_id_hash>
    Relaxed_input_sections_by_id;

  // Whether this is valid
  bool is_valid_;
  // Merge sections by merge section properties.
  Merge_sections_by_properties merge_sections_by_properties_;
  // Relaxed sections by section IDs.
  Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
};

// This abstract base class defines the interface for the
// types of methods used to fill free space left in an output
// section during an incremental link.  These methods are used
// to insert dummy compilation units into debug info so that
// debug info consumers can scan the debug info serially.

class Output_fill
{
 public:
  Output_fill()
    : is_big_endian_(parameters->target().is_big_endian())
  { }

  virtual
  ~Output_fill()
  { }

  // Return the smallest size chunk of free space that can be
  // filled with a dummy compilation unit.
  size_t
  minimum_hole_size() const
  { return this->do_minimum_hole_size(); }

  // Write a fill pattern of length LEN at offset OFF in the file.
  void
  write(Output_file* of, off_t off, size_t len) const
  { this->do_write(of, off, len); }

 protected:
  virtual size_t
  do_minimum_hole_size() const = 0;

  virtual void
  do_write(Output_file* of, off_t off, size_t len) const = 0;

  bool
  is_big_endian() const
  { return this->is_big_endian_; }

 private:
  bool is_big_endian_;
};

// Fill method that introduces a dummy compilation unit in
// a .debug_info or .debug_types section.

class Output_fill_debug_info : public Output_fill
{
 public:
  Output_fill_debug_info(bool is_debug_types)
    : is_debug_types_(is_debug_types)
  { }

 protected:
  virtual size_t
  do_minimum_hole_size() const;

  virtual void
  do_write(Output_file* of, off_t off, size_t len) const;

 private:
  // Version of the header.
  static const int version = 4;
  // True if this is a .debug_types section.
  bool is_debug_types_;
};

// Fill method that introduces a dummy compilation unit in
// a .debug_line section.

class Output_fill_debug_line : public Output_fill
{
 public:
  Output_fill_debug_line()
  { }

 protected:
  virtual size_t
  do_minimum_hole_size() const;

  virtual void
  do_write(Output_file* of, off_t off, size_t len) const;

 private:
  // Version of the header.  We write a DWARF-3 header because it's smaller
  // and many tools have not yet been updated to understand the DWARF-4 header.
  static const int version = 3;
  // Length of the portion of the header that follows the header_length
  // field.  This includes the following fields:
  // minimum_instruction_length, default_is_stmt, line_base, line_range,
  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
  // The standard_opcode_lengths array is 12 bytes long, and the
  // include_directories and filenames fields each contain only a single
  // null byte.
  static const size_t header_length = 19;
};

// An output section.  We don't expect to have too many output
// sections, so we don't bother to do a template on the size.

class Output_section : public Output_data
{
 public:
  // Create an output section, giving the name, type, and flags.
  Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
  virtual ~Output_section();

  // Add a new input section SHNDX, named NAME, with header SHDR, from
  // object OBJECT.  RELOC_SHNDX is the index of a relocation section
  // which applies to this section, or 0 if none, or -1 if more than
  // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
  // in a linker script; in that case we need to keep track of input
  // sections associated with an output section.  Return the offset
  // within the output section.
  template<int size, bool big_endian>
  off_t
  add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
		    unsigned int shndx, const char* name,
		    const elfcpp::Shdr<size, big_endian>& shdr,
		    unsigned int reloc_shndx, bool have_sections_script);

  // Add generated data POSD to this output section.
  void
  add_output_section_data(Output_section_data* posd);

  // Add a relaxed input section PORIS called NAME to this output section
  // with LAYOUT.
  void
  add_relaxed_input_section(Layout* layout,
			    Output_relaxed_input_section* poris,
			    const std::string& name);

  // Return the section name.
  const char*
  name() const
  { return this->name_; }

  // Return the section type.
  elfcpp::Elf_Word
  type() const
  { return this->type_; }

  // Return the section flags.
  elfcpp::Elf_Xword
  flags() const
  { return this->flags_; }

  typedef std::map<Section_id, unsigned int> Section_layout_order;

  void
  update_section_layout(const Section_layout_order* order_map);

  // Update the output section flags based on input section flags.
  void
  update_flags_for_input_section(elfcpp::Elf_Xword flags);

  // Set the output section flags.
  void
  set_flags(elfcpp::Elf_Xword flags)
  { this->flags_ = flags; }

  // Return the entsize field.
  uint64_t
  entsize() const
  { return this->entsize_; }

  // Set the entsize field.
  void
  set_entsize(uint64_t v);

  // Set the load address.
  void
  set_load_address(uint64_t load_address)
  {
    this->load_address_ = load_address;
    this->has_load_address_ = true;
  }

  // Set the link field to the output section index of a section.
  void
  set_link_section(const Output_data* od)
  {
    gold_assert(this->link_ == 0
		&& !this->should_link_to_symtab_
		&& !this->should_link_to_dynsym_);
    this->link_section_ = od;
  }

  // Set the link field to a constant.
  void
  set_link(unsigned int v)
  {
    gold_assert(this->link_section_ == NULL
		&& !this->should_link_to_symtab_
		&& !this->should_link_to_dynsym_);
    this->link_ = v;
  }

  // Record that this section should link to the normal symbol table.
  void
  set_should_link_to_symtab()
  {
    gold_assert(this->link_section_ == NULL
		&& this->link_ == 0
		&& !this->should_link_to_dynsym_);
    this->should_link_to_symtab_ = true;
  }

  // Record that this section should link to the dynamic symbol table.
  void
  set_should_link_to_dynsym()
  {
    gold_assert(this->link_section_ == NULL
		&& this->link_ == 0
		&& !this->should_link_to_symtab_);
    this->should_link_to_dynsym_ = true;
  }

  // Return the info field.
  unsigned int
  info() const
  {
    gold_assert(this->info_section_ == NULL
		&& this->info_symndx_ == NULL);
    return this->info_;
  }

  // Set the info field to the output section index of a section.
  void
  set_info_section(const Output_section* os)
  {
    gold_assert((this->info_section_ == NULL
		 || (this->info_section_ == os
		     && this->info_uses_section_index_))
		&& this->info_symndx_ == NULL
		&& this->info_ == 0);
    this->info_section_ = os;
    this->info_uses_section_index_= true;
  }

  // Set the info field to the symbol table index of a symbol.
  void
  set_info_symndx(const Symbol* sym)
  {
    gold_assert(this->info_section_ == NULL
		&& (this->info_symndx_ == NULL
		    || this->info_symndx_ == sym)
		&& this->info_ == 0);
    this->info_symndx_ = sym;
  }

  // Set the info field to the symbol table index of a section symbol.
  void
  set_info_section_symndx(const Output_section* os)
  {
    gold_assert((this->info_section_ == NULL
		 || (this->info_section_ == os
		     && !this->info_uses_section_index_))
		&& this->info_symndx_ == NULL
		&& this->info_ == 0);
    this->info_section_ = os;
    this->info_uses_section_index_ = false;
  }

  // Set the info field to a constant.
  void
  set_info(unsigned int v)
  {
    gold_assert(this->info_section_ == NULL
		&& this->info_symndx_ == NULL
		&& (this->info_ == 0
		    || this->info_ == v));
    this->info_ = v;
  }

  // Set the addralign field.
  void
  set_addralign(uint64_t v)
  { this->addralign_ = v; }

  void
  checkpoint_set_addralign(uint64_t val)
  {
    if (this->checkpoint_ != NULL)
      this->checkpoint_->set_addralign(val);
  }

  // Whether the output section index has been set.
  bool
  has_out_shndx() const
  { return this->out_shndx_ != -1U; }

  // Indicate that we need a symtab index.
  void
  set_needs_symtab_index()
  { this->needs_symtab_index_ = true; }

  // Return whether we need a symtab index.
  bool
  needs_symtab_index() const
  { return this->needs_symtab_index_; }

  // Get the symtab index.
  unsigned int
  symtab_index() const
  {
    gold_assert(this->symtab_index_ != 0);
    return this->symtab_index_;
  }

  // Set the symtab index.
  void
  set_symtab_index(unsigned int index)
  {
    gold_assert(index != 0);
    this->symtab_index_ = index;
  }

  // Indicate that we need a dynsym index.
  void
  set_needs_dynsym_index()
  { this->needs_dynsym_index_ = true; }

  // Return whether we need a dynsym index.
  bool
  needs_dynsym_index() const
  { return this->needs_dynsym_index_; }

  // Get the dynsym index.
  unsigned int
  dynsym_index() const
  {
    gold_assert(this->dynsym_index_ != 0);
    return this->dynsym_index_;
  }

  // Set the dynsym index.
  void
  set_dynsym_index(unsigned int index)
  {
    gold_assert(index != 0);
    this->dynsym_index_ = index;
  }

  // Sort the attached input sections.
  void
  sort_attached_input_sections();

  // Return whether the input sections sections attachd to this output
  // section may require sorting.  This is used to handle constructor
  // priorities compatibly with GNU ld.
  bool
  may_sort_attached_input_sections() const
  { return this->may_sort_attached_input_sections_; }

  // Record that the input sections attached to this output section
  // may require sorting.
  void
  set_may_sort_attached_input_sections()
  { this->may_sort_attached_input_sections_ = true; }

   // Returns true if input sections must be sorted according to the
  // order in which their name appear in the --section-ordering-file.
  bool
  input_section_order_specified()
  { return this->input_section_order_specified_; }

  // Record that input sections must be sorted as some of their names
  // match the patterns specified through --section-ordering-file.
  void
  set_input_section_order_specified()
  { this->input_section_order_specified_ = true; }

  // Return whether the input sections attached to this output section
  // require sorting.  This is used to handle constructor priorities
  // compatibly with GNU ld.
  bool
  must_sort_attached_input_sections() const
  { return this->must_sort_attached_input_sections_; }

  // Record that the input sections attached to this output section
  // require sorting.
  void
  set_must_sort_attached_input_sections()
  { this->must_sort_attached_input_sections_ = true; }

  // Get the order in which this section appears in the PT_LOAD output
  // segment.
  Output_section_order
  order() const
  { return this->order_; }

  // Set the order for this section.
  void
  set_order(Output_section_order order)
  { this->order_ = order; }

  // Return whether this section holds relro data--data which has
  // dynamic relocations but which may be marked read-only after the
  // dynamic relocations have been completed.
  bool
  is_relro() const
  { return this->is_relro_; }

  // Record that this section holds relro data.
  void
  set_is_relro()
  { this->is_relro_ = true; }

  // Record that this section does not hold relro data.
  void
  clear_is_relro()
  { this->is_relro_ = false; }

  // True if this is a small section: a section which holds small
  // variables.
  bool
  is_small_section() const
  { return this->is_small_section_; }

  // Record that this is a small section.
  void
  set_is_small_section()
  { this->is_small_section_ = true; }

  // True if this is a large section: a section which holds large
  // variables.
  bool
  is_large_section() const
  { return this->is_large_section_; }

  // Record that this is a large section.
  void
  set_is_large_section()
  { this->is_large_section_ = true; }

  // True if this is a large data (not BSS) section.
  bool
  is_large_data_section()
  { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }

  // Return whether this section should be written after all the input
  // sections are complete.
  bool
  after_input_sections() const
  { return this->after_input_sections_; }

  // Record that this section should be written after all the input
  // sections are complete.
  void
  set_after_input_sections()
  { this->after_input_sections_ = true; }

  // Return whether this section requires postprocessing after all
  // relocations have been applied.
  bool
  requires_postprocessing() const
  { return this->requires_postprocessing_; }

  bool
  is_unique_segment() const
  { return this->is_unique_segment_; }

  void
  set_is_unique_segment()
  { this->is_unique_segment_ = true; }

  uint64_t extra_segment_flags() const
  { return this->extra_segment_flags_; }

  void
  set_extra_segment_flags(uint64_t flags)
  { this->extra_segment_flags_ = flags; }

  uint64_t segment_alignment() const
  { return this->segment_alignment_; }

  void
  set_segment_alignment(uint64_t align)
  { this->segment_alignment_ = align; }

  // If a section requires postprocessing, return the buffer to use.
  unsigned char*
  postprocessing_buffer() const
  {
    gold_assert(this->postprocessing_buffer_ != NULL);
    return this->postprocessing_buffer_;
  }

  // If a section requires postprocessing, create the buffer to use.
  void
  create_postprocessing_buffer();

  // If a section requires postprocessing, this is the size of the
  // buffer to which relocations should be applied.
  off_t
  postprocessing_buffer_size() const
  { return this->current_data_size_for_child(); }

  // Modify the section name.  This is only permitted for an
  // unallocated section, and only before the size has been finalized.
  // Otherwise the name will not get into Layout::namepool_.
  void
  set_name(const char* newname)
  {
    gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
    gold_assert(!this->is_data_size_valid());
    this->name_ = newname;
  }

  // Return whether the offset OFFSET in the input section SHNDX in
  // object OBJECT is being included in the link.
  bool
  is_input_address_mapped(const Relobj* object, unsigned int shndx,
			  off_t offset) const;

  // Return the offset within the output section of OFFSET relative to
  // the start of input section SHNDX in object OBJECT.
  section_offset_type
  output_offset(const Relobj* object, unsigned int shndx,
		section_offset_type offset) const;

  // Return the output virtual address of OFFSET relative to the start
  // of input section SHNDX in object OBJECT.
  uint64_t
  output_address(const Relobj* object, unsigned int shndx,
		 off_t offset) const;

  // Look for the merged section for input section SHNDX in object
  // OBJECT.  If found, return true, and set *ADDR to the address of
  // the start of the merged section.  This is not necessary the
  // output offset corresponding to input offset 0 in the section,
  // since the section may be mapped arbitrarily.
  bool
  find_starting_output_address(const Relobj* object, unsigned int shndx,
			       uint64_t* addr) const;

  // Record that this output section was found in the SECTIONS clause
  // of a linker script.
  void
  set_found_in_sections_clause()
  { this->found_in_sections_clause_ = true; }

  // Return whether this output section was found in the SECTIONS
  // clause of a linker script.
  bool
  found_in_sections_clause() const
  { return this->found_in_sections_clause_; }

  // Write the section header into *OPHDR.
  template<int size, bool big_endian>
  void
  write_header(const Layout*, const Stringpool*,
	       elfcpp::Shdr_write<size, big_endian>*) const;

  // The next few calls are for linker script support.

  // In some cases we need to keep a list of the input sections
  // associated with this output section.  We only need the list if we
  // might have to change the offsets of the input section within the
  // output section after we add the input section.  The ordinary
  // input sections will be written out when we process the object
  // file, and as such we don't need to track them here.  We do need
  // to track Output_section_data objects here.  We store instances of
  // this structure in a std::vector, so it must be a POD.  There can
  // be many instances of this structure, so we use a union to save
  // some space.
  class Input_section
  {
   public:
    Input_section()
      : shndx_(0), p2align_(0)
    {
      this->u1_.data_size = 0;
      this->u2_.object = NULL;
    }

    // For an ordinary input section.
    Input_section(Relobj* object, unsigned int shndx, off_t data_size,
		  uint64_t addralign)
      : shndx_(shndx),
	p2align_(ffsll(static_cast<long long>(addralign))),
	section_order_index_(0)
    {
      gold_assert(shndx != OUTPUT_SECTION_CODE
		  && shndx != MERGE_DATA_SECTION_CODE
		  && shndx != MERGE_STRING_SECTION_CODE
		  && shndx != RELAXED_INPUT_SECTION_CODE);
      this->u1_.data_size = data_size;
      this->u2_.object = object;
    }

    // For a non-merge output section.
    Input_section(Output_section_data* posd)
      : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
	section_order_index_(0)
    {
      this->u1_.data_size = 0;
      this->u2_.posd = posd;
    }

    // For a merge section.
    Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
      : shndx_(is_string
	       ? MERGE_STRING_SECTION_CODE
	       : MERGE_DATA_SECTION_CODE),
	p2align_(0),
	section_order_index_(0)
    {
      this->u1_.entsize = entsize;
      this->u2_.posd = posd;
    }

    // For a relaxed input section.
    Input_section(Output_relaxed_input_section* psection)
      : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
	section_order_index_(0)
    {
      this->u1_.data_size = 0;
      this->u2_.poris = psection;
    }

    unsigned int
    section_order_index() const
    {
      return this->section_order_index_;
    }

    void
    set_section_order_index(unsigned int number)
    {
      this->section_order_index_ = number;
    }

    // The required alignment.
    uint64_t
    addralign() const
    {
      if (this->p2align_ != 0)
	return static_cast<uint64_t>(1) << (this->p2align_ - 1);
      else if (!this->is_input_section())
	return this->u2_.posd->addralign();
      else
	return 0;
    }

    // Set the required alignment, which must be either 0 or a power of 2.
    // For input sections that are sub-classes of Output_section_data, a
    // alignment of zero means asking the underlying object for alignment.
    void
    set_addralign(uint64_t addralign)
    {
      if (addralign == 0)
	this->p2align_ = 0;
      else
	{
	  gold_assert((addralign & (addralign - 1)) == 0);
	  this->p2align_ = ffsll(static_cast<long long>(addralign));
	}
    }

    // Return the current required size, without finalization.
    off_t
    current_data_size() const;

    // Return the required size.
    off_t
    data_size() const;

    // Whether this is an input section.
    bool
    is_input_section() const
    {
      return (this->shndx_ != OUTPUT_SECTION_CODE
	      && this->shndx_ != MERGE_DATA_SECTION_CODE
	      && this->shndx_ != MERGE_STRING_SECTION_CODE
	      && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
    }

    // Return whether this is a merge section which matches the
    // parameters.
    bool
    is_merge_section(bool is_string, uint64_t entsize,
		     uint64_t addralign) const
    {
      return (this->shndx_ == (is_string
			       ? MERGE_STRING_SECTION_CODE
			       : MERGE_DATA_SECTION_CODE)
	      && this->u1_.entsize == entsize
	      && this->addralign() == addralign);
    }

    // Return whether this is a merge section for some input section.
    bool
    is_merge_section() const
    {
      return (this->shndx_ == MERGE_DATA_SECTION_CODE
	      || this->shndx_ == MERGE_STRING_SECTION_CODE);
    }

    // Return whether this is a relaxed input section.
    bool
    is_relaxed_input_section() const
    { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }

    // Return whether this is a generic Output_section_data.
    bool
    is_output_section_data() const
    {
      return this->shndx_ == OUTPUT_SECTION_CODE;
    }

    // Return the object for an input section.
    Relobj*
    relobj() const;

    // Return the input section index for an input section.
    unsigned int
    shndx() const;

    // For non-input-sections, return the associated Output_section_data
    // object.
    Output_section_data*
    output_section_data() const
    {
      gold_assert(!this->is_input_section());
      return this->u2_.posd;
    }

    // For a merge section, return the Output_merge_base pointer.
    Output_merge_base*
    output_merge_base() const
    {
      gold_assert(this->is_merge_section());
      return this->u2_.pomb;
    }

    // Return the Output_relaxed_input_section object.
    Output_relaxed_input_section*
    relaxed_input_section() const
    {
      gold_assert(this->is_relaxed_input_section());
      return this->u2_.poris;
    }

    // Set the output section.
    void
    set_output_section(Output_section* os)
    {
      gold_assert(!this->is_input_section());
      Output_section_data* posd =
	this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
      posd->set_output_section(os);
    }

    // Set the address and file offset.  This is called during
    // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
    // the enclosing section.
    void
    set_address_and_file_offset(uint64_t address, off_t file_offset,
				off_t section_file_offset);

    // Reset the address and file offset.
    void
    reset_address_and_file_offset();

    // Finalize the data size.
    void
    finalize_data_size();

    // Add an input section, for SHF_MERGE sections.
    bool
    add_input_section(Relobj* object, unsigned int shndx)
    {
      gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
		  || this->shndx_ == MERGE_STRING_SECTION_CODE);
      return this->u2_.posd->add_input_section(object, shndx);
    }

    // Given an input OBJECT, an input section index SHNDX within that
    // object, and an OFFSET relative to the start of that input
    // section, return whether or not the output offset is known.  If
    // this function returns true, it sets *POUTPUT to the offset in
    // the output section, relative to the start of the input section
    // in the output section.  *POUTPUT may be different from OFFSET
    // for a merged section.
    bool
    output_offset(const Relobj* object, unsigned int shndx,
		  section_offset_type offset,
		  section_offset_type* poutput) const;

    // Write out the data.  This does nothing for an input section.
    void
    write(Output_file*);

    // Write the data to a buffer.  This does nothing for an input
    // section.
    void
    write_to_buffer(unsigned char*);

    // Print to a map file.
    void
    print_to_mapfile(Mapfile*) const;

    // Print statistics about merge sections to stderr.
    void
    print_merge_stats(const char* section_name)
    {
      if (this->shndx_ == MERGE_DATA_SECTION_CODE
	  || this->shndx_ == MERGE_STRING_SECTION_CODE)
	this->u2_.posd->print_merge_stats(section_name);
    }

   private:
    // Code values which appear in shndx_.  If the value is not one of
    // these codes, it is the input section index in the object file.
    enum
    {
      // An Output_section_data.
      OUTPUT_SECTION_CODE = -1U,
      // An Output_section_data for an SHF_MERGE section with
      // SHF_STRINGS not set.
      MERGE_DATA_SECTION_CODE = -2U,
      // An Output_section_data for an SHF_MERGE section with
      // SHF_STRINGS set.
      MERGE_STRING_SECTION_CODE = -3U,
      // An Output_section_data for a relaxed input section.
      RELAXED_INPUT_SECTION_CODE = -4U
    };

    // For an ordinary input section, this is the section index in the
    // input file.  For an Output_section_data, this is
    // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
    // MERGE_STRING_SECTION_CODE.
    unsigned int shndx_;
    // The required alignment, stored as a power of 2.
    unsigned int p2align_;
    union
    {
      // For an ordinary input section, the section size.
      off_t data_size;
      // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
      // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
      // entity size.
      uint64_t entsize;
    } u1_;
    union
    {
      // For an ordinary input section, the object which holds the
      // input section.
      Relobj* object;
      // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
      // MERGE_STRING_SECTION_CODE, the data.
      Output_section_data* posd;
      Output_merge_base* pomb;
      // For RELAXED_INPUT_SECTION_CODE, the data.
      Output_relaxed_input_section* poris;
    } u2_;
    // The line number of the pattern it matches in the --section-ordering-file
    // file.  It is 0 if does not match any pattern.
    unsigned int section_order_index_;
  };

  // Store the list of input sections for this Output_section into the
  // list passed in.  This removes the input sections, leaving only
  // any Output_section_data elements.  This returns the size of those
  // Output_section_data elements.  ADDRESS is the address of this
  // output section.  FILL is the fill value to use, in case there are
  // any spaces between the remaining Output_section_data elements.
  uint64_t
  get_input_sections(uint64_t address, const std::string& fill,
		     std::list<Input_section>*);

  // Add a script input section.  A script input section can either be
  // a plain input section or a sub-class of Output_section_data.
  void
  add_script_input_section(const Input_section& input_section);

  // Set the current size of the output section.
  void
  set_current_data_size(off_t size)
  { this->set_current_data_size_for_child(size); }

  // End of linker script support.

  // Save states before doing section layout.
  // This is used for relaxation.
  void
  save_states();

  // Restore states prior to section layout.
  void
  restore_states();

  // Discard states.
  void
  discard_states();

  // Convert existing input sections to relaxed input sections.
  void
  convert_input_sections_to_relaxed_sections(
      const std::vector<Output_relaxed_input_section*>& sections);

  // Find a relaxed input section to an input section in OBJECT
  // with index SHNDX.  Return NULL if none is found.
  const Output_relaxed_input_section*
  find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;

  // Whether section offsets need adjustment due to relaxation.
  bool
  section_offsets_need_adjustment() const
  { return this->section_offsets_need_adjustment_; }

  // Set section_offsets_need_adjustment to be true.
  void
  set_section_offsets_need_adjustment()
  { this->section_offsets_need_adjustment_ = true; }

  // Set section_offsets_need_adjustment to be false.
  void
  clear_section_offsets_need_adjustment()
  { this->section_offsets_need_adjustment_ = false; }

  // Adjust section offsets of input sections in this.  This is
  // requires if relaxation caused some input sections to change sizes.
  void
  adjust_section_offsets();

  // Whether this is a NOLOAD section.
  bool
  is_noload() const
  { return this->is_noload_; }

  // Set NOLOAD flag.
  void
  set_is_noload()
  { this->is_noload_ = true; }

  // Print merge statistics to stderr.
  void
  print_merge_stats();

  // Set a fixed layout for the section.  Used for incremental update links.
  void
  set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
		   uint64_t sh_addralign);

  // Return TRUE if the section has a fixed layout.
  bool
  has_fixed_layout() const
  { return this->has_fixed_layout_; }

  // Set flag to allow patch space for this section.  Used for full
  // incremental links.
  void
  set_is_patch_space_allowed()
  { this->is_patch_space_allowed_ = true; }

  // Set a fill method to use for free space left in the output section
  // during incremental links.
  void
  set_free_space_fill(Output_fill* free_space_fill)
  {
    this->free_space_fill_ = free_space_fill;
    this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
  }

  // Reserve space within the fixed layout for the section.  Used for
  // incremental update links.
  void
  reserve(uint64_t sh_offset, uint64_t sh_size);

  // Allocate space from the free list for the section.  Used for
  // incremental update links.
  off_t
  allocate(off_t len, uint64_t addralign);

  typedef std::vector<Input_section> Input_section_list;

  // Allow access to the input sections.
  const Input_section_list&
  input_sections() const
  { return this->input_sections_; }

  Input_section_list&
  input_sections()
  { return this->input_sections_; }

 protected:
  // Return the output section--i.e., the object itself.
  Output_section*
  do_output_section()
  { return this; }

  const Output_section*
  do_output_section() const
  { return this; }

  // Return the section index in the output file.
  unsigned int
  do_out_shndx() const
  {
    gold_assert(this->out_shndx_ != -1U);
    return this->out_shndx_;
  }

  // Set the output section index.
  void
  do_set_out_shndx(unsigned int shndx)
  {
    gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
    this->out_shndx_ = shndx;
  }

  // Update the data size of the Output_section.  For a typical
  // Output_section, there is nothing to do, but if there are any
  // Output_section_data objects we need to do a trial layout
  // here.
  virtual void
  update_data_size();

  // Set the final data size of the Output_section.  For a typical
  // Output_section, there is nothing to do, but if there are any
  // Output_section_data objects we need to set their final addresses
  // here.
  virtual void
  set_final_data_size();

  // Reset the address and file offset.
  void
  do_reset_address_and_file_offset();

  // Return true if address and file offset already have reset values. In
  // other words, calling reset_address_and_file_offset will not change them.
  bool
  do_address_and_file_offset_have_reset_values() const;

  // Write the data to the file.  For a typical Output_section, this
  // does nothing: the data is written out by calling Object::Relocate
  // on each input object.  But if there are any Output_section_data
  // objects we do need to write them out here.
  virtual void
  do_write(Output_file*);

  // Return the address alignment--function required by parent class.
  uint64_t
  do_addralign() const
  { return this->addralign_; }

  // Return whether there is a load address.
  bool
  do_has_load_address() const
  { return this->has_load_address_; }

  // Return the load address.
  uint64_t
  do_load_address() const
  {
    gold_assert(this->has_load_address_);
    return this->load_address_;
  }

  // Return whether this is an Output_section.
  bool
  do_is_section() const
  { return true; }

  // Return whether this is a section of the specified type.
  bool
  do_is_section_type(elfcpp::Elf_Word type) const
  { return this->type_ == type; }

  // Return whether the specified section flag is set.
  bool
  do_is_section_flag_set(elfcpp::Elf_Xword flag) const
  { return (this->flags_ & flag) != 0; }

  // Set the TLS offset.  Called only for SHT_TLS sections.
  void
  do_set_tls_offset(uint64_t tls_base);

  // Return the TLS offset, relative to the base of the TLS segment.
  // Valid only for SHT_TLS sections.
  uint64_t
  do_tls_offset() const
  { return this->tls_offset_; }

  // This may be implemented by a child class.
  virtual void
  do_finalize_name(Layout*)
  { }

  // Print to the map file.
  virtual void
  do_print_to_mapfile(Mapfile*) const;

  // Record that this section requires postprocessing after all
  // relocations have been applied.  This is called by a child class.
  void
  set_requires_postprocessing()
  {
    this->requires_postprocessing_ = true;
    this->after_input_sections_ = true;
  }

  // Write all the data of an Output_section into the postprocessing
  // buffer.
  void
  write_to_postprocessing_buffer();

  // Whether this always keeps an input section list
  bool
  always_keeps_input_sections() const
  { return this->always_keeps_input_sections_; }

  // Always keep an input section list.
  void
  set_always_keeps_input_sections()
  {
    gold_assert(this->current_data_size_for_child() == 0);
    this->always_keeps_input_sections_ = true;
  }

 private:
  // We only save enough information to undo the effects of section layout.
  class Checkpoint_output_section
  {
   public:
    Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
			      const Input_section_list& input_sections,
			      off_t first_input_offset,
			      bool attached_input_sections_are_sorted)
      : addralign_(addralign), flags_(flags),
	input_sections_(input_sections),
	input_sections_size_(input_sections_.size()),
	input_sections_copy_(), first_input_offset_(first_input_offset),
	attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
    { }

    virtual
    ~Checkpoint_output_section()
    { }

    // Return the address alignment.
    uint64_t
    addralign() const
    { return this->addralign_; }

    void
    set_addralign(uint64_t val)
    { this->addralign_ = val; }

    // Return the section flags.
    elfcpp::Elf_Xword
    flags() const
    { return this->flags_; }

    // Return a reference to the input section list copy.
    Input_section_list*
    input_sections()
    { return &this->input_sections_copy_; }

    // Return the size of input_sections at the time when checkpoint is
    // taken.
    size_t
    input_sections_size() const
    { return this->input_sections_size_; }

    // Whether input sections are copied.
    bool
    input_sections_saved() const
    { return this->input_sections_copy_.size() == this->input_sections_size_; }

    off_t
    first_input_offset() const
    { return this->first_input_offset_; }

    bool
    attached_input_sections_are_sorted() const
    { return this->attached_input_sections_are_sorted_; }

    // Save input sections.
    void
    save_input_sections()
    {
      this->input_sections_copy_.reserve(this->input_sections_size_);
      this->input_sections_copy_.clear();
      Input_section_list::const_iterator p = this->input_sections_.begin();
      gold_assert(this->input_sections_size_ >= this->input_sections_.size());
      for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
	this->input_sections_copy_.push_back(*p);
    }

   private:
    // The section alignment.
    uint64_t addralign_;
    // The section flags.
    elfcpp::Elf_Xword flags_;
    // Reference to the input sections to be checkpointed.
    const Input_section_list& input_sections_;
    // Size of the checkpointed portion of input_sections_;
    size_t input_sections_size_;
    // Copy of input sections.
    Input_section_list input_sections_copy_;
    // The offset of the first entry in input_sections_.
    off_t first_input_offset_;
    // True if the input sections attached to this output section have
    // already been sorted.
    bool attached_input_sections_are_sorted_;
  };

  // This class is used to sort the input sections.
  class Input_section_sort_entry;

  // This is the sort comparison function for ctors and dtors.
  struct Input_section_sort_compare
  {
    bool
    operator()(const Input_section_sort_entry&,
	       const Input_section_sort_entry&) const;
  };

  // This is the sort comparison function for .init_array and .fini_array.
  struct Input_section_sort_init_fini_compare
  {
    bool
    operator()(const Input_section_sort_entry&,
	       const Input_section_sort_entry&) const;
  };

  // This is the sort comparison function when a section order is specified
  // from an input file.
  struct Input_section_sort_section_order_index_compare
  {
    bool
    operator()(const Input_section_sort_entry&,
	       const Input_section_sort_entry&) const;
  };

  // This is the sort comparison function for .text to sort sections with
  // prefixes .text.{unlikely,exit,startup,hot} before other sections.
  struct Input_section_sort_section_prefix_special_ordering_compare
  {
    bool
    operator()(const Input_section_sort_entry&,
	       const Input_section_sort_entry&) const;
  };

  // This is the sort comparison function for sorting sections by name.
  struct Input_section_sort_section_name_compare
  {
    bool
    operator()(const Input_section_sort_entry&,
	       const Input_section_sort_entry&) const;
  };

  // Fill data.  This is used to fill in data between input sections.
  // It is also used for data statements (BYTE, WORD, etc.) in linker
  // scripts.  When we have to keep track of the input sections, we
  // can use an Output_data_const, but we don't want to have to keep
  // track of input sections just to implement fills.
  class Fill
  {
   public:
    Fill(off_t section_offset, off_t length)
      : section_offset_(section_offset),
	length_(convert_to_section_size_type(length))
    { }

    // Return section offset.
    off_t
    section_offset() const
    { return this->section_offset_; }

    // Return fill length.
    section_size_type
    length() const
    { return this->length_; }

   private:
    // The offset within the output section.
    off_t section_offset_;
    // The length of the space to fill.
    section_size_type length_;
  };

  typedef std::vector<Fill> Fill_list;

  // Map used during relaxation of existing sections.  This map
  // a section id an input section list index.  We assume that
  // Input_section_list is a vector.
  typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;

  // Add a new output section by Input_section.
  void
  add_output_section_data(Input_section*);

  // Add an SHF_MERGE input section.  Returns true if the section was
  // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
  // stores information about the merged input sections.
  bool
  add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
			  uint64_t entsize, uint64_t addralign,
			  bool keeps_input_sections);

  // Add an output SHF_MERGE section POSD to this output section.
  // IS_STRING indicates whether it is a SHF_STRINGS section, and
  // ENTSIZE is the entity size.  This returns the entry added to
  // input_sections_.
  void
  add_output_merge_section(Output_section_data* posd, bool is_string,
			   uint64_t entsize);

  // Find the merge section into which an input section with index SHNDX in
  // OBJECT has been added.  Return NULL if none found.
  const Output_section_data*
  find_merge_section(const Relobj* object, unsigned int shndx) const;

  // Build a relaxation map.
  void
  build_relaxation_map(
      const Input_section_list& input_sections,
      size_t limit,
      Relaxation_map* map) const;

  // Convert input sections in an input section list into relaxed sections.
  void
  convert_input_sections_in_list_to_relaxed_sections(
      const std::vector<Output_relaxed_input_section*>& relaxed_sections,
      const Relaxation_map& map,
      Input_section_list* input_sections);

  // Build the lookup maps for merge and relaxed input sections.
  void
  build_lookup_maps() const;

  // Most of these fields are only valid after layout.

  // The name of the section.  This will point into a Stringpool.
  const char* name_;
  // The section address is in the parent class.
  // The section alignment.
  uint64_t addralign_;
  // The section entry size.
  uint64_t entsize_;
  // The load address.  This is only used when using a linker script
  // with a SECTIONS clause.  The has_load_address_ field indicates
  // whether this field is valid.
  uint64_t load_address_;
  // The file offset is in the parent class.
  // Set the section link field to the index of this section.
  const Output_data* link_section_;
  // If link_section_ is NULL, this is the link field.
  unsigned int link_;
  // Set the section info field to the index of this section.
  const Output_section* info_section_;
  // If info_section_ is NULL, set the info field to the symbol table
  // index of this symbol.
  const Symbol* info_symndx_;
  // If info_section_ and info_symndx_ are NULL, this is the section
  // info field.
  unsigned int info_;
  // The section type.
  const elfcpp::Elf_Word type_;
  // The section flags.
  elfcpp::Elf_Xword flags_;
  // The order of this section in the output segment.
  Output_section_order order_;
  // The section index.
  unsigned int out_shndx_;
  // If there is a STT_SECTION for this output section in the normal
  // symbol table, this is the symbol index.  This starts out as zero.
  // It is initialized in Layout::finalize() to be the index, or -1U
  // if there isn't one.
  unsigned int symtab_index_;
  // If there is a STT_SECTION for this output section in the dynamic
  // symbol table, this is the symbol index.  This starts out as zero.
  // It is initialized in Layout::finalize() to be the index, or -1U
  // if there isn't one.
  unsigned int dynsym_index_;
  // The input sections.  This will be empty in cases where we don't
  // need to keep track of them.
  Input_section_list input_sections_;
  // The offset of the first entry in input_sections_.
  off_t first_input_offset_;
  // The fill data.  This is separate from input_sections_ because we
  // often will need fill sections without needing to keep track of
  // input sections.
  Fill_list fills_;
  // If the section requires postprocessing, this buffer holds the
  // section contents during relocation.
  unsigned char* postprocessing_buffer_;
  // Whether this output section needs a STT_SECTION symbol in the
  // normal symbol table.  This will be true if there is a relocation
  // which needs it.
  bool needs_symtab_index_ : 1;
  // Whether this output section needs a STT_SECTION symbol in the
  // dynamic symbol table.  This will be true if there is a dynamic
  // relocation which needs it.
  bool needs_dynsym_index_ : 1;
  // Whether the link field of this output section should point to the
  // normal symbol table.
  bool should_link_to_symtab_ : 1;
  // Whether the link field of this output section should point to the
  // dynamic symbol table.
  bool should_link_to_dynsym_ : 1;
  // Whether this section should be written after all the input
  // sections are complete.
  bool after_input_sections_ : 1;
  // Whether this section requires post processing after all
  // relocations have been applied.
  bool requires_postprocessing_ : 1;
  // Whether an input section was mapped to this output section
  // because of a SECTIONS clause in a linker script.
  bool found_in_sections_clause_ : 1;
  // Whether this section has an explicitly specified load address.
  bool has_load_address_ : 1;
  // True if the info_section_ field means the section index of the
  // section, false if it means the symbol index of the corresponding
  // section symbol.
  bool info_uses_section_index_ : 1;
  // True if input sections attached to this output section have to be
  // sorted according to a specified order.
  bool input_section_order_specified_ : 1;
  // True if the input sections attached to this output section may
  // need sorting.
  bool may_sort_attached_input_sections_ : 1;
  // True if the input sections attached to this output section must
  // be sorted.
  bool must_sort_attached_input_sections_ : 1;
  // True if the input sections attached to this output section have
  // already been sorted.
  bool attached_input_sections_are_sorted_ : 1;
  // True if this section holds relro data.
  bool is_relro_ : 1;
  // True if this is a small section.
  bool is_small_section_ : 1;
  // True if this is a large section.
  bool is_large_section_ : 1;
  // Whether code-fills are generated at write.
  bool generate_code_fills_at_write_ : 1;
  // Whether the entry size field should be zero.
  bool is_entsize_zero_ : 1;
  // Whether section offsets need adjustment due to relaxation.
  bool section_offsets_need_adjustment_ : 1;
  // Whether this is a NOLOAD section.
  bool is_noload_ : 1;
  // Whether this always keeps input section.
  bool always_keeps_input_sections_ : 1;
  // Whether this section has a fixed layout, for incremental update links.
  bool has_fixed_layout_ : 1;
  // True if we can add patch space to this section.
  bool is_patch_space_allowed_ : 1;
  // True if this output section goes into a unique segment.
  bool is_unique_segment_ : 1;
  // For SHT_TLS sections, the offset of this section relative to the base
  // of the TLS segment.
  uint64_t tls_offset_;
  // Additional segment flags, specified via linker plugin, when mapping some
  // input sections to unique segments.
  uint64_t extra_segment_flags_;
  // Segment alignment specified via linker plugin, when mapping some
  // input sections to unique segments.
  uint64_t segment_alignment_;
  // Saved checkpoint.
  Checkpoint_output_section* checkpoint_;
  // Fast lookup maps for merged and relaxed input sections.
  Output_section_lookup_maps* lookup_maps_;
  // List of available regions within the section, for incremental
  // update links.
  Free_list free_list_;
  // Method for filling chunks of free space.
  Output_fill* free_space_fill_;
  // Amount added as patch space for incremental linking.
  off_t patch_space_;
};

// An output segment.  PT_LOAD segments are built from collections of
// output sections.  Other segments typically point within PT_LOAD
// segments, and are built directly as needed.
//
// NOTE: We want to use the copy constructor for this class.  During
// relaxation, we may try built the segments multiple times.  We do
// that by copying the original segment list before lay-out, doing
// a trial lay-out and roll-back to the saved copied if we need to
// to the lay-out again.

class Output_segment
{
 public:
  // Create an output segment, specifying the type and flags.
  Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);

  // Return the virtual address.
  uint64_t
  vaddr() const
  { return this->vaddr_; }

  // Return the physical address.
  uint64_t
  paddr() const
  { return this->paddr_; }

  // Return the segment type.
  elfcpp::Elf_Word
  type() const
  { return this->type_; }

  // Return the segment flags.
  elfcpp::Elf_Word
  flags() const
  { return this->flags_; }

  // Return the memory size.
  uint64_t
  memsz() const
  { return this->memsz_; }

  // Return the file size.
  off_t
  filesz() const
  { return this->filesz_; }

  // Return the file offset.
  off_t
  offset() const
  { return this->offset_; }

  // Whether this is a segment created to hold large data sections.
  bool
  is_large_data_segment() const
  { return this->is_large_data_segment_; }

  // Record that this is a segment created to hold large data
  // sections.
  void
  set_is_large_data_segment()
  { this->is_large_data_segment_ = true; }

  bool
  is_unique_segment() const
  { return this->is_unique_segment_; }

  // Mark segment as unique, happens when linker plugins request that
  // certain input sections be mapped to unique segments.
  void
  set_is_unique_segment()
  { this->is_unique_segment_ = true; }

  // Return the maximum alignment of the Output_data.
  uint64_t
  maximum_alignment();

  // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
  // the segment flags to use.
  void
  add_output_section_to_load(Layout* layout, Output_section* os,
			     elfcpp::Elf_Word seg_flags);

  // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
  // is the segment flags to use.
  void
  add_output_section_to_nonload(Output_section* os,
				elfcpp::Elf_Word seg_flags);

  // Remove an Output_section from this segment.  It is an error if it
  // is not present.
  void
  remove_output_section(Output_section* os);

  // Add an Output_data (which need not be an Output_section) to the
  // start of this segment.
  void
  add_initial_output_data(Output_data*);

  // Return true if this segment has any sections which hold actual
  // data, rather than being a BSS section.
  bool
  has_any_data_sections() const;

  // Whether this segment has a dynamic relocs.
  bool
  has_dynamic_reloc() const;

  // Return the first section.
  Output_section*
  first_section() const;

  // Return the address of the first section.
  uint64_t
  first_section_load_address() const
  {
    const Output_section* os = this->first_section();
    gold_assert(os != NULL);
    return os->has_load_address() ? os->load_address() : os->address();
  }

  // Return whether the addresses have been set already.
  bool
  are_addresses_set() const
  { return this->are_addresses_set_; }

  // Set the addresses.
  void
  set_addresses(uint64_t vaddr, uint64_t paddr)
  {
    this->vaddr_ = vaddr;
    this->paddr_ = paddr;
    this->are_addresses_set_ = true;
  }

  // Update the flags for the flags of an output section added to this
  // segment.
  void
  update_flags_for_output_section(elfcpp::Elf_Xword flags)
  {
    // The ELF ABI specifies that a PT_TLS segment should always have
    // PF_R as the flags.
    if (this->type() != elfcpp::PT_TLS)
      this->flags_ |= flags;
  }

  // Set the segment flags.  This is only used if we have a PHDRS
  // clause which explicitly specifies the flags.
  void
  set_flags(elfcpp::Elf_Word flags)
  { this->flags_ = flags; }

  // Set the address of the segment to ADDR and the offset to *POFF
  // and set the addresses and offsets of all contained output
  // sections accordingly.  Set the section indexes of all contained
  // output sections starting with *PSHNDX.  If RESET is true, first
  // reset the addresses of the contained sections.  Return the
  // address of the immediately following segment.  Update *POFF and
  // *PSHNDX.  This should only be called for a PT_LOAD segment.
  uint64_t
  set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
			unsigned int* increase_relro, bool* has_relro,
			off_t* poff, unsigned int* pshndx);

  // Set the minimum alignment of this segment.  This may be adjusted
  // upward based on the section alignments.
  void
  set_minimum_p_align(uint64_t align)
  {
    if (align > this->min_p_align_)
      this->min_p_align_ = align;
  }

  // Set the memory size of this segment.
  void
  set_size(uint64_t size)
  {
    this->memsz_ = size;
  }

  // Set the offset of this segment based on the section.  This should
  // only be called for a non-PT_LOAD segment.
  void
  set_offset(unsigned int increase);

  // Set the TLS offsets of the sections contained in the PT_TLS segment.
  void
  set_tls_offsets();

  // Return the number of output sections.
  unsigned int
  output_section_count() const;

  // Return the section attached to the list segment with the lowest
  // load address.  This is used when handling a PHDRS clause in a
  // linker script.
  Output_section*
  section_with_lowest_load_address() const;

  // Write the segment header into *OPHDR.
  template<int size, bool big_endian>
  void
  write_header(elfcpp::Phdr_write<size, big_endian>*);

  // Write the section headers of associated sections into V.
  template<int size, bool big_endian>
  unsigned char*
  write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
			unsigned int* pshndx) const;

  // Print the output sections in the map file.
  void
  print_sections_to_mapfile(Mapfile*) const;

 private:
  typedef std::vector<Output_data*> Output_data_list;

  // Find the maximum alignment in an Output_data_list.
  static uint64_t
  maximum_alignment_list(const Output_data_list*);

  // Return whether the first data section is a relro section.
  bool
  is_first_section_relro() const;

  // Set the section addresses in an Output_data_list.
  uint64_t
  set_section_list_addresses(Layout*, bool reset, Output_data_list*,
			     uint64_t addr, off_t* poff, off_t* fpoff,
			     unsigned int* pshndx, bool* in_tls);

  // Return the number of Output_sections in an Output_data_list.
  unsigned int
  output_section_count_list(const Output_data_list*) const;

  // Return whether an Output_data_list has a dynamic reloc.
  bool
  has_dynamic_reloc_list(const Output_data_list*) const;

  // Find the section with the lowest load address in an
  // Output_data_list.
  void
  lowest_load_address_in_list(const Output_data_list* pdl,
			      Output_section** found,
			      uint64_t* found_lma) const;

  // Find the first and last entries by address.
  void
  find_first_and_last_list(const Output_data_list* pdl,
			   const Output_data** pfirst,
			   const Output_data** plast) const;

  // Write the section headers in the list into V.
  template<int size, bool big_endian>
  unsigned char*
  write_section_headers_list(const Layout*, const Stringpool*,
			     const Output_data_list*, unsigned char* v,
			     unsigned int* pshdx) const;

  // Print a section list to the mapfile.
  void
  print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;

  // NOTE: We want to use the copy constructor.  Currently, shallow copy
  // works for us so we do not need to write our own copy constructor.

  // The list of output data attached to this segment.
  Output_data_list output_lists_[ORDER_MAX];
  // The segment virtual address.
  uint64_t vaddr_;
  // The segment physical address.
  uint64_t paddr_;
  // The size of the segment in memory.
  uint64_t memsz_;
  // The maximum section alignment.  The is_max_align_known_ field
  // indicates whether this has been finalized.
  uint64_t max_align_;
  // The required minimum value for the p_align field.  This is used
  // for PT_LOAD segments.  Note that this does not mean that
  // addresses should be aligned to this value; it means the p_paddr
  // and p_vaddr fields must be congruent modulo this value.  For
  // non-PT_LOAD segments, the dynamic linker works more efficiently
  // if the p_align field has the more conventional value, although it
  // can align as needed.
  uint64_t min_p_align_;
  // The offset of the segment data within the file.
  off_t offset_;
  // The size of the segment data in the file.
  off_t filesz_;
  // The segment type;
  elfcpp::Elf_Word type_;
  // The segment flags.
  elfcpp::Elf_Word flags_;
  // Whether we have finalized max_align_.
  bool is_max_align_known_ : 1;
  // Whether vaddr and paddr were set by a linker script.
  bool are_addresses_set_ : 1;
  // Whether this segment holds large data sections.
  bool is_large_data_segment_ : 1;
  // Whether this was marked as a unique segment via a linker plugin.
  bool is_unique_segment_ : 1;
};

} // End namespace gold.

#endif // !defined(GOLD_OUTPUT_H)