File: target-reloc.h

package info (click to toggle)
binutils 2.28-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 271,848 kB
  • sloc: ansic: 1,419,727; asm: 623,424; cpp: 125,042; exp: 64,226; makefile: 56,536; sh: 21,234; lisp: 15,206; yacc: 14,889; perl: 2,111; ada: 1,681; lex: 1,645; pascal: 1,438; cs: 879; sed: 195; python: 154; xml: 95; awk: 25
file content (946 lines) | stat: -rw-r--r-- 31,514 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
// target-reloc.h -- target specific relocation support  -*- C++ -*-

// Copyright (C) 2006-2017 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_TARGET_RELOC_H
#define GOLD_TARGET_RELOC_H

#include "elfcpp.h"
#include "symtab.h"
#include "object.h"
#include "reloc.h"
#include "reloc-types.h"

namespace gold
{

// This function implements the generic part of reloc scanning.  The
// template parameter Scan must be a class type which provides two
// functions: local() and global().  Those functions implement the
// machine specific part of scanning.  We do it this way to
// avoid making a function call for each relocation, and to avoid
// repeating the generic code for each target.

template<int size, bool big_endian, typename Target_type,
	 typename Scan, typename Classify_reloc>
inline void
scan_relocs(
    Symbol_table* symtab,
    Layout* layout,
    Target_type* target,
    Sized_relobj_file<size, big_endian>* object,
    unsigned int data_shndx,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_count,
    const unsigned char* plocal_syms)
{
  typedef typename Classify_reloc::Reltype Reltype;
  const int reloc_size = Classify_reloc::reloc_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Scan scan;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      if (needs_special_offset_handling
	  && !output_section->is_input_address_mapped(object, data_shndx,
						      reloc.get_r_offset()))
	continue;

      unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
      unsigned int r_type = Classify_reloc::get_r_type(&reloc);

      if (r_sym < local_count)
	{
	  gold_assert(plocal_syms != NULL);
	  typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
						      + r_sym * sym_size);
	  unsigned int shndx = lsym.get_st_shndx();
	  bool is_ordinary;
	  shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
	  // If RELOC is a relocation against a local symbol in a
	  // section we are discarding then we can ignore it.  It will
	  // eventually become a reloc against the value zero.
	  //
	  // FIXME: We should issue a warning if this is an
	  // allocated section; is this the best place to do it?
	  //
	  // FIXME: The old GNU linker would in some cases look
	  // for the linkonce section which caused this section to
	  // be discarded, and, if the other section was the same
	  // size, change the reloc to refer to the other section.
	  // That seems risky and weird to me, and I don't know of
	  // any case where it is actually required.
	  bool is_discarded = (is_ordinary
			       && shndx != elfcpp::SHN_UNDEF
			       && !object->is_section_included(shndx)
			       && !symtab->is_section_folded(object, shndx));
	  scan.local(symtab, layout, target, object, data_shndx,
		     output_section, reloc, r_type, lsym, is_discarded);
	}
      else
	{
	  Symbol* gsym = object->global_symbol(r_sym);
	  gold_assert(gsym != NULL);
	  if (gsym->is_forwarder())
	    gsym = symtab->resolve_forwards(gsym);

	  scan.global(symtab, layout, target, object, data_shndx,
		      output_section, reloc, r_type, gsym);
	}
    }
}

// Behavior for relocations to discarded comdat sections.

enum Comdat_behavior
{
  CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
  CB_PRETEND,        // Attempt to map to the corresponding kept section.
  CB_IGNORE,         // Ignore the relocation.
  CB_WARNING         // Print a warning.
};

class Default_comdat_behavior
{
 public:
  // Decide what the linker should do for relocations that refer to
  // discarded comdat sections.  This decision is based on the name of
  // the section being relocated.

  inline Comdat_behavior
  get(const char* name)
  {
    if (Layout::is_debug_info_section(name))
      return CB_PRETEND;
    if (strcmp(name, ".eh_frame") == 0
	|| strcmp(name, ".gcc_except_table") == 0)
      return CB_IGNORE;
    return CB_WARNING;
  }
};

// Give an error for a symbol with non-default visibility which is not
// defined locally.

inline void
visibility_error(const Symbol* sym)
{
  const char* v;
  switch (sym->visibility())
    {
    case elfcpp::STV_INTERNAL:
      v = _("internal");
      break;
    case elfcpp::STV_HIDDEN:
      v = _("hidden");
      break;
    case elfcpp::STV_PROTECTED:
      v = _("protected");
      break;
    default:
      gold_unreachable();
    }
  gold_error(_("%s symbol '%s' is not defined locally"),
	     v, sym->name());
}

// Return true if we are should issue an error saying that SYM is an
// undefined symbol.  This is called if there is a relocation against
// SYM.

inline bool
issue_undefined_symbol_error(const Symbol* sym)
{
  // We only report global symbols.
  if (sym == NULL)
    return false;

  // We only report undefined symbols.
  if (!sym->is_undefined() && !sym->is_placeholder())
    return false;

  // We don't report weak symbols.
  if (sym->is_weak_undefined())
    return false;

  // We don't report symbols defined in discarded sections,
  // unless they're placeholder symbols that should have been
  // provided by a plugin.
  if (sym->is_defined_in_discarded_section() && !sym->is_placeholder())
    return false;

  // If the target defines this symbol, don't report it here.
  if (parameters->target().is_defined_by_abi(sym))
    return false;

  // See if we've been told to ignore whether this symbol is
  // undefined.
  const char* const u = parameters->options().unresolved_symbols();
  if (u != NULL)
    {
      if (strcmp(u, "ignore-all") == 0)
	return false;
      if (strcmp(u, "report-all") == 0)
	return true;
      if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
	return false;
      if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
	return false;
    }

  // If the symbol is hidden, report it.
  if (sym->visibility() == elfcpp::STV_HIDDEN)
    return true;

  // When creating a shared library, only report unresolved symbols if
  // -z defs was used.
  if (parameters->options().shared() && !parameters->options().defs())
    return false;

  // Otherwise issue a warning.
  return true;
}

// This function implements the generic part of relocation processing.
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// specific part of a relocation.

// The template parameter Relocate_comdat_behavior is a class type
// which provides a single function, get(), which determines what the
// linker should do for relocations that refer to discarded comdat
// sections.

// SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
// the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
// RELOCATE implements operator() to do a relocation.

// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// of relocs.  OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.

// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size.  These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.

// RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
// not NULL, it is a vector indexed by relocation index.  If that
// entry is not NULL, it points to a global symbol which used as the
// symbol for the relocation, ignoring the symbol index in the
// relocation.

template<int size, bool big_endian, typename Target_type,
	 typename Relocate,
	 typename Relocate_comdat_behavior,
	 typename Classify_reloc>
inline void
relocate_section(
    const Relocate_info<size, big_endian>* relinfo,
    Target_type* target,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    const Reloc_symbol_changes* reloc_symbol_changes)
{
  typedef typename Classify_reloc::Reltype Reltype;
  const int reloc_size = Classify_reloc::reloc_size;
  Relocate relocate;
  Relocate_comdat_behavior relocate_comdat_behavior;

  Sized_relobj_file<size, big_endian>* object = relinfo->object;
  unsigned int local_count = object->local_symbol_count();

  Comdat_behavior comdat_behavior = CB_UNDETERMINED;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      section_offset_type offset =
	convert_to_section_size_type(reloc.get_r_offset());

      if (needs_special_offset_handling)
	{
	  offset = output_section->output_offset(relinfo->object,
						 relinfo->data_shndx,
						 offset);
	  if (offset == -1)
	    continue;
	}

      unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);

      const Sized_symbol<size>* sym;

      Symbol_value<size> symval;
      const Symbol_value<size> *psymval;
      bool is_defined_in_discarded_section;
      unsigned int shndx;
      if (r_sym < local_count
	  && (reloc_symbol_changes == NULL
	      || (*reloc_symbol_changes)[i] == NULL))
	{
	  sym = NULL;
	  psymval = object->local_symbol(r_sym);

          // If the local symbol belongs to a section we are discarding,
          // and that section is a debug section, try to find the
          // corresponding kept section and map this symbol to its
          // counterpart in the kept section.  The symbol must not
          // correspond to a section we are folding.
	  bool is_ordinary;
	  shndx = psymval->input_shndx(&is_ordinary);
	  is_defined_in_discarded_section =
	    (is_ordinary
	     && shndx != elfcpp::SHN_UNDEF
	     && !object->is_section_included(shndx)
	     && !relinfo->symtab->is_section_folded(object, shndx));
	}
      else
	{
	  const Symbol* gsym;
	  if (reloc_symbol_changes != NULL
	      && (*reloc_symbol_changes)[i] != NULL)
	    gsym = (*reloc_symbol_changes)[i];
	  else
	    {
	      gsym = object->global_symbol(r_sym);
	      gold_assert(gsym != NULL);
	      if (gsym->is_forwarder())
		gsym = relinfo->symtab->resolve_forwards(gsym);
	    }

	  sym = static_cast<const Sized_symbol<size>*>(gsym);
	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
	    symval.set_output_symtab_index(sym->symtab_index());
	  else
	    symval.set_no_output_symtab_entry();
	  symval.set_output_value(sym->value());
	  if (gsym->type() == elfcpp::STT_TLS)
	    symval.set_is_tls_symbol();
	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
	    symval.set_is_ifunc_symbol();
	  psymval = &symval;

	  is_defined_in_discarded_section =
	    (gsym->is_defined_in_discarded_section()
	     && gsym->is_undefined());
	  shndx = 0;
	}

      Symbol_value<size> symval2;
      if (is_defined_in_discarded_section)
	{
	  if (comdat_behavior == CB_UNDETERMINED)
	    {
	      std::string name = object->section_name(relinfo->data_shndx);
	      comdat_behavior = relocate_comdat_behavior.get(name.c_str());
	    }
	  if (comdat_behavior == CB_PRETEND)
	    {
	      // FIXME: This case does not work for global symbols.
	      // We have no place to store the original section index.
	      // Fortunately this does not matter for comdat sections,
	      // only for sections explicitly discarded by a linker
	      // script.
	      bool found;
	      typename elfcpp::Elf_types<size>::Elf_Addr value =
		object->map_to_kept_section(shndx, &found);
	      if (found)
		symval2.set_output_value(value + psymval->input_value());
	      else
		symval2.set_output_value(0);
	    }
	  else
	    {
	      if (comdat_behavior == CB_WARNING)
		gold_warning_at_location(relinfo, i, offset,
					 _("relocation refers to discarded "
					   "section"));
	      symval2.set_output_value(0);
	    }
	  symval2.set_no_output_symtab_entry();
	  psymval = &symval2;
	}

      // If OFFSET is out of range, still let the target decide to
      // ignore the relocation.  Pass in NULL as the VIEW argument so
      // that it can return quickly without trashing an invalid memory
      // address.
      unsigned char *v = view + offset;
      if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
	v = NULL;

      if (!relocate.relocate(relinfo, Classify_reloc::sh_type, target,
			     output_section, i, prelocs, sym, psymval,
			     v, view_address + offset, view_size))
	continue;

      if (v == NULL)
	{
	  gold_error_at_location(relinfo, i, offset,
				 _("reloc has bad offset %zu"),
				 static_cast<size_t>(offset));
	  continue;
	}

      if (issue_undefined_symbol_error(sym))
	gold_undefined_symbol_at_location(sym, relinfo, i, offset);
      else if (sym != NULL
	       && sym->visibility() != elfcpp::STV_DEFAULT
	       && (sym->is_strong_undefined() || sym->is_from_dynobj()))
	visibility_error(sym);

      if (sym != NULL && sym->has_warning())
	relinfo->symtab->issue_warning(sym, relinfo, i, offset);
    }
}

// Apply an incremental relocation.

template<int size, bool big_endian, typename Target_type,
	 typename Relocate>
void
apply_relocation(const Relocate_info<size, big_endian>* relinfo,
		 Target_type* target,
		 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
		 unsigned int r_type,
		 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
		 const Symbol* gsym,
		 unsigned char* view,
		 typename elfcpp::Elf_types<size>::Elf_Addr address,
		 section_size_type view_size)
{
  // Construct the ELF relocation in a temporary buffer.
  const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
  unsigned char relbuf[reloc_size];
  elfcpp::Rela_write<size, big_endian> orel(relbuf);
  orel.put_r_offset(r_offset);
  orel.put_r_info(elfcpp::elf_r_info<size>(0, r_type));
  orel.put_r_addend(r_addend);

  // Setup a Symbol_value for the global symbol.
  const Sized_symbol<size>* sym = static_cast<const Sized_symbol<size>*>(gsym);
  Symbol_value<size> symval;
  gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
  symval.set_output_symtab_index(sym->symtab_index());
  symval.set_output_value(sym->value());
  if (gsym->type() == elfcpp::STT_TLS)
    symval.set_is_tls_symbol();
  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
    symval.set_is_ifunc_symbol();

  Relocate relocate;
  relocate.relocate(relinfo, elfcpp::SHT_RELA, target, NULL,
		    -1U, relbuf, sym, &symval,
		    view + r_offset, address + r_offset, view_size);
}

// A class for inquiring about properties of a relocation,
// used while scanning relocs during a relocatable link and
// garbage collection. This class may be used as the default
// for SHT_RELA targets, but SHT_REL targets must implement
// a derived class that overrides get_size_for_reloc.
// The MIPS-64 target also needs to override the methods
// for accessing the r_sym and r_type fields of a relocation,
// due to its non-standard use of the r_info field.

template<int sh_type_, int size, bool big_endian>
class Default_classify_reloc
{
 public:
  typedef typename Reloc_types<sh_type_, size, big_endian>::Reloc
      Reltype;
  typedef typename Reloc_types<sh_type_, size, big_endian>::Reloc_write
      Reltype_write;
  static const int reloc_size =
      Reloc_types<sh_type_, size, big_endian>::reloc_size;
  static const int sh_type = sh_type_;

  // Return the symbol referred to by the relocation.
  static inline unsigned int
  get_r_sym(const Reltype* reloc)
  { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }

  // Return the type of the relocation.
  static inline unsigned int
  get_r_type(const Reltype* reloc)
  { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }

  // Return the explicit addend of the relocation (return 0 for SHT_REL).
  static inline typename elfcpp::Elf_types<size>::Elf_Swxword
  get_r_addend(const Reltype* reloc)
  { return Reloc_types<sh_type_, size, big_endian>::get_reloc_addend(reloc); }

  // Write the r_info field to a new reloc, using the r_info field from
  // the original reloc, replacing the r_sym field with R_SYM.
  static inline void
  put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
  {
    unsigned int r_type = elfcpp::elf_r_type<size>(reloc->get_r_info());
    new_reloc->put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
  }

  // Write the r_addend field to a new reloc.
  static inline void
  put_r_addend(Reltype_write* to,
	       typename elfcpp::Elf_types<size>::Elf_Swxword addend)
  { Reloc_types<sh_type_, size, big_endian>::set_reloc_addend(to, addend); }

  // Return the size of the addend of the relocation (only used for SHT_REL).
  static unsigned int
  get_size_for_reloc(unsigned int, Relobj*)
  {
    gold_unreachable();
    return 0;
  }
};

// This class may be used as a typical class for the
// Scan_relocatable_reloc parameter to scan_relocatable_relocs.
// This class is intended to capture the most typical target behaviour,
// while still permitting targets to define their own independent class
// for Scan_relocatable_reloc.

template<typename Classify_reloc>
class Default_scan_relocatable_relocs
{
 public:
  typedef typename Classify_reloc::Reltype Reltype;
  static const int reloc_size = Classify_reloc::reloc_size;
  static const int sh_type = Classify_reloc::sh_type;

  // Return the symbol referred to by the relocation.
  static inline unsigned int
  get_r_sym(const Reltype* reloc)
  { return Classify_reloc::get_r_sym(reloc); }

  // Return the type of the relocation.
  static inline unsigned int
  get_r_type(const Reltype* reloc)
  { return Classify_reloc::get_r_type(reloc); }

  // Return the strategy to use for a local symbol which is not a
  // section symbol, given the relocation type.
  inline Relocatable_relocs::Reloc_strategy
  local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
  {
    // We assume that relocation type 0 is NONE.  Targets which are
    // different must override.
    if (r_type == 0 && r_sym == 0)
      return Relocatable_relocs::RELOC_DISCARD;
    return Relocatable_relocs::RELOC_COPY;
  }

  // Return the strategy to use for a local symbol which is a section
  // symbol, given the relocation type.
  inline Relocatable_relocs::Reloc_strategy
  local_section_strategy(unsigned int r_type, Relobj* object)
  {
    if (sh_type == elfcpp::SHT_RELA)
      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
    else
      {
	switch (Classify_reloc::get_size_for_reloc(r_type, object))
	  {
	  case 0:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
	  case 1:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
	  case 2:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
	  case 4:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
	  case 8:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
	  default:
	    gold_unreachable();
	  }
      }
  }

  // Return the strategy to use for a global symbol, given the
  // relocation type, the object, and the symbol index.
  inline Relocatable_relocs::Reloc_strategy
  global_strategy(unsigned int, Relobj*, unsigned int)
  { return Relocatable_relocs::RELOC_COPY; }
};

// This is a strategy class used with scan_relocatable_relocs
// and --emit-relocs.

template<typename Classify_reloc>
class Default_emit_relocs_strategy
{
 public:
  typedef typename Classify_reloc::Reltype Reltype;
  static const int reloc_size = Classify_reloc::reloc_size;
  static const int sh_type = Classify_reloc::sh_type;

  // Return the symbol referred to by the relocation.
  static inline unsigned int
  get_r_sym(const Reltype* reloc)
  { return Classify_reloc::get_r_sym(reloc); }

  // Return the type of the relocation.
  static inline unsigned int
  get_r_type(const Reltype* reloc)
  { return Classify_reloc::get_r_type(reloc); }

  // A local non-section symbol.
  inline Relocatable_relocs::Reloc_strategy
  local_non_section_strategy(unsigned int, Relobj*, unsigned int)
  { return Relocatable_relocs::RELOC_COPY; }

  // A local section symbol.
  inline Relocatable_relocs::Reloc_strategy
  local_section_strategy(unsigned int, Relobj*)
  {
    if (sh_type == elfcpp::SHT_RELA)
      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
    else
      {
	// The addend is stored in the section contents.  Since this
	// is not a relocatable link, we are going to apply the
	// relocation contents to the section as usual.  This means
	// that we have no way to record the original addend.  If the
	// original addend is not zero, there is basically no way for
	// the user to handle this correctly.  Caveat emptor.
	return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
      }
  }

  // A global symbol.
  inline Relocatable_relocs::Reloc_strategy
  global_strategy(unsigned int, Relobj*, unsigned int)
  { return Relocatable_relocs::RELOC_COPY; }
};

// Scan relocs during a relocatable link.  This is a default
// definition which should work for most targets.
// Scan_relocatable_reloc must name a class type which provides three
// functions which return a Relocatable_relocs::Reloc_strategy code:
// global_strategy, local_non_section_strategy, and
// local_section_strategy.  Most targets should be able to use
// Default_scan_relocatable_relocs as this class.

template<int size, bool big_endian, typename Scan_relocatable_reloc>
void
scan_relocatable_relocs(
    Symbol_table*,
    Layout*,
    Sized_relobj_file<size, big_endian>* object,
    unsigned int data_shndx,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    const unsigned char* plocal_syms,
    Relocatable_relocs* rr)
{
  typedef typename Scan_relocatable_reloc::Reltype Reltype;
  const int reloc_size = Scan_relocatable_reloc::reloc_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Scan_relocatable_reloc scan;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      Relocatable_relocs::Reloc_strategy strategy;

      if (needs_special_offset_handling
	  && !output_section->is_input_address_mapped(object, data_shndx,
						      reloc.get_r_offset()))
	strategy = Relocatable_relocs::RELOC_DISCARD;
      else
	{
	  const unsigned int r_sym = Scan_relocatable_reloc::get_r_sym(&reloc);
	  const unsigned int r_type =
	      Scan_relocatable_reloc::get_r_type(&reloc);

	  if (r_sym >= local_symbol_count)
	    strategy = scan.global_strategy(r_type, object, r_sym);
	  else
	    {
	      gold_assert(plocal_syms != NULL);
	      typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
							  + r_sym * sym_size);
	      unsigned int shndx = lsym.get_st_shndx();
	      bool is_ordinary;
	      shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
	      if (is_ordinary
		  && shndx != elfcpp::SHN_UNDEF
		  && !object->is_section_included(shndx))
		{
		  // RELOC is a relocation against a local symbol
		  // defined in a section we are discarding.  Discard
		  // the reloc.  FIXME: Should we issue a warning?
		  strategy = Relocatable_relocs::RELOC_DISCARD;
		}
	      else if (lsym.get_st_type() != elfcpp::STT_SECTION)
		strategy = scan.local_non_section_strategy(r_type, object,
							   r_sym);
	      else
		{
		  strategy = scan.local_section_strategy(r_type, object);
		  if (strategy != Relocatable_relocs::RELOC_DISCARD)
                    object->output_section(shndx)->set_needs_symtab_index();
		}

	      if (strategy == Relocatable_relocs::RELOC_COPY)
		object->set_must_have_output_symtab_entry(r_sym);
	    }
	}

      rr->set_next_reloc_strategy(strategy);
    }
}

// Relocate relocs.  Called for a relocatable link, and for --emit-relocs.
// This is a default definition which should work for most targets.

template<int size, bool big_endian, typename Classify_reloc>
void
relocate_relocs(
    const Relocate_info<size, big_endian>* relinfo,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename Classify_reloc::Reltype Reltype;
  typedef typename Classify_reloc::Reltype_write Reltype_write;
  const int reloc_size = Classify_reloc::reloc_size;
  const Address invalid_address = static_cast<Address>(0) - 1;

  Sized_relobj_file<size, big_endian>* const object = relinfo->object;
  const unsigned int local_count = object->local_symbol_count();

  unsigned char* pwrite = reloc_view;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
      if (strategy == Relocatable_relocs::RELOC_DISCARD)
	continue;

      if (strategy == Relocatable_relocs::RELOC_SPECIAL)
	{
	  // Target wants to handle this relocation.
	  Sized_target<size, big_endian>* target =
	    parameters->sized_target<size, big_endian>();
	  target->relocate_special_relocatable(relinfo, Classify_reloc::sh_type,
					       prelocs, i, output_section,
					       offset_in_output_section,
					       view, view_address,
					       view_size, pwrite);
	  pwrite += reloc_size;
	  continue;
	}
      Reltype reloc(prelocs);
      Reltype_write reloc_write(pwrite);

      const unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);

      // Get the new symbol index.

      Output_section* os = NULL;
      unsigned int new_symndx;
      if (r_sym < local_count)
	{
	  switch (strategy)
	    {
	    case Relocatable_relocs::RELOC_COPY:
	      if (r_sym == 0)
		new_symndx = 0;
	      else
		{
		  new_symndx = object->symtab_index(r_sym);
		  gold_assert(new_symndx != -1U);
		}
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
	      {
		// We are adjusting a section symbol.  We need to find
		// the symbol table index of the section symbol for
		// the output section corresponding to input section
		// in which this symbol is defined.
		gold_assert(r_sym < local_count);
		bool is_ordinary;
		unsigned int shndx =
		  object->local_symbol_input_shndx(r_sym, &is_ordinary);
		gold_assert(is_ordinary);
		os = object->output_section(shndx);
		gold_assert(os != NULL);
		gold_assert(os->needs_symtab_index());
		new_symndx = os->symtab_index();
	      }
	      break;

	    default:
	      gold_unreachable();
	    }
	}
      else
	{
	  const Symbol* gsym = object->global_symbol(r_sym);
	  gold_assert(gsym != NULL);
	  if (gsym->is_forwarder())
	    gsym = relinfo->symtab->resolve_forwards(gsym);

	  gold_assert(gsym->has_symtab_index());
	  new_symndx = gsym->symtab_index();
	}

      // Get the new offset--the location in the output section where
      // this relocation should be applied.

      Address offset = reloc.get_r_offset();
      Address new_offset;
      if (offset_in_output_section != invalid_address)
	new_offset = offset + offset_in_output_section;
      else
	{
          section_offset_type sot_offset =
              convert_types<section_offset_type, Address>(offset);
	  section_offset_type new_sot_offset =
              output_section->output_offset(object, relinfo->data_shndx,
                                            sot_offset);
	  gold_assert(new_sot_offset != -1);
          new_offset = new_sot_offset;
	}

      // In an object file, r_offset is an offset within the section.
      // In an executable or dynamic object, generated by
      // --emit-relocs, r_offset is an absolute address.
      if (!parameters->options().relocatable())
	{
	  new_offset += view_address;
	  if (offset_in_output_section != invalid_address)
	    new_offset -= offset_in_output_section;
	}

      reloc_write.put_r_offset(new_offset);
      Classify_reloc::put_r_info(&reloc_write, &reloc, new_symndx);

      // Handle the reloc addend based on the strategy.

      if (strategy == Relocatable_relocs::RELOC_COPY)
	{
	  if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
	    Classify_reloc::put_r_addend(&reloc_write,
					 Classify_reloc::get_r_addend(&reloc));
	}
      else
	{
	  // The relocation uses a section symbol in the input file.
	  // We are adjusting it to use a section symbol in the output
	  // file.  The input section symbol refers to some address in
	  // the input section.  We need the relocation in the output
	  // file to refer to that same address.  This adjustment to
	  // the addend is the same calculation we use for a simple
	  // absolute relocation for the input section symbol.

	  const Symbol_value<size>* psymval = object->local_symbol(r_sym);

	  unsigned char* padd = view + offset;
	  switch (strategy)
	    {
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
	      {
		typename elfcpp::Elf_types<size>::Elf_Swxword addend;
		addend = Classify_reloc::get_r_addend(&reloc);
		gold_assert(os != NULL);
		addend = psymval->value(object, addend) - os->address();
		Classify_reloc::put_r_addend(&reloc_write, addend);
	      }
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
	      Relocate_functions<size, big_endian>::rel8(padd, object,
							 psymval);
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
	      Relocate_functions<size, big_endian>::rel16(padd, object,
							  psymval);
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
	      Relocate_functions<size, big_endian>::rel32(padd, object,
							  psymval);
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
	      Relocate_functions<size, big_endian>::rel64(padd, object,
							  psymval);
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
	      Relocate_functions<size, big_endian>::rel32_unaligned(padd,
								    object,
								    psymval);
	      break;

	    default:
	      gold_unreachable();
	    }
	}

      pwrite += reloc_size;
    }

  gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
	      == reloc_view_size);
}

} // End namespace gold.

#endif // !defined(GOLD_TARGET_RELOC_H)