File: output.cc

package info (click to toggle)
binutils 2.31.1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 309,412 kB
  • sloc: ansic: 1,161,194; asm: 638,508; cpp: 128,829; exp: 68,580; makefile: 55,828; sh: 22,360; yacc: 14,238; lisp: 13,272; perl: 2,111; ada: 1,681; lex: 1,652; pascal: 1,446; cs: 879; sed: 195; python: 154; xml: 95; awk: 25
file content (5616 lines) | stat: -rw-r--r-- 161,803 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
// output.cc -- manage the output file for gold

// Copyright (C) 2006-2018 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstdlib>
#include <cstring>
#include <cerrno>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <algorithm>

#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif

#include "libiberty.h"

#include "dwarf.h"
#include "parameters.h"
#include "object.h"
#include "symtab.h"
#include "reloc.h"
#include "merge.h"
#include "descriptors.h"
#include "layout.h"
#include "output.h"

// For systems without mmap support.
#ifndef HAVE_MMAP
# define mmap gold_mmap
# define munmap gold_munmap
# define mremap gold_mremap
# ifndef MAP_FAILED
#  define MAP_FAILED (reinterpret_cast<void*>(-1))
# endif
# ifndef PROT_READ
#  define PROT_READ 0
# endif
# ifndef PROT_WRITE
#  define PROT_WRITE 0
# endif
# ifndef MAP_PRIVATE
#  define MAP_PRIVATE 0
# endif
# ifndef MAP_ANONYMOUS
#  define MAP_ANONYMOUS 0
# endif
# ifndef MAP_SHARED
#  define MAP_SHARED 0
# endif

# ifndef ENOSYS
#  define ENOSYS EINVAL
# endif

static void *
gold_mmap(void *, size_t, int, int, int, off_t)
{
  errno = ENOSYS;
  return MAP_FAILED;
}

static int
gold_munmap(void *, size_t)
{
  errno = ENOSYS;
  return -1;
}

static void *
gold_mremap(void *, size_t, size_t, int)
{
  errno = ENOSYS;
  return MAP_FAILED;
}

#endif

#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
# define mremap gold_mremap
extern "C" void *gold_mremap(void *, size_t, size_t, int);
#endif

// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
#ifndef MAP_ANONYMOUS
# define MAP_ANONYMOUS  MAP_ANON
#endif

#ifndef MREMAP_MAYMOVE
# define MREMAP_MAYMOVE 1
#endif

// Mingw does not have S_ISLNK.
#ifndef S_ISLNK
# define S_ISLNK(mode) 0
#endif

namespace gold
{

// A wrapper around posix_fallocate.  If we don't have posix_fallocate,
// or the --no-posix-fallocate option is set, we try the fallocate
// system call directly.  If that fails, we use ftruncate to set
// the file size and hope that there is enough disk space.

static int
gold_fallocate(int o, off_t offset, off_t len)
{
  if (len <= 0)
    return 0;

#ifdef HAVE_POSIX_FALLOCATE
  if (parameters->options().posix_fallocate())
    {
      int err = ::posix_fallocate(o, offset, len);
      if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
	return err;
    }
#endif // defined(HAVE_POSIX_FALLOCATE)

#ifdef HAVE_FALLOCATE
  {
    int err = ::fallocate(o, 0, offset, len);
    if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
      return err;
  }
#endif // defined(HAVE_FALLOCATE)

  if (::ftruncate(o, offset + len) < 0)
    return errno;
  return 0;
}

// Output_data variables.

bool Output_data::allocated_sizes_are_fixed;

// Output_data methods.

Output_data::~Output_data()
{
}

// Return the default alignment for the target size.

uint64_t
Output_data::default_alignment()
{
  return Output_data::default_alignment_for_size(
      parameters->target().get_size());
}

// Return the default alignment for a size--32 or 64.

uint64_t
Output_data::default_alignment_for_size(int size)
{
  if (size == 32)
    return 4;
  else if (size == 64)
    return 8;
  else
    gold_unreachable();
}

// Output_section_header methods.  This currently assumes that the
// segment and section lists are complete at construction time.

Output_section_headers::Output_section_headers(
    const Layout* layout,
    const Layout::Segment_list* segment_list,
    const Layout::Section_list* section_list,
    const Layout::Section_list* unattached_section_list,
    const Stringpool* secnamepool,
    const Output_section* shstrtab_section)
  : layout_(layout),
    segment_list_(segment_list),
    section_list_(section_list),
    unattached_section_list_(unattached_section_list),
    secnamepool_(secnamepool),
    shstrtab_section_(shstrtab_section)
{
}

// Compute the current data size.

off_t
Output_section_headers::do_size() const
{
  // Count all the sections.  Start with 1 for the null section.
  off_t count = 1;
  if (!parameters->options().relocatable())
    {
      for (Layout::Segment_list::const_iterator p =
	     this->segment_list_->begin();
	   p != this->segment_list_->end();
	   ++p)
	if ((*p)->type() == elfcpp::PT_LOAD)
	  count += (*p)->output_section_count();
    }
  else
    {
      for (Layout::Section_list::const_iterator p =
	     this->section_list_->begin();
	   p != this->section_list_->end();
	   ++p)
	if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
	  ++count;
    }
  count += this->unattached_section_list_->size();

  const int size = parameters->target().get_size();
  int shdr_size;
  if (size == 32)
    shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
  else if (size == 64)
    shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
  else
    gold_unreachable();

  return count * shdr_size;
}

// Write out the section headers.

void
Output_section_headers::do_write(Output_file* of)
{
  switch (parameters->size_and_endianness())
    {
#ifdef HAVE_TARGET_32_LITTLE
    case Parameters::TARGET_32_LITTLE:
      this->do_sized_write<32, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_32_BIG
    case Parameters::TARGET_32_BIG:
      this->do_sized_write<32, true>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
    case Parameters::TARGET_64_LITTLE:
      this->do_sized_write<64, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_BIG
    case Parameters::TARGET_64_BIG:
      this->do_sized_write<64, true>(of);
      break;
#endif
    default:
      gold_unreachable();
    }
}

template<int size, bool big_endian>
void
Output_section_headers::do_sized_write(Output_file* of)
{
  off_t all_shdrs_size = this->data_size();
  unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);

  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
  unsigned char* v = view;

  {
    typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
    oshdr.put_sh_name(0);
    oshdr.put_sh_type(elfcpp::SHT_NULL);
    oshdr.put_sh_flags(0);
    oshdr.put_sh_addr(0);
    oshdr.put_sh_offset(0);

    size_t section_count = (this->data_size()
			    / elfcpp::Elf_sizes<size>::shdr_size);
    if (section_count < elfcpp::SHN_LORESERVE)
      oshdr.put_sh_size(0);
    else
      oshdr.put_sh_size(section_count);

    unsigned int shstrndx = this->shstrtab_section_->out_shndx();
    if (shstrndx < elfcpp::SHN_LORESERVE)
      oshdr.put_sh_link(0);
    else
      oshdr.put_sh_link(shstrndx);

    size_t segment_count = this->segment_list_->size();
    oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);

    oshdr.put_sh_addralign(0);
    oshdr.put_sh_entsize(0);
  }

  v += shdr_size;

  unsigned int shndx = 1;
  if (!parameters->options().relocatable())
    {
      for (Layout::Segment_list::const_iterator p =
	     this->segment_list_->begin();
	   p != this->segment_list_->end();
	   ++p)
	v = (*p)->write_section_headers<size, big_endian>(this->layout_,
							  this->secnamepool_,
							  v,
							  &shndx);
    }
  else
    {
      for (Layout::Section_list::const_iterator p =
	     this->section_list_->begin();
	   p != this->section_list_->end();
	   ++p)
	{
	  // We do unallocated sections below, except that group
	  // sections have to come first.
	  if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
	      && (*p)->type() != elfcpp::SHT_GROUP)
	    continue;
	  gold_assert(shndx == (*p)->out_shndx());
	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
	  (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
	  v += shdr_size;
	  ++shndx;
	}
    }

  for (Layout::Section_list::const_iterator p =
	 this->unattached_section_list_->begin();
       p != this->unattached_section_list_->end();
       ++p)
    {
      // For a relocatable link, we did unallocated group sections
      // above, since they have to come first.
      if ((*p)->type() == elfcpp::SHT_GROUP
	  && parameters->options().relocatable())
	continue;
      gold_assert(shndx == (*p)->out_shndx());
      elfcpp::Shdr_write<size, big_endian> oshdr(v);
      (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
      v += shdr_size;
      ++shndx;
    }

  of->write_output_view(this->offset(), all_shdrs_size, view);
}

// Output_segment_header methods.

Output_segment_headers::Output_segment_headers(
    const Layout::Segment_list& segment_list)
  : segment_list_(segment_list)
{
  this->set_current_data_size_for_child(this->do_size());
}

void
Output_segment_headers::do_write(Output_file* of)
{
  switch (parameters->size_and_endianness())
    {
#ifdef HAVE_TARGET_32_LITTLE
    case Parameters::TARGET_32_LITTLE:
      this->do_sized_write<32, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_32_BIG
    case Parameters::TARGET_32_BIG:
      this->do_sized_write<32, true>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
    case Parameters::TARGET_64_LITTLE:
      this->do_sized_write<64, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_BIG
    case Parameters::TARGET_64_BIG:
      this->do_sized_write<64, true>(of);
      break;
#endif
    default:
      gold_unreachable();
    }
}

template<int size, bool big_endian>
void
Output_segment_headers::do_sized_write(Output_file* of)
{
  const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
  off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
  gold_assert(all_phdrs_size == this->data_size());
  unsigned char* view = of->get_output_view(this->offset(),
					    all_phdrs_size);
  unsigned char* v = view;
  for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
       p != this->segment_list_.end();
       ++p)
    {
      elfcpp::Phdr_write<size, big_endian> ophdr(v);
      (*p)->write_header(&ophdr);
      v += phdr_size;
    }

  gold_assert(v - view == all_phdrs_size);

  of->write_output_view(this->offset(), all_phdrs_size, view);
}

off_t
Output_segment_headers::do_size() const
{
  const int size = parameters->target().get_size();
  int phdr_size;
  if (size == 32)
    phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
  else if (size == 64)
    phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
  else
    gold_unreachable();

  return this->segment_list_.size() * phdr_size;
}

// Output_file_header methods.

Output_file_header::Output_file_header(Target* target,
				       const Symbol_table* symtab,
				       const Output_segment_headers* osh)
  : target_(target),
    symtab_(symtab),
    segment_header_(osh),
    section_header_(NULL),
    shstrtab_(NULL)
{
  this->set_data_size(this->do_size());
}

// Set the section table information for a file header.

void
Output_file_header::set_section_info(const Output_section_headers* shdrs,
				     const Output_section* shstrtab)
{
  this->section_header_ = shdrs;
  this->shstrtab_ = shstrtab;
}

// Write out the file header.

void
Output_file_header::do_write(Output_file* of)
{
  gold_assert(this->offset() == 0);

  switch (parameters->size_and_endianness())
    {
#ifdef HAVE_TARGET_32_LITTLE
    case Parameters::TARGET_32_LITTLE:
      this->do_sized_write<32, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_32_BIG
    case Parameters::TARGET_32_BIG:
      this->do_sized_write<32, true>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
    case Parameters::TARGET_64_LITTLE:
      this->do_sized_write<64, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_BIG
    case Parameters::TARGET_64_BIG:
      this->do_sized_write<64, true>(of);
      break;
#endif
    default:
      gold_unreachable();
    }
}

// Write out the file header with appropriate size and endianness.

template<int size, bool big_endian>
void
Output_file_header::do_sized_write(Output_file* of)
{
  gold_assert(this->offset() == 0);

  int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
  unsigned char* view = of->get_output_view(0, ehdr_size);
  elfcpp::Ehdr_write<size, big_endian> oehdr(view);

  unsigned char e_ident[elfcpp::EI_NIDENT];
  memset(e_ident, 0, elfcpp::EI_NIDENT);
  e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
  e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
  e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
  e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
  if (size == 32)
    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
  else if (size == 64)
    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
  else
    gold_unreachable();
  e_ident[elfcpp::EI_DATA] = (big_endian
			      ? elfcpp::ELFDATA2MSB
			      : elfcpp::ELFDATA2LSB);
  e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
  oehdr.put_e_ident(e_ident);

  elfcpp::ET e_type;
  if (parameters->options().relocatable())
    e_type = elfcpp::ET_REL;
  else if (parameters->options().output_is_position_independent())
    e_type = elfcpp::ET_DYN;
  else
    e_type = elfcpp::ET_EXEC;
  oehdr.put_e_type(e_type);

  oehdr.put_e_machine(this->target_->machine_code());
  oehdr.put_e_version(elfcpp::EV_CURRENT);

  oehdr.put_e_entry(this->entry<size>());

  if (this->segment_header_ == NULL)
    oehdr.put_e_phoff(0);
  else
    oehdr.put_e_phoff(this->segment_header_->offset());

  oehdr.put_e_shoff(this->section_header_->offset());
  oehdr.put_e_flags(this->target_->processor_specific_flags());
  oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);

  if (this->segment_header_ == NULL)
    {
      oehdr.put_e_phentsize(0);
      oehdr.put_e_phnum(0);
    }
  else
    {
      oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
      size_t phnum = (this->segment_header_->data_size()
		      / elfcpp::Elf_sizes<size>::phdr_size);
      if (phnum > elfcpp::PN_XNUM)
	phnum = elfcpp::PN_XNUM;
      oehdr.put_e_phnum(phnum);
    }

  oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
  size_t section_count = (this->section_header_->data_size()
			  / elfcpp::Elf_sizes<size>::shdr_size);

  if (section_count < elfcpp::SHN_LORESERVE)
    oehdr.put_e_shnum(this->section_header_->data_size()
		      / elfcpp::Elf_sizes<size>::shdr_size);
  else
    oehdr.put_e_shnum(0);

  unsigned int shstrndx = this->shstrtab_->out_shndx();
  if (shstrndx < elfcpp::SHN_LORESERVE)
    oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
  else
    oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);

  // Let the target adjust the ELF header, e.g., to set EI_OSABI in
  // the e_ident field.
  this->target_->adjust_elf_header(view, ehdr_size);

  of->write_output_view(0, ehdr_size, view);
}

// Return the value to use for the entry address.

template<int size>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_file_header::entry()
{
  const bool should_issue_warning = (parameters->options().entry() != NULL
				     && !parameters->options().relocatable()
				     && !parameters->options().shared());
  const char* entry = parameters->entry();
  Symbol* sym = this->symtab_->lookup(entry);

  typename Sized_symbol<size>::Value_type v;
  if (sym != NULL)
    {
      Sized_symbol<size>* ssym;
      ssym = this->symtab_->get_sized_symbol<size>(sym);
      if (!ssym->is_defined() && should_issue_warning)
	gold_warning("entry symbol '%s' exists but is not defined", entry);
      v = ssym->value();
    }
  else
    {
      // We couldn't find the entry symbol.  See if we can parse it as
      // a number.  This supports, e.g., -e 0x1000.
      char* endptr;
      v = strtoull(entry, &endptr, 0);
      if (*endptr != '\0')
	{
	  if (should_issue_warning)
	    gold_warning("cannot find entry symbol '%s'", entry);
	  v = 0;
	}
    }

  return v;
}

// Compute the current data size.

off_t
Output_file_header::do_size() const
{
  const int size = parameters->target().get_size();
  if (size == 32)
    return elfcpp::Elf_sizes<32>::ehdr_size;
  else if (size == 64)
    return elfcpp::Elf_sizes<64>::ehdr_size;
  else
    gold_unreachable();
}

// Output_data_const methods.

void
Output_data_const::do_write(Output_file* of)
{
  of->write(this->offset(), this->data_.data(), this->data_.size());
}

// Output_data_const_buffer methods.

void
Output_data_const_buffer::do_write(Output_file* of)
{
  of->write(this->offset(), this->p_, this->data_size());
}

// Output_section_data methods.

// Record the output section, and set the entry size and such.

void
Output_section_data::set_output_section(Output_section* os)
{
  gold_assert(this->output_section_ == NULL);
  this->output_section_ = os;
  this->do_adjust_output_section(os);
}

// Return the section index of the output section.

unsigned int
Output_section_data::do_out_shndx() const
{
  gold_assert(this->output_section_ != NULL);
  return this->output_section_->out_shndx();
}

// Set the alignment, which means we may need to update the alignment
// of the output section.

void
Output_section_data::set_addralign(uint64_t addralign)
{
  this->addralign_ = addralign;
  if (this->output_section_ != NULL
      && this->output_section_->addralign() < addralign)
    this->output_section_->set_addralign(addralign);
}

// Output_data_strtab methods.

// Set the final data size.

void
Output_data_strtab::set_final_data_size()
{
  this->strtab_->set_string_offsets();
  this->set_data_size(this->strtab_->get_strtab_size());
}

// Write out a string table.

void
Output_data_strtab::do_write(Output_file* of)
{
  this->strtab_->write(of, this->offset());
}

// Output_reloc methods.

// A reloc against a global symbol.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    Symbol* gsym,
    unsigned int type,
    Output_data* od,
    Address address,
    bool is_relative,
    bool is_symbolless,
    bool use_plt_offset)
  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
    is_relative_(is_relative), is_symbolless_(is_symbolless),
    is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
{
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.gsym = gsym;
  this->u2_.od = od;
  if (dynamic)
    this->set_needs_dynsym_index();
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    Symbol* gsym,
    unsigned int type,
    Sized_relobj<size, big_endian>* relobj,
    unsigned int shndx,
    Address address,
    bool is_relative,
    bool is_symbolless,
    bool use_plt_offset)
  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
    is_relative_(is_relative), is_symbolless_(is_symbolless),
    is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
{
  gold_assert(shndx != INVALID_CODE);
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.gsym = gsym;
  this->u2_.relobj = relobj;
  if (dynamic)
    this->set_needs_dynsym_index();
}

// A reloc against a local symbol.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    Sized_relobj<size, big_endian>* relobj,
    unsigned int local_sym_index,
    unsigned int type,
    Output_data* od,
    Address address,
    bool is_relative,
    bool is_symbolless,
    bool is_section_symbol,
    bool use_plt_offset)
  : address_(address), local_sym_index_(local_sym_index), type_(type),
    is_relative_(is_relative), is_symbolless_(is_symbolless),
    is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
    shndx_(INVALID_CODE)
{
  gold_assert(local_sym_index != GSYM_CODE
	      && local_sym_index != INVALID_CODE);
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.relobj = relobj;
  this->u2_.od = od;
  if (dynamic)
    this->set_needs_dynsym_index();
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    Sized_relobj<size, big_endian>* relobj,
    unsigned int local_sym_index,
    unsigned int type,
    unsigned int shndx,
    Address address,
    bool is_relative,
    bool is_symbolless,
    bool is_section_symbol,
    bool use_plt_offset)
  : address_(address), local_sym_index_(local_sym_index), type_(type),
    is_relative_(is_relative), is_symbolless_(is_symbolless),
    is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
    shndx_(shndx)
{
  gold_assert(local_sym_index != GSYM_CODE
	      && local_sym_index != INVALID_CODE);
  gold_assert(shndx != INVALID_CODE);
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.relobj = relobj;
  this->u2_.relobj = relobj;
  if (dynamic)
    this->set_needs_dynsym_index();
}

// A reloc against the STT_SECTION symbol of an output section.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    Output_section* os,
    unsigned int type,
    Output_data* od,
    Address address,
    bool is_relative)
  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
    is_relative_(is_relative), is_symbolless_(is_relative),
    is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
{
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.os = os;
  this->u2_.od = od;
  if (dynamic)
    this->set_needs_dynsym_index();
  else
    os->set_needs_symtab_index();
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    Output_section* os,
    unsigned int type,
    Sized_relobj<size, big_endian>* relobj,
    unsigned int shndx,
    Address address,
    bool is_relative)
  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
    is_relative_(is_relative), is_symbolless_(is_relative),
    is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
{
  gold_assert(shndx != INVALID_CODE);
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.os = os;
  this->u2_.relobj = relobj;
  if (dynamic)
    this->set_needs_dynsym_index();
  else
    os->set_needs_symtab_index();
}

// An absolute or relative relocation.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    unsigned int type,
    Output_data* od,
    Address address,
    bool is_relative)
  : address_(address), local_sym_index_(0), type_(type),
    is_relative_(is_relative), is_symbolless_(false),
    is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
{
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.relobj = NULL;
  this->u2_.od = od;
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    unsigned int type,
    Sized_relobj<size, big_endian>* relobj,
    unsigned int shndx,
    Address address,
    bool is_relative)
  : address_(address), local_sym_index_(0), type_(type),
    is_relative_(is_relative), is_symbolless_(false),
    is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
{
  gold_assert(shndx != INVALID_CODE);
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.relobj = NULL;
  this->u2_.relobj = relobj;
}

// A target specific relocation.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    unsigned int type,
    void* arg,
    Output_data* od,
    Address address)
  : address_(address), local_sym_index_(TARGET_CODE), type_(type),
    is_relative_(false), is_symbolless_(false),
    is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
{
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.arg = arg;
  this->u2_.od = od;
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    unsigned int type,
    void* arg,
    Sized_relobj<size, big_endian>* relobj,
    unsigned int shndx,
    Address address)
  : address_(address), local_sym_index_(TARGET_CODE), type_(type),
    is_relative_(false), is_symbolless_(false),
    is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
{
  gold_assert(shndx != INVALID_CODE);
  // this->type_ is a bitfield; make sure TYPE fits.
  gold_assert(this->type_ == type);
  this->u1_.arg = arg;
  this->u2_.relobj = relobj;
}

// Record that we need a dynamic symbol index for this relocation.

template<bool dynamic, int size, bool big_endian>
void
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
set_needs_dynsym_index()
{
  if (this->is_symbolless_)
    return;
  switch (this->local_sym_index_)
    {
    case INVALID_CODE:
      gold_unreachable();

    case GSYM_CODE:
      this->u1_.gsym->set_needs_dynsym_entry();
      break;

    case SECTION_CODE:
      this->u1_.os->set_needs_dynsym_index();
      break;

    case TARGET_CODE:
      // The target must take care of this if necessary.
      break;

    case 0:
      break;

    default:
      {
	const unsigned int lsi = this->local_sym_index_;
	Sized_relobj_file<size, big_endian>* relobj =
	    this->u1_.relobj->sized_relobj();
	gold_assert(relobj != NULL);
	if (!this->is_section_symbol_)
	  relobj->set_needs_output_dynsym_entry(lsi);
	else
	  relobj->output_section(lsi)->set_needs_dynsym_index();
      }
      break;
    }
}

// Get the symbol index of a relocation.

template<bool dynamic, int size, bool big_endian>
unsigned int
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
  const
{
  unsigned int index;
  if (this->is_symbolless_)
    return 0;
  switch (this->local_sym_index_)
    {
    case INVALID_CODE:
      gold_unreachable();

    case GSYM_CODE:
      if (this->u1_.gsym == NULL)
	index = 0;
      else if (dynamic)
	index = this->u1_.gsym->dynsym_index();
      else
	index = this->u1_.gsym->symtab_index();
      break;

    case SECTION_CODE:
      if (dynamic)
	index = this->u1_.os->dynsym_index();
      else
	index = this->u1_.os->symtab_index();
      break;

    case TARGET_CODE:
      index = parameters->target().reloc_symbol_index(this->u1_.arg,
						      this->type_);
      break;

    case 0:
      // Relocations without symbols use a symbol index of 0.
      index = 0;
      break;

    default:
      {
	const unsigned int lsi = this->local_sym_index_;
	Sized_relobj_file<size, big_endian>* relobj =
	    this->u1_.relobj->sized_relobj();
	gold_assert(relobj != NULL);
	if (!this->is_section_symbol_)
	  {
	    if (dynamic)
	      index = relobj->dynsym_index(lsi);
	    else
	      index = relobj->symtab_index(lsi);
	  }
	else
	  {
	    Output_section* os = relobj->output_section(lsi);
	    gold_assert(os != NULL);
	    if (dynamic)
	      index = os->dynsym_index();
	    else
	      index = os->symtab_index();
	  }
      }
      break;
    }
  gold_assert(index != -1U);
  return index;
}

// For a local section symbol, get the address of the offset ADDEND
// within the input section.

template<bool dynamic, int size, bool big_endian>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
  local_section_offset(Addend addend) const
{
  gold_assert(this->local_sym_index_ != GSYM_CODE
	      && this->local_sym_index_ != SECTION_CODE
	      && this->local_sym_index_ != TARGET_CODE
	      && this->local_sym_index_ != INVALID_CODE
	      && this->local_sym_index_ != 0
	      && this->is_section_symbol_);
  const unsigned int lsi = this->local_sym_index_;
  Output_section* os = this->u1_.relobj->output_section(lsi);
  gold_assert(os != NULL);
  Address offset = this->u1_.relobj->get_output_section_offset(lsi);
  if (offset != invalid_address)
    return offset + addend;
  // This is a merge section.
  Sized_relobj_file<size, big_endian>* relobj =
      this->u1_.relobj->sized_relobj();
  gold_assert(relobj != NULL);
  offset = os->output_address(relobj, lsi, addend);
  gold_assert(offset != invalid_address);
  return offset;
}

// Get the output address of a relocation.

template<bool dynamic, int size, bool big_endian>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
{
  Address address = this->address_;
  if (this->shndx_ != INVALID_CODE)
    {
      Output_section* os = this->u2_.relobj->output_section(this->shndx_);
      gold_assert(os != NULL);
      Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
      if (off != invalid_address)
	address += os->address() + off;
      else
	{
	  Sized_relobj_file<size, big_endian>* relobj =
	      this->u2_.relobj->sized_relobj();
	  gold_assert(relobj != NULL);
	  address = os->output_address(relobj, this->shndx_, address);
	  gold_assert(address != invalid_address);
	}
    }
  else if (this->u2_.od != NULL)
    address += this->u2_.od->address();
  return address;
}

// Write out the offset and info fields of a Rel or Rela relocation
// entry.

template<bool dynamic, int size, bool big_endian>
template<typename Write_rel>
void
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
    Write_rel* wr) const
{
  wr->put_r_offset(this->get_address());
  unsigned int sym_index = this->get_symbol_index();
  wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
}

// Write out a Rel relocation.

template<bool dynamic, int size, bool big_endian>
void
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
    unsigned char* pov) const
{
  elfcpp::Rel_write<size, big_endian> orel(pov);
  this->write_rel(&orel);
}

// Get the value of the symbol referred to by a Rel relocation.

template<bool dynamic, int size, bool big_endian>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
    Addend addend) const
{
  if (this->local_sym_index_ == GSYM_CODE)
    {
      const Sized_symbol<size>* sym;
      sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
      if (this->use_plt_offset_ && sym->has_plt_offset())
	return parameters->target().plt_address_for_global(sym);
      else
	return sym->value() + addend;
    }
  if (this->local_sym_index_ == SECTION_CODE)
    {
      gold_assert(!this->use_plt_offset_);
      return this->u1_.os->address() + addend;
    }
  gold_assert(this->local_sym_index_ != TARGET_CODE
	      && this->local_sym_index_ != INVALID_CODE
	      && this->local_sym_index_ != 0
	      && !this->is_section_symbol_);
  const unsigned int lsi = this->local_sym_index_;
  Sized_relobj_file<size, big_endian>* relobj =
      this->u1_.relobj->sized_relobj();
  gold_assert(relobj != NULL);
  if (this->use_plt_offset_)
    return parameters->target().plt_address_for_local(relobj, lsi);
  const Symbol_value<size>* symval = relobj->local_symbol(lsi);
  return symval->value(relobj, addend);
}

// Reloc comparison.  This function sorts the dynamic relocs for the
// benefit of the dynamic linker.  First we sort all relative relocs
// to the front.  Among relative relocs, we sort by output address.
// Among non-relative relocs, we sort by symbol index, then by output
// address.

template<bool dynamic, int size, bool big_endian>
int
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
    const
{
  if (this->is_relative_)
    {
      if (!r2.is_relative_)
	return -1;
      // Otherwise sort by reloc address below.
    }
  else if (r2.is_relative_)
    return 1;
  else
    {
      unsigned int sym1 = this->get_symbol_index();
      unsigned int sym2 = r2.get_symbol_index();
      if (sym1 < sym2)
	return -1;
      else if (sym1 > sym2)
	return 1;
      // Otherwise sort by reloc address.
    }

  section_offset_type addr1 = this->get_address();
  section_offset_type addr2 = r2.get_address();
  if (addr1 < addr2)
    return -1;
  else if (addr1 > addr2)
    return 1;

  // Final tie breaker, in order to generate the same output on any
  // host: reloc type.
  unsigned int type1 = this->type_;
  unsigned int type2 = r2.type_;
  if (type1 < type2)
    return -1;
  else if (type1 > type2)
    return 1;

  // These relocs appear to be exactly the same.
  return 0;
}

// Write out a Rela relocation.

template<bool dynamic, int size, bool big_endian>
void
Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
    unsigned char* pov) const
{
  elfcpp::Rela_write<size, big_endian> orel(pov);
  this->rel_.write_rel(&orel);
  Addend addend = this->addend_;
  if (this->rel_.is_target_specific())
    addend = parameters->target().reloc_addend(this->rel_.target_arg(),
					       this->rel_.type(), addend);
  else if (this->rel_.is_symbolless())
    addend = this->rel_.symbol_value(addend);
  else if (this->rel_.is_local_section_symbol())
    addend = this->rel_.local_section_offset(addend);
  orel.put_r_addend(addend);
}

// Output_data_reloc_base methods.

// Adjust the output section.

template<int sh_type, bool dynamic, int size, bool big_endian>
void
Output_data_reloc_base<sh_type, dynamic, size, big_endian>
    ::do_adjust_output_section(Output_section* os)
{
  if (sh_type == elfcpp::SHT_REL)
    os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
  else if (sh_type == elfcpp::SHT_RELA)
    os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
  else
    gold_unreachable();

  // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
  // static link.  The backends will generate a dynamic reloc section
  // to hold this.  In that case we don't want to link to the dynsym
  // section, because there isn't one.
  if (!dynamic)
    os->set_should_link_to_symtab();
  else if (parameters->doing_static_link())
    ;
  else
    os->set_should_link_to_dynsym();
}

// Standard relocation writer, which just calls Output_reloc::write().

template<int sh_type, bool dynamic, int size, bool big_endian>
struct Output_reloc_writer
{
  typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
  typedef std::vector<Output_reloc_type> Relocs;

  static void
  write(typename Relocs::const_iterator p, unsigned char* pov)
  { p->write(pov); }
};

// Write out relocation data.

template<int sh_type, bool dynamic, int size, bool big_endian>
void
Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
    Output_file* of)
{
  typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
  this->do_write_generic<Writer>(of);
}

// Class Output_relocatable_relocs.

template<int sh_type, int size, bool big_endian>
void
Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
{
  this->set_data_size(this->rr_->output_reloc_count()
		      * Reloc_types<sh_type, size, big_endian>::reloc_size);
}

// class Output_data_group.

template<int size, bool big_endian>
Output_data_group<size, big_endian>::Output_data_group(
    Sized_relobj_file<size, big_endian>* relobj,
    section_size_type entry_count,
    elfcpp::Elf_Word flags,
    std::vector<unsigned int>* input_shndxes)
  : Output_section_data(entry_count * 4, 4, false),
    relobj_(relobj),
    flags_(flags)
{
  this->input_shndxes_.swap(*input_shndxes);
}

// Write out the section group, which means translating the section
// indexes to apply to the output file.

template<int size, bool big_endian>
void
Output_data_group<size, big_endian>::do_write(Output_file* of)
{
  const off_t off = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(off, oview_size);

  elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
  elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
  ++contents;

  for (std::vector<unsigned int>::const_iterator p =
	 this->input_shndxes_.begin();
       p != this->input_shndxes_.end();
       ++p, ++contents)
    {
      Output_section* os = this->relobj_->output_section(*p);

      unsigned int output_shndx;
      if (os != NULL)
	output_shndx = os->out_shndx();
      else
	{
	  this->relobj_->error(_("section group retained but "
				 "group element discarded"));
	  output_shndx = 0;
	}

      elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
    }

  size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
  gold_assert(wrote == oview_size);

  of->write_output_view(off, oview_size, oview);

  // We no longer need this information.
  this->input_shndxes_.clear();
}

// Output_data_got::Got_entry methods.

// Write out the entry.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::Got_entry::write(
    unsigned int got_indx,
    unsigned char* pov) const
{
  Valtype val = 0;

  switch (this->local_sym_index_)
    {
    case GSYM_CODE:
      {
	// If the symbol is resolved locally, we need to write out the
	// link-time value, which will be relocated dynamically by a
	// RELATIVE relocation.
	Symbol* gsym = this->u_.gsym;
	if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
	  val = parameters->target().plt_address_for_global(gsym);
	else
	  {
	    switch (parameters->size_and_endianness())
	      {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
	      case Parameters::TARGET_32_LITTLE:
	      case Parameters::TARGET_32_BIG:
		{
		  // This cast is ugly.  We don't want to put a
		  // virtual method in Symbol, because we want Symbol
		  // to be as small as possible.
		  Sized_symbol<32>::Value_type v;
		  v = static_cast<Sized_symbol<32>*>(gsym)->value();
		  val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
		}
		break;
#endif
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
	      case Parameters::TARGET_64_LITTLE:
	      case Parameters::TARGET_64_BIG:
		{
		  Sized_symbol<64>::Value_type v;
		  v = static_cast<Sized_symbol<64>*>(gsym)->value();
		  val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
		}
		break;
#endif
	      default:
		gold_unreachable();
	      }
	    if (this->use_plt_or_tls_offset_
		&& gsym->type() == elfcpp::STT_TLS)
	      val += parameters->target().tls_offset_for_global(gsym,
								got_indx);
	  }
      }
      break;

    case CONSTANT_CODE:
      val = this->u_.constant;
      break;

    case RESERVED_CODE:
      // If we're doing an incremental update, don't touch this GOT entry.
      if (parameters->incremental_update())
	return;
      val = this->u_.constant;
      break;

    default:
      {
	const Relobj* object = this->u_.object;
	const unsigned int lsi = this->local_sym_index_;
	bool is_tls = object->local_is_tls(lsi);
	if (this->use_plt_or_tls_offset_ && !is_tls)
	  val = parameters->target().plt_address_for_local(object, lsi);
	else
	  {
	    uint64_t lval = object->local_symbol_value(lsi, this->addend_);
	    val = convert_types<Valtype, uint64_t>(lval);
	    if (this->use_plt_or_tls_offset_ && is_tls)
	      val += parameters->target().tls_offset_for_local(object, lsi,
							       got_indx);
	  }
      }
      break;
    }

  elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
}

// Output_data_got methods.

// Add an entry for a global symbol to the GOT.  This returns true if
// this is a new GOT entry, false if the symbol already had a GOT
// entry.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_global(
    Symbol* gsym,
    unsigned int got_type)
{
  if (gsym->has_got_offset(got_type))
    return false;

  unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
  gsym->set_got_offset(got_type, got_offset);
  return true;
}

// Like add_global, but use the PLT offset.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
						      unsigned int got_type)
{
  if (gsym->has_got_offset(got_type))
    return false;

  unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
  gsym->set_got_offset(got_type, got_offset);
  return true;
}

// Add an entry for a global symbol to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_global_with_rel(
    Symbol* gsym,
    unsigned int got_type,
    Output_data_reloc_generic* rel_dyn,
    unsigned int r_type)
{
  if (gsym->has_got_offset(got_type))
    return;

  unsigned int got_offset = this->add_got_entry(Got_entry());
  gsym->set_got_offset(got_type, got_offset);
  rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
}

// Add a pair of entries for a global symbol to the GOT, and add
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
// If R_TYPE_2 == 0, add the second entry with no relocation.
template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
    Symbol* gsym,
    unsigned int got_type,
    Output_data_reloc_generic* rel_dyn,
    unsigned int r_type_1,
    unsigned int r_type_2)
{
  if (gsym->has_got_offset(got_type))
    return;

  unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
  gsym->set_got_offset(got_type, got_offset);
  rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);

  if (r_type_2 != 0)
    rel_dyn->add_global_generic(gsym, r_type_2, this,
				got_offset + got_size / 8, 0);
}

// Add an entry for a local symbol to the GOT.  This returns true if
// this is a new GOT entry, false if the symbol already has a GOT
// entry.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_local(
    Relobj* object,
    unsigned int symndx,
    unsigned int got_type)
{
  if (object->local_has_got_offset(symndx, got_type))
    return false;

  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
							  false));
  object->set_local_got_offset(symndx, got_type, got_offset);
  return true;
}

// Add an entry for a local symbol plus ADDEND to the GOT.  This returns
// true if this is a new GOT entry, false if the symbol already has a GOT
// entry.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_local(
    Relobj* object,
    unsigned int symndx,
    unsigned int got_type,
    uint64_t addend)
{
  if (object->local_has_got_offset(symndx, got_type, addend))
    return false;

  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
							  false, addend));
  object->set_local_got_offset(symndx, got_type, got_offset, addend);
  return true;
}

// Like add_local, but use the PLT offset.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_local_plt(
    Relobj* object,
    unsigned int symndx,
    unsigned int got_type)
{
  if (object->local_has_got_offset(symndx, got_type))
    return false;

  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
							  true));
  object->set_local_got_offset(symndx, got_type, got_offset);
  return true;
}

// Add an entry for a local symbol to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_with_rel(
    Relobj* object,
    unsigned int symndx,
    unsigned int got_type,
    Output_data_reloc_generic* rel_dyn,
    unsigned int r_type)
{
  if (object->local_has_got_offset(symndx, got_type))
    return;

  unsigned int got_offset = this->add_got_entry(Got_entry());
  object->set_local_got_offset(symndx, got_type, got_offset);
  rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
}

// Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_with_rel(
    Relobj* object,
    unsigned int symndx,
    unsigned int got_type,
    Output_data_reloc_generic* rel_dyn,
    unsigned int r_type, uint64_t addend)
{
  if (object->local_has_got_offset(symndx, got_type, addend))
    return;

  unsigned int got_offset = this->add_got_entry(Got_entry());
  object->set_local_got_offset(symndx, got_type, got_offset, addend);
  rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
                             addend);
}

// Add a pair of entries for a local symbol to the GOT, and add
// a dynamic relocation of type R_TYPE using the section symbol of
// the output section to which input section SHNDX maps, on the first.
// The first got entry will have a value of zero, the second the
// value of the local symbol.
template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
    Relobj* object,
    unsigned int symndx,
    unsigned int shndx,
    unsigned int got_type,
    Output_data_reloc_generic* rel_dyn,
    unsigned int r_type)
{
  if (object->local_has_got_offset(symndx, got_type))
    return;

  unsigned int got_offset =
      this->add_got_entry_pair(Got_entry(),
			       Got_entry(object, symndx, false));
  object->set_local_got_offset(symndx, got_type, got_offset);
  Output_section* os = object->output_section(shndx);
  rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
}

// Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
// a dynamic relocation of type R_TYPE using the section symbol of
// the output section to which input section SHNDX maps, on the first.
// The first got entry will have a value of zero, the second the
// value of the local symbol.
template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
    Relobj* object,
    unsigned int symndx,
    unsigned int shndx,
    unsigned int got_type,
    Output_data_reloc_generic* rel_dyn,
    unsigned int r_type, uint64_t addend)
{
  if (object->local_has_got_offset(symndx, got_type, addend))
    return;

  unsigned int got_offset =
      this->add_got_entry_pair(Got_entry(),
			       Got_entry(object, symndx, false, addend));
  object->set_local_got_offset(symndx, got_type, got_offset, addend);
  Output_section* os = object->output_section(shndx);
  rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
}

// Add a pair of entries for a local symbol to the GOT, and add
// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
// The first got entry will have a value of zero, the second the
// value of the local symbol offset by Target::tls_offset_for_local.
template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_tls_pair(
    Relobj* object,
    unsigned int symndx,
    unsigned int got_type,
    Output_data_reloc_generic* rel_dyn,
    unsigned int r_type)
{
  if (object->local_has_got_offset(symndx, got_type))
    return;

  unsigned int got_offset
    = this->add_got_entry_pair(Got_entry(),
			       Got_entry(object, symndx, true));
  object->set_local_got_offset(symndx, got_type, got_offset);
  rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
}

// Reserve a slot in the GOT for a local symbol or the second slot of a pair.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::reserve_local(
    unsigned int i,
    Relobj* object,
    unsigned int sym_index,
    unsigned int got_type)
{
  this->do_reserve_slot(i);
  object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
}

// Reserve a slot in the GOT for a global symbol.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::reserve_global(
    unsigned int i,
    Symbol* gsym,
    unsigned int got_type)
{
  this->do_reserve_slot(i);
  gsym->set_got_offset(got_type, this->got_offset(i));
}

// Write out the GOT.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::do_write(Output_file* of)
{
  const int add = got_size / 8;

  const off_t off = this->offset();
  const off_t oview_size = this->data_size();
  unsigned char* const oview = of->get_output_view(off, oview_size);

  unsigned char* pov = oview;
  for (unsigned int i = 0; i < this->entries_.size(); ++i)
    {
      this->entries_[i].write(i, pov);
      pov += add;
    }

  gold_assert(pov - oview == oview_size);

  of->write_output_view(off, oview_size, oview);

  // We no longer need the GOT entries.
  this->entries_.clear();
}

// Create a new GOT entry and return its offset.

template<int got_size, bool big_endian>
unsigned int
Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
{
  if (!this->is_data_size_valid())
    {
      this->entries_.push_back(got_entry);
      this->set_got_size();
      return this->last_got_offset();
    }
  else
    {
      // For an incremental update, find an available slot.
      off_t got_offset = this->free_list_.allocate(got_size / 8,
						   got_size / 8, 0);
      if (got_offset == -1)
	gold_fallback(_("out of patch space (GOT);"
			" relink with --incremental-full"));
      unsigned int got_index = got_offset / (got_size / 8);
      gold_assert(got_index < this->entries_.size());
      this->entries_[got_index] = got_entry;
      return static_cast<unsigned int>(got_offset);
    }
}

// Create a pair of new GOT entries and return the offset of the first.

template<int got_size, bool big_endian>
unsigned int
Output_data_got<got_size, big_endian>::add_got_entry_pair(
    Got_entry got_entry_1,
    Got_entry got_entry_2)
{
  if (!this->is_data_size_valid())
    {
      unsigned int got_offset;
      this->entries_.push_back(got_entry_1);
      got_offset = this->last_got_offset();
      this->entries_.push_back(got_entry_2);
      this->set_got_size();
      return got_offset;
    }
  else
    {
      // For an incremental update, find an available pair of slots.
      off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
						   got_size / 8, 0);
      if (got_offset == -1)
	gold_fallback(_("out of patch space (GOT);"
			" relink with --incremental-full"));
      unsigned int got_index = got_offset / (got_size / 8);
      gold_assert(got_index < this->entries_.size());
      this->entries_[got_index] = got_entry_1;
      this->entries_[got_index + 1] = got_entry_2;
      return static_cast<unsigned int>(got_offset);
    }
}

// Replace GOT entry I with a new value.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::replace_got_entry(
    unsigned int i,
    Got_entry got_entry)
{
  gold_assert(i < this->entries_.size());
  this->entries_[i] = got_entry;
}

// Output_data_dynamic::Dynamic_entry methods.

// Write out the entry.

template<int size, bool big_endian>
void
Output_data_dynamic::Dynamic_entry::write(
    unsigned char* pov,
    const Stringpool* pool) const
{
  typename elfcpp::Elf_types<size>::Elf_WXword val;
  switch (this->offset_)
    {
    case DYNAMIC_NUMBER:
      val = this->u_.val;
      break;

    case DYNAMIC_SECTION_SIZE:
      val = this->u_.od->data_size();
      if (this->od2 != NULL)
	val += this->od2->data_size();
      break;

    case DYNAMIC_SYMBOL:
      {
	const Sized_symbol<size>* s =
	  static_cast<const Sized_symbol<size>*>(this->u_.sym);
	val = s->value();
      }
      break;

    case DYNAMIC_STRING:
      val = pool->get_offset(this->u_.str);
      break;

    case DYNAMIC_CUSTOM:
      val = parameters->target().dynamic_tag_custom_value(this->tag_);
      break;

    default:
      val = this->u_.od->address() + this->offset_;
      break;
    }

  elfcpp::Dyn_write<size, big_endian> dw(pov);
  dw.put_d_tag(this->tag_);
  dw.put_d_val(val);
}

// Output_data_dynamic methods.

// Adjust the output section to set the entry size.

void
Output_data_dynamic::do_adjust_output_section(Output_section* os)
{
  if (parameters->target().get_size() == 32)
    os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
  else if (parameters->target().get_size() == 64)
    os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
  else
    gold_unreachable();
}

// Get a dynamic entry offset.

unsigned int
Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
{
  int dyn_size;

  if (parameters->target().get_size() == 32)
    dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
  else if (parameters->target().get_size() == 64)
    dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
  else
    gold_unreachable();

  for (size_t i = 0; i < entries_.size(); ++i)
    if (entries_[i].tag() == tag)
      return i * dyn_size;

  return -1U;
}

// Set the final data size.

void
Output_data_dynamic::set_final_data_size()
{
  // Add the terminating entry if it hasn't been added.
  // Because of relaxation, we can run this multiple times.
  if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
    {
      int extra = parameters->options().spare_dynamic_tags();
      for (int i = 0; i < extra; ++i)
	this->add_constant(elfcpp::DT_NULL, 0);
      this->add_constant(elfcpp::DT_NULL, 0);
    }

  int dyn_size;
  if (parameters->target().get_size() == 32)
    dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
  else if (parameters->target().get_size() == 64)
    dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
  else
    gold_unreachable();
  this->set_data_size(this->entries_.size() * dyn_size);
}

// Write out the dynamic entries.

void
Output_data_dynamic::do_write(Output_file* of)
{
  switch (parameters->size_and_endianness())
    {
#ifdef HAVE_TARGET_32_LITTLE
    case Parameters::TARGET_32_LITTLE:
      this->sized_write<32, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_32_BIG
    case Parameters::TARGET_32_BIG:
      this->sized_write<32, true>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
    case Parameters::TARGET_64_LITTLE:
      this->sized_write<64, false>(of);
      break;
#endif
#ifdef HAVE_TARGET_64_BIG
    case Parameters::TARGET_64_BIG:
      this->sized_write<64, true>(of);
      break;
#endif
    default:
      gold_unreachable();
    }
}

template<int size, bool big_endian>
void
Output_data_dynamic::sized_write(Output_file* of)
{
  const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;

  const off_t offset = this->offset();
  const off_t oview_size = this->data_size();
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  unsigned char* pov = oview;
  for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
       p != this->entries_.end();
       ++p)
    {
      p->write<size, big_endian>(pov, this->pool_);
      pov += dyn_size;
    }

  gold_assert(pov - oview == oview_size);

  of->write_output_view(offset, oview_size, oview);

  // We no longer need the dynamic entries.
  this->entries_.clear();
}

// Class Output_symtab_xindex.

void
Output_symtab_xindex::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const off_t oview_size = this->data_size();
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  memset(oview, 0, oview_size);

  if (parameters->target().is_big_endian())
    this->endian_do_write<true>(oview);
  else
    this->endian_do_write<false>(oview);

  of->write_output_view(offset, oview_size, oview);

  // We no longer need the data.
  this->entries_.clear();
}

template<bool big_endian>
void
Output_symtab_xindex::endian_do_write(unsigned char* const oview)
{
  for (Xindex_entries::const_iterator p = this->entries_.begin();
       p != this->entries_.end();
       ++p)
    {
      unsigned int symndx = p->first;
      gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
      elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
    }
}

// Output_fill_debug_info methods.

// Return the minimum size needed for a dummy compilation unit header.

size_t
Output_fill_debug_info::do_minimum_hole_size() const
{
  // Compile unit header fields: unit_length, version, debug_abbrev_offset,
  // address_size.
  const size_t len = 4 + 2 + 4 + 1;
  // For type units, add type_signature, type_offset.
  if (this->is_debug_types_)
    return len + 8 + 4;
  return len;
}

// Write a dummy compilation unit header to fill a hole in the
// .debug_info or .debug_types section.

void
Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
{
  gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
	     static_cast<long>(off), static_cast<long>(len));

  gold_assert(len >= this->do_minimum_hole_size());

  unsigned char* const oview = of->get_output_view(off, len);
  unsigned char* pov = oview;

  // Write header fields: unit_length, version, debug_abbrev_offset,
  // address_size.
  if (this->is_big_endian())
    {
      elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
      elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
      elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
    }
  else
    {
      elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
      elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
    }
  pov += 4 + 2 + 4;
  *pov++ = 4;

  // For type units, the additional header fields -- type_signature,
  // type_offset -- can be filled with zeroes.

  // Fill the remainder of the free space with zeroes.  The first
  // zero should tell the consumer there are no DIEs to read in this
  // compilation unit.
  if (pov < oview + len)
    memset(pov, 0, oview + len - pov);

  of->write_output_view(off, len, oview);
}

// Output_fill_debug_line methods.

// Return the minimum size needed for a dummy line number program header.

size_t
Output_fill_debug_line::do_minimum_hole_size() const
{
  // Line number program header fields: unit_length, version, header_length,
  // minimum_instruction_length, default_is_stmt, line_base, line_range,
  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
  const size_t len = 4 + 2 + 4 + this->header_length;
  return len;
}

// Write a dummy line number program header to fill a hole in the
// .debug_line section.

void
Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
{
  gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
	     static_cast<long>(off), static_cast<long>(len));

  gold_assert(len >= this->do_minimum_hole_size());

  unsigned char* const oview = of->get_output_view(off, len);
  unsigned char* pov = oview;

  // Write header fields: unit_length, version, header_length,
  // minimum_instruction_length, default_is_stmt, line_base, line_range,
  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
  // We set the header_length field to cover the entire hole, so the
  // line number program is empty.
  if (this->is_big_endian())
    {
      elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
      elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
      elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
    }
  else
    {
      elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
      elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
    }
  pov += 4 + 2 + 4;
  *pov++ = 1;	// minimum_instruction_length
  *pov++ = 0;	// default_is_stmt
  *pov++ = 0;	// line_base
  *pov++ = 5;	// line_range
  *pov++ = 13;	// opcode_base
  *pov++ = 0;	// standard_opcode_lengths[1]
  *pov++ = 1;	// standard_opcode_lengths[2]
  *pov++ = 1;	// standard_opcode_lengths[3]
  *pov++ = 1;	// standard_opcode_lengths[4]
  *pov++ = 1;	// standard_opcode_lengths[5]
  *pov++ = 0;	// standard_opcode_lengths[6]
  *pov++ = 0;	// standard_opcode_lengths[7]
  *pov++ = 0;	// standard_opcode_lengths[8]
  *pov++ = 1;	// standard_opcode_lengths[9]
  *pov++ = 0;	// standard_opcode_lengths[10]
  *pov++ = 0;	// standard_opcode_lengths[11]
  *pov++ = 1;	// standard_opcode_lengths[12]
  *pov++ = 0;	// include_directories (empty)
  *pov++ = 0;	// filenames (empty)

  // Some consumers don't check the header_length field, and simply
  // start reading the line number program immediately following the
  // header.  For those consumers, we fill the remainder of the free
  // space with DW_LNS_set_basic_block opcodes.  These are effectively
  // no-ops: the resulting line table program will not create any rows.
  if (pov < oview + len)
    memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);

  of->write_output_view(off, len, oview);
}

// Output_section::Input_section methods.

// Return the current data size.  For an input section we store the size here.
// For an Output_section_data, we have to ask it for the size.

off_t
Output_section::Input_section::current_data_size() const
{
  if (this->is_input_section())
    return this->u1_.data_size;
  else
    {
      this->u2_.posd->pre_finalize_data_size();
      return this->u2_.posd->current_data_size();
    }
}

// Return the data size.  For an input section we store the size here.
// For an Output_section_data, we have to ask it for the size.

off_t
Output_section::Input_section::data_size() const
{
  if (this->is_input_section())
    return this->u1_.data_size;
  else
    return this->u2_.posd->data_size();
}

// Return the object for an input section.

Relobj*
Output_section::Input_section::relobj() const
{
  if (this->is_input_section())
    return this->u2_.object;
  else if (this->is_merge_section())
    {
      gold_assert(this->u2_.pomb->first_relobj() != NULL);
      return this->u2_.pomb->first_relobj();
    }
  else if (this->is_relaxed_input_section())
    return this->u2_.poris->relobj();
  else
    gold_unreachable();
}

// Return the input section index for an input section.

unsigned int
Output_section::Input_section::shndx() const
{
  if (this->is_input_section())
    return this->shndx_;
  else if (this->is_merge_section())
    {
      gold_assert(this->u2_.pomb->first_relobj() != NULL);
      return this->u2_.pomb->first_shndx();
    }
  else if (this->is_relaxed_input_section())
    return this->u2_.poris->shndx();
  else
    gold_unreachable();
}

// Set the address and file offset.

void
Output_section::Input_section::set_address_and_file_offset(
    uint64_t address,
    off_t file_offset,
    off_t section_file_offset)
{
  if (this->is_input_section())
    this->u2_.object->set_section_offset(this->shndx_,
					 file_offset - section_file_offset);
  else
    this->u2_.posd->set_address_and_file_offset(address, file_offset);
}

// Reset the address and file offset.

void
Output_section::Input_section::reset_address_and_file_offset()
{
  if (!this->is_input_section())
    this->u2_.posd->reset_address_and_file_offset();
}

// Finalize the data size.

void
Output_section::Input_section::finalize_data_size()
{
  if (!this->is_input_section())
    this->u2_.posd->finalize_data_size();
}

// Try to turn an input offset into an output offset.  We want to
// return the output offset relative to the start of this
// Input_section in the output section.

inline bool
Output_section::Input_section::output_offset(
    const Relobj* object,
    unsigned int shndx,
    section_offset_type offset,
    section_offset_type* poutput) const
{
  if (!this->is_input_section())
    return this->u2_.posd->output_offset(object, shndx, offset, poutput);
  else
    {
      if (this->shndx_ != shndx || this->u2_.object != object)
	return false;
      *poutput = offset;
      return true;
    }
}

// Write out the data.  We don't have to do anything for an input
// section--they are handled via Object::relocate--but this is where
// we write out the data for an Output_section_data.

void
Output_section::Input_section::write(Output_file* of)
{
  if (!this->is_input_section())
    this->u2_.posd->write(of);
}

// Write the data to a buffer.  As for write(), we don't have to do
// anything for an input section.

void
Output_section::Input_section::write_to_buffer(unsigned char* buffer)
{
  if (!this->is_input_section())
    this->u2_.posd->write_to_buffer(buffer);
}

// Print to a map file.

void
Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
{
  switch (this->shndx_)
    {
    case OUTPUT_SECTION_CODE:
    case MERGE_DATA_SECTION_CODE:
    case MERGE_STRING_SECTION_CODE:
      this->u2_.posd->print_to_mapfile(mapfile);
      break;

    case RELAXED_INPUT_SECTION_CODE:
      {
	Output_relaxed_input_section* relaxed_section =
	  this->relaxed_input_section();
	mapfile->print_input_section(relaxed_section->relobj(),
				     relaxed_section->shndx());
      }
      break;
    default:
      mapfile->print_input_section(this->u2_.object, this->shndx_);
      break;
    }
}

// Output_section methods.

// Construct an Output_section.  NAME will point into a Stringpool.

Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
			       elfcpp::Elf_Xword flags)
  : name_(name),
    addralign_(0),
    entsize_(0),
    load_address_(0),
    link_section_(NULL),
    link_(0),
    info_section_(NULL),
    info_symndx_(NULL),
    info_(0),
    type_(type),
    flags_(flags),
    order_(ORDER_INVALID),
    out_shndx_(-1U),
    symtab_index_(0),
    dynsym_index_(0),
    input_sections_(),
    first_input_offset_(0),
    fills_(),
    postprocessing_buffer_(NULL),
    needs_symtab_index_(false),
    needs_dynsym_index_(false),
    should_link_to_symtab_(false),
    should_link_to_dynsym_(false),
    after_input_sections_(false),
    requires_postprocessing_(false),
    found_in_sections_clause_(false),
    has_load_address_(false),
    info_uses_section_index_(false),
    input_section_order_specified_(false),
    may_sort_attached_input_sections_(false),
    must_sort_attached_input_sections_(false),
    attached_input_sections_are_sorted_(false),
    is_relro_(false),
    is_small_section_(false),
    is_large_section_(false),
    generate_code_fills_at_write_(false),
    is_entsize_zero_(false),
    section_offsets_need_adjustment_(false),
    is_noload_(false),
    always_keeps_input_sections_(false),
    has_fixed_layout_(false),
    is_patch_space_allowed_(false),
    is_unique_segment_(false),
    tls_offset_(0),
    extra_segment_flags_(0),
    segment_alignment_(0),
    checkpoint_(NULL),
    lookup_maps_(new Output_section_lookup_maps),
    free_list_(),
    free_space_fill_(NULL),
    patch_space_(0),
    reloc_section_(NULL)
{
  // An unallocated section has no address.  Forcing this means that
  // we don't need special treatment for symbols defined in debug
  // sections.
  if ((flags & elfcpp::SHF_ALLOC) == 0)
    this->set_address(0);
}

Output_section::~Output_section()
{
  delete this->checkpoint_;
}

// Set the entry size.

void
Output_section::set_entsize(uint64_t v)
{
  if (this->is_entsize_zero_)
    ;
  else if (this->entsize_ == 0)
    this->entsize_ = v;
  else if (this->entsize_ != v)
    {
      this->entsize_ = 0;
      this->is_entsize_zero_ = 1;
    }
}

// Add the input section SHNDX, with header SHDR, named SECNAME, in
// OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
// relocation section which applies to this section, or 0 if none, or
// -1U if more than one.  Return the offset of the input section
// within the output section.  Return -1 if the input section will
// receive special handling.  In the normal case we don't always keep
// track of input sections for an Output_section.  Instead, each
// Object keeps track of the Output_section for each of its input
// sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
// track of input sections here; this is used when SECTIONS appears in
// a linker script.

template<int size, bool big_endian>
off_t
Output_section::add_input_section(Layout* layout,
				  Sized_relobj_file<size, big_endian>* object,
				  unsigned int shndx,
				  const char* secname,
				  const elfcpp::Shdr<size, big_endian>& shdr,
				  unsigned int reloc_shndx,
				  bool have_sections_script)
{
  section_size_type input_section_size = shdr.get_sh_size();
  section_size_type uncompressed_size;
  elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();

  if (object->section_is_compressed(shndx, &uncompressed_size,
                                   &addralign))
    input_section_size = uncompressed_size;

  if ((addralign & (addralign - 1)) != 0)
    {
      object->error(_("invalid alignment %lu for section \"%s\""),
		    static_cast<unsigned long>(addralign), secname);
      addralign = 1;
    }

  if (addralign > this->addralign_)
    this->addralign_ = addralign;

  typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
  uint64_t entsize = shdr.get_sh_entsize();

  // .debug_str is a mergeable string section, but is not always so
  // marked by compilers.  Mark manually here so we can optimize.
  if (strcmp(secname, ".debug_str") == 0)
    {
      sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
      entsize = 1;
    }

  this->update_flags_for_input_section(sh_flags);
  this->set_entsize(entsize);

  // If this is a SHF_MERGE section, we pass all the input sections to
  // a Output_data_merge.  We don't try to handle relocations for such
  // a section.  We don't try to handle empty merge sections--they
  // mess up the mappings, and are useless anyhow.
  // FIXME: Need to handle merge sections during incremental update.
  if ((sh_flags & elfcpp::SHF_MERGE) != 0
      && reloc_shndx == 0
      && shdr.get_sh_size() > 0
      && !parameters->incremental())
    {
      // Keep information about merged input sections for rebuilding fast
      // lookup maps if we have sections-script or we do relaxation.
      bool keeps_input_sections = (this->always_keeps_input_sections_
				   || have_sections_script
				   || parameters->target().may_relax());

      if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
					addralign, keeps_input_sections))
	{
	  // Tell the relocation routines that they need to call the
	  // output_offset method to determine the final address.
	  return -1;
	}
    }

  off_t offset_in_section;

  if (this->has_fixed_layout())
    {
      // For incremental updates, find a chunk of unused space in the section.
      offset_in_section = this->free_list_.allocate(input_section_size,
						    addralign, 0);
      if (offset_in_section == -1)
	gold_fallback(_("out of patch space in section %s; "
			"relink with --incremental-full"),
		      this->name());
      return offset_in_section;
    }

  offset_in_section = this->current_data_size_for_child();
  off_t aligned_offset_in_section = align_address(offset_in_section,
						  addralign);
  this->set_current_data_size_for_child(aligned_offset_in_section
					+ input_section_size);

  // Determine if we want to delay code-fill generation until the output
  // section is written.  When the target is relaxing, we want to delay fill
  // generating to avoid adjusting them during relaxation.  Also, if we are
  // sorting input sections we must delay fill generation.
  if (!this->generate_code_fills_at_write_
      && !have_sections_script
      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
      && parameters->target().has_code_fill()
      && (parameters->target().may_relax()
	  || layout->is_section_ordering_specified()))
    {
      gold_assert(this->fills_.empty());
      this->generate_code_fills_at_write_ = true;
    }

  if (aligned_offset_in_section > offset_in_section
      && !this->generate_code_fills_at_write_
      && !have_sections_script
      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
      && parameters->target().has_code_fill())
    {
      // We need to add some fill data.  Using fill_list_ when
      // possible is an optimization, since we will often have fill
      // sections without input sections.
      off_t fill_len = aligned_offset_in_section - offset_in_section;
      if (this->input_sections_.empty())
	this->fills_.push_back(Fill(offset_in_section, fill_len));
      else
	{
	  std::string fill_data(parameters->target().code_fill(fill_len));
	  Output_data_const* odc = new Output_data_const(fill_data, 1);
	  this->input_sections_.push_back(Input_section(odc));
	}
    }

  // We need to keep track of this section if we are already keeping
  // track of sections, or if we are relaxing.  Also, if this is a
  // section which requires sorting, or which may require sorting in
  // the future, we keep track of the sections.  If the
  // --section-ordering-file option is used to specify the order of
  // sections, we need to keep track of sections.
  if (this->always_keeps_input_sections_
      || have_sections_script
      || !this->input_sections_.empty()
      || this->may_sort_attached_input_sections()
      || this->must_sort_attached_input_sections()
      || parameters->options().user_set_Map()
      || parameters->target().may_relax()
      || layout->is_section_ordering_specified())
    {
      Input_section isecn(object, shndx, input_section_size, addralign);
      /* If section ordering is requested by specifying a ordering file,
	 using --section-ordering-file, match the section name with
	 a pattern.  */
      if (parameters->options().section_ordering_file())
	{
	  unsigned int section_order_index =
	    layout->find_section_order_index(std::string(secname));
	  if (section_order_index != 0)
	    {
	      isecn.set_section_order_index(section_order_index);
	      this->set_input_section_order_specified();
	    }
	}
      this->input_sections_.push_back(isecn);
    }

  return aligned_offset_in_section;
}

// Add arbitrary data to an output section.

void
Output_section::add_output_section_data(Output_section_data* posd)
{
  Input_section inp(posd);
  this->add_output_section_data(&inp);

  if (posd->is_data_size_valid())
    {
      off_t offset_in_section;
      if (this->has_fixed_layout())
	{
	  // For incremental updates, find a chunk of unused space.
	  offset_in_section = this->free_list_.allocate(posd->data_size(),
							posd->addralign(), 0);
	  if (offset_in_section == -1)
	    gold_fallback(_("out of patch space in section %s; "
			    "relink with --incremental-full"),
			  this->name());
	  // Finalize the address and offset now.
	  uint64_t addr = this->address();
	  off_t offset = this->offset();
	  posd->set_address_and_file_offset(addr + offset_in_section,
					    offset + offset_in_section);
	}
      else
	{
	  offset_in_section = this->current_data_size_for_child();
	  off_t aligned_offset_in_section = align_address(offset_in_section,
							  posd->addralign());
	  this->set_current_data_size_for_child(aligned_offset_in_section
						+ posd->data_size());
	}
    }
  else if (this->has_fixed_layout())
    {
      // For incremental updates, arrange for the data to have a fixed layout.
      // This will mean that additions to the data must be allocated from
      // free space within the containing output section.
      uint64_t addr = this->address();
      posd->set_address(addr);
      posd->set_file_offset(0);
      // FIXME: This should eventually be unreachable.
      // gold_unreachable();
    }
}

// Add a relaxed input section.

void
Output_section::add_relaxed_input_section(Layout* layout,
					  Output_relaxed_input_section* poris,
					  const std::string& name)
{
  Input_section inp(poris);

  // If the --section-ordering-file option is used to specify the order of
  // sections, we need to keep track of sections.
  if (layout->is_section_ordering_specified())
    {
      unsigned int section_order_index =
	layout->find_section_order_index(name);
      if (section_order_index != 0)
	{
	  inp.set_section_order_index(section_order_index);
	  this->set_input_section_order_specified();
	}
    }

  this->add_output_section_data(&inp);
  if (this->lookup_maps_->is_valid())
    this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
						  poris->shndx(), poris);

  // For a relaxed section, we use the current data size.  Linker scripts
  // get all the input sections, including relaxed one from an output
  // section and add them back to the same output section to compute the
  // output section size.  If we do not account for sizes of relaxed input
  // sections, an output section would be incorrectly sized.
  off_t offset_in_section = this->current_data_size_for_child();
  off_t aligned_offset_in_section = align_address(offset_in_section,
						  poris->addralign());
  this->set_current_data_size_for_child(aligned_offset_in_section
					+ poris->current_data_size());
}

// Add arbitrary data to an output section by Input_section.

void
Output_section::add_output_section_data(Input_section* inp)
{
  if (this->input_sections_.empty())
    this->first_input_offset_ = this->current_data_size_for_child();

  this->input_sections_.push_back(*inp);

  uint64_t addralign = inp->addralign();
  if (addralign > this->addralign_)
    this->addralign_ = addralign;

  inp->set_output_section(this);
}

// Add a merge section to an output section.

void
Output_section::add_output_merge_section(Output_section_data* posd,
					 bool is_string, uint64_t entsize)
{
  Input_section inp(posd, is_string, entsize);
  this->add_output_section_data(&inp);
}

// Add an input section to a SHF_MERGE section.

bool
Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
					uint64_t flags, uint64_t entsize,
					uint64_t addralign,
					bool keeps_input_sections)
{
  // We cannot merge sections with entsize == 0.
  if (entsize == 0)
    return false;

  bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;

  // We cannot restore merged input section states.
  gold_assert(this->checkpoint_ == NULL);

  // Look up merge sections by required properties.
  // Currently, we only invalidate the lookup maps in script processing
  // and relaxation.  We should not have done either when we reach here.
  // So we assume that the lookup maps are valid to simply code.
  gold_assert(this->lookup_maps_->is_valid());
  Merge_section_properties msp(is_string, entsize, addralign);
  Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
  bool is_new = false;
  if (pomb != NULL)
    {
      gold_assert(pomb->is_string() == is_string
		  && pomb->entsize() == entsize
		  && pomb->addralign() == addralign);
    }
  else
    {
      // Create a new Output_merge_data or Output_merge_string_data.
      if (!is_string)
	pomb = new Output_merge_data(entsize, addralign);
      else
	{
	  switch (entsize)
	    {
	    case 1:
	      pomb = new Output_merge_string<char>(addralign);
	      break;
	    case 2:
	      pomb = new Output_merge_string<uint16_t>(addralign);
	      break;
	    case 4:
	      pomb = new Output_merge_string<uint32_t>(addralign);
	      break;
	    default:
	      return false;
	    }
	}
      // If we need to do script processing or relaxation, we need to keep
      // the original input sections to rebuild the fast lookup maps.
      if (keeps_input_sections)
	pomb->set_keeps_input_sections();
      is_new = true;
    }

  if (pomb->add_input_section(object, shndx))
    {
      // Add new merge section to this output section and link merge
      // section properties to new merge section in map.
      if (is_new)
	{
	  this->add_output_merge_section(pomb, is_string, entsize);
	  this->lookup_maps_->add_merge_section(msp, pomb);
	}

      return true;
    }
  else
    {
      // If add_input_section failed, delete new merge section to avoid
      // exporting empty merge sections in Output_section::get_input_section.
      if (is_new)
	delete pomb;
      return false;
    }
}

// Build a relaxation map to speed up relaxation of existing input sections.
// Look up to the first LIMIT elements in INPUT_SECTIONS.

void
Output_section::build_relaxation_map(
  const Input_section_list& input_sections,
  size_t limit,
  Relaxation_map* relaxation_map) const
{
  for (size_t i = 0; i < limit; ++i)
    {
      const Input_section& is(input_sections[i]);
      if (is.is_input_section() || is.is_relaxed_input_section())
	{
	  Section_id sid(is.relobj(), is.shndx());
	  (*relaxation_map)[sid] = i;
	}
    }
}

// Convert regular input sections in INPUT_SECTIONS into relaxed input
// sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
// indices of INPUT_SECTIONS.

void
Output_section::convert_input_sections_in_list_to_relaxed_sections(
  const std::vector<Output_relaxed_input_section*>& relaxed_sections,
  const Relaxation_map& map,
  Input_section_list* input_sections)
{
  for (size_t i = 0; i < relaxed_sections.size(); ++i)
    {
      Output_relaxed_input_section* poris = relaxed_sections[i];
      Section_id sid(poris->relobj(), poris->shndx());
      Relaxation_map::const_iterator p = map.find(sid);
      gold_assert(p != map.end());
      gold_assert((*input_sections)[p->second].is_input_section());

      // Remember section order index of original input section
      // if it is set.  Copy it to the relaxed input section.
      unsigned int soi =
	(*input_sections)[p->second].section_order_index();
      (*input_sections)[p->second] = Input_section(poris);
      (*input_sections)[p->second].set_section_order_index(soi);
    }
}

// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
// is a vector of pointers to Output_relaxed_input_section or its derived
// classes.  The relaxed sections must correspond to existing input sections.

void
Output_section::convert_input_sections_to_relaxed_sections(
  const std::vector<Output_relaxed_input_section*>& relaxed_sections)
{
  gold_assert(parameters->target().may_relax());

  // We want to make sure that restore_states does not undo the effect of
  // this.  If there is no checkpoint active, just search the current
  // input section list and replace the sections there.  If there is
  // a checkpoint, also replace the sections there.

  // By default, we look at the whole list.
  size_t limit = this->input_sections_.size();

  if (this->checkpoint_ != NULL)
    {
      // Replace input sections with relaxed input section in the saved
      // copy of the input section list.
      if (this->checkpoint_->input_sections_saved())
	{
	  Relaxation_map map;
	  this->build_relaxation_map(
		    *(this->checkpoint_->input_sections()),
		    this->checkpoint_->input_sections()->size(),
		    &map);
	  this->convert_input_sections_in_list_to_relaxed_sections(
		    relaxed_sections,
		    map,
		    this->checkpoint_->input_sections());
	}
      else
	{
	  // We have not copied the input section list yet.  Instead, just
	  // look at the portion that would be saved.
	  limit = this->checkpoint_->input_sections_size();
	}
    }

  // Convert input sections in input_section_list.
  Relaxation_map map;
  this->build_relaxation_map(this->input_sections_, limit, &map);
  this->convert_input_sections_in_list_to_relaxed_sections(
	    relaxed_sections,
	    map,
	    &this->input_sections_);

  // Update fast look-up map.
  if (this->lookup_maps_->is_valid())
    for (size_t i = 0; i < relaxed_sections.size(); ++i)
      {
	Output_relaxed_input_section* poris = relaxed_sections[i];
	this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
						      poris->shndx(), poris);
      }
}

// Update the output section flags based on input section flags.

void
Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
{
  // If we created the section with SHF_ALLOC clear, we set the
  // address.  If we are now setting the SHF_ALLOC flag, we need to
  // undo that.
  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
      && (flags & elfcpp::SHF_ALLOC) != 0)
    this->mark_address_invalid();

  this->flags_ |= (flags
		   & (elfcpp::SHF_WRITE
		      | elfcpp::SHF_ALLOC
		      | elfcpp::SHF_EXECINSTR));

  if ((flags & elfcpp::SHF_MERGE) == 0)
    this->flags_ &=~ elfcpp::SHF_MERGE;
  else
    {
      if (this->current_data_size_for_child() == 0)
	this->flags_ |= elfcpp::SHF_MERGE;
    }

  if ((flags & elfcpp::SHF_STRINGS) == 0)
    this->flags_ &=~ elfcpp::SHF_STRINGS;
  else
    {
      if (this->current_data_size_for_child() == 0)
	this->flags_ |= elfcpp::SHF_STRINGS;
    }
}

// Find the merge section into which an input section with index SHNDX in
// OBJECT has been added.  Return NULL if none found.

const Output_section_data*
Output_section::find_merge_section(const Relobj* object,
				   unsigned int shndx) const
{
  return object->find_merge_section(shndx);
}

// Build the lookup maps for relaxed sections.  This needs
// to be declared as a const method so that it is callable with a const
// Output_section pointer.  The method only updates states of the maps.

void
Output_section::build_lookup_maps() const
{
  this->lookup_maps_->clear();
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      if (p->is_relaxed_input_section())
	{
	  Output_relaxed_input_section* poris = p->relaxed_input_section();
	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
							poris->shndx(), poris);
	}
    }
}

// Find an relaxed input section corresponding to an input section
// in OBJECT with index SHNDX.

const Output_relaxed_input_section*
Output_section::find_relaxed_input_section(const Relobj* object,
					   unsigned int shndx) const
{
  if (!this->lookup_maps_->is_valid())
    this->build_lookup_maps();
  return this->lookup_maps_->find_relaxed_input_section(object, shndx);
}

// Given an address OFFSET relative to the start of input section
// SHNDX in OBJECT, return whether this address is being included in
// the final link.  This should only be called if SHNDX in OBJECT has
// a special mapping.

bool
Output_section::is_input_address_mapped(const Relobj* object,
					unsigned int shndx,
					off_t offset) const
{
  // Look at the Output_section_data_maps first.
  const Output_section_data* posd = this->find_merge_section(object, shndx);
  if (posd == NULL)
    posd = this->find_relaxed_input_section(object, shndx);

  if (posd != NULL)
    {
      section_offset_type output_offset;
      bool found = posd->output_offset(object, shndx, offset, &output_offset);
      // By default we assume that the address is mapped. See comment at the
      // end.
      if (!found)
        return true;
      return output_offset != -1;
    }

  // Fall back to the slow look-up.
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      section_offset_type output_offset;
      if (p->output_offset(object, shndx, offset, &output_offset))
	return output_offset != -1;
    }

  // By default we assume that the address is mapped.  This should
  // only be called after we have passed all sections to Layout.  At
  // that point we should know what we are discarding.
  return true;
}

// Given an address OFFSET relative to the start of input section
// SHNDX in object OBJECT, return the output offset relative to the
// start of the input section in the output section.  This should only
// be called if SHNDX in OBJECT has a special mapping.

section_offset_type
Output_section::output_offset(const Relobj* object, unsigned int shndx,
			      section_offset_type offset) const
{
  // This can only be called meaningfully when we know the data size
  // of this.
  gold_assert(this->is_data_size_valid());

  // Look at the Output_section_data_maps first.
  const Output_section_data* posd = this->find_merge_section(object, shndx);
  if (posd == NULL)
    posd = this->find_relaxed_input_section(object, shndx);
  if (posd != NULL)
    {
      section_offset_type output_offset;
      bool found = posd->output_offset(object, shndx, offset, &output_offset);
      gold_assert(found);
      return output_offset;
    }

  // Fall back to the slow look-up.
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      section_offset_type output_offset;
      if (p->output_offset(object, shndx, offset, &output_offset))
	return output_offset;
    }
  gold_unreachable();
}

// Return the output virtual address of OFFSET relative to the start
// of input section SHNDX in object OBJECT.

uint64_t
Output_section::output_address(const Relobj* object, unsigned int shndx,
			       off_t offset) const
{
  uint64_t addr = this->address() + this->first_input_offset_;

  // Look at the Output_section_data_maps first.
  const Output_section_data* posd = this->find_merge_section(object, shndx);
  if (posd == NULL)
    posd = this->find_relaxed_input_section(object, shndx);
  if (posd != NULL && posd->is_address_valid())
    {
      section_offset_type output_offset;
      bool found = posd->output_offset(object, shndx, offset, &output_offset);
      gold_assert(found);
      return posd->address() + output_offset;
    }

  // Fall back to the slow look-up.
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      addr = align_address(addr, p->addralign());
      section_offset_type output_offset;
      if (p->output_offset(object, shndx, offset, &output_offset))
	{
	  if (output_offset == -1)
	    return -1ULL;
	  return addr + output_offset;
	}
      addr += p->data_size();
    }

  // If we get here, it means that we don't know the mapping for this
  // input section.  This might happen in principle if
  // add_input_section were called before add_output_section_data.
  // But it should never actually happen.

  gold_unreachable();
}

// Find the output address of the start of the merged section for
// input section SHNDX in object OBJECT.

bool
Output_section::find_starting_output_address(const Relobj* object,
					     unsigned int shndx,
					     uint64_t* paddr) const
{
  const Output_section_data* data = this->find_merge_section(object, shndx);
  if (data == NULL)
    return false;

  // FIXME: This becomes a bottle-neck if we have many relaxed sections.
  // Looking up the merge section map does not always work as we sometimes
  // find a merge section without its address set.
  uint64_t addr = this->address() + this->first_input_offset_;
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      addr = align_address(addr, p->addralign());

      // It would be nice if we could use the existing output_offset
      // method to get the output offset of input offset 0.
      // Unfortunately we don't know for sure that input offset 0 is
      // mapped at all.
      if (!p->is_input_section() && p->output_section_data() == data)
	{
	  *paddr = addr;
	  return true;
	}

      addr += p->data_size();
    }

  // We couldn't find a merge output section for this input section.
  return false;
}

// Update the data size of an Output_section.

void
Output_section::update_data_size()
{
  if (this->input_sections_.empty())
      return;

  if (this->must_sort_attached_input_sections()
      || this->input_section_order_specified())
    this->sort_attached_input_sections();

  off_t off = this->first_input_offset_;
  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      off = align_address(off, p->addralign());
      off += p->current_data_size();
    }

  this->set_current_data_size_for_child(off);
}

// Set the data size of an Output_section.  This is where we handle
// setting the addresses of any Output_section_data objects.

void
Output_section::set_final_data_size()
{
  off_t data_size;

  if (this->input_sections_.empty())
    data_size = this->current_data_size_for_child();
  else
    {
      if (this->must_sort_attached_input_sections()
	  || this->input_section_order_specified())
	this->sort_attached_input_sections();

      uint64_t address = this->address();
      off_t startoff = this->offset();
      off_t off = this->first_input_offset_;
      for (Input_section_list::iterator p = this->input_sections_.begin();
	   p != this->input_sections_.end();
	   ++p)
	{
	  off = align_address(off, p->addralign());
	  p->set_address_and_file_offset(address + off, startoff + off,
					 startoff);
	  off += p->data_size();
	}
      data_size = off;
    }

  // For full incremental links, we want to allocate some patch space
  // in most sections for subsequent incremental updates.
  if (this->is_patch_space_allowed_ && parameters->incremental_full())
    {
      double pct = parameters->options().incremental_patch();
      size_t extra = static_cast<size_t>(data_size * pct);
      if (this->free_space_fill_ != NULL
	  && this->free_space_fill_->minimum_hole_size() > extra)
	extra = this->free_space_fill_->minimum_hole_size();
      off_t new_size = align_address(data_size + extra, this->addralign());
      this->patch_space_ = new_size - data_size;
      gold_debug(DEBUG_INCREMENTAL,
		 "set_final_data_size: %08lx + %08lx: section %s",
		 static_cast<long>(data_size),
		 static_cast<long>(this->patch_space_),
		 this->name());
      data_size = new_size;
    }

  this->set_data_size(data_size);
}

// Reset the address and file offset.

void
Output_section::do_reset_address_and_file_offset()
{
  // An unallocated section has no address.  Forcing this means that
  // we don't need special treatment for symbols defined in debug
  // sections.  We do the same in the constructor.  This does not
  // apply to NOLOAD sections though.
  if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
     this->set_address(0);

  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    p->reset_address_and_file_offset();

  // Remove any patch space that was added in set_final_data_size.
  if (this->patch_space_ > 0)
    {
      this->set_current_data_size_for_child(this->current_data_size_for_child()
					    - this->patch_space_);
      this->patch_space_ = 0;
    }
}

// Return true if address and file offset have the values after reset.

bool
Output_section::do_address_and_file_offset_have_reset_values() const
{
  if (this->is_offset_valid())
    return false;

  // An unallocated section has address 0 after its construction or a reset.
  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
    return this->is_address_valid() && this->address() == 0;
  else
    return !this->is_address_valid();
}

// Set the TLS offset.  Called only for SHT_TLS sections.

void
Output_section::do_set_tls_offset(uint64_t tls_base)
{
  this->tls_offset_ = this->address() - tls_base;
}

// In a few cases we need to sort the input sections attached to an
// output section.  This is used to implement the type of constructor
// priority ordering implemented by the GNU linker, in which the
// priority becomes part of the section name and the sections are
// sorted by name.  We only do this for an output section if we see an
// attached input section matching ".ctors.*", ".dtors.*",
// ".init_array.*" or ".fini_array.*".

class Output_section::Input_section_sort_entry
{
 public:
  Input_section_sort_entry()
    : input_section_(), index_(-1U), section_name_()
  { }

  Input_section_sort_entry(const Input_section& input_section,
			   unsigned int index,
			   bool must_sort_attached_input_sections,
			   const char* output_section_name)
    : input_section_(input_section), index_(index), section_name_()
  {
    if ((input_section.is_input_section()
	 || input_section.is_relaxed_input_section())
	&& must_sort_attached_input_sections)
      {
	// This is only called single-threaded from Layout::finalize,
	// so it is OK to lock.  Unfortunately we have no way to pass
	// in a Task token.
	const Task* dummy_task = reinterpret_cast<const Task*>(-1);
	Object* obj = (input_section.is_input_section()
		       ? input_section.relobj()
		       : input_section.relaxed_input_section()->relobj());
	Task_lock_obj<Object> tl(dummy_task, obj);

	// This is a slow operation, which should be cached in
	// Layout::layout if this becomes a speed problem.
	this->section_name_ = obj->section_name(input_section.shndx());
      }
    else if (input_section.is_output_section_data()
    	     && must_sort_attached_input_sections)
      {
	// For linker-generated sections, use the output section name.
	this->section_name_.assign(output_section_name);
      }
  }

  // Return the Input_section.
  const Input_section&
  input_section() const
  {
    gold_assert(this->index_ != -1U);
    return this->input_section_;
  }

  // The index of this entry in the original list.  This is used to
  // make the sort stable.
  unsigned int
  index() const
  {
    gold_assert(this->index_ != -1U);
    return this->index_;
  }

  // The section name.
  const std::string&
  section_name() const
  {
    return this->section_name_;
  }

  // Return true if the section name has a priority.  This is assumed
  // to be true if it has a dot after the initial dot.
  bool
  has_priority() const
  {
    return this->section_name_.find('.', 1) != std::string::npos;
  }

  // Return the priority.  Believe it or not, gcc encodes the priority
  // differently for .ctors/.dtors and .init_array/.fini_array
  // sections.
  unsigned int
  get_priority() const
  {
    bool is_ctors;
    if (is_prefix_of(".ctors.", this->section_name_.c_str())
	|| is_prefix_of(".dtors.", this->section_name_.c_str()))
      is_ctors = true;
    else if (is_prefix_of(".init_array.", this->section_name_.c_str())
	     || is_prefix_of(".fini_array.", this->section_name_.c_str()))
      is_ctors = false;
    else
      return 0;
    char* end;
    unsigned long prio = strtoul((this->section_name_.c_str()
				  + (is_ctors ? 7 : 12)),
				 &end, 10);
    if (*end != '\0')
      return 0;
    else if (is_ctors)
      return 65535 - prio;
    else
      return prio;
  }

  // Return true if this an input file whose base name matches
  // FILE_NAME.  The base name must have an extension of ".o", and
  // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
  // This is to match crtbegin.o as well as crtbeginS.o without
  // getting confused by other possibilities.  Overall matching the
  // file name this way is a dreadful hack, but the GNU linker does it
  // in order to better support gcc, and we need to be compatible.
  bool
  match_file_name(const char* file_name) const
  {
    if (this->input_section_.is_output_section_data())
      return false;
    return Layout::match_file_name(this->input_section_.relobj(), file_name);
  }

  // Returns 1 if THIS should appear before S in section order, -1 if S
  // appears before THIS and 0 if they are not comparable.
  int
  compare_section_ordering(const Input_section_sort_entry& s) const
  {
    unsigned int this_secn_index = this->input_section_.section_order_index();
    unsigned int s_secn_index = s.input_section().section_order_index();
    if (this_secn_index > 0 && s_secn_index > 0)
      {
	if (this_secn_index < s_secn_index)
	  return 1;
	else if (this_secn_index > s_secn_index)
	  return -1;
      }
    return 0;
  }

 private:
  // The Input_section we are sorting.
  Input_section input_section_;
  // The index of this Input_section in the original list.
  unsigned int index_;
  // The section name if there is one.
  std::string section_name_;
};

// Return true if S1 should come before S2 in the output section.

bool
Output_section::Input_section_sort_compare::operator()(
    const Output_section::Input_section_sort_entry& s1,
    const Output_section::Input_section_sort_entry& s2) const
{
  // crtbegin.o must come first.
  bool s1_begin = s1.match_file_name("crtbegin");
  bool s2_begin = s2.match_file_name("crtbegin");
  if (s1_begin || s2_begin)
    {
      if (!s1_begin)
	return false;
      if (!s2_begin)
	return true;
      return s1.index() < s2.index();
    }

  // crtend.o must come last.
  bool s1_end = s1.match_file_name("crtend");
  bool s2_end = s2.match_file_name("crtend");
  if (s1_end || s2_end)
    {
      if (!s1_end)
	return true;
      if (!s2_end)
	return false;
      return s1.index() < s2.index();
    }

  // A section with a priority follows a section without a priority.
  bool s1_has_priority = s1.has_priority();
  bool s2_has_priority = s2.has_priority();
  if (s1_has_priority && !s2_has_priority)
    return false;
  if (!s1_has_priority && s2_has_priority)
    return true;

  // Check if a section order exists for these sections through a section
  // ordering file.  If sequence_num is 0, an order does not exist.
  int sequence_num = s1.compare_section_ordering(s2);
  if (sequence_num != 0)
    return sequence_num == 1;

  // Otherwise we sort by name.
  int compare = s1.section_name().compare(s2.section_name());
  if (compare != 0)
    return compare < 0;

  // Otherwise we keep the input order.
  return s1.index() < s2.index();
}

// Return true if S1 should come before S2 in an .init_array or .fini_array
// output section.

bool
Output_section::Input_section_sort_init_fini_compare::operator()(
    const Output_section::Input_section_sort_entry& s1,
    const Output_section::Input_section_sort_entry& s2) const
{
  // A section without a priority follows a section with a priority.
  // This is the reverse of .ctors and .dtors sections.
  bool s1_has_priority = s1.has_priority();
  bool s2_has_priority = s2.has_priority();
  if (s1_has_priority && !s2_has_priority)
    return true;
  if (!s1_has_priority && s2_has_priority)
    return false;

  // .ctors and .dtors sections without priority come after
  // .init_array and .fini_array sections without priority.
  if (!s1_has_priority
      && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
      && s1.section_name() != s2.section_name())
    return false;
  if (!s2_has_priority
      && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
      && s2.section_name() != s1.section_name())
    return true;

  // Sort by priority if we can.
  if (s1_has_priority)
    {
      unsigned int s1_prio = s1.get_priority();
      unsigned int s2_prio = s2.get_priority();
      if (s1_prio < s2_prio)
	return true;
      else if (s1_prio > s2_prio)
	return false;
    }

  // Check if a section order exists for these sections through a section
  // ordering file.  If sequence_num is 0, an order does not exist.
  int sequence_num = s1.compare_section_ordering(s2);
  if (sequence_num != 0)
    return sequence_num == 1;

  // Otherwise we sort by name.
  int compare = s1.section_name().compare(s2.section_name());
  if (compare != 0)
    return compare < 0;

  // Otherwise we keep the input order.
  return s1.index() < s2.index();
}

// Return true if S1 should come before S2.  Sections that do not match
// any pattern in the section ordering file are placed ahead of the sections
// that match some pattern.

bool
Output_section::Input_section_sort_section_order_index_compare::operator()(
    const Output_section::Input_section_sort_entry& s1,
    const Output_section::Input_section_sort_entry& s2) const
{
  unsigned int s1_secn_index = s1.input_section().section_order_index();
  unsigned int s2_secn_index = s2.input_section().section_order_index();

  // Keep input order if section ordering cannot determine order.
  if (s1_secn_index == s2_secn_index)
    return s1.index() < s2.index();

  return s1_secn_index < s2_secn_index;
}

// Return true if S1 should come before S2.  This is the sort comparison
// function for .text to sort sections with prefixes
// .text.{unlikely,exit,startup,hot} before other sections.

bool
Output_section::Input_section_sort_section_prefix_special_ordering_compare
  ::operator()(
    const Output_section::Input_section_sort_entry& s1,
    const Output_section::Input_section_sort_entry& s2) const
{
  // Some input section names have special ordering requirements.
  int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
  int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
  if (o1 != o2)
    {
      if (o1 < 0)
	return false;
      else if (o2 < 0)
	return true;
      else
	return o1 < o2;
    }

  // Keep input order otherwise.
  return s1.index() < s2.index();
}

// Return true if S1 should come before S2.  This is the sort comparison
// function for sections to sort them by name.

bool
Output_section::Input_section_sort_section_name_compare
  ::operator()(
    const Output_section::Input_section_sort_entry& s1,
    const Output_section::Input_section_sort_entry& s2) const
{
  // We sort by name.
  int compare = s1.section_name().compare(s2.section_name());
  if (compare != 0)
    return compare < 0;

  // Keep input order otherwise.
  return s1.index() < s2.index();
}

// This updates the section order index of input sections according to the
// the order specified in the mapping from Section id to order index.

void
Output_section::update_section_layout(
  const Section_layout_order* order_map)
{
  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      if (p->is_input_section()
	  || p->is_relaxed_input_section())
	{
	  Relobj* obj = (p->is_input_section()
			 ? p->relobj()
			 : p->relaxed_input_section()->relobj());
	  unsigned int shndx = p->shndx();
	  Section_layout_order::const_iterator it
	    = order_map->find(Section_id(obj, shndx));
	  if (it == order_map->end())
	    continue;
	  unsigned int section_order_index = it->second;
	  if (section_order_index != 0)
	    {
	      p->set_section_order_index(section_order_index);
	      this->set_input_section_order_specified();
	    }
	}
    }
}

// Sort the input sections attached to an output section.

void
Output_section::sort_attached_input_sections()
{
  if (this->attached_input_sections_are_sorted_)
    return;

  if (this->checkpoint_ != NULL
      && !this->checkpoint_->input_sections_saved())
    this->checkpoint_->save_input_sections();

  // The only thing we know about an input section is the object and
  // the section index.  We need the section name.  Recomputing this
  // is slow but this is an unusual case.  If this becomes a speed
  // problem we can cache the names as required in Layout::layout.

  // We start by building a larger vector holding a copy of each
  // Input_section, plus its current index in the list and its name.
  std::vector<Input_section_sort_entry> sort_list;

  unsigned int i = 0;
  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p, ++i)
      sort_list.push_back(Input_section_sort_entry(*p, i,
			    this->must_sort_attached_input_sections(),
			    this->name()));

  // Sort the input sections.
  if (this->must_sort_attached_input_sections())
    {
      if (this->type() == elfcpp::SHT_PREINIT_ARRAY
	  || this->type() == elfcpp::SHT_INIT_ARRAY
	  || this->type() == elfcpp::SHT_FINI_ARRAY)
	std::sort(sort_list.begin(), sort_list.end(),
		  Input_section_sort_init_fini_compare());
      else if (strcmp(parameters->options().sort_section(), "name") == 0)
	std::sort(sort_list.begin(), sort_list.end(),
		  Input_section_sort_section_name_compare());
      else if (strcmp(this->name(), ".text") == 0)
	std::sort(sort_list.begin(), sort_list.end(),
		  Input_section_sort_section_prefix_special_ordering_compare());
      else
	std::sort(sort_list.begin(), sort_list.end(),
		  Input_section_sort_compare());
    }
  else
    {
      gold_assert(this->input_section_order_specified());
      std::sort(sort_list.begin(), sort_list.end(),
		Input_section_sort_section_order_index_compare());
    }

  // Copy the sorted input sections back to our list.
  this->input_sections_.clear();
  for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
       p != sort_list.end();
       ++p)
    this->input_sections_.push_back(p->input_section());
  sort_list.clear();

  // Remember that we sorted the input sections, since we might get
  // called again.
  this->attached_input_sections_are_sorted_ = true;
}

// Write the section header to *OSHDR.

template<int size, bool big_endian>
void
Output_section::write_header(const Layout* layout,
			     const Stringpool* secnamepool,
			     elfcpp::Shdr_write<size, big_endian>* oshdr) const
{
  oshdr->put_sh_name(secnamepool->get_offset(this->name_));
  oshdr->put_sh_type(this->type_);

  elfcpp::Elf_Xword flags = this->flags_;
  if (this->info_section_ != NULL && this->info_uses_section_index_)
    flags |= elfcpp::SHF_INFO_LINK;
  oshdr->put_sh_flags(flags);

  oshdr->put_sh_addr(this->address());
  oshdr->put_sh_offset(this->offset());
  oshdr->put_sh_size(this->data_size());
  if (this->link_section_ != NULL)
    oshdr->put_sh_link(this->link_section_->out_shndx());
  else if (this->should_link_to_symtab_)
    oshdr->put_sh_link(layout->symtab_section_shndx());
  else if (this->should_link_to_dynsym_)
    oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
  else
    oshdr->put_sh_link(this->link_);

  elfcpp::Elf_Word info;
  if (this->info_section_ != NULL)
    {
      if (this->info_uses_section_index_)
	info = this->info_section_->out_shndx();
      else
	info = this->info_section_->symtab_index();
    }
  else if (this->info_symndx_ != NULL)
    info = this->info_symndx_->symtab_index();
  else
    info = this->info_;
  oshdr->put_sh_info(info);

  oshdr->put_sh_addralign(this->addralign_);
  oshdr->put_sh_entsize(this->entsize_);
}

// Write out the data.  For input sections the data is written out by
// Object::relocate, but we have to handle Output_section_data objects
// here.

void
Output_section::do_write(Output_file* of)
{
  gold_assert(!this->requires_postprocessing());

  // If the target performs relaxation, we delay filler generation until now.
  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());

  off_t output_section_file_offset = this->offset();
  for (Fill_list::iterator p = this->fills_.begin();
       p != this->fills_.end();
       ++p)
    {
      std::string fill_data(parameters->target().code_fill(p->length()));
      of->write(output_section_file_offset + p->section_offset(),
		fill_data.data(), fill_data.size());
    }

  off_t off = this->offset() + this->first_input_offset_;
  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      off_t aligned_off = align_address(off, p->addralign());
      if (this->generate_code_fills_at_write_ && (off != aligned_off))
	{
	  size_t fill_len = aligned_off - off;
	  std::string fill_data(parameters->target().code_fill(fill_len));
	  of->write(off, fill_data.data(), fill_data.size());
	}

      p->write(of);
      off = aligned_off + p->data_size();
    }

  // For incremental links, fill in unused chunks in debug sections
  // with dummy compilation unit headers.
  if (this->free_space_fill_ != NULL)
    {
      for (Free_list::Const_iterator p = this->free_list_.begin();
	   p != this->free_list_.end();
	   ++p)
	{
	  off_t off = p->start_;
	  size_t len = p->end_ - off;
	  this->free_space_fill_->write(of, this->offset() + off, len);
	}
      if (this->patch_space_ > 0)
	{
	  off_t off = this->current_data_size_for_child() - this->patch_space_;
	  this->free_space_fill_->write(of, this->offset() + off,
					this->patch_space_);
	}
    }
}

// If a section requires postprocessing, create the buffer to use.

void
Output_section::create_postprocessing_buffer()
{
  gold_assert(this->requires_postprocessing());

  if (this->postprocessing_buffer_ != NULL)
    return;

  if (!this->input_sections_.empty())
    {
      off_t off = this->first_input_offset_;
      for (Input_section_list::iterator p = this->input_sections_.begin();
	   p != this->input_sections_.end();
	   ++p)
	{
	  off = align_address(off, p->addralign());
	  p->finalize_data_size();
	  off += p->data_size();
	}
      this->set_current_data_size_for_child(off);
    }

  off_t buffer_size = this->current_data_size_for_child();
  this->postprocessing_buffer_ = new unsigned char[buffer_size];
}

// Write all the data of an Output_section into the postprocessing
// buffer.  This is used for sections which require postprocessing,
// such as compression.  Input sections are handled by
// Object::Relocate.

void
Output_section::write_to_postprocessing_buffer()
{
  gold_assert(this->requires_postprocessing());

  // If the target performs relaxation, we delay filler generation until now.
  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());

  unsigned char* buffer = this->postprocessing_buffer();
  for (Fill_list::iterator p = this->fills_.begin();
       p != this->fills_.end();
       ++p)
    {
      std::string fill_data(parameters->target().code_fill(p->length()));
      memcpy(buffer + p->section_offset(), fill_data.data(),
	     fill_data.size());
    }

  off_t off = this->first_input_offset_;
  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      off_t aligned_off = align_address(off, p->addralign());
      if (this->generate_code_fills_at_write_ && (off != aligned_off))
	{
	  size_t fill_len = aligned_off - off;
	  std::string fill_data(parameters->target().code_fill(fill_len));
	  memcpy(buffer + off, fill_data.data(), fill_data.size());
	}

      p->write_to_buffer(buffer + aligned_off);
      off = aligned_off + p->data_size();
    }
}

// Get the input sections for linker script processing.  We leave
// behind the Output_section_data entries.  Note that this may be
// slightly incorrect for merge sections.  We will leave them behind,
// but it is possible that the script says that they should follow
// some other input sections, as in:
//    .rodata { *(.rodata) *(.rodata.cst*) }
// For that matter, we don't handle this correctly:
//    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
// With luck this will never matter.

uint64_t
Output_section::get_input_sections(
    uint64_t address,
    const std::string& fill,
    std::list<Input_section>* input_sections)
{
  if (this->checkpoint_ != NULL
      && !this->checkpoint_->input_sections_saved())
    this->checkpoint_->save_input_sections();

  // Invalidate fast look-up maps.
  this->lookup_maps_->invalidate();

  uint64_t orig_address = address;

  address = align_address(address, this->addralign());

  Input_section_list remaining;
  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      if (p->is_input_section()
	  || p->is_relaxed_input_section()
	  || p->is_merge_section())
	input_sections->push_back(*p);
      else
	{
	  uint64_t aligned_address = align_address(address, p->addralign());
	  if (aligned_address != address && !fill.empty())
	    {
	      section_size_type length =
		convert_to_section_size_type(aligned_address - address);
	      std::string this_fill;
	      this_fill.reserve(length);
	      while (this_fill.length() + fill.length() <= length)
		this_fill += fill;
	      if (this_fill.length() < length)
		this_fill.append(fill, 0, length - this_fill.length());

	      Output_section_data* posd = new Output_data_const(this_fill, 0);
	      remaining.push_back(Input_section(posd));
	    }
	  address = aligned_address;

	  remaining.push_back(*p);

	  p->finalize_data_size();
	  address += p->data_size();
	}
    }

  this->input_sections_.swap(remaining);
  this->first_input_offset_ = 0;

  uint64_t data_size = address - orig_address;
  this->set_current_data_size_for_child(data_size);
  return data_size;
}

// Add a script input section.  SIS is an Output_section::Input_section,
// which can be either a plain input section or a special input section like
// a relaxed input section.  For a special input section, its size must be
// finalized.

void
Output_section::add_script_input_section(const Input_section& sis)
{
  uint64_t data_size = sis.data_size();
  uint64_t addralign = sis.addralign();
  if (addralign > this->addralign_)
    this->addralign_ = addralign;

  off_t offset_in_section = this->current_data_size_for_child();
  off_t aligned_offset_in_section = align_address(offset_in_section,
						  addralign);

  this->set_current_data_size_for_child(aligned_offset_in_section
					+ data_size);

  this->input_sections_.push_back(sis);

  // Update fast lookup maps if necessary.
  if (this->lookup_maps_->is_valid())
    {
      if (sis.is_relaxed_input_section())
	{
	  Output_relaxed_input_section* poris = sis.relaxed_input_section();
	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
							poris->shndx(), poris);
	}
    }
}

// Save states for relaxation.

void
Output_section::save_states()
{
  gold_assert(this->checkpoint_ == NULL);
  Checkpoint_output_section* checkpoint =
    new Checkpoint_output_section(this->addralign_, this->flags_,
				  this->input_sections_,
				  this->first_input_offset_,
				  this->attached_input_sections_are_sorted_);
  this->checkpoint_ = checkpoint;
  gold_assert(this->fills_.empty());
}

void
Output_section::discard_states()
{
  gold_assert(this->checkpoint_ != NULL);
  delete this->checkpoint_;
  this->checkpoint_ = NULL;
  gold_assert(this->fills_.empty());

  // Simply invalidate the fast lookup maps since we do not keep
  // track of them.
  this->lookup_maps_->invalidate();
}

void
Output_section::restore_states()
{
  gold_assert(this->checkpoint_ != NULL);
  Checkpoint_output_section* checkpoint = this->checkpoint_;

  this->addralign_ = checkpoint->addralign();
  this->flags_ = checkpoint->flags();
  this->first_input_offset_ = checkpoint->first_input_offset();

  if (!checkpoint->input_sections_saved())
    {
      // If we have not copied the input sections, just resize it.
      size_t old_size = checkpoint->input_sections_size();
      gold_assert(this->input_sections_.size() >= old_size);
      this->input_sections_.resize(old_size);
    }
  else
    {
      // We need to copy the whole list.  This is not efficient for
      // extremely large output with hundreads of thousands of input
      // objects.  We may need to re-think how we should pass sections
      // to scripts.
      this->input_sections_ = *checkpoint->input_sections();
    }

  this->attached_input_sections_are_sorted_ =
    checkpoint->attached_input_sections_are_sorted();

  // Simply invalidate the fast lookup maps since we do not keep
  // track of them.
  this->lookup_maps_->invalidate();
}

// Update the section offsets of input sections in this.  This is required if
// relaxation causes some input sections to change sizes.

void
Output_section::adjust_section_offsets()
{
  if (!this->section_offsets_need_adjustment_)
    return;

  off_t off = 0;
  for (Input_section_list::iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    {
      off = align_address(off, p->addralign());
      if (p->is_input_section())
	p->relobj()->set_section_offset(p->shndx(), off);
      off += p->data_size();
    }

  this->section_offsets_need_adjustment_ = false;
}

// Print to the map file.

void
Output_section::do_print_to_mapfile(Mapfile* mapfile) const
{
  mapfile->print_output_section(this);

  for (Input_section_list::const_iterator p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    p->print_to_mapfile(mapfile);
}

// Print stats for merge sections to stderr.

void
Output_section::print_merge_stats()
{
  Input_section_list::iterator p;
  for (p = this->input_sections_.begin();
       p != this->input_sections_.end();
       ++p)
    p->print_merge_stats(this->name_);
}

// Set a fixed layout for the section.  Used for incremental update links.

void
Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
				 off_t sh_size, uint64_t sh_addralign)
{
  this->addralign_ = sh_addralign;
  this->set_current_data_size(sh_size);
  if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
    this->set_address(sh_addr);
  this->set_file_offset(sh_offset);
  this->finalize_data_size();
  this->free_list_.init(sh_size, false);
  this->has_fixed_layout_ = true;
}

// Reserve space within the fixed layout for the section.  Used for
// incremental update links.

void
Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
{
  this->free_list_.remove(sh_offset, sh_offset + sh_size);
}

// Allocate space from the free list for the section.  Used for
// incremental update links.

off_t
Output_section::allocate(off_t len, uint64_t addralign)
{
  return this->free_list_.allocate(len, addralign, 0);
}

// Output segment methods.

Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
  : vaddr_(0),
    paddr_(0),
    memsz_(0),
    max_align_(0),
    min_p_align_(0),
    offset_(0),
    filesz_(0),
    type_(type),
    flags_(flags),
    is_max_align_known_(false),
    are_addresses_set_(false),
    is_large_data_segment_(false),
    is_unique_segment_(false)
{
  // The ELF ABI specifies that a PT_TLS segment always has PF_R as
  // the flags.
  if (type == elfcpp::PT_TLS)
    this->flags_ = elfcpp::PF_R;
}

// Add an Output_section to a PT_LOAD Output_segment.

void
Output_segment::add_output_section_to_load(Layout* layout,
					   Output_section* os,
					   elfcpp::Elf_Word seg_flags)
{
  gold_assert(this->type() == elfcpp::PT_LOAD);
  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
  gold_assert(!this->is_max_align_known_);
  gold_assert(os->is_large_data_section() == this->is_large_data_segment());

  this->update_flags_for_output_section(seg_flags);

  // We don't want to change the ordering if we have a linker script
  // with a SECTIONS clause.
  Output_section_order order = os->order();
  if (layout->script_options()->saw_sections_clause())
    order = static_cast<Output_section_order>(0);
  else
    gold_assert(order != ORDER_INVALID);

  this->output_lists_[order].push_back(os);
}

// Add an Output_section to a non-PT_LOAD Output_segment.

void
Output_segment::add_output_section_to_nonload(Output_section* os,
					      elfcpp::Elf_Word seg_flags)
{
  gold_assert(this->type() != elfcpp::PT_LOAD);
  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
  gold_assert(!this->is_max_align_known_);

  this->update_flags_for_output_section(seg_flags);

  this->output_lists_[0].push_back(os);
}

// Remove an Output_section from this segment.  It is an error if it
// is not present.

void
Output_segment::remove_output_section(Output_section* os)
{
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    {
      Output_data_list* pdl = &this->output_lists_[i];
      for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
	{
	  if (*p == os)
	    {
	      pdl->erase(p);
	      return;
	    }
	}
    }
  gold_unreachable();
}

// Add an Output_data (which need not be an Output_section) to the
// start of a segment.

void
Output_segment::add_initial_output_data(Output_data* od)
{
  gold_assert(!this->is_max_align_known_);
  Output_data_list::iterator p = this->output_lists_[0].begin();
  this->output_lists_[0].insert(p, od);
}

// Return true if this segment has any sections which hold actual
// data, rather than being a BSS section.

bool
Output_segment::has_any_data_sections() const
{
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    {
      const Output_data_list* pdl = &this->output_lists_[i];
      for (Output_data_list::const_iterator p = pdl->begin();
	   p != pdl->end();
	   ++p)
	{
	  if (!(*p)->is_section())
	    return true;
	  if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
	    return true;
	}
    }
  return false;
}

// Return whether the first data section (not counting TLS sections)
// is a relro section.

bool
Output_segment::is_first_section_relro() const
{
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    {
      if (i == static_cast<int>(ORDER_TLS_BSS))
	continue;
      const Output_data_list* pdl = &this->output_lists_[i];
      if (!pdl->empty())
	{
	  Output_data* p = pdl->front();
	  return p->is_section() && p->output_section()->is_relro();
	}
    }
  return false;
}

// Return the maximum alignment of the Output_data in Output_segment.

uint64_t
Output_segment::maximum_alignment()
{
  if (!this->is_max_align_known_)
    {
      for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
	{
	  const Output_data_list* pdl = &this->output_lists_[i];
	  uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
	  if (addralign > this->max_align_)
	    this->max_align_ = addralign;
	}
      this->is_max_align_known_ = true;
    }

  return this->max_align_;
}

// Return the maximum alignment of a list of Output_data.

uint64_t
Output_segment::maximum_alignment_list(const Output_data_list* pdl)
{
  uint64_t ret = 0;
  for (Output_data_list::const_iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    {
      uint64_t addralign = (*p)->addralign();
      if (addralign > ret)
	ret = addralign;
    }
  return ret;
}

// Return whether this segment has any dynamic relocs.

bool
Output_segment::has_dynamic_reloc() const
{
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
      return true;
  return false;
}

// Return whether this Output_data_list has any dynamic relocs.

bool
Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
{
  for (Output_data_list::const_iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    if ((*p)->has_dynamic_reloc())
      return true;
  return false;
}

// Set the section addresses for an Output_segment.  If RESET is true,
// reset the addresses first.  ADDR is the address and *POFF is the
// file offset.  Set the section indexes starting with *PSHNDX.
// INCREASE_RELRO is the size of the portion of the first non-relro
// section that should be included in the PT_GNU_RELRO segment.
// If this segment has relro sections, and has been aligned for
// that purpose, set *HAS_RELRO to TRUE.  Return the address of
// the immediately following segment.  Update *HAS_RELRO, *POFF,
// and *PSHNDX.

uint64_t
Output_segment::set_section_addresses(const Target* target,
				      Layout* layout, bool reset,
				      uint64_t addr,
				      unsigned int* increase_relro,
				      bool* has_relro,
				      off_t* poff,
				      unsigned int* pshndx)
{
  gold_assert(this->type_ == elfcpp::PT_LOAD);

  uint64_t last_relro_pad = 0;
  off_t orig_off = *poff;

  bool in_tls = false;

  // If we have relro sections, we need to pad forward now so that the
  // relro sections plus INCREASE_RELRO end on an abi page boundary.
  if (parameters->options().relro()
      && this->is_first_section_relro()
      && (!this->are_addresses_set_ || reset))
    {
      uint64_t relro_size = 0;
      off_t off = *poff;
      uint64_t max_align = 0;
      for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
	{
	  Output_data_list* pdl = &this->output_lists_[i];
	  Output_data_list::iterator p;
	  for (p = pdl->begin(); p != pdl->end(); ++p)
	    {
	      if (!(*p)->is_section())
		break;
	      uint64_t align = (*p)->addralign();
	      if (align > max_align)
		max_align = align;
	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
		in_tls = true;
	      else if (in_tls)
		{
		  // Align the first non-TLS section to the alignment
		  // of the TLS segment.
		  align = max_align;
		  in_tls = false;
		}
	      // Ignore the size of the .tbss section.
	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
		  && (*p)->is_section_type(elfcpp::SHT_NOBITS))
		continue;
	      relro_size = align_address(relro_size, align);
	      if ((*p)->is_address_valid())
		relro_size += (*p)->data_size();
	      else
		{
		  // FIXME: This could be faster.
		  (*p)->set_address_and_file_offset(relro_size,
						    relro_size);
		  relro_size += (*p)->data_size();
		  (*p)->reset_address_and_file_offset();
		}
	    }
	  if (p != pdl->end())
	    break;
	}
      relro_size += *increase_relro;
      // Pad the total relro size to a multiple of the maximum
      // section alignment seen.
      uint64_t aligned_size = align_address(relro_size, max_align);
      // Note the amount of padding added after the last relro section.
      last_relro_pad = aligned_size - relro_size;
      *has_relro = true;

      uint64_t page_align = parameters->target().abi_pagesize();

      // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
      uint64_t desired_align = page_align - (aligned_size % page_align);
      if (desired_align < off % page_align)
	off += page_align;
      off += desired_align - off % page_align;
      addr += off - orig_off;
      orig_off = off;
      *poff = off;
    }

  if (!reset && this->are_addresses_set_)
    {
      gold_assert(this->paddr_ == addr);
      addr = this->vaddr_;
    }
  else
    {
      this->vaddr_ = addr;
      this->paddr_ = addr;
      this->are_addresses_set_ = true;
    }

  in_tls = false;

  this->offset_ = orig_off;

  off_t off = 0;
  off_t foff = *poff;
  uint64_t ret = 0;
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    {
      if (i == static_cast<int>(ORDER_RELRO_LAST))
	{
	  *poff += last_relro_pad;
	  foff += last_relro_pad;
	  addr += last_relro_pad;
	  if (this->output_lists_[i].empty())
	    {
	      // If there is nothing in the ORDER_RELRO_LAST list,
	      // the padding will occur at the end of the relro
	      // segment, and we need to add it to *INCREASE_RELRO.
	      *increase_relro += last_relro_pad;
	    }
	}
      addr = this->set_section_list_addresses(layout, reset,
					      &this->output_lists_[i],
					      addr, poff, &foff, pshndx,
					      &in_tls);

      // FOFF tracks the last offset used for the file image,
      // and *POFF tracks the last offset used for the memory image.
      // When not using a linker script, bss sections should all
      // be processed in the ORDER_SMALL_BSS and later buckets.
      gold_assert(*poff == foff
		  || i == static_cast<int>(ORDER_TLS_BSS)
		  || i >= static_cast<int>(ORDER_SMALL_BSS)
		  || layout->script_options()->saw_sections_clause());

      this->filesz_ = foff - orig_off;
      off = foff;

      ret = addr;
    }

  // If the last section was a TLS section, align upward to the
  // alignment of the TLS segment, so that the overall size of the TLS
  // segment is aligned.
  if (in_tls)
    {
      uint64_t segment_align = layout->tls_segment()->maximum_alignment();
      *poff = align_address(*poff, segment_align);
    }

  this->memsz_ = *poff - orig_off;

  // Ignore the file offset adjustments made by the BSS Output_data
  // objects.
  *poff = off;

  // If code segments must contain only code, and this code segment is
  // page-aligned in the file, then fill it out to a whole page with
  // code fill (the tail of the segment will not be within any section).
  // Thus the entire code segment can be mapped from the file as whole
  // pages and that mapping will contain only valid instructions.
  if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
    {
      uint64_t abi_pagesize = target->abi_pagesize();
      if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
	{
	  size_t fill_size = abi_pagesize - (off % abi_pagesize);

	  std::string fill_data;
	  if (target->has_code_fill())
	    fill_data = target->code_fill(fill_size);
	  else
	    fill_data.resize(fill_size); // Zero fill.

	  Output_data_const* fill = new Output_data_const(fill_data, 0);
	  fill->set_address(this->vaddr_ + this->memsz_);
	  fill->set_file_offset(off);
	  layout->add_relax_output(fill);

	  off += fill_size;
	  gold_assert(off % abi_pagesize == 0);
	  ret += fill_size;
	  gold_assert(ret % abi_pagesize == 0);

	  gold_assert((uint64_t) this->filesz_ == this->memsz_);
	  this->memsz_ = this->filesz_ += fill_size;

	  *poff = off;
	}
    }

  return ret;
}

// Set the addresses and file offsets in a list of Output_data
// structures.

uint64_t
Output_segment::set_section_list_addresses(Layout* layout, bool reset,
					   Output_data_list* pdl,
					   uint64_t addr, off_t* poff,
					   off_t* pfoff,
					   unsigned int* pshndx,
					   bool* in_tls)
{
  off_t startoff = *poff;
  // For incremental updates, we may allocate non-fixed sections from
  // free space in the file.  This keeps track of the high-water mark.
  off_t maxoff = startoff;

  off_t off = startoff;
  off_t foff = *pfoff;
  for (Output_data_list::iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    {
      bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
      bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);

      if (reset)
	(*p)->reset_address_and_file_offset();

      // When doing an incremental update or when using a linker script,
      // the section will most likely already have an address.
      if (!(*p)->is_address_valid())
	{
	  uint64_t align = (*p)->addralign();

	  if (is_tls)
	    {
	      // Give the first TLS section the alignment of the
	      // entire TLS segment.  Otherwise the TLS segment as a
	      // whole may be misaligned.
	      if (!*in_tls)
		{
		  Output_segment* tls_segment = layout->tls_segment();
		  gold_assert(tls_segment != NULL);
		  uint64_t segment_align = tls_segment->maximum_alignment();
		  gold_assert(segment_align >= align);
		  align = segment_align;

		  *in_tls = true;
		}
	    }
	  else
	    {
	      // If this is the first section after the TLS segment,
	      // align it to at least the alignment of the TLS
	      // segment, so that the size of the overall TLS segment
	      // is aligned.
	      if (*in_tls)
		{
		  uint64_t segment_align =
		      layout->tls_segment()->maximum_alignment();
		  if (segment_align > align)
		    align = segment_align;

		  *in_tls = false;
		}
	    }

	  if (!parameters->incremental_update())
	    {
	      gold_assert(off == foff || is_bss);
	      off = align_address(off, align);
	      if (is_tls || !is_bss)
		foff = off;
	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
	    }
	  else
	    {
	      // Incremental update: allocate file space from free list.
	      (*p)->pre_finalize_data_size();
	      off_t current_size = (*p)->current_data_size();
	      off = layout->allocate(current_size, align, startoff);
	      foff = off;
	      if (off == -1)
		{
		  gold_assert((*p)->output_section() != NULL);
		  gold_fallback(_("out of patch space for section %s; "
				  "relink with --incremental-full"),
				(*p)->output_section()->name());
		}
	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
	      if ((*p)->data_size() > current_size)
		{
		  gold_assert((*p)->output_section() != NULL);
		  gold_fallback(_("%s: section changed size; "
				  "relink with --incremental-full"),
				(*p)->output_section()->name());
		}
	    }
	}
      else if (parameters->incremental_update())
	{
	  // For incremental updates, use the fixed offset for the
	  // high-water mark computation.
	  off = (*p)->offset();
	  foff = off;
	}
      else
	{
	  // The script may have inserted a skip forward, but it
	  // better not have moved backward.
	  if ((*p)->address() >= addr + (off - startoff))
	    {
	      if (!is_bss && off > foff)
	        gold_warning(_("script places BSS section in the middle "
			       "of a LOAD segment; space will be allocated "
			       "in the file"));
	      off += (*p)->address() - (addr + (off - startoff));
	      if (is_tls || !is_bss)
		foff = off;
	    }
	  else
	    {
	      if (!layout->script_options()->saw_sections_clause())
		gold_unreachable();
	      else
		{
		  Output_section* os = (*p)->output_section();

		  // Cast to unsigned long long to avoid format warnings.
		  unsigned long long previous_dot =
		    static_cast<unsigned long long>(addr + (off - startoff));
		  unsigned long long dot =
		    static_cast<unsigned long long>((*p)->address());

		  if (os == NULL)
		    gold_error(_("dot moves backward in linker script "
				 "from 0x%llx to 0x%llx"), previous_dot, dot);
		  else
		    gold_error(_("address of section '%s' moves backward "
				 "from 0x%llx to 0x%llx"),
			       os->name(), previous_dot, dot);
		}
	    }
	  (*p)->set_file_offset(foff);
	  (*p)->finalize_data_size();
	}

      if (parameters->incremental_update())
	gold_debug(DEBUG_INCREMENTAL,
		   "set_section_list_addresses: %08lx %08lx %s",
		   static_cast<long>(off),
		   static_cast<long>((*p)->data_size()),
		   ((*p)->output_section() != NULL
		    ? (*p)->output_section()->name() : "(special)"));

      // We want to ignore the size of a SHF_TLS SHT_NOBITS
      // section.  Such a section does not affect the size of a
      // PT_LOAD segment.
      if (!is_tls || !is_bss)
	off += (*p)->data_size();

      // We don't allocate space in the file for SHT_NOBITS sections,
      // unless a script has force-placed one in the middle of a segment.
      if (!is_bss)
	foff = off;

      if (off > maxoff)
	maxoff = off;

      if ((*p)->is_section())
	{
	  (*p)->set_out_shndx(*pshndx);
	  ++*pshndx;
	}
    }

  *poff = maxoff;
  *pfoff = foff;
  return addr + (maxoff - startoff);
}

// For a non-PT_LOAD segment, set the offset from the sections, if
// any.  Add INCREASE to the file size and the memory size.

void
Output_segment::set_offset(unsigned int increase)
{
  gold_assert(this->type_ != elfcpp::PT_LOAD);

  gold_assert(!this->are_addresses_set_);

  // A non-load section only uses output_lists_[0].

  Output_data_list* pdl = &this->output_lists_[0];

  if (pdl->empty())
    {
      gold_assert(increase == 0);
      this->vaddr_ = 0;
      this->paddr_ = 0;
      this->are_addresses_set_ = true;
      this->memsz_ = 0;
      this->min_p_align_ = 0;
      this->offset_ = 0;
      this->filesz_ = 0;
      return;
    }

  // Find the first and last section by address.
  const Output_data* first = NULL;
  const Output_data* last_data = NULL;
  const Output_data* last_bss = NULL;
  for (Output_data_list::const_iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    {
      if (first == NULL
	  || (*p)->address() < first->address()
	  || ((*p)->address() == first->address()
	      && (*p)->data_size() < first->data_size()))
	first = *p;
      const Output_data** plast;
      if ((*p)->is_section()
	  && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
	plast = &last_bss;
      else
	plast = &last_data;
      if (*plast == NULL
	  || (*p)->address() > (*plast)->address()
	  || ((*p)->address() == (*plast)->address()
	      && (*p)->data_size() > (*plast)->data_size()))
	*plast = *p;
    }

  this->vaddr_ = first->address();
  this->paddr_ = (first->has_load_address()
		  ? first->load_address()
		  : this->vaddr_);
  this->are_addresses_set_ = true;
  this->offset_ = first->offset();

  if (last_data == NULL)
    this->filesz_ = 0;
  else
    this->filesz_ = (last_data->address()
		     + last_data->data_size()
		     - this->vaddr_);

  const Output_data* last = last_bss != NULL ? last_bss : last_data;
  this->memsz_ = (last->address()
		  + last->data_size()
		  - this->vaddr_);

  this->filesz_ += increase;
  this->memsz_ += increase;

  // If this is a RELRO segment, verify that the segment ends at a
  // page boundary.
  if (this->type_ == elfcpp::PT_GNU_RELRO)
    {
      uint64_t page_align = parameters->target().abi_pagesize();
      uint64_t segment_end = this->vaddr_ + this->memsz_;
      if (parameters->incremental_update())
	{
	  // The INCREASE_RELRO calculation is bypassed for an incremental
	  // update, so we need to adjust the segment size manually here.
	  segment_end = align_address(segment_end, page_align);
	  this->memsz_ = segment_end - this->vaddr_;
	}
      else
	gold_assert(segment_end == align_address(segment_end, page_align));
    }

  // If this is a TLS segment, align the memory size.  The code in
  // set_section_list ensures that the section after the TLS segment
  // is aligned to give us room.
  if (this->type_ == elfcpp::PT_TLS)
    {
      uint64_t segment_align = this->maximum_alignment();
      gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
      this->memsz_ = align_address(this->memsz_, segment_align);
    }
}

// Set the TLS offsets of the sections in the PT_TLS segment.

void
Output_segment::set_tls_offsets()
{
  gold_assert(this->type_ == elfcpp::PT_TLS);

  for (Output_data_list::iterator p = this->output_lists_[0].begin();
       p != this->output_lists_[0].end();
       ++p)
    (*p)->set_tls_offset(this->vaddr_);
}

// Return the first section.

Output_section*
Output_segment::first_section() const
{
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    {
      const Output_data_list* pdl = &this->output_lists_[i];
      for (Output_data_list::const_iterator p = pdl->begin();
	   p != pdl->end();
	   ++p)
	{
	  if ((*p)->is_section())
	    return (*p)->output_section();
	}
    }
  return NULL;
}

// Return the number of Output_sections in an Output_segment.

unsigned int
Output_segment::output_section_count() const
{
  unsigned int ret = 0;
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    ret += this->output_section_count_list(&this->output_lists_[i]);
  return ret;
}

// Return the number of Output_sections in an Output_data_list.

unsigned int
Output_segment::output_section_count_list(const Output_data_list* pdl) const
{
  unsigned int count = 0;
  for (Output_data_list::const_iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    {
      if ((*p)->is_section())
	++count;
    }
  return count;
}

// Return the section attached to the list segment with the lowest
// load address.  This is used when handling a PHDRS clause in a
// linker script.

Output_section*
Output_segment::section_with_lowest_load_address() const
{
  Output_section* found = NULL;
  uint64_t found_lma = 0;
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    this->lowest_load_address_in_list(&this->output_lists_[i], &found,
				      &found_lma);
  return found;
}

// Look through a list for a section with a lower load address.

void
Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
					    Output_section** found,
					    uint64_t* found_lma) const
{
  for (Output_data_list::const_iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    {
      if (!(*p)->is_section())
	continue;
      Output_section* os = static_cast<Output_section*>(*p);
      uint64_t lma = (os->has_load_address()
		      ? os->load_address()
		      : os->address());
      if (*found == NULL || lma < *found_lma)
	{
	  *found = os;
	  *found_lma = lma;
	}
    }
}

// Write the segment data into *OPHDR.

template<int size, bool big_endian>
void
Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
{
  ophdr->put_p_type(this->type_);
  ophdr->put_p_offset(this->offset_);
  ophdr->put_p_vaddr(this->vaddr_);
  ophdr->put_p_paddr(this->paddr_);
  ophdr->put_p_filesz(this->filesz_);
  ophdr->put_p_memsz(this->memsz_);
  ophdr->put_p_flags(this->flags_);
  ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
}

// Write the section headers into V.

template<int size, bool big_endian>
unsigned char*
Output_segment::write_section_headers(const Layout* layout,
				      const Stringpool* secnamepool,
				      unsigned char* v,
				      unsigned int* pshndx) const
{
  // Every section that is attached to a segment must be attached to a
  // PT_LOAD segment, so we only write out section headers for PT_LOAD
  // segments.
  if (this->type_ != elfcpp::PT_LOAD)
    return v;

  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    {
      const Output_data_list* pdl = &this->output_lists_[i];
      v = this->write_section_headers_list<size, big_endian>(layout,
							     secnamepool,
							     pdl,
							     v, pshndx);
    }

  return v;
}

template<int size, bool big_endian>
unsigned char*
Output_segment::write_section_headers_list(const Layout* layout,
					   const Stringpool* secnamepool,
					   const Output_data_list* pdl,
					   unsigned char* v,
					   unsigned int* pshndx) const
{
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
  for (Output_data_list::const_iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    {
      if ((*p)->is_section())
	{
	  const Output_section* ps = static_cast<const Output_section*>(*p);
	  gold_assert(*pshndx == ps->out_shndx());
	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
	  ps->write_header(layout, secnamepool, &oshdr);
	  v += shdr_size;
	  ++*pshndx;
	}
    }
  return v;
}

// Print the output sections to the map file.

void
Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
{
  if (this->type() != elfcpp::PT_LOAD)
    return;
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
    this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
}

// Print an output section list to the map file.

void
Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
					      const Output_data_list* pdl) const
{
  for (Output_data_list::const_iterator p = pdl->begin();
       p != pdl->end();
       ++p)
    (*p)->print_to_mapfile(mapfile);
}

// Output_file methods.

Output_file::Output_file(const char* name)
  : name_(name),
    o_(-1),
    file_size_(0),
    base_(NULL),
    map_is_anonymous_(false),
    map_is_allocated_(false),
    is_temporary_(false)
{
}

// Try to open an existing file.  Returns false if the file doesn't
// exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
// NULL, open that file as the base for incremental linking, and
// copy its contents to the new output file.  This routine can
// be called for incremental updates, in which case WRITABLE should
// be true, or by the incremental-dump utility, in which case
// WRITABLE should be false.

bool
Output_file::open_base_file(const char* base_name, bool writable)
{
  // The name "-" means "stdout".
  if (strcmp(this->name_, "-") == 0)
    return false;

  bool use_base_file = base_name != NULL;
  if (!use_base_file)
    base_name = this->name_;
  else if (strcmp(base_name, this->name_) == 0)
    gold_fatal(_("%s: incremental base and output file name are the same"),
	       base_name);

  // Don't bother opening files with a size of zero.
  struct stat s;
  if (::stat(base_name, &s) != 0)
    {
      gold_info(_("%s: stat: %s"), base_name, strerror(errno));
      return false;
    }
  if (s.st_size == 0)
    {
      gold_info(_("%s: incremental base file is empty"), base_name);
      return false;
    }

  // If we're using a base file, we want to open it read-only.
  if (use_base_file)
    writable = false;

  int oflags = writable ? O_RDWR : O_RDONLY;
  int o = open_descriptor(-1, base_name, oflags, 0);
  if (o < 0)
    {
      gold_info(_("%s: open: %s"), base_name, strerror(errno));
      return false;
    }

  // If the base file and the output file are different, open a
  // new output file and read the contents from the base file into
  // the newly-mapped region.
  if (use_base_file)
    {
      this->open(s.st_size);
      ssize_t bytes_to_read = s.st_size;
      unsigned char* p = this->base_;
      while (bytes_to_read > 0)
	{
	  ssize_t len = ::read(o, p, bytes_to_read);
	  if (len < 0)
	    {
	      gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
	      return false;
	    }
	  if (len == 0)
	    {
	      gold_info(_("%s: file too short: read only %lld of %lld bytes"),
			base_name,
			static_cast<long long>(s.st_size - bytes_to_read),
			static_cast<long long>(s.st_size));
	      return false;
	    }
	  p += len;
	  bytes_to_read -= len;
	}
      ::close(o);
      return true;
    }

  this->o_ = o;
  this->file_size_ = s.st_size;

  if (!this->map_no_anonymous(writable))
    {
      release_descriptor(o, true);
      this->o_ = -1;
      this->file_size_ = 0;
      return false;
    }

  return true;
}

// Open the output file.

void
Output_file::open(off_t file_size)
{
  this->file_size_ = file_size;

  // Unlink the file first; otherwise the open() may fail if the file
  // is busy (e.g. it's an executable that's currently being executed).
  //
  // However, the linker may be part of a system where a zero-length
  // file is created for it to write to, with tight permissions (gcc
  // 2.95 did something like this).  Unlinking the file would work
  // around those permission controls, so we only unlink if the file
  // has a non-zero size.  We also unlink only regular files to avoid
  // trouble with directories/etc.
  //
  // If we fail, continue; this command is merely a best-effort attempt
  // to improve the odds for open().

  // We let the name "-" mean "stdout"
  if (!this->is_temporary_)
    {
      if (strcmp(this->name_, "-") == 0)
	this->o_ = STDOUT_FILENO;
      else
	{
	  struct stat s;
	  if (::stat(this->name_, &s) == 0
	      && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
	    {
	      if (s.st_size != 0)
		::unlink(this->name_);
	      else if (!parameters->options().relocatable())
		{
		  // If we don't unlink the existing file, add execute
		  // permission where read permissions already exist
		  // and where the umask permits.
		  int mask = ::umask(0);
		  ::umask(mask);
		  s.st_mode |= (s.st_mode & 0444) >> 2;
		  ::chmod(this->name_, s.st_mode & ~mask);
		}
	    }

	  int mode = parameters->options().relocatable() ? 0666 : 0777;
	  int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
				  mode);
	  if (o < 0)
	    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
	  this->o_ = o;
	}
    }

  this->map();
}

// Resize the output file.

void
Output_file::resize(off_t file_size)
{
  // If the mmap is mapping an anonymous memory buffer, this is easy:
  // just mremap to the new size.  If it's mapping to a file, we want
  // to unmap to flush to the file, then remap after growing the file.
  if (this->map_is_anonymous_)
    {
      void* base;
      if (!this->map_is_allocated_)
	{
	  base = ::mremap(this->base_, this->file_size_, file_size,
			  MREMAP_MAYMOVE);
	  if (base == MAP_FAILED)
	    gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
	}
      else
	{
	  base = realloc(this->base_, file_size);
	  if (base == NULL)
	    gold_nomem();
	  if (file_size > this->file_size_)
	    memset(static_cast<char*>(base) + this->file_size_, 0,
		   file_size - this->file_size_);
	}
      this->base_ = static_cast<unsigned char*>(base);
      this->file_size_ = file_size;
    }
  else
    {
      this->unmap();
      this->file_size_ = file_size;
      if (!this->map_no_anonymous(true))
	gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
    }
}

// Map an anonymous block of memory which will later be written to the
// file.  Return whether the map succeeded.

bool
Output_file::map_anonymous()
{
  void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  if (base == MAP_FAILED)
    {
      base = malloc(this->file_size_);
      if (base == NULL)
	return false;
      memset(base, 0, this->file_size_);
      this->map_is_allocated_ = true;
    }
  this->base_ = static_cast<unsigned char*>(base);
  this->map_is_anonymous_ = true;
  return true;
}

// Map the file into memory.  Return whether the mapping succeeded.
// If WRITABLE is true, map with write access.

bool
Output_file::map_no_anonymous(bool writable)
{
  const int o = this->o_;

  // If the output file is not a regular file, don't try to mmap it;
  // instead, we'll mmap a block of memory (an anonymous buffer), and
  // then later write the buffer to the file.
  void* base;
  struct stat statbuf;
  if (o == STDOUT_FILENO || o == STDERR_FILENO
      || ::fstat(o, &statbuf) != 0
      || !S_ISREG(statbuf.st_mode)
      || this->is_temporary_)
    return false;

  // Ensure that we have disk space available for the file.  If we
  // don't do this, it is possible that we will call munmap, close,
  // and exit with dirty buffers still in the cache with no assigned
  // disk blocks.  If the disk is out of space at that point, the
  // output file will wind up incomplete, but we will have already
  // exited.  The alternative to fallocate would be to use fdatasync,
  // but that would be a more significant performance hit.
  if (writable)
    {
      int err = gold_fallocate(o, 0, this->file_size_);
      if (err != 0)
       gold_fatal(_("%s: %s"), this->name_, strerror(err));
    }

  // Map the file into memory.
  int prot = PROT_READ;
  if (writable)
    prot |= PROT_WRITE;
  base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);

  // The mmap call might fail because of file system issues: the file
  // system might not support mmap at all, or it might not support
  // mmap with PROT_WRITE.
  if (base == MAP_FAILED)
    return false;

  this->map_is_anonymous_ = false;
  this->base_ = static_cast<unsigned char*>(base);
  return true;
}

// Map the file into memory.

void
Output_file::map()
{
  if (parameters->options().mmap_output_file()
      && this->map_no_anonymous(true))
    return;

  // The mmap call might fail because of file system issues: the file
  // system might not support mmap at all, or it might not support
  // mmap with PROT_WRITE.  I'm not sure which errno values we will
  // see in all cases, so if the mmap fails for any reason and we
  // don't care about file contents, try for an anonymous map.
  if (this->map_anonymous())
    return;

  gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
	     this->name_, static_cast<unsigned long>(this->file_size_),
	     strerror(errno));
}

// Unmap the file from memory.

void
Output_file::unmap()
{
  if (this->map_is_anonymous_)
    {
      // We've already written out the data, so there is no reason to
      // waste time unmapping or freeing the memory.
    }
  else
    {
      if (::munmap(this->base_, this->file_size_) < 0)
	gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
    }
  this->base_ = NULL;
}

// Close the output file.

void
Output_file::close()
{
  // If the map isn't file-backed, we need to write it now.
  if (this->map_is_anonymous_ && !this->is_temporary_)
    {
      size_t bytes_to_write = this->file_size_;
      size_t offset = 0;
      while (bytes_to_write > 0)
	{
	  ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
					  bytes_to_write);
	  if (bytes_written == 0)
	    gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
	  else if (bytes_written < 0)
	    gold_error(_("%s: write: %s"), this->name_, strerror(errno));
	  else
	    {
	      bytes_to_write -= bytes_written;
	      offset += bytes_written;
	    }
	}
    }
  this->unmap();

  // We don't close stdout or stderr
  if (this->o_ != STDOUT_FILENO
      && this->o_ != STDERR_FILENO
      && !this->is_temporary_)
    if (::close(this->o_) < 0)
      gold_error(_("%s: close: %s"), this->name_, strerror(errno));
  this->o_ = -1;
}

// Instantiate the templates we need.  We could use the configure
// script to restrict this to only the ones for implemented targets.

#ifdef HAVE_TARGET_32_LITTLE
template
off_t
Output_section::add_input_section<32, false>(
    Layout* layout,
    Sized_relobj_file<32, false>* object,
    unsigned int shndx,
    const char* secname,
    const elfcpp::Shdr<32, false>& shdr,
    unsigned int reloc_shndx,
    bool have_sections_script);
#endif

#ifdef HAVE_TARGET_32_BIG
template
off_t
Output_section::add_input_section<32, true>(
    Layout* layout,
    Sized_relobj_file<32, true>* object,
    unsigned int shndx,
    const char* secname,
    const elfcpp::Shdr<32, true>& shdr,
    unsigned int reloc_shndx,
    bool have_sections_script);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
off_t
Output_section::add_input_section<64, false>(
    Layout* layout,
    Sized_relobj_file<64, false>* object,
    unsigned int shndx,
    const char* secname,
    const elfcpp::Shdr<64, false>& shdr,
    unsigned int reloc_shndx,
    bool have_sections_script);
#endif

#ifdef HAVE_TARGET_64_BIG
template
off_t
Output_section::add_input_section<64, true>(
    Layout* layout,
    Sized_relobj_file<64, true>* object,
    unsigned int shndx,
    const char* secname,
    const elfcpp::Shdr<64, true>& shdr,
    unsigned int reloc_shndx,
    bool have_sections_script);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_group<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_group<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_group<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_group<64, true>;
#endif

template
class Output_data_got<32, false>;

template
class Output_data_got<32, true>;

template
class Output_data_got<64, false>;

template
class Output_data_got<64, true>;

} // End namespace gold.