File: x86_64.cc

package info (click to toggle)
binutils 2.31.1-16
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 309,412 kB
  • sloc: ansic: 1,161,194; asm: 638,508; cpp: 128,829; exp: 68,580; makefile: 55,828; sh: 22,360; yacc: 14,238; lisp: 13,272; perl: 2,111; ada: 1,681; lex: 1,652; pascal: 1,446; cs: 879; sed: 195; python: 154; xml: 95; awk: 25
file content (6416 lines) | stat: -rw-r--r-- 207,674 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
// x86_64.cc -- x86_64 target support for gold.

// Copyright (C) 2006-2018 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstring>

#include "elfcpp.h"
#include "dwarf.h"
#include "parameters.h"
#include "reloc.h"
#include "x86_64.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "freebsd.h"
#include "nacl.h"
#include "gc.h"
#include "icf.h"

namespace
{

using namespace gold;

// A class to handle the .got.plt section.

class Output_data_got_plt_x86_64 : public Output_section_data_build
{
 public:
  Output_data_got_plt_x86_64(Layout* layout)
    : Output_section_data_build(8),
      layout_(layout)
  { }

  Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
    : Output_section_data_build(data_size, 8),
      layout_(layout)
  { }

 protected:
  // Write out the PLT data.
  void
  do_write(Output_file*);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, "** GOT PLT"); }

 private:
  // A pointer to the Layout class, so that we can find the .dynamic
  // section when we write out the GOT PLT section.
  Layout* layout_;
};

// A class to handle the PLT data.
// This is an abstract base class that handles most of the linker details
// but does not know the actual contents of PLT entries.  The derived
// classes below fill in those details.

template<int size>
class Output_data_plt_x86_64 : public Output_section_data
{
 public:
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;

  Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
			 Output_data_got<64, false>* got,
			 Output_data_got_plt_x86_64* got_plt,
			 Output_data_space* got_irelative)
    : Output_section_data(addralign), tlsdesc_rel_(NULL),
      irelative_rel_(NULL), got_(got), got_plt_(got_plt),
      got_irelative_(got_irelative), count_(0), irelative_count_(0),
      tlsdesc_got_offset_(-1U), free_list_()
  { this->init(layout); }

  Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
			 Output_data_got<64, false>* got,
			 Output_data_got_plt_x86_64* got_plt,
			 Output_data_space* got_irelative,
			 unsigned int plt_count)
    : Output_section_data((plt_count + 1) * plt_entry_size,
			  plt_entry_size, false),
      tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
      got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
      irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
  {
    this->init(layout);

    // Initialize the free list and reserve the first entry.
    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
    this->free_list_.remove(0, plt_entry_size);
  }

  // Initialize the PLT section.
  void
  init(Layout* layout);

  // Add an entry to the PLT.
  void
  add_entry(Symbol_table*, Layout*, Symbol* gsym);

  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
  unsigned int
  add_local_ifunc_entry(Symbol_table* symtab, Layout*,
			Sized_relobj_file<size, false>* relobj,
			unsigned int local_sym_index);

  // Add the relocation for a PLT entry.
  void
  add_relocation(Symbol_table*, Layout*, Symbol* gsym,
		 unsigned int got_offset);

  // Add the reserved TLSDESC_PLT entry to the PLT.
  void
  reserve_tlsdesc_entry(unsigned int got_offset)
  { this->tlsdesc_got_offset_ = got_offset; }

  // Return true if a TLSDESC_PLT entry has been reserved.
  bool
  has_tlsdesc_entry() const
  { return this->tlsdesc_got_offset_ != -1U; }

  // Return the GOT offset for the reserved TLSDESC_PLT entry.
  unsigned int
  get_tlsdesc_got_offset() const
  { return this->tlsdesc_got_offset_; }

  // Return the offset of the reserved TLSDESC_PLT entry.
  unsigned int
  get_tlsdesc_plt_offset() const
  {
    return ((this->count_ + this->irelative_count_ + 1)
	    * this->get_plt_entry_size());
  }

  // Return the .rela.plt section data.
  Reloc_section*
  rela_plt()
  { return this->rel_; }

  // Return where the TLSDESC relocations should go.
  Reloc_section*
  rela_tlsdesc(Layout*);

  // Return where the IRELATIVE relocations should go in the PLT
  // relocations.
  Reloc_section*
  rela_irelative(Symbol_table*, Layout*);

  // Return whether we created a section for IRELATIVE relocations.
  bool
  has_irelative_section() const
  { return this->irelative_rel_ != NULL; }

  // Get count of regular PLT entries.
  unsigned int
  regular_count() const
  { return this->count_; }

  // Return the total number of PLT entries.
  unsigned int
  entry_count() const
  { return this->count_ + this->irelative_count_; }

  // Return the offset of the first non-reserved PLT entry.
  unsigned int
  first_plt_entry_offset()
  { return this->get_plt_entry_size(); }

  // Return the size of a PLT entry.
  unsigned int
  get_plt_entry_size() const
  { return this->do_get_plt_entry_size(); }

  // Reserve a slot in the PLT for an existing symbol in an incremental update.
  void
  reserve_slot(unsigned int plt_index)
  {
    this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
			    (plt_index + 2) * this->get_plt_entry_size());
  }

  // Return the PLT address to use for a global symbol.
  uint64_t
  address_for_global(const Symbol* sym)
  { return do_address_for_global(sym); }

  // Return the PLT address to use for a local symbol.
  uint64_t
  address_for_local(const Relobj* obj, unsigned int symndx)
  { return do_address_for_local(obj, symndx); }

  // Add .eh_frame information for the PLT.
  void
  add_eh_frame(Layout* layout)
  { this->do_add_eh_frame(layout); }

 protected:
  Output_data_got<64, false>*
  got() const
  { return this->got_; }

  Output_data_got_plt_x86_64*
  got_plt() const
  { return this->got_plt_; }

  Output_data_space*
  got_irelative() const
  { return this->got_irelative_; }

  // Fill in the first PLT entry.
  void
  fill_first_plt_entry(unsigned char* pov,
		       typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		       typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
  { this->do_fill_first_plt_entry(pov, got_address, plt_address); }

  // Fill in a normal PLT entry.  Returns the offset into the entry that
  // should be the initial GOT slot value.
  unsigned int
  fill_plt_entry(unsigned char* pov,
		 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
		 unsigned int got_offset,
		 unsigned int plt_offset,
		 unsigned int plt_index)
  {
    return this->do_fill_plt_entry(pov, got_address, plt_address,
				   got_offset, plt_offset, plt_index);
  }

  // Fill in the reserved TLSDESC PLT entry.
  void
  fill_tlsdesc_entry(unsigned char* pov,
		     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
		     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
		     unsigned int tlsdesc_got_offset,
		     unsigned int plt_offset)
  {
    this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
				tlsdesc_got_offset, plt_offset);
  }

  virtual unsigned int
  do_get_plt_entry_size() const = 0;

  virtual void
  do_fill_first_plt_entry(unsigned char* pov,
			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
    = 0;

  virtual unsigned int
  do_fill_plt_entry(unsigned char* pov,
		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
		    unsigned int got_offset,
		    unsigned int plt_offset,
		    unsigned int plt_index) = 0;

  virtual void
  do_fill_tlsdesc_entry(unsigned char* pov,
			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
			unsigned int tlsdesc_got_offset,
			unsigned int plt_offset) = 0;

  // Return the PLT address to use for a global symbol.
  virtual uint64_t
  do_address_for_global(const Symbol* sym);

  // Return the PLT address to use for a local symbol.
  virtual uint64_t
  do_address_for_local(const Relobj* obj, unsigned int symndx);

  virtual void
  do_add_eh_frame(Layout* layout) = 0;

  void
  do_adjust_output_section(Output_section* os);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** PLT")); }

  // The CIE of the .eh_frame unwind information for the PLT.
  static const int plt_eh_frame_cie_size = 16;
  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];

 private:
  // Set the final size.
  void
  set_final_data_size();

  // Write out the PLT data.
  void
  do_write(Output_file*);

  // The reloc section.
  Reloc_section* rel_;
  // The TLSDESC relocs, if necessary.  These must follow the regular
  // PLT relocs.
  Reloc_section* tlsdesc_rel_;
  // The IRELATIVE relocs, if necessary.  These must follow the
  // regular PLT relocations and the TLSDESC relocations.
  Reloc_section* irelative_rel_;
  // The .got section.
  Output_data_got<64, false>* got_;
  // The .got.plt section.
  Output_data_got_plt_x86_64* got_plt_;
  // The part of the .got.plt section used for IRELATIVE relocs.
  Output_data_space* got_irelative_;
  // The number of PLT entries.
  unsigned int count_;
  // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
  // follow the regular PLT entries.
  unsigned int irelative_count_;
  // Offset of the reserved TLSDESC_GOT entry when needed.
  unsigned int tlsdesc_got_offset_;
  // List of available regions within the section, for incremental
  // update links.
  Free_list free_list_;
};

template<int size>
class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
{
 public:
  Output_data_plt_x86_64_standard(Layout* layout,
				  Output_data_got<64, false>* got,
				  Output_data_got_plt_x86_64* got_plt,
				  Output_data_space* got_irelative)
    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
				   got, got_plt, got_irelative)
  { }

  Output_data_plt_x86_64_standard(Layout* layout,
				  Output_data_got<64, false>* got,
				  Output_data_got_plt_x86_64* got_plt,
				  Output_data_space* got_irelative,
				  unsigned int plt_count)
    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
				   got, got_plt, got_irelative,
				   plt_count)
  { }

 protected:
  virtual unsigned int
  do_get_plt_entry_size() const
  { return plt_entry_size; }

  virtual void
  do_add_eh_frame(Layout* layout)
  {
    layout->add_eh_frame_for_plt(this,
				 this->plt_eh_frame_cie,
				 this->plt_eh_frame_cie_size,
				 plt_eh_frame_fde,
				 plt_eh_frame_fde_size);
  }

  virtual void
  do_fill_first_plt_entry(unsigned char* pov,
			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);

  virtual unsigned int
  do_fill_plt_entry(unsigned char* pov,
		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
		    unsigned int got_offset,
		    unsigned int plt_offset,
		    unsigned int plt_index);

  virtual void
  do_fill_tlsdesc_entry(unsigned char* pov,
			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
			unsigned int tlsdesc_got_offset,
			unsigned int plt_offset);

 private:
  // The size of an entry in the PLT.
  static const int plt_entry_size = 16;

  // The first entry in the PLT.
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
  // procedure linkage table for both programs and shared objects."
  static const unsigned char first_plt_entry[plt_entry_size];

  // Other entries in the PLT for an executable.
  static const unsigned char plt_entry[plt_entry_size];

  // The reserved TLSDESC entry in the PLT for an executable.
  static const unsigned char tlsdesc_plt_entry[plt_entry_size];

  // The .eh_frame unwind information for the PLT.
  static const int plt_eh_frame_fde_size = 32;
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
};

class Output_data_plt_x86_64_bnd : public Output_data_plt_x86_64<64>
{
 public:
  Output_data_plt_x86_64_bnd(Layout* layout,
			     Output_data_got<64, false>* got,
			     Output_data_got_plt_x86_64* got_plt,
			     Output_data_space* got_irelative)
    : Output_data_plt_x86_64<64>(layout, plt_entry_size,
				 got, got_plt, got_irelative),
      aplt_offset_(0)
  { }

  Output_data_plt_x86_64_bnd(Layout* layout,
			     Output_data_got<64, false>* got,
			     Output_data_got_plt_x86_64* got_plt,
			     Output_data_space* got_irelative,
			     unsigned int plt_count)
    : Output_data_plt_x86_64<64>(layout, plt_entry_size,
				 got, got_plt, got_irelative,
				 plt_count),
      aplt_offset_(0)
  { }

 protected:
  virtual unsigned int
  do_get_plt_entry_size() const
  { return plt_entry_size; }

  // Return the PLT address to use for a global symbol.
  uint64_t
  do_address_for_global(const Symbol*);

  // Return the PLT address to use for a local symbol.
  uint64_t
  do_address_for_local(const Relobj*, unsigned int symndx);

  virtual void
  do_add_eh_frame(Layout* layout)
  {
    layout->add_eh_frame_for_plt(this,
				 this->plt_eh_frame_cie,
				 this->plt_eh_frame_cie_size,
				 plt_eh_frame_fde,
				 plt_eh_frame_fde_size);
  }

  virtual void
  do_fill_first_plt_entry(unsigned char* pov,
			  elfcpp::Elf_types<64>::Elf_Addr got_addr,
			  elfcpp::Elf_types<64>::Elf_Addr plt_addr);

  virtual unsigned int
  do_fill_plt_entry(unsigned char* pov,
		    elfcpp::Elf_types<64>::Elf_Addr got_address,
		    elfcpp::Elf_types<64>::Elf_Addr plt_address,
		    unsigned int got_offset,
		    unsigned int plt_offset,
		    unsigned int plt_index);

  virtual void
  do_fill_tlsdesc_entry(unsigned char* pov,
			elfcpp::Elf_types<64>::Elf_Addr got_address,
			elfcpp::Elf_types<64>::Elf_Addr plt_address,
			elfcpp::Elf_types<64>::Elf_Addr got_base,
			unsigned int tlsdesc_got_offset,
			unsigned int plt_offset);

  void
  fill_aplt_entry(unsigned char* pov,
		  elfcpp::Elf_types<64>::Elf_Addr got_address,
		  elfcpp::Elf_types<64>::Elf_Addr plt_address,
		  unsigned int got_offset,
		  unsigned int plt_offset,
		  unsigned int plt_index);

 private:
  // Set the final size.
  void
  set_final_data_size();

  // Write out the BND PLT data.
  void
  do_write(Output_file*);

  // Offset of the Additional PLT (if using -z bndplt).
  unsigned int aplt_offset_;

  // The size of an entry in the PLT.
  static const int plt_entry_size = 16;

  // The size of an entry in the additional PLT.
  static const int aplt_entry_size = 8;

  // The first entry in the PLT.
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
  // procedure linkage table for both programs and shared objects."
  static const unsigned char first_plt_entry[plt_entry_size];

  // Other entries in the PLT for an executable.
  static const unsigned char plt_entry[plt_entry_size];

  // Entries in the additional PLT.
  static const unsigned char aplt_entry[aplt_entry_size];

  // The reserved TLSDESC entry in the PLT for an executable.
  static const unsigned char tlsdesc_plt_entry[plt_entry_size];

  // The .eh_frame unwind information for the PLT.
  static const int plt_eh_frame_fde_size = 32;
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
};

// We use this PLT when Indirect Branch Tracking (IBT) is enabled.

template <int size>
class Output_data_plt_x86_64_ibt : public Output_data_plt_x86_64<size>
{
 public:
  Output_data_plt_x86_64_ibt(Layout* layout,
			     Output_data_got<64, false>* got,
			     Output_data_got_plt_x86_64* got_plt,
			     Output_data_space* got_irelative)
    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
				   got, got_plt, got_irelative),
      aplt_offset_(0)
  { }

  Output_data_plt_x86_64_ibt(Layout* layout,
			     Output_data_got<64, false>* got,
			     Output_data_got_plt_x86_64* got_plt,
			     Output_data_space* got_irelative,
			     unsigned int plt_count)
    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
				   got, got_plt, got_irelative,
				   plt_count),
      aplt_offset_(0)
  { }

 protected:
  virtual unsigned int
  do_get_plt_entry_size() const
  { return plt_entry_size; }

  // Return the PLT address to use for a global symbol.
  uint64_t
  do_address_for_global(const Symbol*);

  // Return the PLT address to use for a local symbol.
  uint64_t
  do_address_for_local(const Relobj*, unsigned int symndx);

  virtual void
  do_add_eh_frame(Layout* layout)
  {
    layout->add_eh_frame_for_plt(this,
				 this->plt_eh_frame_cie,
				 this->plt_eh_frame_cie_size,
				 plt_eh_frame_fde,
				 plt_eh_frame_fde_size);
  }

  virtual void
  do_fill_first_plt_entry(unsigned char* pov,
			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);

  virtual unsigned int
  do_fill_plt_entry(unsigned char* pov,
		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
		    unsigned int got_offset,
		    unsigned int plt_offset,
		    unsigned int plt_index);

  virtual void
  do_fill_tlsdesc_entry(unsigned char* pov,
			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
			unsigned int tlsdesc_got_offset,
			unsigned int plt_offset);

  void
  fill_aplt_entry(unsigned char* pov,
		  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
		  unsigned int got_offset,
		  unsigned int plt_offset,
		  unsigned int plt_index);

 private:
  // Set the final size.
  void
  set_final_data_size();

  // Write out the BND PLT data.
  void
  do_write(Output_file*);

  // Offset of the Additional PLT (if using -z bndplt).
  unsigned int aplt_offset_;

  // The size of an entry in the PLT.
  static const int plt_entry_size = 16;

  // The size of an entry in the additional PLT.
  static const int aplt_entry_size = 16;

  // The first entry in the PLT.
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
  // procedure linkage table for both programs and shared objects."
  static const unsigned char first_plt_entry[plt_entry_size];

  // Other entries in the PLT for an executable.
  static const unsigned char plt_entry[plt_entry_size];

  // Entries in the additional PLT.
  static const unsigned char aplt_entry[aplt_entry_size];

  // The reserved TLSDESC entry in the PLT for an executable.
  static const unsigned char tlsdesc_plt_entry[plt_entry_size];

  // The .eh_frame unwind information for the PLT.
  static const int plt_eh_frame_fde_size = 32;
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
};

template<int size>
class Lazy_view
{
 public:
  Lazy_view(Sized_relobj_file<size, false>* object, unsigned int data_shndx)
    : object_(object), data_shndx_(data_shndx), view_(NULL), view_size_(0)
  { }

  inline unsigned char
  operator[](size_t offset)
  {
    if (this->view_ == NULL)
      this->view_ = this->object_->section_contents(this->data_shndx_,
                                                    &this->view_size_,
                                                    true);
    if (offset >= this->view_size_)
      return 0;
    return this->view_[offset];
  }

 private:
  Sized_relobj_file<size, false>* object_;
  unsigned int data_shndx_;
  const unsigned char* view_;
  section_size_type view_size_;
};

// The x86_64 target class.
// See the ABI at
//   http://www.x86-64.org/documentation/abi.pdf
// TLS info comes from
//   http://people.redhat.com/drepper/tls.pdf
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt

template<int size>
class Target_x86_64 : public Sized_target<size, false>
{
 public:
  // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
  // uses only Elf64_Rela relocation entries with explicit addends."
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;

  Target_x86_64(const Target::Target_info* info = &x86_64_info)
    : Sized_target<size, false>(info),
      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
      got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
      rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
      got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
      tls_base_symbol_defined_(false), isa_1_used_(0), isa_1_needed_(0),
      feature_1_(0), object_feature_1_(0), seen_first_object_(false)
  { }

  // Hook for a new output section.
  void
  do_new_output_section(Output_section*) const;

  // Scan the relocations to look for symbol adjustments.
  void
  gc_process_relocs(Symbol_table* symtab,
		    Layout* layout,
		    Sized_relobj_file<size, false>* object,
		    unsigned int data_shndx,
		    unsigned int sh_type,
		    const unsigned char* prelocs,
		    size_t reloc_count,
		    Output_section* output_section,
		    bool needs_special_offset_handling,
		    size_t local_symbol_count,
		    const unsigned char* plocal_symbols);

  // Scan the relocations to look for symbol adjustments.
  void
  scan_relocs(Symbol_table* symtab,
	      Layout* layout,
	      Sized_relobj_file<size, false>* object,
	      unsigned int data_shndx,
	      unsigned int sh_type,
	      const unsigned char* prelocs,
	      size_t reloc_count,
	      Output_section* output_section,
	      bool needs_special_offset_handling,
	      size_t local_symbol_count,
	      const unsigned char* plocal_symbols);

  // Finalize the sections.
  void
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);

  // Return the value to use for a dynamic which requires special
  // treatment.
  uint64_t
  do_dynsym_value(const Symbol*) const;

  // Relocate a section.
  void
  relocate_section(const Relocate_info<size, false>*,
		   unsigned int sh_type,
		   const unsigned char* prelocs,
		   size_t reloc_count,
		   Output_section* output_section,
		   bool needs_special_offset_handling,
		   unsigned char* view,
		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
		   section_size_type view_size,
		   const Reloc_symbol_changes*);

  // Scan the relocs during a relocatable link.
  void
  scan_relocatable_relocs(Symbol_table* symtab,
			  Layout* layout,
			  Sized_relobj_file<size, false>* object,
			  unsigned int data_shndx,
			  unsigned int sh_type,
			  const unsigned char* prelocs,
			  size_t reloc_count,
			  Output_section* output_section,
			  bool needs_special_offset_handling,
			  size_t local_symbol_count,
			  const unsigned char* plocal_symbols,
			  Relocatable_relocs*);

  // Scan the relocs for --emit-relocs.
  void
  emit_relocs_scan(Symbol_table* symtab,
		   Layout* layout,
		   Sized_relobj_file<size, false>* object,
		   unsigned int data_shndx,
		   unsigned int sh_type,
		   const unsigned char* prelocs,
		   size_t reloc_count,
		   Output_section* output_section,
		   bool needs_special_offset_handling,
		   size_t local_symbol_count,
		   const unsigned char* plocal_syms,
		   Relocatable_relocs* rr);

  // Emit relocations for a section.
  void
  relocate_relocs(
      const Relocate_info<size, false>*,
      unsigned int sh_type,
      const unsigned char* prelocs,
      size_t reloc_count,
      Output_section* output_section,
      typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
      unsigned char* view,
      typename elfcpp::Elf_types<size>::Elf_Addr view_address,
      section_size_type view_size,
      unsigned char* reloc_view,
      section_size_type reloc_view_size);

  // Return a string used to fill a code section with nops.
  std::string
  do_code_fill(section_size_type length) const;

  // Return whether SYM is defined by the ABI.
  bool
  do_is_defined_by_abi(const Symbol* sym) const
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }

  // Return the symbol index to use for a target specific relocation.
  // The only target specific relocation is R_X86_64_TLSDESC for a
  // local symbol, which is an absolute reloc.
  unsigned int
  do_reloc_symbol_index(void*, unsigned int r_type) const
  {
    gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
    return 0;
  }

  // Return the addend to use for a target specific relocation.
  uint64_t
  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;

  // Return the PLT section.
  uint64_t
  do_plt_address_for_global(const Symbol* gsym) const
  { return this->plt_section()->address_for_global(gsym); }

  uint64_t
  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
  { return this->plt_section()->address_for_local(relobj, symndx); }

  // This function should be defined in targets that can use relocation
  // types to determine (implemented in local_reloc_may_be_function_pointer
  // and global_reloc_may_be_function_pointer)
  // if a function's pointer is taken.  ICF uses this in safe mode to only
  // fold those functions whose pointer is defintely not taken.  For x86_64
  // pie binaries, safe ICF cannot be done by looking at only relocation
  // types, and for certain cases (e.g. R_X86_64_PC32), the instruction
  // opcode is checked as well to distinguish a function call from taking
  // a function's pointer.
  bool
  do_can_check_for_function_pointers() const
  { return true; }

  // Return the base for a DW_EH_PE_datarel encoding.
  uint64_t
  do_ehframe_datarel_base() const;

  // Adjust -fsplit-stack code which calls non-split-stack code.
  void
  do_calls_non_split(Relobj* object, unsigned int shndx,
		     section_offset_type fnoffset, section_size_type fnsize,
		     const unsigned char* prelocs, size_t reloc_count,
		     unsigned char* view, section_size_type view_size,
		     std::string* from, std::string* to) const;

  // Return the size of the GOT section.
  section_size_type
  got_size() const
  {
    gold_assert(this->got_ != NULL);
    return this->got_->data_size();
  }

  // Return the number of entries in the GOT.
  unsigned int
  got_entry_count() const
  {
    if (this->got_ == NULL)
      return 0;
    return this->got_size() / 8;
  }

  // Return the number of entries in the PLT.
  unsigned int
  plt_entry_count() const;

  // Return the offset of the first non-reserved PLT entry.
  unsigned int
  first_plt_entry_offset() const;

  // Return the size of each PLT entry.
  unsigned int
  plt_entry_size() const;

  // Return the size of each GOT entry.
  unsigned int
  got_entry_size() const
  { return 8; };

  // Create the GOT section for an incremental update.
  Output_data_got_base*
  init_got_plt_for_update(Symbol_table* symtab,
			  Layout* layout,
			  unsigned int got_count,
			  unsigned int plt_count);

  // Reserve a GOT entry for a local symbol, and regenerate any
  // necessary dynamic relocations.
  void
  reserve_local_got_entry(unsigned int got_index,
			  Sized_relobj<size, false>* obj,
			  unsigned int r_sym,
			  unsigned int got_type);

  // Reserve a GOT entry for a global symbol, and regenerate any
  // necessary dynamic relocations.
  void
  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
			   unsigned int got_type);

  // Register an existing PLT entry for a global symbol.
  void
  register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
			    Symbol* gsym);

  // Force a COPY relocation for a given symbol.
  void
  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);

  // Apply an incremental relocation.
  void
  apply_relocation(const Relocate_info<size, false>* relinfo,
		   typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
		   unsigned int r_type,
		   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
		   const Symbol* gsym,
		   unsigned char* view,
		   typename elfcpp::Elf_types<size>::Elf_Addr address,
		   section_size_type view_size);

  // Add a new reloc argument, returning the index in the vector.
  size_t
  add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
  {
    this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
    return this->tlsdesc_reloc_info_.size() - 1;
  }

  Output_data_plt_x86_64<size>*
  make_data_plt(Layout* layout,
		Output_data_got<64, false>* got,
		Output_data_got_plt_x86_64* got_plt,
		Output_data_space* got_irelative)
  {
    return this->do_make_data_plt(layout, got, got_plt, got_irelative);
  }

  Output_data_plt_x86_64<size>*
  make_data_plt(Layout* layout,
		Output_data_got<64, false>* got,
		Output_data_got_plt_x86_64* got_plt,
		Output_data_space* got_irelative,
		unsigned int plt_count)
  {
    return this->do_make_data_plt(layout, got, got_plt, got_irelative,
				  plt_count);
  }

  virtual Output_data_plt_x86_64<size>*
  do_make_data_plt(Layout* layout,
		   Output_data_got<64, false>* got,
		   Output_data_got_plt_x86_64* got_plt,
		   Output_data_space* got_irelative);

  virtual Output_data_plt_x86_64<size>*
  do_make_data_plt(Layout* layout,
		   Output_data_got<64, false>* got,
		   Output_data_got_plt_x86_64* got_plt,
		   Output_data_space* got_irelative,
		   unsigned int plt_count);

 private:
  // The class which scans relocations.
  class Scan
  {
  public:
    Scan()
      : issued_non_pic_error_(false)
    { }

    static inline int
    get_reference_flags(unsigned int r_type);

    inline void
    local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
	  Sized_relobj_file<size, false>* object,
	  unsigned int data_shndx,
	  Output_section* output_section,
	  const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
	  const elfcpp::Sym<size, false>& lsym,
	  bool is_discarded);

    inline void
    global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
	   Sized_relobj_file<size, false>* object,
	   unsigned int data_shndx,
	   Output_section* output_section,
	   const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
	   Symbol* gsym);

    inline bool
    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
					Target_x86_64* target,
					Sized_relobj_file<size, false>* object,
					unsigned int data_shndx,
					Output_section* output_section,
					const elfcpp::Rela<size, false>& reloc,
					unsigned int r_type,
					const elfcpp::Sym<size, false>& lsym);

    inline bool
    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
					 Target_x86_64* target,
					 Sized_relobj_file<size, false>* object,
					 unsigned int data_shndx,
					 Output_section* output_section,
					 const elfcpp::Rela<size, false>& reloc,
					 unsigned int r_type,
					 Symbol* gsym);

  private:
    static void
    unsupported_reloc_local(Sized_relobj_file<size, false>*,
			    unsigned int r_type);

    static void
    unsupported_reloc_global(Sized_relobj_file<size, false>*,
			     unsigned int r_type, Symbol*);

    void
    check_non_pic(Relobj*, unsigned int r_type, Symbol*);

    inline bool
    possible_function_pointer_reloc(Sized_relobj_file<size, false>* src_obj,
                                    unsigned int src_indx,
                                    unsigned int r_offset,
                                    unsigned int r_type);

    bool
    reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
			      unsigned int r_type);

    // Whether we have issued an error about a non-PIC compilation.
    bool issued_non_pic_error_;
  };

  // The class which implements relocation.
  class Relocate
  {
   public:
    Relocate()
      : skip_call_tls_get_addr_(false)
    { }

    ~Relocate()
    {
      if (this->skip_call_tls_get_addr_)
	{
	  // FIXME: This needs to specify the location somehow.
	  gold_error(_("missing expected TLS relocation"));
	}
    }

    // Do a relocation.  Return false if the caller should not issue
    // any warnings about this relocation.
    inline bool
    relocate(const Relocate_info<size, false>*, unsigned int,
	     Target_x86_64*, Output_section*, size_t, const unsigned char*,
	     const Sized_symbol<size>*, const Symbol_value<size>*,
	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
	     section_size_type);

   private:
    // Do a TLS relocation.
    inline void
    relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
		 size_t relnum, const elfcpp::Rela<size, false>&,
		 unsigned int r_type, const Sized_symbol<size>*,
		 const Symbol_value<size>*,
		 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
		 section_size_type);

    // Do a TLS General-Dynamic to Initial-Exec transition.
    inline void
    tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
		 const elfcpp::Rela<size, false>&, unsigned int r_type,
		 typename elfcpp::Elf_types<size>::Elf_Addr value,
		 unsigned char* view,
		 typename elfcpp::Elf_types<size>::Elf_Addr,
		 section_size_type view_size);

    // Do a TLS General-Dynamic to Local-Exec transition.
    inline void
    tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
		 Output_segment* tls_segment,
		 const elfcpp::Rela<size, false>&, unsigned int r_type,
		 typename elfcpp::Elf_types<size>::Elf_Addr value,
		 unsigned char* view,
		 section_size_type view_size);

    // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
    inline void
    tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
		      const elfcpp::Rela<size, false>&, unsigned int r_type,
		      typename elfcpp::Elf_types<size>::Elf_Addr value,
		      unsigned char* view,
		      typename elfcpp::Elf_types<size>::Elf_Addr,
		      section_size_type view_size);

    // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
    inline void
    tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
		      Output_segment* tls_segment,
		      const elfcpp::Rela<size, false>&, unsigned int r_type,
		      typename elfcpp::Elf_types<size>::Elf_Addr value,
		      unsigned char* view,
		      section_size_type view_size);

    // Do a TLS Local-Dynamic to Local-Exec transition.
    inline void
    tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
		 Output_segment* tls_segment,
		 const elfcpp::Rela<size, false>&, unsigned int r_type,
		 typename elfcpp::Elf_types<size>::Elf_Addr value,
		 unsigned char* view,
		 section_size_type view_size);

    // Do a TLS Initial-Exec to Local-Exec transition.
    static inline void
    tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
		 Output_segment* tls_segment,
		 const elfcpp::Rela<size, false>&, unsigned int r_type,
		 typename elfcpp::Elf_types<size>::Elf_Addr value,
		 unsigned char* view,
		 section_size_type view_size);

    // This is set if we should skip the next reloc, which should be a
    // PLT32 reloc against ___tls_get_addr.
    bool skip_call_tls_get_addr_;
  };

  // Check if relocation against this symbol is a candidate for
  // conversion from
  // mov foo@GOTPCREL(%rip), %reg
  // to lea foo(%rip), %reg.
  template<class View_type>
  static inline bool
  can_convert_mov_to_lea(const Symbol* gsym, unsigned int r_type,
                         size_t r_offset, View_type* view)
  {
    gold_assert(gsym != NULL);
    // We cannot do the conversion unless it's one of these relocations.
    if (r_type != elfcpp::R_X86_64_GOTPCREL
        && r_type != elfcpp::R_X86_64_GOTPCRELX
        && r_type != elfcpp::R_X86_64_REX_GOTPCRELX)
      return false;
    // We cannot convert references to IFUNC symbols, or to symbols that
    // are not local to the current module.
    // We can't do predefined symbols because they may become undefined
    // (e.g., __ehdr_start when the headers aren't mapped to a segment).
    if (gsym->type() == elfcpp::STT_GNU_IFUNC
        || gsym->is_undefined()
        || gsym->is_predefined()
        || gsym->is_from_dynobj()
        || gsym->is_preemptible())
      return false;
    // If we are building a shared object and the symbol is protected, we may
    // need to go through the GOT.
    if (parameters->options().shared()
        && gsym->visibility() == elfcpp::STV_PROTECTED)
      return false;
    // We cannot convert references to the _DYNAMIC symbol.
    if (strcmp(gsym->name(), "_DYNAMIC") == 0)
      return false;
    // Check for a MOV opcode.
    return (*view)[r_offset - 2] == 0x8b;
  }

  // Convert
  // callq *foo@GOTPCRELX(%rip) to
  // addr32 callq foo
  // and jmpq *foo@GOTPCRELX(%rip) to
  // jmpq foo
  // nop
  template<class View_type>
  static inline bool
  can_convert_callq_to_direct(const Symbol* gsym, unsigned int r_type,
			      size_t r_offset, View_type* view)
  {
    gold_assert(gsym != NULL);
    // We cannot do the conversion unless it's a GOTPCRELX relocation.
    if (r_type != elfcpp::R_X86_64_GOTPCRELX)
      return false;
    // We cannot convert references to IFUNC symbols, or to symbols that
    // are not local to the current module.
    if (gsym->type() == elfcpp::STT_GNU_IFUNC
        || gsym->is_undefined ()
        || gsym->is_from_dynobj()
        || gsym->is_preemptible())
      return false;
    // Check for a CALLQ or JMPQ opcode.
    return ((*view)[r_offset - 2] == 0xff
            && ((*view)[r_offset - 1] == 0x15
                || (*view)[r_offset - 1] == 0x25));
  }

  // Adjust TLS relocation type based on the options and whether this
  // is a local symbol.
  static tls::Tls_optimization
  optimize_tls_reloc(bool is_final, int r_type);

  // Get the GOT section, creating it if necessary.
  Output_data_got<64, false>*
  got_section(Symbol_table*, Layout*);

  // Get the GOT PLT section.
  Output_data_got_plt_x86_64*
  got_plt_section() const
  {
    gold_assert(this->got_plt_ != NULL);
    return this->got_plt_;
  }

  // Get the GOT section for TLSDESC entries.
  Output_data_got<64, false>*
  got_tlsdesc_section() const
  {
    gold_assert(this->got_tlsdesc_ != NULL);
    return this->got_tlsdesc_;
  }

  // Create the PLT section.
  void
  make_plt_section(Symbol_table* symtab, Layout* layout);

  // Create a PLT entry for a global symbol.
  void
  make_plt_entry(Symbol_table*, Layout*, Symbol*);

  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
  void
  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
			     Sized_relobj_file<size, false>* relobj,
			     unsigned int local_sym_index);

  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
  void
  define_tls_base_symbol(Symbol_table*, Layout*);

  // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
  void
  reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);

  // Create a GOT entry for the TLS module index.
  unsigned int
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
		      Sized_relobj_file<size, false>* object);

  // Get the PLT section.
  Output_data_plt_x86_64<size>*
  plt_section() const
  {
    gold_assert(this->plt_ != NULL);
    return this->plt_;
  }

  // Get the dynamic reloc section, creating it if necessary.
  Reloc_section*
  rela_dyn_section(Layout*);

  // Get the section to use for TLSDESC relocations.
  Reloc_section*
  rela_tlsdesc_section(Layout*) const;

  // Get the section to use for IRELATIVE relocations.
  Reloc_section*
  rela_irelative_section(Layout*);

  // Add a potential copy relocation.
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
	     Sized_relobj_file<size, false>* object,
	     unsigned int shndx, Output_section* output_section,
	     Symbol* sym, const elfcpp::Rela<size, false>& reloc)
  {
    unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
    this->copy_relocs_.copy_reloc(symtab, layout,
				  symtab->get_sized_symbol<size>(sym),
				  object, shndx, output_section,
				  r_type, reloc.get_r_offset(),
				  reloc.get_r_addend(),
				  this->rela_dyn_section(layout));
  }

  // Record a target-specific program property in the .note.gnu.property
  // section.
  void
  record_gnu_property(unsigned int, unsigned int, size_t,
		      const unsigned char*, const Object*);

  // Merge the target-specific program properties from the current object.
  void
  merge_gnu_properties(const Object*);

  // Finalize the target-specific program properties and add them back to
  // the layout.
  void
  do_finalize_gnu_properties(Layout*) const;

  // Information about this specific target which we pass to the
  // general Target structure.
  static const Target::Target_info x86_64_info;

  // The types of GOT entries needed for this platform.
  // These values are exposed to the ABI in an incremental link.
  // Do not renumber existing values without changing the version
  // number of the .gnu_incremental_inputs section.
  enum Got_type
  {
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
    GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
  };

  // This type is used as the argument to the target specific
  // relocation routines.  The only target specific reloc is
  // R_X86_64_TLSDESC against a local symbol.
  struct Tlsdesc_info
  {
    Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
      : object(a_object), r_sym(a_r_sym)
    { }

    // The object in which the local symbol is defined.
    Sized_relobj_file<size, false>* object;
    // The local symbol index in the object.
    unsigned int r_sym;
  };

  // The GOT section.
  Output_data_got<64, false>* got_;
  // The PLT section.
  Output_data_plt_x86_64<size>* plt_;
  // The GOT PLT section.
  Output_data_got_plt_x86_64* got_plt_;
  // The GOT section for IRELATIVE relocations.
  Output_data_space* got_irelative_;
  // The GOT section for TLSDESC relocations.
  Output_data_got<64, false>* got_tlsdesc_;
  // The _GLOBAL_OFFSET_TABLE_ symbol.
  Symbol* global_offset_table_;
  // The dynamic reloc section.
  Reloc_section* rela_dyn_;
  // The section to use for IRELATIVE relocs.
  Reloc_section* rela_irelative_;
  // Relocs saved to avoid a COPY reloc.
  Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
  // Offset of the GOT entry for the TLS module index.
  unsigned int got_mod_index_offset_;
  // We handle R_X86_64_TLSDESC against a local symbol as a target
  // specific relocation.  Here we store the object and local symbol
  // index for the relocation.
  std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
  bool tls_base_symbol_defined_;
  // Target-specific program properties, from .note.gnu.property section.
  // Each bit represents a specific feature.
  uint32_t isa_1_used_;
  uint32_t isa_1_needed_;
  uint32_t feature_1_;
  // Target-specific properties from the current object.
  // These bits get ANDed into FEATURE_1_ after all properties for the object
  // have been processed.
  uint32_t object_feature_1_;
  // Whether we have seen our first object, for use in initializing FEATURE_1_.
  bool seen_first_object_;
};

template<>
const Target::Target_info Target_x86_64<64>::x86_64_info =
{
  64,			// size
  false,		// is_big_endian
  elfcpp::EM_X86_64,	// machine_code
  false,		// has_make_symbol
  false,		// has_resolve
  true,			// has_code_fill
  true,			// is_default_stack_executable
  true,			// can_icf_inline_merge_sections
  '\0',			// wrap_char
  "/lib/ld64.so.1",     // program interpreter
  0x400000,		// default_text_segment_address
  0x1000,		// abi_pagesize (overridable by -z max-page-size)
  0x1000,		// common_pagesize (overridable by -z common-page-size)
  false,                // isolate_execinstr
  0,                    // rosegment_gap
  elfcpp::SHN_UNDEF,	// small_common_shndx
  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
  0,			// small_common_section_flags
  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
  NULL,			// attributes_section
  NULL,			// attributes_vendor
  "_start",		// entry_symbol_name
  32,			// hash_entry_size
  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
};

template<>
const Target::Target_info Target_x86_64<32>::x86_64_info =
{
  32,			// size
  false,		// is_big_endian
  elfcpp::EM_X86_64,	// machine_code
  false,		// has_make_symbol
  false,		// has_resolve
  true,			// has_code_fill
  true,			// is_default_stack_executable
  true,			// can_icf_inline_merge_sections
  '\0',			// wrap_char
  "/libx32/ldx32.so.1", // program interpreter
  0x400000,		// default_text_segment_address
  0x1000,		// abi_pagesize (overridable by -z max-page-size)
  0x1000,		// common_pagesize (overridable by -z common-page-size)
  false,                // isolate_execinstr
  0,                    // rosegment_gap
  elfcpp::SHN_UNDEF,	// small_common_shndx
  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
  0,			// small_common_section_flags
  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
  NULL,			// attributes_section
  NULL,			// attributes_vendor
  "_start",		// entry_symbol_name
  32,			// hash_entry_size
  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
};

// This is called when a new output section is created.  This is where
// we handle the SHF_X86_64_LARGE.

template<int size>
void
Target_x86_64<size>::do_new_output_section(Output_section* os) const
{
  if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
    os->set_is_large_section();
}

// Get the GOT section, creating it if necessary.

template<int size>
Output_data_got<64, false>*
Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
{
  if (this->got_ == NULL)
    {
      gold_assert(symtab != NULL && layout != NULL);

      // When using -z now, we can treat .got.plt as a relro section.
      // Without -z now, it is modified after program startup by lazy
      // PLT relocations.
      bool is_got_plt_relro = parameters->options().now();
      Output_section_order got_order = (is_got_plt_relro
					? ORDER_RELRO
					: ORDER_RELRO_LAST);
      Output_section_order got_plt_order = (is_got_plt_relro
					    ? ORDER_RELRO
					    : ORDER_NON_RELRO_FIRST);

      this->got_ = new Output_data_got<64, false>();

      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
				      (elfcpp::SHF_ALLOC
				       | elfcpp::SHF_WRITE),
				      this->got_, got_order, true);

      this->got_plt_ = new Output_data_got_plt_x86_64(layout);
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
				      (elfcpp::SHF_ALLOC
				       | elfcpp::SHF_WRITE),
				      this->got_plt_, got_plt_order,
				      is_got_plt_relro);

      // The first three entries are reserved.
      this->got_plt_->set_current_data_size(3 * 8);

      if (!is_got_plt_relro)
	{
	  // Those bytes can go into the relro segment.
	  layout->increase_relro(3 * 8);
	}

      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      this->global_offset_table_ =
	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
				      Symbol_table::PREDEFINED,
				      this->got_plt_,
				      0, 0, elfcpp::STT_OBJECT,
				      elfcpp::STB_LOCAL,
				      elfcpp::STV_HIDDEN, 0,
				      false, false);

      // If there are any IRELATIVE relocations, they get GOT entries
      // in .got.plt after the jump slot entries.
      this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
				      (elfcpp::SHF_ALLOC
				       | elfcpp::SHF_WRITE),
				      this->got_irelative_,
				      got_plt_order, is_got_plt_relro);

      // If there are any TLSDESC relocations, they get GOT entries in
      // .got.plt after the jump slot and IRELATIVE entries.
      this->got_tlsdesc_ = new Output_data_got<64, false>();
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
				      (elfcpp::SHF_ALLOC
				       | elfcpp::SHF_WRITE),
				      this->got_tlsdesc_,
				      got_plt_order, is_got_plt_relro);
    }

  return this->got_;
}

// Get the dynamic reloc section, creating it if necessary.

template<int size>
typename Target_x86_64<size>::Reloc_section*
Target_x86_64<size>::rela_dyn_section(Layout* layout)
{
  if (this->rela_dyn_ == NULL)
    {
      gold_assert(layout != NULL);
      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
				      elfcpp::SHF_ALLOC, this->rela_dyn_,
				      ORDER_DYNAMIC_RELOCS, false);
    }
  return this->rela_dyn_;
}

// Get the section to use for IRELATIVE relocs, creating it if
// necessary.  These go in .rela.dyn, but only after all other dynamic
// relocations.  They need to follow the other dynamic relocations so
// that they can refer to global variables initialized by those
// relocs.

template<int size>
typename Target_x86_64<size>::Reloc_section*
Target_x86_64<size>::rela_irelative_section(Layout* layout)
{
  if (this->rela_irelative_ == NULL)
    {
      // Make sure we have already created the dynamic reloc section.
      this->rela_dyn_section(layout);
      this->rela_irelative_ = new Reloc_section(false);
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
				      elfcpp::SHF_ALLOC, this->rela_irelative_,
				      ORDER_DYNAMIC_RELOCS, false);
      gold_assert(this->rela_dyn_->output_section()
		  == this->rela_irelative_->output_section());
    }
  return this->rela_irelative_;
}

// Record a target-specific program property from the .note.gnu.property
// section.
template<int size>
void
Target_x86_64<size>::record_gnu_property(
    unsigned int, unsigned int pr_type,
    size_t pr_datasz, const unsigned char* pr_data,
    const Object* object)
{
  uint32_t val = 0;

  switch (pr_type)
    {
    case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
    case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
    case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
      if (pr_datasz != 4)
	{
	  gold_warning(_("%s: corrupt .note.gnu.property section "
			 "(pr_datasz for property %d is not 4)"),
		       object->name().c_str(), pr_type);
	  return;
	}
      val = elfcpp::Swap<32, false>::readval(pr_data);
      break;
    default:
      gold_warning(_("%s: unknown program property type 0x%x "
		     "in .note.gnu.property section"),
		   object->name().c_str(), pr_type);
      break;
    }

  switch (pr_type)
    {
    case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
      this->isa_1_used_ |= val;
      break;
    case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
      this->isa_1_needed_ |= val;
      break;
    case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
      // If we see multiple feature props in one object, OR them together.
      this->object_feature_1_ |= val;
      break;
    }
}

// Merge the target-specific program properties from the current object.
template<int size>
void
Target_x86_64<size>::merge_gnu_properties(const Object*)
{
  if (this->seen_first_object_)
    this->feature_1_ &= this->object_feature_1_;
  else
    {
      this->feature_1_ = this->object_feature_1_;
      this->seen_first_object_ = true;
    }
  this->object_feature_1_ = 0;
}

static inline void
add_property(Layout* layout, unsigned int pr_type, uint32_t val)
{
  unsigned char buf[4];
  elfcpp::Swap<32, false>::writeval(buf, val);
  layout->add_gnu_property(elfcpp::NT_GNU_PROPERTY_TYPE_0, pr_type, 4, buf);
}

// Finalize the target-specific program properties and add them back to
// the layout.
template<int size>
void
Target_x86_64<size>::do_finalize_gnu_properties(Layout* layout) const
{
  if (this->isa_1_used_ != 0)
    add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_USED,
		 this->isa_1_used_);
  if (this->isa_1_needed_ != 0)
    add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED,
		 this->isa_1_needed_);
  if (this->feature_1_ != 0)
    add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND,
		 this->feature_1_);
}

// Write the first three reserved words of the .got.plt section.
// The remainder of the section is written while writing the PLT
// in Output_data_plt_i386::do_write.

void
Output_data_got_plt_x86_64::do_write(Output_file* of)
{
  // The first entry in the GOT is the address of the .dynamic section
  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
  // We saved space for them when we created the section in
  // Target_x86_64::got_section.
  const off_t got_file_offset = this->offset();
  gold_assert(this->data_size() >= 24);
  unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
  Output_section* dynamic = this->layout_->dynamic_section();
  uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
  elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
  memset(got_view + 8, 0, 16);
  of->write_output_view(got_file_offset, 24, got_view);
}

// Initialize the PLT section.

template<int size>
void
Output_data_plt_x86_64<size>::init(Layout* layout)
{
  this->rel_ = new Reloc_section(false);
  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
				  elfcpp::SHF_ALLOC, this->rel_,
				  ORDER_DYNAMIC_PLT_RELOCS, false);
}

template<int size>
void
Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
{
  os->set_entsize(this->get_plt_entry_size());
}

// Add an entry to the PLT.

template<int size>
void
Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
					Symbol* gsym)
{
  gold_assert(!gsym->has_plt_offset());

  unsigned int plt_index;
  off_t plt_offset;
  section_offset_type got_offset;

  unsigned int* pcount;
  unsigned int offset;
  unsigned int reserved;
  Output_section_data_build* got;
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
    {
      pcount = &this->irelative_count_;
      offset = 0;
      reserved = 0;
      got = this->got_irelative_;
    }
  else
    {
      pcount = &this->count_;
      offset = 1;
      reserved = 3;
      got = this->got_plt_;
    }

  if (!this->is_data_size_valid())
    {
      // Note that when setting the PLT offset for a non-IRELATIVE
      // entry we skip the initial reserved PLT entry.
      plt_index = *pcount + offset;
      plt_offset = plt_index * this->get_plt_entry_size();

      ++*pcount;

      got_offset = (plt_index - offset + reserved) * 8;
      gold_assert(got_offset == got->current_data_size());

      // Every PLT entry needs a GOT entry which points back to the PLT
      // entry (this will be changed by the dynamic linker, normally
      // lazily when the function is called).
      got->set_current_data_size(got_offset + 8);
    }
  else
    {
      // FIXME: This is probably not correct for IRELATIVE relocs.

      // For incremental updates, find an available slot.
      plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
					     this->get_plt_entry_size(), 0);
      if (plt_offset == -1)
	gold_fallback(_("out of patch space (PLT);"
			" relink with --incremental-full"));

      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
      // can be calculated from the PLT index, adjusting for the three
      // reserved entries at the beginning of the GOT.
      plt_index = plt_offset / this->get_plt_entry_size() - 1;
      got_offset = (plt_index - offset + reserved) * 8;
    }

  gsym->set_plt_offset(plt_offset);

  // Every PLT entry needs a reloc.
  this->add_relocation(symtab, layout, gsym, got_offset);

  // Note that we don't need to save the symbol.  The contents of the
  // PLT are independent of which symbols are used.  The symbols only
  // appear in the relocations.
}

// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// the PLT offset.

template<int size>
unsigned int
Output_data_plt_x86_64<size>::add_local_ifunc_entry(
    Symbol_table* symtab,
    Layout* layout,
    Sized_relobj_file<size, false>* relobj,
    unsigned int local_sym_index)
{
  unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
  ++this->irelative_count_;

  section_offset_type got_offset = this->got_irelative_->current_data_size();

  // Every PLT entry needs a GOT entry which points back to the PLT
  // entry.
  this->got_irelative_->set_current_data_size(got_offset + 8);

  // Every PLT entry needs a reloc.
  Reloc_section* rela = this->rela_irelative(symtab, layout);
  rela->add_symbolless_local_addend(relobj, local_sym_index,
				    elfcpp::R_X86_64_IRELATIVE,
				    this->got_irelative_, got_offset, 0);

  return plt_offset;
}

// Add the relocation for a PLT entry.

template<int size>
void
Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
					     Layout* layout,
					     Symbol* gsym,
					     unsigned int got_offset)
{
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
    {
      Reloc_section* rela = this->rela_irelative(symtab, layout);
      rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
					 this->got_irelative_, got_offset, 0);
    }
  else
    {
      gsym->set_needs_dynsym_entry();
      this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
			     got_offset, 0);
    }
}

// Return where the TLSDESC relocations should go, creating it if
// necessary.  These follow the JUMP_SLOT relocations.

template<int size>
typename Output_data_plt_x86_64<size>::Reloc_section*
Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
{
  if (this->tlsdesc_rel_ == NULL)
    {
      this->tlsdesc_rel_ = new Reloc_section(false);
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
				      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
				      ORDER_DYNAMIC_PLT_RELOCS, false);
      gold_assert(this->tlsdesc_rel_->output_section()
		  == this->rel_->output_section());
    }
  return this->tlsdesc_rel_;
}

// Return where the IRELATIVE relocations should go in the PLT.  These
// follow the JUMP_SLOT and the TLSDESC relocations.

template<int size>
typename Output_data_plt_x86_64<size>::Reloc_section*
Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
					     Layout* layout)
{
  if (this->irelative_rel_ == NULL)
    {
      // Make sure we have a place for the TLSDESC relocations, in
      // case we see any later on.
      this->rela_tlsdesc(layout);
      this->irelative_rel_ = new Reloc_section(false);
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
				      elfcpp::SHF_ALLOC, this->irelative_rel_,
				      ORDER_DYNAMIC_PLT_RELOCS, false);
      gold_assert(this->irelative_rel_->output_section()
		  == this->rel_->output_section());

      if (parameters->doing_static_link())
	{
	  // A statically linked executable will only have a .rela.plt
	  // section to hold R_X86_64_IRELATIVE relocs for
	  // STT_GNU_IFUNC symbols.  The library will use these
	  // symbols to locate the IRELATIVE relocs at program startup
	  // time.
	  symtab->define_in_output_data("__rela_iplt_start", NULL,
					Symbol_table::PREDEFINED,
					this->irelative_rel_, 0, 0,
					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
					elfcpp::STV_HIDDEN, 0, false, true);
	  symtab->define_in_output_data("__rela_iplt_end", NULL,
					Symbol_table::PREDEFINED,
					this->irelative_rel_, 0, 0,
					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
					elfcpp::STV_HIDDEN, 0, true, true);
	}
    }
  return this->irelative_rel_;
}

// Return the PLT address to use for a global symbol.

template<int size>
uint64_t
Output_data_plt_x86_64<size>::do_address_for_global(const Symbol* gsym)
{
  uint64_t offset = 0;
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
    offset = (this->count_ + 1) * this->get_plt_entry_size();
  return this->address() + offset + gsym->plt_offset();
}

// Return the PLT address to use for a local symbol.  These are always
// IRELATIVE relocs.

template<int size>
uint64_t
Output_data_plt_x86_64<size>::do_address_for_local(const Relobj* object,
						   unsigned int r_sym)
{
  return (this->address()
	  + (this->count_ + 1) * this->get_plt_entry_size()
	  + object->local_plt_offset(r_sym));
}

// Set the final size.
template<int size>
void
Output_data_plt_x86_64<size>::set_final_data_size()
{
  // Number of regular and IFUNC PLT entries, plus the first entry.
  unsigned int count = this->count_ + this->irelative_count_ + 1;
  // Count the TLSDESC entry, if present.
  if (this->has_tlsdesc_entry())
    ++count;
  this->set_data_size(count * this->get_plt_entry_size());
}

// The first entry in the PLT for an executable.

template<int size>
const unsigned char
Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
{
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x35,	// pushq contents of memory address
  0, 0, 0, 0,	// replaced with address of .got + 8
  0xff, 0x25,	// jmp indirect
  0, 0, 0, 0,	// replaced with address of .got + 16
  0x90, 0x90, 0x90, 0x90   // noop (x4)
};

template<int size>
void
Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
{
  memcpy(pov, first_plt_entry, plt_entry_size);
  // We do a jmp relative to the PC at the end of this instruction.
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      (got_address + 8
					       - (plt_address + 6)));
  elfcpp::Swap<32, false>::writeval(pov + 8,
				    (got_address + 16
				     - (plt_address + 12)));
}

// Subsequent entries in the PLT for an executable.

template<int size>
const unsigned char
Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
{
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x25,	// jmpq indirect
  0, 0, 0, 0,	// replaced with address of symbol in .got
  0x68,		// pushq immediate
  0, 0, 0, 0,	// replaced with offset into relocation table
  0xe9,		// jmpq relative
  0, 0, 0, 0	// replaced with offset to start of .plt
};

template<int size>
unsigned int
Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
    unsigned int got_offset,
    unsigned int plt_offset,
    unsigned int plt_index)
{
  // Check PC-relative offset overflow in PLT entry.
  uint64_t plt_got_pcrel_offset = (got_address + got_offset
				   - (plt_address + plt_offset + 6));
  if (Bits<32>::has_overflow(plt_got_pcrel_offset))
    gold_error(_("PC-relative offset overflow in PLT entry %d"),
	       plt_index + 1);

  memcpy(pov, plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      plt_got_pcrel_offset);

  elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
  elfcpp::Swap<32, false>::writeval(pov + 12,
				    - (plt_offset + plt_entry_size));

  return 6;
}

// The reserved TLSDESC entry in the PLT for an executable.

template<int size>
const unsigned char
Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
{
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
  0xff, 0x35,	// pushq x(%rip)
  0, 0, 0, 0,	// replaced with address of linkmap GOT entry (at PLTGOT + 8)
  0xff,	0x25,	// jmpq *y(%rip)
  0, 0, 0, 0,	// replaced with offset of reserved TLSDESC_GOT entry
  0x0f,	0x1f,	// nop
  0x40, 0
};

template<int size>
void
Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
    typename elfcpp::Elf_types<size>::Elf_Addr got_base,
    unsigned int tlsdesc_got_offset,
    unsigned int plt_offset)
{
  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      (got_address + 8
					       - (plt_address + plt_offset
						  + 6)));
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
					      (got_base
					       + tlsdesc_got_offset
					       - (plt_address + plt_offset
						  + 12)));
}

// Return the APLT address to use for a global symbol (for -z bndplt).

uint64_t
Output_data_plt_x86_64_bnd::do_address_for_global(const Symbol* gsym)
{
  uint64_t offset = this->aplt_offset_;
  // Convert the PLT offset into an APLT offset.
  unsigned int plt_offset = gsym->plt_offset();
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
    offset += this->regular_count() * aplt_entry_size;
  else
    plt_offset -= plt_entry_size;
  plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
  return this->address() + offset + plt_offset;
}

// Return the PLT address to use for a local symbol.  These are always
// IRELATIVE relocs.

uint64_t
Output_data_plt_x86_64_bnd::do_address_for_local(const Relobj* object,
						 unsigned int r_sym)
{
  // Convert the PLT offset into an APLT offset.
  unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
			     / (plt_entry_size / aplt_entry_size));
  return (this->address()
	  + this->aplt_offset_
	  + this->regular_count() * aplt_entry_size
	  + plt_offset);
}

// Set the final size.
void
Output_data_plt_x86_64_bnd::set_final_data_size()
{
  // Number of regular and IFUNC PLT entries.
  unsigned int count = this->entry_count();
  // Count the first entry and the TLSDESC entry, if present.
  unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
  unsigned int plt_size = (count + extra) * plt_entry_size;
  // Offset of the APLT.
  this->aplt_offset_ = plt_size;
  // Size of the APLT.
  plt_size += count * aplt_entry_size;
  this->set_data_size(plt_size);
}

// The first entry in the BND PLT.

const unsigned char
Output_data_plt_x86_64_bnd::first_plt_entry[plt_entry_size] =
{
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x35,		// pushq contents of memory address
  0, 0, 0, 0,		// replaced with address of .got + 8
  0xf2, 0xff, 0x25,	// bnd jmp indirect
  0, 0, 0, 0,		// replaced with address of .got + 16
  0x0f, 0x1f, 0x00   	// nop
};

void
Output_data_plt_x86_64_bnd::do_fill_first_plt_entry(
    unsigned char* pov,
    elfcpp::Elf_types<64>::Elf_Addr got_address,
    elfcpp::Elf_types<64>::Elf_Addr plt_address)
{
  memcpy(pov, first_plt_entry, plt_entry_size);
  // We do a jmp relative to the PC at the end of this instruction.
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      (got_address + 8
					       - (plt_address + 6)));
  elfcpp::Swap<32, false>::writeval(pov + 9,
				    (got_address + 16
				     - (plt_address + 13)));
}

// Subsequent entries in the BND PLT.

const unsigned char
Output_data_plt_x86_64_bnd::plt_entry[plt_entry_size] =
{
  // From AMD64 ABI Draft 0.99.8, page 139
  0x68,				// pushq immediate
  0, 0, 0, 0,			// replaced with offset into relocation table
  0xf2, 0xe9,			// bnd jmpq relative
  0, 0, 0, 0,			// replaced with offset to start of .plt
  0x0f, 0x1f, 0x44, 0, 0	// nop
};

// Entries in the BND Additional PLT.

const unsigned char
Output_data_plt_x86_64_bnd::aplt_entry[aplt_entry_size] =
{
  // From AMD64 ABI Draft 0.99.8, page 139
  0xf2, 0xff, 0x25,	// bnd jmpq indirect
  0, 0, 0, 0,		// replaced with address of symbol in .got
  0x90,			// nop
};

unsigned int
Output_data_plt_x86_64_bnd::do_fill_plt_entry(
    unsigned char* pov,
    elfcpp::Elf_types<64>::Elf_Addr,
    elfcpp::Elf_types<64>::Elf_Addr,
    unsigned int,
    unsigned int plt_offset,
    unsigned int plt_index)
{
  memcpy(pov, plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 1, plt_index);
  elfcpp::Swap<32, false>::writeval(pov + 7, -(plt_offset + 11));
  return 0;
}

void
Output_data_plt_x86_64_bnd::fill_aplt_entry(
    unsigned char* pov,
    elfcpp::Elf_types<64>::Elf_Addr got_address,
    elfcpp::Elf_types<64>::Elf_Addr plt_address,
    unsigned int got_offset,
    unsigned int plt_offset,
    unsigned int plt_index)
{
  // Check PC-relative offset overflow in PLT entry.
  uint64_t plt_got_pcrel_offset = (got_address + got_offset
				   - (plt_address + plt_offset + 7));
  if (Bits<32>::has_overflow(plt_got_pcrel_offset))
    gold_error(_("PC-relative offset overflow in APLT entry %d"),
	       plt_index + 1);

  memcpy(pov, aplt_entry, aplt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 3, plt_got_pcrel_offset);
}

// The reserved TLSDESC entry in the PLT for an executable.

const unsigned char
Output_data_plt_x86_64_bnd::tlsdesc_plt_entry[plt_entry_size] =
{
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
  0xff, 0x35,		// pushq x(%rip)
  0, 0, 0, 0,		// replaced with address of linkmap GOT entry (at PLTGOT + 8)
  0xf2, 0xff, 0x25,	// jmpq *y(%rip)
  0, 0, 0, 0,		// replaced with offset of reserved TLSDESC_GOT entry
  0x0f,	0x1f, 0		// nop
};

void
Output_data_plt_x86_64_bnd::do_fill_tlsdesc_entry(
    unsigned char* pov,
    elfcpp::Elf_types<64>::Elf_Addr got_address,
    elfcpp::Elf_types<64>::Elf_Addr plt_address,
    elfcpp::Elf_types<64>::Elf_Addr got_base,
    unsigned int tlsdesc_got_offset,
    unsigned int plt_offset)
{
  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      (got_address + 8
					       - (plt_address + plt_offset
						  + 6)));
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
					      (got_base
					       + tlsdesc_got_offset
					       - (plt_address + plt_offset
						  + 13)));
}

// Return the APLT address to use for a global symbol (for IBT).

template<int size>
uint64_t
Output_data_plt_x86_64_ibt<size>::do_address_for_global(const Symbol* gsym)
{
  uint64_t offset = this->aplt_offset_;
  // Convert the PLT offset into an APLT offset.
  unsigned int plt_offset = gsym->plt_offset();
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
    offset += this->regular_count() * aplt_entry_size;
  else
    plt_offset -= plt_entry_size;
  plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
  return this->address() + offset + plt_offset;
}

// Return the PLT address to use for a local symbol.  These are always
// IRELATIVE relocs.

template<int size>
uint64_t
Output_data_plt_x86_64_ibt<size>::do_address_for_local(const Relobj* object,
						 unsigned int r_sym)
{
  // Convert the PLT offset into an APLT offset.
  unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
			     / (plt_entry_size / aplt_entry_size));
  return (this->address()
	  + this->aplt_offset_
	  + this->regular_count() * aplt_entry_size
	  + plt_offset);
}

// Set the final size.

template<int size>
void
Output_data_plt_x86_64_ibt<size>::set_final_data_size()
{
  // Number of regular and IFUNC PLT entries.
  unsigned int count = this->entry_count();
  // Count the first entry and the TLSDESC entry, if present.
  unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
  unsigned int plt_size = (count + extra) * plt_entry_size;
  // Offset of the APLT.
  this->aplt_offset_ = plt_size;
  // Size of the APLT.
  plt_size += count * aplt_entry_size;
  this->set_data_size(plt_size);
}

// The first entry in the IBT PLT.

template<>
const unsigned char
Output_data_plt_x86_64_ibt<32>::first_plt_entry[plt_entry_size] =
{
  // MPX isn't supported for x32, so we don't need the BND prefix.
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x35,		 // pushq contents of memory address
  0, 0, 0, 0,		 // replaced with address of .got + 8
  0xff, 0x25,		 // jmp indirect
  0, 0, 0, 0,		 // replaced with address of .got + 16
  0x90, 0x90, 0x90, 0x90 // noop (x4)
};

template<>
const unsigned char
Output_data_plt_x86_64_ibt<64>::first_plt_entry[plt_entry_size] =
{
  // Use the BND prefix so that IBT is compatible with MPX.
  0xff, 0x35,		// pushq contents of memory address
  0, 0, 0, 0,		// replaced with address of .got + 8
  0xf2, 0xff, 0x25,	// bnd jmp indirect
  0, 0, 0, 0,		// replaced with address of .got + 16
  0x0f, 0x1f, 0x00   	// nop
};

template<int size>
void
Output_data_plt_x86_64_ibt<size>::do_fill_first_plt_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
{
  // Offsets to the addresses needing relocation.
  const unsigned int roff1 = 2;
  const unsigned int roff2 = (size == 32) ? 8 : 9;

  memcpy(pov, first_plt_entry, plt_entry_size);
  // We do a jmp relative to the PC at the end of this instruction.
  elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1,
					      (got_address + 8
					       - (plt_address + roff1 + 4)));
  elfcpp::Swap<32, false>::writeval(pov + roff2,
				    (got_address + 16
				     - (plt_address + roff2 + 4)));
}

// Subsequent entries in the IBT PLT.

template<>
const unsigned char
Output_data_plt_x86_64_ibt<32>::plt_entry[plt_entry_size] =
{
  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
  0x68,				// pushq immediate
  0, 0, 0, 0,			// replaced with offset into relocation table
  0xe9,				// jmpq relative
  0, 0, 0, 0,			// replaced with offset to start of .plt
  0x90, 0x90			// nop
};

template<>
const unsigned char
Output_data_plt_x86_64_ibt<64>::plt_entry[plt_entry_size] =
{
  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
  0x68,				// pushq immediate
  0, 0, 0, 0,			// replaced with offset into relocation table
  0xf2, 0xe9,			// bnd jmpq relative
  0, 0, 0, 0,			// replaced with offset to start of .plt
  0x90				// nop
};

// Entries in the IBT Additional PLT.

template<>
const unsigned char
Output_data_plt_x86_64_ibt<32>::aplt_entry[aplt_entry_size] =
{
  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
  0xff, 0x25,			// jmpq indirect
  0, 0, 0, 0,			// replaced with address of symbol in .got
  0x0f, 0x1f, 0x04, 0x00,	// nop
  0x90, 0x90			// nop
};

template<>
const unsigned char
Output_data_plt_x86_64_ibt<64>::aplt_entry[aplt_entry_size] =
{
  // From AMD64 ABI Draft 1.0-rc1, Chapter 13.
  0xf3, 0x0f, 0x1e, 0xfa,	// endbr64
  0xf2, 0xff, 0x25,		// bnd jmpq indirect
  0, 0, 0, 0,			// replaced with address of symbol in .got
  0x0f, 0x1f, 0x04, 0x00,	// nop
  0x90,				// nop
};

template<int size>
unsigned int
Output_data_plt_x86_64_ibt<size>::do_fill_plt_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr,
    typename elfcpp::Elf_types<size>::Elf_Addr,
    unsigned int,
    unsigned int plt_offset,
    unsigned int plt_index)
{
  // Offsets to the addresses needing relocation.
  const unsigned int roff1 = 5;
  const unsigned int roff2 = (size == 32) ? 10 : 11;

  memcpy(pov, plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + roff1, plt_index);
  elfcpp::Swap<32, false>::writeval(pov + roff2, -(plt_offset + roff2 + 4));
  return 0;
}

template<int size>
void
Output_data_plt_x86_64_ibt<size>::fill_aplt_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
    unsigned int got_offset,
    unsigned int plt_offset,
    unsigned int plt_index)
{
  // Offset to the address needing relocation.
  const unsigned int roff = (size == 32) ? 6 : 7;

  // Check PC-relative offset overflow in PLT entry.
  uint64_t plt_got_pcrel_offset = (got_address + got_offset
				   - (plt_address + plt_offset + roff + 4));
  if (Bits<32>::has_overflow(plt_got_pcrel_offset))
    gold_error(_("PC-relative offset overflow in APLT entry %d"),
	       plt_index + 1);

  memcpy(pov, aplt_entry, aplt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + roff, plt_got_pcrel_offset);
}

// The reserved TLSDESC entry in the IBT PLT for an executable.

template<int size>
const unsigned char
Output_data_plt_x86_64_ibt<size>::tlsdesc_plt_entry[plt_entry_size] =
{
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
  0xff, 0x35,		// pushq x(%rip)
  0, 0, 0, 0,		// replaced with address of linkmap GOT entry (at PLTGOT + 8)
  0xf2, 0xff, 0x25,	// jmpq *y(%rip)
  0, 0, 0, 0,		// replaced with offset of reserved TLSDESC_GOT entry
  0x0f,	0x1f, 0		// nop
};

template<int size>
void
Output_data_plt_x86_64_ibt<size>::do_fill_tlsdesc_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
    typename elfcpp::Elf_types<size>::Elf_Addr got_base,
    unsigned int tlsdesc_got_offset,
    unsigned int plt_offset)
{
  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      (got_address + 8
					       - (plt_address + plt_offset
						  + 6)));
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
					      (got_base
					       + tlsdesc_got_offset
					       - (plt_address + plt_offset
						  + 13)));
}

// The .eh_frame unwind information for the PLT.

template<int size>
const unsigned char
Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
{
  1,				// CIE version.
  'z',				// Augmentation: augmentation size included.
  'R',				// Augmentation: FDE encoding included.
  '\0',				// End of augmentation string.
  1,				// Code alignment factor.
  0x78,				// Data alignment factor.
  16,				// Return address column.
  1,				// Augmentation size.
  (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
   | elfcpp::DW_EH_PE_sdata4),
  elfcpp::DW_CFA_def_cfa, 7, 8,	// DW_CFA_def_cfa: r7 (rsp) ofs 8.
  elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
  elfcpp::DW_CFA_nop,		// Align to 16 bytes.
  elfcpp::DW_CFA_nop
};

template<int size>
const unsigned char
Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
{
  0, 0, 0, 0,				// Replaced with offset to .plt.
  0, 0, 0, 0,				// Replaced with size of .plt.
  0,					// Augmentation size.
  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
  elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
  11,					// Block length.
  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
  elfcpp::DW_OP_breg16, 0,		// Push %rip.
  elfcpp::DW_OP_lit15,			// Push 0xf.
  elfcpp::DW_OP_and,			// & (%rip & 0xf).
  elfcpp::DW_OP_lit11,			// Push 0xb.
  elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 0xb)
  elfcpp::DW_OP_lit3,			// Push 3.
  elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 0xb) << 3)
  elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop
};

// The .eh_frame unwind information for the BND PLT.
const unsigned char
Output_data_plt_x86_64_bnd::plt_eh_frame_fde[plt_eh_frame_fde_size] =
{
  0, 0, 0, 0,				// Replaced with offset to .plt.
  0, 0, 0, 0,				// Replaced with size of .plt.
  0,					// Augmentation size.
  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
  elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
  11,					// Block length.
  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
  elfcpp::DW_OP_breg16, 0,		// Push %rip.
  elfcpp::DW_OP_lit15,			// Push 0xf.
  elfcpp::DW_OP_and,			// & (%rip & 0xf).
  elfcpp::DW_OP_lit5,			// Push 5.
  elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 5)
  elfcpp::DW_OP_lit3,			// Push 3.
  elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 5) << 3)
  elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=5)<<3)+%rsp+8
  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop
};

// The .eh_frame unwind information for the BND PLT.
template<int size>
const unsigned char
Output_data_plt_x86_64_ibt<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
{
  0, 0, 0, 0,				// Replaced with offset to .plt.
  0, 0, 0, 0,				// Replaced with size of .plt.
  0,					// Augmentation size.
  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
  elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
  11,					// Block length.
  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
  elfcpp::DW_OP_breg16, 0,		// Push %rip.
  elfcpp::DW_OP_lit15,			// Push 0xf.
  elfcpp::DW_OP_and,			// & (%rip & 0xf).
  elfcpp::DW_OP_lit9,			// Push 9.
  elfcpp::DW_OP_ge,			// >= ((%rip & 0xf) >= 9)
  elfcpp::DW_OP_lit3,			// Push 3.
  elfcpp::DW_OP_shl,			// << (((%rip & 0xf) >= 9) << 3)
  elfcpp::DW_OP_plus,			// + ((((%rip&0xf)>=9)<<3)+%rsp+8
  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop
};

// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is specified by the AMD64 ABI.

template<int size>
void
Output_data_plt_x86_64<size>::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  const off_t got_file_offset = this->got_plt_->offset();
  gold_assert(parameters->incremental_update()
	      || (got_file_offset + this->got_plt_->data_size()
		  == this->got_irelative_->offset()));
  const section_size_type got_size =
    convert_to_section_size_type(this->got_plt_->data_size()
				 + this->got_irelative_->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
						      got_size);

  unsigned char* pov = oview;

  // The base address of the .plt section.
  typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
  // The base address of the .got section.
  typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
  // The base address of the PLT portion of the .got section,
  // which is where the GOT pointer will point, and where the
  // three reserved GOT entries are located.
  typename elfcpp::Elf_types<size>::Elf_Addr got_address
    = this->got_plt_->address();

  this->fill_first_plt_entry(pov, got_address, plt_address);
  pov += this->get_plt_entry_size();

  // The first three entries in the GOT are reserved, and are written
  // by Output_data_got_plt_x86_64::do_write.
  unsigned char* got_pov = got_view + 24;

  unsigned int plt_offset = this->get_plt_entry_size();
  unsigned int got_offset = 24;
  const unsigned int count = this->count_ + this->irelative_count_;
  for (unsigned int plt_index = 0;
       plt_index < count;
       ++plt_index,
	 pov += this->get_plt_entry_size(),
	 got_pov += 8,
	 plt_offset += this->get_plt_entry_size(),
	 got_offset += 8)
    {
      // Set and adjust the PLT entry itself.
      unsigned int lazy_offset = this->fill_plt_entry(pov,
						      got_address, plt_address,
						      got_offset, plt_offset,
						      plt_index);

      // Set the entry in the GOT.
      elfcpp::Swap<64, false>::writeval(got_pov,
					plt_address + plt_offset + lazy_offset);
    }

  if (this->has_tlsdesc_entry())
    {
      // Set and adjust the reserved TLSDESC PLT entry.
      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
      this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
			       tlsdesc_got_offset, plt_offset);
      pov += this->get_plt_entry_size();
    }

  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);

  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(got_file_offset, got_size, got_view);
}

// Write out the BND PLT.

void
Output_data_plt_x86_64_bnd::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  Output_data_got<64, false>* got = this->got();
  Output_data_got_plt_x86_64* got_plt = this->got_plt();
  Output_data_space* got_irelative = this->got_irelative();

  const off_t got_file_offset = got_plt->offset();
  gold_assert(parameters->incremental_update()
	      || (got_file_offset + got_plt->data_size()
		  == got_irelative->offset()));
  const section_size_type got_size =
    convert_to_section_size_type(got_plt->data_size()
				 + got_irelative->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
						      got_size);

  unsigned char* pov = oview;

  // The base address of the .plt section.
  elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
  // The base address of the .got section.
  elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
  // The base address of the PLT portion of the .got section,
  // which is where the GOT pointer will point, and where the
  // three reserved GOT entries are located.
  elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();

  this->fill_first_plt_entry(pov, got_address, plt_address);
  pov += plt_entry_size;

  // The first three entries in the GOT are reserved, and are written
  // by Output_data_got_plt_x86_64::do_write.
  unsigned char* got_pov = got_view + 24;

  unsigned int plt_offset = plt_entry_size;
  unsigned int got_offset = 24;
  const unsigned int count = this->entry_count();
  for (unsigned int plt_index = 0;
       plt_index < count;
       ++plt_index,
	 pov += plt_entry_size,
	 got_pov += 8,
	 plt_offset += plt_entry_size,
	 got_offset += 8)
    {
      // Set and adjust the PLT entry itself.
      unsigned int lazy_offset = this->fill_plt_entry(pov,
						      got_address, plt_address,
						      got_offset, plt_offset,
						      plt_index);

      // Set the entry in the GOT.
      elfcpp::Swap<64, false>::writeval(got_pov,
					plt_address + plt_offset + lazy_offset);
    }

  if (this->has_tlsdesc_entry())
    {
      // Set and adjust the reserved TLSDESC PLT entry.
      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
      this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
			       tlsdesc_got_offset, plt_offset);
      pov += this->get_plt_entry_size();
    }

  // Write the additional PLT.
  got_offset = 24;
  for (unsigned int plt_index = 0;
       plt_index < count;
       ++plt_index,
	 pov += aplt_entry_size,
	 plt_offset += aplt_entry_size,
	 got_offset += 8)
    {
      // Set and adjust the APLT entry.
      this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
			    plt_offset, plt_index);
    }

  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);

  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(got_file_offset, got_size, got_view);
}

// Write out the IBT PLT.

template<int size>
void
Output_data_plt_x86_64_ibt<size>::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  Output_data_got<64, false>* got = this->got();
  Output_data_got_plt_x86_64* got_plt = this->got_plt();
  Output_data_space* got_irelative = this->got_irelative();

  const off_t got_file_offset = got_plt->offset();
  gold_assert(parameters->incremental_update()
	      || (got_file_offset + got_plt->data_size()
		  == got_irelative->offset()));
  const section_size_type got_size =
    convert_to_section_size_type(got_plt->data_size()
				 + got_irelative->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
						      got_size);

  unsigned char* pov = oview;

  // The base address of the .plt section.
  elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
  // The base address of the .got section.
  elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
  // The base address of the PLT portion of the .got section,
  // which is where the GOT pointer will point, and where the
  // three reserved GOT entries are located.
  elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();

  this->fill_first_plt_entry(pov, got_address, plt_address);
  pov += plt_entry_size;

  // The first three entries in the GOT are reserved, and are written
  // by Output_data_got_plt_x86_64::do_write.
  unsigned char* got_pov = got_view + 24;

  unsigned int plt_offset = plt_entry_size;
  unsigned int got_offset = 24;
  const unsigned int count = this->entry_count();
  for (unsigned int plt_index = 0;
       plt_index < count;
       ++plt_index,
	 pov += plt_entry_size,
	 got_pov += 8,
	 plt_offset += plt_entry_size,
	 got_offset += 8)
    {
      // Set and adjust the PLT entry itself.
      unsigned int lazy_offset = this->fill_plt_entry(pov,
						      got_address, plt_address,
						      got_offset, plt_offset,
						      plt_index);

      // Set the entry in the GOT.
      elfcpp::Swap<64, false>::writeval(got_pov,
					plt_address + plt_offset + lazy_offset);
    }

  if (this->has_tlsdesc_entry())
    {
      // Set and adjust the reserved TLSDESC PLT entry.
      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
      this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
			       tlsdesc_got_offset, plt_offset);
      pov += this->get_plt_entry_size();
    }

  // Write the additional PLT.
  got_offset = 24;
  for (unsigned int plt_index = 0;
       plt_index < count;
       ++plt_index,
	 pov += aplt_entry_size,
	 plt_offset += aplt_entry_size,
	 got_offset += 8)
    {
      // Set and adjust the APLT entry.
      this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
			    plt_offset, plt_index);
    }

  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);

  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(got_file_offset, got_size, got_view);
}

// Create the PLT section.

template<int size>
void
Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
{
  if (this->plt_ == NULL)
    {
      // Create the GOT sections first.
      this->got_section(symtab, layout);

      this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
				       this->got_irelative_);

      // Add unwind information if requested.
      if (parameters->options().ld_generated_unwind_info())
	this->plt_->add_eh_frame(layout);

      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
				      (elfcpp::SHF_ALLOC
				       | elfcpp::SHF_EXECINSTR),
				      this->plt_, ORDER_PLT, false);

      // Make the sh_info field of .rela.plt point to .plt.
      Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
      rela_plt_os->set_info_section(this->plt_->output_section());
    }
}

template<>
Output_data_plt_x86_64<32>*
Target_x86_64<32>::do_make_data_plt(Layout* layout,
				    Output_data_got<64, false>* got,
				    Output_data_got_plt_x86_64* got_plt,
				    Output_data_space* got_irelative)
{
  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
    return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
					      got_irelative);
  return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
						 got_irelative);
}

template<>
Output_data_plt_x86_64<64>*
Target_x86_64<64>::do_make_data_plt(Layout* layout,
				    Output_data_got<64, false>* got,
				    Output_data_got_plt_x86_64* got_plt,
				    Output_data_space* got_irelative)
{
  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
    return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
					      got_irelative);
  else if (parameters->options().bndplt())
    return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
					  got_irelative);
  else
    return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
						   got_irelative);
}

template<>
Output_data_plt_x86_64<32>*
Target_x86_64<32>::do_make_data_plt(Layout* layout,
				    Output_data_got<64, false>* got,
				    Output_data_got_plt_x86_64* got_plt,
				    Output_data_space* got_irelative,
				    unsigned int plt_count)
{
  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
    return new Output_data_plt_x86_64_ibt<32>(layout, got, got_plt,
					      got_irelative, plt_count);
  return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
						 got_irelative, plt_count);
}

template<>
Output_data_plt_x86_64<64>*
Target_x86_64<64>::do_make_data_plt(Layout* layout,
				    Output_data_got<64, false>* got,
				    Output_data_got_plt_x86_64* got_plt,
				    Output_data_space* got_irelative,
				    unsigned int plt_count)
{
  if (this->feature_1_ & elfcpp::GNU_PROPERTY_X86_FEATURE_1_IBT)
    return new Output_data_plt_x86_64_ibt<64>(layout, got, got_plt,
					      got_irelative, plt_count);
  else if (parameters->options().bndplt())
    return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
					  got_irelative, plt_count);
  else
    return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
						   got_irelative,
						   plt_count);
}

// Return the section for TLSDESC relocations.

template<int size>
typename Target_x86_64<size>::Reloc_section*
Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
{
  return this->plt_section()->rela_tlsdesc(layout);
}

// Create a PLT entry for a global symbol.

template<int size>
void
Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
				    Symbol* gsym)
{
  if (gsym->has_plt_offset())
    return;

  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);

  this->plt_->add_entry(symtab, layout, gsym);
}

// Make a PLT entry for a local STT_GNU_IFUNC symbol.

template<int size>
void
Target_x86_64<size>::make_local_ifunc_plt_entry(
    Symbol_table* symtab, Layout* layout,
    Sized_relobj_file<size, false>* relobj,
    unsigned int local_sym_index)
{
  if (relobj->local_has_plt_offset(local_sym_index))
    return;
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
							      relobj,
							      local_sym_index);
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
}

// Return the number of entries in the PLT.

template<int size>
unsigned int
Target_x86_64<size>::plt_entry_count() const
{
  if (this->plt_ == NULL)
    return 0;
  return this->plt_->entry_count();
}

// Return the offset of the first non-reserved PLT entry.

template<int size>
unsigned int
Target_x86_64<size>::first_plt_entry_offset() const
{
  if (this->plt_ == NULL)
    return 0;
  return this->plt_->first_plt_entry_offset();
}

// Return the size of each PLT entry.

template<int size>
unsigned int
Target_x86_64<size>::plt_entry_size() const
{
  if (this->plt_ == NULL)
    return 0;
  return this->plt_->get_plt_entry_size();
}

// Create the GOT and PLT sections for an incremental update.

template<int size>
Output_data_got_base*
Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
				       Layout* layout,
				       unsigned int got_count,
				       unsigned int plt_count)
{
  gold_assert(this->got_ == NULL);

  this->got_ = new Output_data_got<64, false>(got_count * 8);
  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
				  (elfcpp::SHF_ALLOC
				   | elfcpp::SHF_WRITE),
				  this->got_, ORDER_RELRO_LAST,
				  true);

  // Add the three reserved entries.
  this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
				  (elfcpp::SHF_ALLOC
				   | elfcpp::SHF_WRITE),
				  this->got_plt_, ORDER_NON_RELRO_FIRST,
				  false);

  // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
  this->global_offset_table_ =
    symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
				  Symbol_table::PREDEFINED,
				  this->got_plt_,
				  0, 0, elfcpp::STT_OBJECT,
				  elfcpp::STB_LOCAL,
				  elfcpp::STV_HIDDEN, 0,
				  false, false);

  // If there are any TLSDESC relocations, they get GOT entries in
  // .got.plt after the jump slot entries.
  // FIXME: Get the count for TLSDESC entries.
  this->got_tlsdesc_ = new Output_data_got<64, false>(0);
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
				  this->got_tlsdesc_,
				  ORDER_NON_RELRO_FIRST, false);

  // If there are any IRELATIVE relocations, they get GOT entries in
  // .got.plt after the jump slot and TLSDESC entries.
  this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
				  this->got_irelative_,
				  ORDER_NON_RELRO_FIRST, false);

  // Create the PLT section.
  this->plt_ = this->make_data_plt(layout, this->got_,
				   this->got_plt_,
				   this->got_irelative_,
				   plt_count);

  // Add unwind information if requested.
  if (parameters->options().ld_generated_unwind_info())
    this->plt_->add_eh_frame(layout);

  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
				  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
				  this->plt_, ORDER_PLT, false);

  // Make the sh_info field of .rela.plt point to .plt.
  Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
  rela_plt_os->set_info_section(this->plt_->output_section());

  // Create the rela_dyn section.
  this->rela_dyn_section(layout);

  return this->got_;
}

// Reserve a GOT entry for a local symbol, and regenerate any
// necessary dynamic relocations.

template<int size>
void
Target_x86_64<size>::reserve_local_got_entry(
    unsigned int got_index,
    Sized_relobj<size, false>* obj,
    unsigned int r_sym,
    unsigned int got_type)
{
  unsigned int got_offset = got_index * 8;
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);

  this->got_->reserve_local(got_index, obj, r_sym, got_type);
  switch (got_type)
    {
    case GOT_TYPE_STANDARD:
      if (parameters->options().output_is_position_independent())
	rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
				     this->got_, got_offset, 0, false);
      break;
    case GOT_TYPE_TLS_OFFSET:
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
			  this->got_, got_offset, 0);
      break;
    case GOT_TYPE_TLS_PAIR:
      this->got_->reserve_slot(got_index + 1);
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
			  this->got_, got_offset, 0);
      break;
    case GOT_TYPE_TLS_DESC:
      gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
      // this->got_->reserve_slot(got_index + 1);
      // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
      //			       this->got_, got_offset, 0);
      break;
    default:
      gold_unreachable();
    }
}

// Reserve a GOT entry for a global symbol, and regenerate any
// necessary dynamic relocations.

template<int size>
void
Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
					      Symbol* gsym,
					      unsigned int got_type)
{
  unsigned int got_offset = got_index * 8;
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);

  this->got_->reserve_global(got_index, gsym, got_type);
  switch (got_type)
    {
    case GOT_TYPE_STANDARD:
      if (!gsym->final_value_is_known())
	{
	  if (gsym->is_from_dynobj()
	      || gsym->is_undefined()
	      || gsym->is_preemptible()
	      || gsym->type() == elfcpp::STT_GNU_IFUNC)
	    rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
				 this->got_, got_offset, 0);
	  else
	    rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
					  this->got_, got_offset, 0, false);
	}
      break;
    case GOT_TYPE_TLS_OFFSET:
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
				    this->got_, got_offset, 0, false);
      break;
    case GOT_TYPE_TLS_PAIR:
      this->got_->reserve_slot(got_index + 1);
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
				    this->got_, got_offset, 0, false);
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
				    this->got_, got_offset + 8, 0, false);
      break;
    case GOT_TYPE_TLS_DESC:
      this->got_->reserve_slot(got_index + 1);
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
				    this->got_, got_offset, 0, false);
      break;
    default:
      gold_unreachable();
    }
}

// Register an existing PLT entry for a global symbol.

template<int size>
void
Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
					       Layout* layout,
					       unsigned int plt_index,
					       Symbol* gsym)
{
  gold_assert(this->plt_ != NULL);
  gold_assert(!gsym->has_plt_offset());

  this->plt_->reserve_slot(plt_index);

  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());

  unsigned int got_offset = (plt_index + 3) * 8;
  this->plt_->add_relocation(symtab, layout, gsym, got_offset);
}

// Force a COPY relocation for a given symbol.

template<int size>
void
Target_x86_64<size>::emit_copy_reloc(
    Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
{
  this->copy_relocs_.emit_copy_reloc(symtab,
				     symtab->get_sized_symbol<size>(sym),
				     os,
				     offset,
				     this->rela_dyn_section(NULL));
}

// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.

template<int size>
void
Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
					    Layout* layout)
{
  if (this->tls_base_symbol_defined_)
    return;

  Output_segment* tls_segment = layout->tls_segment();
  if (tls_segment != NULL)
    {
      bool is_exec = parameters->options().output_is_executable();
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
				       Symbol_table::PREDEFINED,
				       tls_segment, 0, 0,
				       elfcpp::STT_TLS,
				       elfcpp::STB_LOCAL,
				       elfcpp::STV_HIDDEN, 0,
				       (is_exec
					? Symbol::SEGMENT_END
					: Symbol::SEGMENT_START),
				       true);
    }
  this->tls_base_symbol_defined_ = true;
}

// Create the reserved PLT and GOT entries for the TLS descriptor resolver.

template<int size>
void
Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
					     Layout* layout)
{
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);

  if (!this->plt_->has_tlsdesc_entry())
    {
      // Allocate the TLSDESC_GOT entry.
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
      unsigned int got_offset = got->add_constant(0);

      // Allocate the TLSDESC_PLT entry.
      this->plt_->reserve_tlsdesc_entry(got_offset);
    }
}

// Create a GOT entry for the TLS module index.

template<int size>
unsigned int
Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
					 Sized_relobj_file<size, false>* object)
{
  if (this->got_mod_index_offset_ == -1U)
    {
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
      unsigned int got_offset = got->add_constant(0);
      rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
			  got_offset, 0);
      got->add_constant(0);
      this->got_mod_index_offset_ = got_offset;
    }
  return this->got_mod_index_offset_;
}

// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.

template<int size>
tls::Tls_optimization
Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
{
  // If we are generating a shared library, then we can't do anything
  // in the linker.
  if (parameters->options().shared())
    return tls::TLSOPT_NONE;

  switch (r_type)
    {
    case elfcpp::R_X86_64_TLSGD:
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:
    case elfcpp::R_X86_64_TLSDESC_CALL:
      // These are General-Dynamic which permits fully general TLS
      // access.  Since we know that we are generating an executable,
      // we can convert this to Initial-Exec.  If we also know that
      // this is a local symbol, we can further switch to Local-Exec.
      if (is_final)
	return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_IE;

    case elfcpp::R_X86_64_TLSLD:
      // This is Local-Dynamic, which refers to a local symbol in the
      // dynamic TLS block.  Since we know that we generating an
      // executable, we can switch to Local-Exec.
      return tls::TLSOPT_TO_LE;

    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
      // Another Local-Dynamic reloc.
      return tls::TLSOPT_TO_LE;

    case elfcpp::R_X86_64_GOTTPOFF:
      // These are Initial-Exec relocs which get the thread offset
      // from the GOT.  If we know that we are linking against the
      // local symbol, we can switch to Local-Exec, which links the
      // thread offset into the instruction.
      if (is_final)
	return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_NONE;

    case elfcpp::R_X86_64_TPOFF32:
      // When we already have Local-Exec, there is nothing further we
      // can do.
      return tls::TLSOPT_NONE;

    default:
      gold_unreachable();
    }
}

// Get the Reference_flags for a particular relocation.

template<int size>
int
Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
{
  switch (r_type)
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTPC64:
      // No symbol reference.
      return 0;

    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
      return Symbol::ABSOLUTE_REF;

    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32_BND:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC8:
    case elfcpp::R_X86_64_GOTOFF64:
      return Symbol::RELATIVE_REF;

    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32_BND:
    case elfcpp::R_X86_64_PLTOFF64:
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;

    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCRELX:
    case elfcpp::R_X86_64_REX_GOTPCRELX:
    case elfcpp::R_X86_64_GOTPLT64:
      // Absolute in GOT.
      return Symbol::ABSOLUTE_REF;

    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      return Symbol::TLS_REF;

    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    default:
      // Not expected.  We will give an error later.
      return 0;
    }
}

// Report an unsupported relocation against a local symbol.

template<int size>
void
Target_x86_64<size>::Scan::unsupported_reloc_local(
     Sized_relobj_file<size, false>* object,
     unsigned int r_type)
{
  gold_error(_("%s: unsupported reloc %u against local symbol"),
	     object->name().c_str(), r_type);
}

// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.  The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// read-only.  But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.  If GSYM is not NULL,
// it is the symbol the relocation is against; if it is NULL, the
// relocation is against a local symbol.

template<int size>
void
Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
					 Symbol* gsym)
{
  switch (r_type)
    {
      // These are the relocation types supported by glibc for x86_64
      // which should always work.
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_COPY:
      return;

      // glibc supports these reloc types, but they can overflow.
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32_BND:
      // A PC relative reference is OK against a local symbol or if
      // the symbol is defined locally.
      if (gsym == NULL
	  || (!gsym->is_from_dynobj()
	      && !gsym->is_undefined()
	      && !gsym->is_preemptible()))
	return;
      // Fall through.
    case elfcpp::R_X86_64_32:
      // R_X86_64_32 is OK for x32.
      if (size == 32 && r_type == elfcpp::R_X86_64_32)
	return;
      if (this->issued_non_pic_error_)
	return;
      gold_assert(parameters->options().output_is_position_independent());
      if (gsym == NULL)
	object->error(_("requires dynamic R_X86_64_32 reloc which may "
			"overflow at runtime; recompile with -fPIC"));
      else
	{
	  const char *r_name;
	  switch (r_type)
	    {
	    case elfcpp::R_X86_64_32:
	      r_name = "R_X86_64_32";
	      break;
	    case elfcpp::R_X86_64_PC32:
	      r_name = "R_X86_64_PC32";
	      break;
	    case elfcpp::R_X86_64_PC32_BND:
	      r_name = "R_X86_64_PC32_BND";
	      break;
	    default:
	      gold_unreachable();
	      break;
	    }
	  object->error(_("requires dynamic %s reloc against '%s' "
			  "which may overflow at runtime; recompile "
			  "with -fPIC"),
			r_name, gsym->name());
	}
      this->issued_non_pic_error_ = true;
      return;

    default:
      // This prevents us from issuing more than one error per reloc
      // section.  But we can still wind up issuing more than one
      // error per object file.
      if (this->issued_non_pic_error_)
	return;
      gold_assert(parameters->options().output_is_position_independent());
      object->error(_("requires unsupported dynamic reloc %u; "
		      "recompile with -fPIC"),
		    r_type);
      this->issued_non_pic_error_ = true;
      return;

    case elfcpp::R_X86_64_NONE:
      gold_unreachable();
    }
}

// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.

template<int size>
bool
Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
     Sized_relobj_file<size, false>* object,
     unsigned int r_type)
{
  int flags = Scan::get_reference_flags(r_type);
  if (flags & Symbol::TLS_REF)
    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
	       object->name().c_str(), r_type);
  return flags != 0;
}

// Scan a relocation for a local symbol.

template<int size>
inline void
Target_x86_64<size>::Scan::local(Symbol_table* symtab,
				 Layout* layout,
				 Target_x86_64<size>* target,
				 Sized_relobj_file<size, false>* object,
				 unsigned int data_shndx,
				 Output_section* output_section,
				 const elfcpp::Rela<size, false>& reloc,
				 unsigned int r_type,
				 const elfcpp::Sym<size, false>& lsym,
				 bool is_discarded)
{
  if (is_discarded)
    return;

  // A local STT_GNU_IFUNC symbol may require a PLT entry.
  bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
  if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
    {
      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
    }

  switch (r_type)
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
      break;

    case elfcpp::R_X86_64_64:
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for this
      // location.  The relocation applied at link time will apply the
      // link-time value, so we flag the location with an
      // R_X86_64_RELATIVE relocation so the dynamic loader can
      // relocate it easily.
      if (parameters->options().output_is_position_independent())
	{
	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
	  rela_dyn->add_local_relative(object, r_sym,
				       (size == 32
					? elfcpp::R_X86_64_RELATIVE64
					: elfcpp::R_X86_64_RELATIVE),
				       output_section, data_shndx,
				       reloc.get_r_offset(),
				       reloc.get_r_addend(), is_ifunc);
	}
      break;

    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for this
      // location.  We can't use an R_X86_64_RELATIVE relocation
      // because that is always a 64-bit relocation.
      if (parameters->options().output_is_position_independent())
	{
	  // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
	  if (size == 32 && r_type == elfcpp::R_X86_64_32)
	    {
	      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
	      Reloc_section* rela_dyn = target->rela_dyn_section(layout);
	      rela_dyn->add_local_relative(object, r_sym,
					   elfcpp::R_X86_64_RELATIVE,
					   output_section, data_shndx,
					   reloc.get_r_offset(),
					   reloc.get_r_addend(), is_ifunc);
	      break;
	    }

	  this->check_non_pic(object, r_type, NULL);

	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
	  if (lsym.get_st_type() != elfcpp::STT_SECTION)
	    rela_dyn->add_local(object, r_sym, r_type, output_section,
				data_shndx, reloc.get_r_offset(),
				reloc.get_r_addend());
	  else
	    {
	      gold_assert(lsym.get_st_value() == 0);
	      unsigned int shndx = lsym.get_st_shndx();
	      bool is_ordinary;
	      shndx = object->adjust_sym_shndx(r_sym, shndx,
					       &is_ordinary);
	      if (!is_ordinary)
		object->error(_("section symbol %u has bad shndx %u"),
			      r_sym, shndx);
	      else
		rela_dyn->add_local_section(object, shndx,
					    r_type, output_section,
					    data_shndx, reloc.get_r_offset(),
					    reloc.get_r_addend());
	    }
	}
      break;

    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32_BND:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC8:
      break;

    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32_BND:
      // Since we know this is a local symbol, we can handle this as a
      // PC32 reloc.
      break;

    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_PLTOFF64:
      // We need a GOT section.
      target->got_section(symtab, layout);
      // For PLTOFF64, we'd normally want a PLT section, but since we
      // know this is a local symbol, no PLT is needed.
      break;

    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCRELX:
    case elfcpp::R_X86_64_REX_GOTPCRELX:
    case elfcpp::R_X86_64_GOTPLT64:
      {
	// The symbol requires a GOT section.
	Output_data_got<64, false>* got = target->got_section(symtab, layout);

	// If the relocation symbol isn't IFUNC,
	// and is local, then we will convert
	// mov foo@GOTPCREL(%rip), %reg
	// to lea foo(%rip), %reg.
	// in Relocate::relocate.
	if (!parameters->incremental()
	    && (r_type == elfcpp::R_X86_64_GOTPCREL
		|| r_type == elfcpp::R_X86_64_GOTPCRELX
		|| r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
	    && reloc.get_r_offset() >= 2
	    && !is_ifunc)
	  {
	    section_size_type stype;
	    const unsigned char* view = object->section_contents(data_shndx,
								 &stype, true);
	    if (view[reloc.get_r_offset() - 2] == 0x8b)
	      break;
	  }

	// The symbol requires a GOT entry.
	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());

	// For a STT_GNU_IFUNC symbol we want the PLT offset.  That
	// lets function pointers compare correctly with shared
	// libraries.  Otherwise we would need an IRELATIVE reloc.
	bool is_new;
	if (is_ifunc)
	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
	else
	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
	if (is_new)
	  {
	    // If we are generating a shared object, we need to add a
	    // dynamic relocation for this symbol's GOT entry.
	    if (parameters->options().output_is_position_independent())
	      {
		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		// R_X86_64_RELATIVE assumes a 64-bit relocation.
		if (r_type != elfcpp::R_X86_64_GOT32)
		  {
		    unsigned int got_offset =
		      object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
		    rela_dyn->add_local_relative(object, r_sym,
						 elfcpp::R_X86_64_RELATIVE,
						 got, got_offset, 0, is_ifunc);
		  }
		else
		  {
		    this->check_non_pic(object, r_type, NULL);

		    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
		    rela_dyn->add_local(
			object, r_sym, r_type, got,
			object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
		  }
	      }
	  }
	// For GOTPLT64, we'd normally want a PLT section, but since
	// we know this is a local symbol, no PLT is needed.
      }
      break;

    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when linking
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
      gold_error(_("%s: unexpected reloc %u in object file"),
		 object->name().c_str(), r_type);
      break;

      // These are initial tls relocs, which are expected when linking
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      {
	bool output_is_shared = parameters->options().shared();
	const tls::Tls_optimization optimized_type
	    = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
						      r_type);
	switch (r_type)
	  {
	  case elfcpp::R_X86_64_TLSGD:       // General-dynamic
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a pair of GOT entries for the module index and
		// dtv-relative offset.
		Output_data_got<64, false>* got
		    = target->got_section(symtab, layout);
		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
		unsigned int shndx = lsym.get_st_shndx();
		bool is_ordinary;
		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
		if (!is_ordinary)
		  object->error(_("local symbol %u has bad shndx %u"),
			      r_sym, shndx);
		else
		  got->add_local_pair_with_rel(object, r_sym,
					       shndx,
					       GOT_TYPE_TLS_PAIR,
					       target->rela_dyn_section(layout),
					       elfcpp::R_X86_64_DTPMOD64);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_local(object, r_type);
	    break;

	  case elfcpp::R_X86_64_GOTPC32_TLSDESC:
	    target->define_tls_base_symbol(symtab, layout);
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create reserved PLT and GOT entries for the resolver.
		target->reserve_tlsdesc_entries(symtab, layout);

		// Generate a double GOT entry with an
		// R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
		// is resolved lazily, so the GOT entry needs to be in
		// an area in .got.plt, not .got.  Call got_section to
		// make sure the section has been created.
		target->got_section(symtab, layout);
		Output_data_got<64, false>* got = target->got_tlsdesc_section();
		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
		if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
		  {
		    unsigned int got_offset = got->add_constant(0);
		    got->add_constant(0);
		    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
						 got_offset);
		    Reloc_section* rt = target->rela_tlsdesc_section(layout);
		    // We store the arguments we need in a vector, and
		    // use the index into the vector as the parameter
		    // to pass to the target specific routines.
		    uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
		    void* arg = reinterpret_cast<void*>(intarg);
		    rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
					    got, got_offset, 0);
		  }
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_local(object, r_type);
	    break;

	  case elfcpp::R_X86_64_TLSDESC_CALL:
	    break;

	  case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the module index.
		target->got_mod_index_entry(symtab, layout, object);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_local(object, r_type);
	    break;

	  case elfcpp::R_X86_64_DTPOFF32:
	  case elfcpp::R_X86_64_DTPOFF64:
	    break;

	  case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
	    layout->set_has_static_tls();
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the tp-relative offset.
		Output_data_got<64, false>* got
		    = target->got_section(symtab, layout);
		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
		got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
					target->rela_dyn_section(layout),
					elfcpp::R_X86_64_TPOFF64);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_local(object, r_type);
	    break;

	  case elfcpp::R_X86_64_TPOFF32:     // Local-exec
	    layout->set_has_static_tls();
	    if (output_is_shared)
	      unsupported_reloc_local(object, r_type);
	    break;

	  default:
	    gold_unreachable();
	  }
      }
      break;

    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    default:
      gold_error(_("%s: unsupported reloc %u against local symbol"),
		 object->name().c_str(), r_type);
      break;
    }
}


// Report an unsupported relocation against a global symbol.

template<int size>
void
Target_x86_64<size>::Scan::unsupported_reloc_global(
    Sized_relobj_file<size, false>* object,
    unsigned int r_type,
    Symbol* gsym)
{
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
}

// Returns true if this relocation type could be that of a function pointer.
template<int size>
inline bool
Target_x86_64<size>::Scan::possible_function_pointer_reloc(
    Sized_relobj_file<size, false>* src_obj,
    unsigned int src_indx,
    unsigned int r_offset,
    unsigned int r_type)
{
  switch (r_type)
    {
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCRELX:
    case elfcpp::R_X86_64_REX_GOTPCRELX:
    case elfcpp::R_X86_64_GOTPLT64:
      {
	return true;
      }
    case elfcpp::R_X86_64_PC32:
      {
        // This relocation may be used both for function calls and
        // for taking address of a function. We distinguish between
        // them by checking the opcodes.
        uint64_t sh_flags = src_obj->section_flags(src_indx);
        bool is_executable = (sh_flags & elfcpp::SHF_EXECINSTR) != 0;
        if (is_executable)
          {
            section_size_type stype;
            const unsigned char* view = src_obj->section_contents(src_indx,
                                                                  &stype,
                                                                  true);

            // call
            if (r_offset >= 1
                && view[r_offset - 1] == 0xe8)
              return false;

            // jmp
            if (r_offset >= 1
                && view[r_offset - 1] == 0xe9)
              return false;

            // jo/jno/jb/jnb/je/jne/jna/ja/js/jns/jp/jnp/jl/jge/jle/jg
            if (r_offset >= 2
                && view[r_offset - 2] == 0x0f
                && view[r_offset - 1] >= 0x80
                && view[r_offset - 1] <= 0x8f)
              return false;
          }

        // Be conservative and treat all others as function pointers.
        return true;
      }
    }
  return false;
}

// For safe ICF, scan a relocation for a local symbol to check if it
// corresponds to a function pointer being taken.  In that case mark
// the function whose pointer was taken as not foldable.

template<int size>
inline bool
Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
  Symbol_table* ,
  Layout* ,
  Target_x86_64<size>* ,
  Sized_relobj_file<size, false>* src_obj,
  unsigned int src_indx,
  Output_section* ,
  const elfcpp::Rela<size, false>& reloc,
  unsigned int r_type,
  const elfcpp::Sym<size, false>&)
{
  // When building a shared library, do not fold any local symbols as it is
  // not possible to distinguish pointer taken versus a call by looking at
  // the relocation types.
  if (parameters->options().shared())
    return true;

  return possible_function_pointer_reloc(src_obj, src_indx,
                                         reloc.get_r_offset(), r_type);
}

// For safe ICF, scan a relocation for a global symbol to check if it
// corresponds to a function pointer being taken.  In that case mark
// the function whose pointer was taken as not foldable.

template<int size>
inline bool
Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
  Symbol_table*,
  Layout* ,
  Target_x86_64<size>* ,
  Sized_relobj_file<size, false>* src_obj,
  unsigned int src_indx,
  Output_section* ,
  const elfcpp::Rela<size, false>& reloc,
  unsigned int r_type,
  Symbol* gsym)
{
  // When building a shared library, do not fold symbols whose visibility
  // is hidden, internal or protected.
  if (parameters->options().shared()
      && (gsym->visibility() == elfcpp::STV_INTERNAL
	  || gsym->visibility() == elfcpp::STV_PROTECTED
	  || gsym->visibility() == elfcpp::STV_HIDDEN))
    return true;

  return possible_function_pointer_reloc(src_obj, src_indx,
                                         reloc.get_r_offset(), r_type);
}

// Scan a relocation for a global symbol.

template<int size>
inline void
Target_x86_64<size>::Scan::global(Symbol_table* symtab,
			    Layout* layout,
			    Target_x86_64<size>* target,
			    Sized_relobj_file<size, false>* object,
			    unsigned int data_shndx,
			    Output_section* output_section,
			    const elfcpp::Rela<size, false>& reloc,
			    unsigned int r_type,
			    Symbol* gsym)
{
  // A STT_GNU_IFUNC symbol may require a PLT entry.
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && this->reloc_needs_plt_for_ifunc(object, r_type))
    target->make_plt_entry(symtab, layout, gsym);

  switch (r_type)
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
      break;

    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
      {
	// Make a PLT entry if necessary.
	if (gsym->needs_plt_entry())
	  {
	    target->make_plt_entry(symtab, layout, gsym);
	    // Since this is not a PC-relative relocation, we may be
	    // taking the address of a function. In that case we need to
	    // set the entry in the dynamic symbol table to the address of
	    // the PLT entry.
	    if (gsym->is_from_dynobj() && !parameters->options().shared())
	      gsym->set_needs_dynsym_value();
	  }
	// Make a dynamic relocation if necessary.
	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
	  {
	    if (!parameters->options().output_is_position_independent()
		&& gsym->may_need_copy_reloc())
	      {
		target->copy_reloc(symtab, layout, object,
				   data_shndx, output_section, gsym, reloc);
	      }
	    else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
		      || (size == 32 && r_type == elfcpp::R_X86_64_32))
		     && gsym->type() == elfcpp::STT_GNU_IFUNC
		     && gsym->can_use_relative_reloc(false)
		     && !gsym->is_from_dynobj()
		     && !gsym->is_undefined()
		     && !gsym->is_preemptible())
	      {
		// Use an IRELATIVE reloc for a locally defined
		// STT_GNU_IFUNC symbol.  This makes a function
		// address in a PIE executable match the address in a
		// shared library that it links against.
		Reloc_section* rela_dyn =
		  target->rela_irelative_section(layout);
		unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
		rela_dyn->add_symbolless_global_addend(gsym, r_type,
						       output_section, object,
						       data_shndx,
						       reloc.get_r_offset(),
						       reloc.get_r_addend());
	      }
	    else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
		      || (size == 32 && r_type == elfcpp::R_X86_64_32))
		     && gsym->can_use_relative_reloc(false))
	      {
		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
					      output_section, object,
					      data_shndx,
					      reloc.get_r_offset(),
					      reloc.get_r_addend(), false);
	      }
	    else
	      {
		this->check_non_pic(object, r_type, gsym);
		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		rela_dyn->add_global(gsym, r_type, output_section, object,
				     data_shndx, reloc.get_r_offset(),
				     reloc.get_r_addend());
	      }
	  }
      }
      break;

    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32_BND:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC8:
      {
	// Make a PLT entry if necessary.
	if (gsym->needs_plt_entry())
	  target->make_plt_entry(symtab, layout, gsym);
	// Make a dynamic relocation if necessary.
	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
	  {
	    if (parameters->options().output_is_executable()
		&& gsym->may_need_copy_reloc())
	      {
		target->copy_reloc(symtab, layout, object,
				   data_shndx, output_section, gsym, reloc);
	      }
	    else
	      {
		this->check_non_pic(object, r_type, gsym);
		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		rela_dyn->add_global(gsym, r_type, output_section, object,
				     data_shndx, reloc.get_r_offset(),
				     reloc.get_r_addend());
	      }
	  }
      }
      break;

    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCRELX:
    case elfcpp::R_X86_64_REX_GOTPCRELX:
    case elfcpp::R_X86_64_GOTPLT64:
      {
	// The symbol requires a GOT entry.
	Output_data_got<64, false>* got = target->got_section(symtab, layout);

	// If we convert this from
	// mov foo@GOTPCREL(%rip), %reg
	// to lea foo(%rip), %reg.
	// OR
	// if we convert
	// (callq|jmpq) *foo@GOTPCRELX(%rip) to
	// (callq|jmpq) foo
	// in Relocate::relocate, then there is nothing to do here.
	// We cannot make these optimizations in incremental linking mode,
	// because we look at the opcode to decide whether or not to make
	// change, and during an incremental update, the change may have
	// already been applied.

        Lazy_view<size> view(object, data_shndx);
        size_t r_offset = reloc.get_r_offset();
        if (!parameters->incremental()
	    && r_offset >= 2
            && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
                                                           r_offset, &view))
          break;

	if (!parameters->incremental()
	    && r_offset >= 2
	    && Target_x86_64<size>::can_convert_callq_to_direct(gsym, r_type,
								r_offset,
								&view))
          break;

	if (gsym->final_value_is_known())
	  {
	    // For a STT_GNU_IFUNC symbol we want the PLT address.
	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
	    else
	      got->add_global(gsym, GOT_TYPE_STANDARD);
	  }
	else
	  {
	    // If this symbol is not fully resolved, we need to add a
	    // dynamic relocation for it.
	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);

	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
	    //
	    // 1) The symbol may be defined in some other module.
	    //
	    // 2) We are building a shared library and this is a
	    // protected symbol; using GLOB_DAT means that the dynamic
	    // linker can use the address of the PLT in the main
	    // executable when appropriate so that function address
	    // comparisons work.
	    //
	    // 3) This is a STT_GNU_IFUNC symbol in position dependent
	    // code, again so that function address comparisons work.
	    if (gsym->is_from_dynobj()
		|| gsym->is_undefined()
		|| gsym->is_preemptible()
		|| (gsym->visibility() == elfcpp::STV_PROTECTED
		    && parameters->options().shared())
		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
		    && parameters->options().output_is_position_independent()))
	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
				       elfcpp::R_X86_64_GLOB_DAT);
	    else
	      {
		// For a STT_GNU_IFUNC symbol we want to write the PLT
		// offset into the GOT, so that function pointer
		// comparisons work correctly.
		bool is_new;
		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
		else
		  {
		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
		    // Tell the dynamic linker to use the PLT address
		    // when resolving relocations.
		    if (gsym->is_from_dynobj()
			&& !parameters->options().shared())
		      gsym->set_needs_dynsym_value();
		  }
		if (is_new)
		  {
		    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
		    rela_dyn->add_global_relative(gsym,
						  elfcpp::R_X86_64_RELATIVE,
						  got, got_off, 0, false);
		  }
	      }
	  }
      }
      break;

    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32_BND:
      // If the symbol is fully resolved, this is just a PC32 reloc.
      // Otherwise we need a PLT entry.
      if (gsym->final_value_is_known())
	break;
      // If building a shared library, we can also skip the PLT entry
      // if the symbol is defined in the output file and is protected
      // or hidden.
      if (gsym->is_defined()
	  && !gsym->is_from_dynobj()
	  && !gsym->is_preemptible())
	break;
      target->make_plt_entry(symtab, layout, gsym);
      break;

    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_PLTOFF64:
      // We need a GOT section.
      target->got_section(symtab, layout);
      // For PLTOFF64, we also need a PLT entry (but only if the
      // symbol is not fully resolved).
      if (r_type == elfcpp::R_X86_64_PLTOFF64
	  && !gsym->final_value_is_known())
	target->make_plt_entry(symtab, layout, gsym);
      break;

    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when linking
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
      gold_error(_("%s: unexpected reloc %u in object file"),
		 object->name().c_str(), r_type);
      break;

      // These are initial tls relocs, which are expected for global()
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      {
	// For the Initial-Exec model, we can treat undef symbols as final
	// when building an executable.
	const bool is_final = (gsym->final_value_is_known() ||
			       (r_type == elfcpp::R_X86_64_GOTTPOFF &&
			        gsym->is_undefined() &&
				parameters->options().output_is_executable()));
	const tls::Tls_optimization optimized_type
	    = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
	switch (r_type)
	  {
	  case elfcpp::R_X86_64_TLSGD:       // General-dynamic
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a pair of GOT entries for the module index and
		// dtv-relative offset.
		Output_data_got<64, false>* got
		    = target->got_section(symtab, layout);
		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
					      target->rela_dyn_section(layout),
					      elfcpp::R_X86_64_DTPMOD64,
					      elfcpp::R_X86_64_DTPOFF64);
	      }
	    else if (optimized_type == tls::TLSOPT_TO_IE)
	      {
		// Create a GOT entry for the tp-relative offset.
		Output_data_got<64, false>* got
		    = target->got_section(symtab, layout);
		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
					 target->rela_dyn_section(layout),
					 elfcpp::R_X86_64_TPOFF64);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_global(object, r_type, gsym);
	    break;

	  case elfcpp::R_X86_64_GOTPC32_TLSDESC:
	    target->define_tls_base_symbol(symtab, layout);
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create reserved PLT and GOT entries for the resolver.
		target->reserve_tlsdesc_entries(symtab, layout);

		// Create a double GOT entry with an R_X86_64_TLSDESC
		// reloc.  The R_X86_64_TLSDESC reloc is resolved
		// lazily, so the GOT entry needs to be in an area in
		// .got.plt, not .got.  Call got_section to make sure
		// the section has been created.
		target->got_section(symtab, layout);
		Output_data_got<64, false>* got = target->got_tlsdesc_section();
		Reloc_section* rt = target->rela_tlsdesc_section(layout);
		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
					      elfcpp::R_X86_64_TLSDESC, 0);
	      }
	    else if (optimized_type == tls::TLSOPT_TO_IE)
	      {
		// Create a GOT entry for the tp-relative offset.
		Output_data_got<64, false>* got
		    = target->got_section(symtab, layout);
		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
					 target->rela_dyn_section(layout),
					 elfcpp::R_X86_64_TPOFF64);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_global(object, r_type, gsym);
	    break;

	  case elfcpp::R_X86_64_TLSDESC_CALL:
	    break;

	  case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the module index.
		target->got_mod_index_entry(symtab, layout, object);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_global(object, r_type, gsym);
	    break;

	  case elfcpp::R_X86_64_DTPOFF32:
	  case elfcpp::R_X86_64_DTPOFF64:
	    break;

	  case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
	    layout->set_has_static_tls();
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the tp-relative offset.
		Output_data_got<64, false>* got
		    = target->got_section(symtab, layout);
		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
					 target->rela_dyn_section(layout),
					 elfcpp::R_X86_64_TPOFF64);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_global(object, r_type, gsym);
	    break;

	  case elfcpp::R_X86_64_TPOFF32:     // Local-exec
	    layout->set_has_static_tls();
	    if (parameters->options().shared())
	      unsupported_reloc_global(object, r_type, gsym);
	    break;

	  default:
	    gold_unreachable();
	  }
      }
      break;

    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    default:
      gold_error(_("%s: unsupported reloc %u against global symbol %s"),
		 object->name().c_str(), r_type,
		 gsym->demangled_name().c_str());
      break;
    }
}

template<int size>
void
Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
				       Layout* layout,
				       Sized_relobj_file<size, false>* object,
				       unsigned int data_shndx,
				       unsigned int sh_type,
				       const unsigned char* prelocs,
				       size_t reloc_count,
				       Output_section* output_section,
				       bool needs_special_offset_handling,
				       size_t local_symbol_count,
				       const unsigned char* plocal_symbols)
{
  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
      Classify_reloc;

  if (sh_type == elfcpp::SHT_REL)
    {
      return;
    }

   gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
			   Classify_reloc>(
    symtab,
    layout,
    this,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols);

}
// Scan relocations for a section.

template<int size>
void
Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
				 Layout* layout,
				 Sized_relobj_file<size, false>* object,
				 unsigned int data_shndx,
				 unsigned int sh_type,
				 const unsigned char* prelocs,
				 size_t reloc_count,
				 Output_section* output_section,
				 bool needs_special_offset_handling,
				 size_t local_symbol_count,
				 const unsigned char* plocal_symbols)
{
  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
      Classify_reloc;

  if (sh_type == elfcpp::SHT_REL)
    {
      gold_error(_("%s: unsupported REL reloc section"),
		 object->name().c_str());
      return;
    }

  gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
    symtab,
    layout,
    this,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols);
}

// Finalize the sections.

template<int size>
void
Target_x86_64<size>::do_finalize_sections(
    Layout* layout,
    const Input_objects*,
    Symbol_table* symtab)
{
  const Reloc_section* rel_plt = (this->plt_ == NULL
				  ? NULL
				  : this->plt_->rela_plt());
  layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
				  this->rela_dyn_, true, false);

  // Fill in some more dynamic tags.
  Output_data_dynamic* const odyn = layout->dynamic_data();
  if (odyn != NULL)
    {
      if (this->plt_ != NULL
	  && this->plt_->output_section() != NULL
	  && this->plt_->has_tlsdesc_entry())
	{
	  unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
	  unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
	  this->got_->finalize_data_size();
	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
					this->plt_, plt_offset);
	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
					this->got_, got_offset);
	}
    }

  // Emit any relocs we saved in an attempt to avoid generating COPY
  // relocs.
  if (this->copy_relocs_.any_saved_relocs())
    this->copy_relocs_.emit(this->rela_dyn_section(layout));

  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
  // the .got.plt section.
  Symbol* sym = this->global_offset_table_;
  if (sym != NULL)
    {
      uint64_t data_size = this->got_plt_->current_data_size();
      symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
    }

  if (parameters->doing_static_link()
      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
    {
      // If linking statically, make sure that the __rela_iplt symbols
      // were defined if necessary, even if we didn't create a PLT.
      static const Define_symbol_in_segment syms[] =
	{
	  {
	    "__rela_iplt_start",	// name
	    elfcpp::PT_LOAD,		// segment_type
	    elfcpp::PF_W,		// segment_flags_set
	    elfcpp::PF(0),		// segment_flags_clear
	    0,				// value
	    0,				// size
	    elfcpp::STT_NOTYPE,		// type
	    elfcpp::STB_GLOBAL,		// binding
	    elfcpp::STV_HIDDEN,		// visibility
	    0,				// nonvis
	    Symbol::SEGMENT_START,	// offset_from_base
	    true			// only_if_ref
	  },
	  {
	    "__rela_iplt_end",		// name
	    elfcpp::PT_LOAD,		// segment_type
	    elfcpp::PF_W,		// segment_flags_set
	    elfcpp::PF(0),		// segment_flags_clear
	    0,				// value
	    0,				// size
	    elfcpp::STT_NOTYPE,		// type
	    elfcpp::STB_GLOBAL,		// binding
	    elfcpp::STV_HIDDEN,		// visibility
	    0,				// nonvis
	    Symbol::SEGMENT_START,	// offset_from_base
	    true			// only_if_ref
	  }
	};

      symtab->define_symbols(layout, 2, syms,
			     layout->script_options()->saw_sections_clause());
    }
}

// For x32, we need to handle PC-relative relocations using full 64-bit
// arithmetic, so that we can detect relocation overflows properly.
// This class overrides the pcrela32_check methods from the defaults in
// Relocate_functions in reloc.h.

template<int size>
class X86_64_relocate_functions : public Relocate_functions<size, false>
{
 public:
  typedef Relocate_functions<size, false> Base;

  // Do a simple PC relative relocation with the addend in the
  // relocation.
  static inline typename Base::Reloc_status
  pcrela32_check(unsigned char* view,
		 typename elfcpp::Elf_types<64>::Elf_Addr value,
		 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
		 typename elfcpp::Elf_types<64>::Elf_Addr address)
  {
    typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    value = value + addend - address;
    elfcpp::Swap<32, false>::writeval(wv, value);
    return (Bits<32>::has_overflow(value)
	    ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
  }

  // Do a simple PC relative relocation with a Symbol_value with the
  // addend in the relocation.
  static inline typename Base::Reloc_status
  pcrela32_check(unsigned char* view,
		 const Sized_relobj_file<size, false>* object,
		 const Symbol_value<size>* psymval,
		 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
		 typename elfcpp::Elf_types<64>::Elf_Addr address)
  {
    typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    typename elfcpp::Elf_types<64>::Elf_Addr value;
    if (addend >= 0)
      value = psymval->value(object, addend);
    else
      {
	// For negative addends, get the symbol value without
	// the addend, then add the addend using 64-bit arithmetic.
	value = psymval->value(object, 0);
	value += addend;
      }
    value -= address;
    elfcpp::Swap<32, false>::writeval(wv, value);
    return (Bits<32>::has_overflow(value)
	    ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
  }
};

// Perform a relocation.

template<int size>
inline bool
Target_x86_64<size>::Relocate::relocate(
    const Relocate_info<size, false>* relinfo,
    unsigned int,
    Target_x86_64<size>* target,
    Output_section*,
    size_t relnum,
    const unsigned char* preloc,
    const Sized_symbol<size>* gsym,
    const Symbol_value<size>* psymval,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr address,
    section_size_type view_size)
{
  typedef X86_64_relocate_functions<size> Reloc_funcs;
  const elfcpp::Rela<size, false> rela(preloc);
  unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());

  if (this->skip_call_tls_get_addr_)
    {
      if ((r_type != elfcpp::R_X86_64_PLT32
	   && r_type != elfcpp::R_X86_64_GOTPCREL
	   && r_type != elfcpp::R_X86_64_GOTPCRELX
	   && r_type != elfcpp::R_X86_64_PLT32_BND
	   && r_type != elfcpp::R_X86_64_PC32_BND
	   && r_type != elfcpp::R_X86_64_PC32)
	  || gsym == NULL
	  || strcmp(gsym->name(), "__tls_get_addr") != 0)
	{
	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
				 _("missing expected TLS relocation"));
	  this->skip_call_tls_get_addr_ = false;
	}
      else
	{
	  this->skip_call_tls_get_addr_ = false;
	  return false;
	}
    }

  if (view == NULL)
    return true;

  const Sized_relobj_file<size, false>* object = relinfo->object;

  // Pick the value to use for symbols defined in the PLT.
  Symbol_value<size> symval;
  if (gsym != NULL
      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
    {
      symval.set_output_value(target->plt_address_for_global(gsym));
      psymval = &symval;
    }
  else if (gsym == NULL && psymval->is_ifunc_symbol())
    {
      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
      if (object->local_has_plt_offset(r_sym))
	{
	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
	  psymval = &symval;
	}
    }

  const elfcpp::Elf_Xword addend = rela.get_r_addend();

  // Get the GOT offset if needed.
  // The GOT pointer points to the end of the GOT section.
  // We need to subtract the size of the GOT section to get
  // the actual offset to use in the relocation.
  bool have_got_offset = false;
  // Since the actual offset is always negative, we use signed int to
  // support 64-bit GOT relocations.
  int got_offset = 0;
  switch (r_type)
    {
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPCREL64:
      if (gsym != NULL)
	{
	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
	  got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
	}
      else
	{
	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
			- target->got_size());
	}
      have_got_offset = true;
      break;

    default:
      break;
    }

  typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;

  switch (r_type)
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
      break;

    case elfcpp::R_X86_64_64:
      Reloc_funcs::rela64(view, object, psymval, addend);
      break;

    case elfcpp::R_X86_64_PC64:
      Reloc_funcs::pcrela64(view, object, psymval, addend,
					      address);
      break;

    case elfcpp::R_X86_64_32:
      rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
					  Reloc_funcs::CHECK_UNSIGNED);
      break;

    case elfcpp::R_X86_64_32S:
      rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
					  Reloc_funcs::CHECK_SIGNED);
      break;

    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32_BND:
      rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
					    address);
      break;

    case elfcpp::R_X86_64_16:
      Reloc_funcs::rela16(view, object, psymval, addend);
      break;

    case elfcpp::R_X86_64_PC16:
      Reloc_funcs::pcrela16(view, object, psymval, addend, address);
      break;

    case elfcpp::R_X86_64_8:
      Reloc_funcs::rela8(view, object, psymval, addend);
      break;

    case elfcpp::R_X86_64_PC8:
      Reloc_funcs::pcrela8(view, object, psymval, addend, address);
      break;

    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32_BND:
      gold_assert(gsym == NULL
		  || gsym->has_plt_offset()
		  || gsym->final_value_is_known()
		  || (gsym->is_defined()
		      && !gsym->is_from_dynobj()
		      && !gsym->is_preemptible()));
      // Note: while this code looks the same as for R_X86_64_PC32, it
      // behaves differently because psymval was set to point to
      // the PLT entry, rather than the symbol, in Scan::global().
      rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
					    address);
      break;

    case elfcpp::R_X86_64_PLTOFF64:
      {
	gold_assert(gsym);
	gold_assert(gsym->has_plt_offset()
		    || gsym->final_value_is_known());
	typename elfcpp::Elf_types<size>::Elf_Addr got_address;
	// This is the address of GLOBAL_OFFSET_TABLE.
	got_address = target->got_plt_section()->address();
	Reloc_funcs::rela64(view, object, psymval, addend - got_address);
      }
      break;

    case elfcpp::R_X86_64_GOT32:
      gold_assert(have_got_offset);
      Reloc_funcs::rela32(view, got_offset, addend);
      break;

    case elfcpp::R_X86_64_GOTPC32:
      {
	gold_assert(gsym);
	typename elfcpp::Elf_types<size>::Elf_Addr value;
	value = target->got_plt_section()->address();
	Reloc_funcs::pcrela32_check(view, value, addend, address);
      }
      break;

    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOTPLT64:
      // R_X86_64_GOTPLT64 is obsolete and treated the same as
      // GOT64.
      gold_assert(have_got_offset);
      Reloc_funcs::rela64(view, got_offset, addend);
      break;

    case elfcpp::R_X86_64_GOTPC64:
      {
	gold_assert(gsym);
	typename elfcpp::Elf_types<size>::Elf_Addr value;
	value = target->got_plt_section()->address();
	Reloc_funcs::pcrela64(view, value, addend, address);
      }
      break;

    case elfcpp::R_X86_64_GOTOFF64:
      {
	typename elfcpp::Elf_types<size>::Elf_Addr value;
	value = (psymval->value(object, 0)
		 - target->got_plt_section()->address());
	Reloc_funcs::rela64(view, value, addend);
      }
      break;

    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCRELX:
    case elfcpp::R_X86_64_REX_GOTPCRELX:
      {
      // Convert
      // mov foo@GOTPCREL(%rip), %reg
      // to lea foo(%rip), %reg.
      // if possible.
      if (!parameters->incremental()
	  && ((gsym == NULL
	       && rela.get_r_offset() >= 2
	       && view[-2] == 0x8b
	       && !psymval->is_ifunc_symbol())
	      || (gsym != NULL
		  && rela.get_r_offset() >= 2
		  && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
								 0, &view))))
	{
	  view[-2] = 0x8d;
	  Reloc_funcs::pcrela32(view, object, psymval, addend, address);
	}
      // Convert
      // callq *foo@GOTPCRELX(%rip) to
      // addr32 callq foo
      // and jmpq *foo@GOTPCRELX(%rip) to
      // jmpq foo
      // nop
      else if (!parameters->incremental()
	       && gsym != NULL
	       && rela.get_r_offset() >= 2
	       && Target_x86_64<size>::can_convert_callq_to_direct(gsym,
								   r_type,
								   0, &view))
	{
	  if (view[-1] == 0x15)
	    {
	      // Convert callq *foo@GOTPCRELX(%rip) to addr32 callq.
	      // Opcode of addr32 is 0x67 and opcode of direct callq is 0xe8.
	      view[-2] = 0x67;
	      view[-1] = 0xe8;
	      // Convert GOTPCRELX to 32-bit pc relative reloc.
	      Reloc_funcs::pcrela32(view, object, psymval, addend, address);
	    }
	  else
	    {
	      // Convert jmpq *foo@GOTPCRELX(%rip) to
	      // jmpq foo
	      // nop
	      // The opcode of direct jmpq is 0xe9.
	      view[-2] = 0xe9;
	      // The opcode of nop is 0x90.
	      view[3] = 0x90;
	      // Convert GOTPCRELX to 32-bit pc relative reloc.  jmpq is rip
	      // relative and since the instruction following the jmpq is now
	      // the nop, offset the address by 1 byte.  The start of the
              // relocation also moves ahead by 1 byte.
	      Reloc_funcs::pcrela32(&view[-1], object, psymval, addend,
				    address - 1);
	    }
	}
      else
	{
	  if (gsym != NULL)
	    {
	      gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
	      got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
			    - target->got_size());
	    }
	  else
	    {
	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
	      gold_assert(object->local_has_got_offset(r_sym,
						       GOT_TYPE_STANDARD));
	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
			    - target->got_size());
	    }
	  typename elfcpp::Elf_types<size>::Elf_Addr value;
	  value = target->got_plt_section()->address() + got_offset;
	  Reloc_funcs::pcrela32_check(view, value, addend, address);
	}
      }
      break;

    case elfcpp::R_X86_64_GOTPCREL64:
      {
	gold_assert(have_got_offset);
	typename elfcpp::Elf_types<size>::Elf_Addr value;
	value = target->got_plt_section()->address() + got_offset;
	Reloc_funcs::pcrela64(view, value, addend, address);
      }
      break;

    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when linking
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unexpected reloc %u in object file"),
			     r_type);
      break;

      // These are initial tls relocs, which are expected when linking
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
			 view, address, view_size);
      break;

    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    default:
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"),
			     r_type);
      break;
    }

  if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
    {
      if (gsym == NULL)
        {
	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
				 _("relocation overflow: "
				   "reference to local symbol %u in %s"),
				 r_sym, object->name().c_str());
        }
      else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
        {
	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
				 _("relocation overflow: "
				   "reference to '%s' defined in %s"),
				 gsym->name(),
				 gsym->object()->name().c_str());
        }
      else
        {
	  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
				 _("relocation overflow: reference to '%s'"),
				 gsym->name());
        }
    }

  return true;
}

// Perform a TLS relocation.

template<int size>
inline void
Target_x86_64<size>::Relocate::relocate_tls(
    const Relocate_info<size, false>* relinfo,
    Target_x86_64<size>* target,
    size_t relnum,
    const elfcpp::Rela<size, false>& rela,
    unsigned int r_type,
    const Sized_symbol<size>* gsym,
    const Symbol_value<size>* psymval,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr address,
    section_size_type view_size)
{
  Output_segment* tls_segment = relinfo->layout->tls_segment();

  const Sized_relobj_file<size, false>* object = relinfo->object;
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
  bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;

  typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);

  const bool is_final = (gsym == NULL
			 ? !parameters->options().shared()
			 : gsym->final_value_is_known());
  tls::Tls_optimization optimized_type
      = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
  switch (r_type)
    {
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
	{
	  // If this code sequence is used in a non-executable section,
	  // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
	  // on the assumption that it's being used by itself in a debug
	  // section.  Therefore, in the unlikely event that the code
	  // sequence appears in a non-executable section, we simply
	  // leave it unoptimized.
	  optimized_type = tls::TLSOPT_NONE;
	}
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  if (tls_segment == NULL)
	    {
	      gold_assert(parameters->errors()->error_count() > 0
			  || issue_undefined_symbol_error(gsym));
	      return;
	    }
	  this->tls_gd_to_le(relinfo, relnum, tls_segment,
			     rela, r_type, value, view,
			     view_size);
	  break;
	}
      else
	{
	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
				   ? GOT_TYPE_TLS_OFFSET
				   : GOT_TYPE_TLS_PAIR);
	  unsigned int got_offset;
	  if (gsym != NULL)
	    {
	      gold_assert(gsym->has_got_offset(got_type));
	      got_offset = gsym->got_offset(got_type) - target->got_size();
	    }
	  else
	    {
	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
	      gold_assert(object->local_has_got_offset(r_sym, got_type));
	      got_offset = (object->local_got_offset(r_sym, got_type)
			    - target->got_size());
	    }
	  if (optimized_type == tls::TLSOPT_TO_IE)
	    {
	      value = target->got_plt_section()->address() + got_offset;
	      this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
				 value, view, address, view_size);
	      break;
	    }
	  else if (optimized_type == tls::TLSOPT_NONE)
	    {
	      // Relocate the field with the offset of the pair of GOT
	      // entries.
	      value = target->got_plt_section()->address() + got_offset;
	      Relocate_functions<size, false>::pcrela32(view, value, addend,
							address);
	      break;
	    }
	}
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"), r_type);
      break;

    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
	{
	  // See above comment for R_X86_64_TLSGD.
	  optimized_type = tls::TLSOPT_NONE;
	}
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  if (tls_segment == NULL)
	    {
	      gold_assert(parameters->errors()->error_count() > 0
			  || issue_undefined_symbol_error(gsym));
	      return;
	    }
	  this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
				  rela, r_type, value, view,
				  view_size);
	  break;
	}
      else
	{
	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
				   ? GOT_TYPE_TLS_OFFSET
				   : GOT_TYPE_TLS_DESC);
	  unsigned int got_offset = 0;
	  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
	      && optimized_type == tls::TLSOPT_NONE)
	    {
	      // We created GOT entries in the .got.tlsdesc portion of
	      // the .got.plt section, but the offset stored in the
	      // symbol is the offset within .got.tlsdesc.
	      got_offset = (target->got_size()
			    + target->got_plt_section()->data_size());
	    }
	  if (gsym != NULL)
	    {
	      gold_assert(gsym->has_got_offset(got_type));
	      got_offset += gsym->got_offset(got_type) - target->got_size();
	    }
	  else
	    {
	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
	      gold_assert(object->local_has_got_offset(r_sym, got_type));
	      got_offset += (object->local_got_offset(r_sym, got_type)
			     - target->got_size());
	    }
	  if (optimized_type == tls::TLSOPT_TO_IE)
	    {
	      value = target->got_plt_section()->address() + got_offset;
	      this->tls_desc_gd_to_ie(relinfo, relnum,
				      rela, r_type, value, view, address,
				      view_size);
	      break;
	    }
	  else if (optimized_type == tls::TLSOPT_NONE)
	    {
	      if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
		{
		  // Relocate the field with the offset of the pair of GOT
		  // entries.
		  value = target->got_plt_section()->address() + got_offset;
		  Relocate_functions<size, false>::pcrela32(view, value, addend,
							    address);
		}
	      break;
	    }
	}
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"), r_type);
      break;

    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
	{
	  // See above comment for R_X86_64_TLSGD.
	  optimized_type = tls::TLSOPT_NONE;
	}
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  if (tls_segment == NULL)
	    {
	      gold_assert(parameters->errors()->error_count() > 0
			  || issue_undefined_symbol_error(gsym));
	      return;
	    }
	  this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
			     value, view, view_size);
	  break;
	}
      else if (optimized_type == tls::TLSOPT_NONE)
	{
	  // Relocate the field with the offset of the GOT entry for
	  // the module index.
	  unsigned int got_offset;
	  got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
			- target->got_size());
	  value = target->got_plt_section()->address() + got_offset;
	  Relocate_functions<size, false>::pcrela32(view, value, addend,
						    address);
	  break;
	}
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"), r_type);
      break;

    case elfcpp::R_X86_64_DTPOFF32:
      // This relocation type is used in debugging information.
      // In that case we need to not optimize the value.  If the
      // section is not executable, then we assume we should not
      // optimize this reloc.  See comments above for R_X86_64_TLSGD,
      // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
      // R_X86_64_TLSLD.
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
	{
	  if (tls_segment == NULL)
	    {
	      gold_assert(parameters->errors()->error_count() > 0
			  || issue_undefined_symbol_error(gsym));
	      return;
	    }
	  value -= tls_segment->memsz();
	}
      Relocate_functions<size, false>::rela32(view, value, addend);
      break;

    case elfcpp::R_X86_64_DTPOFF64:
      // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
	{
	  if (tls_segment == NULL)
	    {
	      gold_assert(parameters->errors()->error_count() > 0
			  || issue_undefined_symbol_error(gsym));
	      return;
	    }
	  value -= tls_segment->memsz();
	}
      Relocate_functions<size, false>::rela64(view, value, addend);
      break;

    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
      if (gsym != NULL
	  && gsym->is_undefined()
	  && parameters->options().output_is_executable())
	{
	  Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
						      NULL, rela,
						      r_type, value, view,
						      view_size);
	  break;
	}
      else if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  if (tls_segment == NULL)
	    {
	      gold_assert(parameters->errors()->error_count() > 0
			  || issue_undefined_symbol_error(gsym));
	      return;
	    }
	  Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
						      tls_segment, rela,
						      r_type, value, view,
						      view_size);
	  break;
	}
      else if (optimized_type == tls::TLSOPT_NONE)
	{
	  // Relocate the field with the offset of the GOT entry for
	  // the tp-relative offset of the symbol.
	  unsigned int got_offset;
	  if (gsym != NULL)
	    {
	      gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
	      got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
			    - target->got_size());
	    }
	  else
	    {
	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
	      gold_assert(object->local_has_got_offset(r_sym,
						       GOT_TYPE_TLS_OFFSET));
	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
			    - target->got_size());
	    }
	  value = target->got_plt_section()->address() + got_offset;
	  Relocate_functions<size, false>::pcrela32(view, value, addend,
						    address);
	  break;
	}
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc type %u"),
			     r_type);
      break;

    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      if (tls_segment == NULL)
	{
	  gold_assert(parameters->errors()->error_count() > 0
		      || issue_undefined_symbol_error(gsym));
	  return;
	}
      value -= tls_segment->memsz();
      Relocate_functions<size, false>::rela32(view, value, addend);
      break;
    }
}

// Do a relocation in which we convert a TLS General-Dynamic to an
// Initial-Exec.

template<int size>
inline void
Target_x86_64<size>::Relocate::tls_gd_to_ie(
    const Relocate_info<size, false>* relinfo,
    size_t relnum,
    const elfcpp::Rela<size, false>& rela,
    unsigned int,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr address,
    section_size_type view_size)
{
  // For SIZE == 64:
  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x6666; rex64; call __tls_get_addr@PLT
  //	==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
  //	==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
  // For SIZE == 32:
  //	leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x6666; rex64; call __tls_get_addr@PLT
  //	==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
  //	leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
  //	==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax

  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
		  || memcmp(view + 4, "\x66\x48\xff", 3) == 0));

  if (size == 64)
    {
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
		       -4);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
      memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
	     16);
    }
  else
    {
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
		       -3);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
      memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
	     15);
    }

  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
					    address);

  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
}

// Do a relocation in which we convert a TLS General-Dynamic to a
// Local-Exec.

template<int size>
inline void
Target_x86_64<size>::Relocate::tls_gd_to_le(
    const Relocate_info<size, false>* relinfo,
    size_t relnum,
    Output_segment* tls_segment,
    const elfcpp::Rela<size, false>& rela,
    unsigned int,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    unsigned char* view,
    section_size_type view_size)
{
  // For SIZE == 64:
  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x6666; rex64; call __tls_get_addr@PLT
  //	==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
  //	.byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
  //	==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
  // For SIZE == 32:
  //	leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x6666; rex64; call __tls_get_addr@PLT
  //	==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
  //	leaq foo@tlsgd(%rip),%rdi;
  //	.word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
  //	==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax

  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
		  || memcmp(view + 4, "\x66\x48\xff", 3) == 0));

  if (size == 64)
    {
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
		       -4);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
      memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
	     16);
    }
  else
    {
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
		       -3);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));

      memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
	     15);
    }

  value -= tls_segment->memsz();
  Relocate_functions<size, false>::rela32(view + 8, value, 0);

  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
}

// Do a TLSDESC-style General-Dynamic to Initial-Exec transition.

template<int size>
inline void
Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
    const Relocate_info<size, false>* relinfo,
    size_t relnum,
    const elfcpp::Rela<size, false>& rela,
    unsigned int r_type,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr address,
    section_size_type view_size)
{
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
    {
      // leaq foo@tlsdesc(%rip), %rax
      // ==> movq foo@gottpoff(%rip), %rax
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
      view[-2] = 0x8b;
      const elfcpp::Elf_Xword addend = rela.get_r_addend();
      Relocate_functions<size, false>::pcrela32(view, value, addend, address);
    }
  else
    {
      // call *foo@tlscall(%rax)
      // ==> nop; nop
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     view[0] == 0xff && view[1] == 0x10);
      view[0] = 0x66;
      view[1] = 0x90;
    }
}

// Do a TLSDESC-style General-Dynamic to Local-Exec transition.

template<int size>
inline void
Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
    const Relocate_info<size, false>* relinfo,
    size_t relnum,
    Output_segment* tls_segment,
    const elfcpp::Rela<size, false>& rela,
    unsigned int r_type,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    unsigned char* view,
    section_size_type view_size)
{
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
    {
      // leaq foo@tlsdesc(%rip), %rax
      // ==> movq foo@tpoff, %rax
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
      view[-2] = 0xc7;
      view[-1] = 0xc0;
      value -= tls_segment->memsz();
      Relocate_functions<size, false>::rela32(view, value, 0);
    }
  else
    {
      // call *foo@tlscall(%rax)
      // ==> nop; nop
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		     view[0] == 0xff && view[1] == 0x10);
      view[0] = 0x66;
      view[1] = 0x90;
    }
}

template<int size>
inline void
Target_x86_64<size>::Relocate::tls_ld_to_le(
    const Relocate_info<size, false>* relinfo,
    size_t relnum,
    Output_segment*,
    const elfcpp::Rela<size, false>& rela,
    unsigned int,
    typename elfcpp::Elf_types<size>::Elf_Addr,
    unsigned char* view,
    section_size_type view_size)
{
  // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
  // For SIZE == 64:
  // ... leq foo@dtpoff(%rax),%reg
  // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
  // For SIZE == 32:
  // ... leq foo@dtpoff(%rax),%reg
  // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
  // leaq foo@tlsld(%rip),%rdi; call *__tls_get_addr@GOTPCREL(%rip)
  // For SIZE == 64:
  // ... leq foo@dtpoff(%rax),%reg
  // ==> .word 0x6666; .byte 0x6666; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
  // For SIZE == 32:
  // ... leq foo@dtpoff(%rax),%reg
  // ==> nopw 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx

  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);

  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);

  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
		 view[4] == 0xe8 || view[4] == 0xff);

  if (view[4] == 0xe8)
    {
      if (size == 64)
	memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
      else
	memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
    }
  else
    {
      if (size == 64)
	memcpy(view - 3, "\x66\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0",
	       13);
      else
	memcpy(view - 3, "\x66\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0",
	       13);
    }

  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
}

// Do a relocation in which we convert a TLS Initial-Exec to a
// Local-Exec.

template<int size>
inline void
Target_x86_64<size>::Relocate::tls_ie_to_le(
    const Relocate_info<size, false>* relinfo,
    size_t relnum,
    Output_segment* tls_segment,
    const elfcpp::Rela<size, false>& rela,
    unsigned int,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    unsigned char* view,
    section_size_type view_size)
{
  // We need to examine the opcodes to figure out which instruction we
  // are looking at.

  // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
  // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg

  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);

  unsigned char op1 = view[-3];
  unsigned char op2 = view[-2];
  unsigned char op3 = view[-1];
  unsigned char reg = op3 >> 3;

  if (op2 == 0x8b)
    {
      // movq
      if (op1 == 0x4c)
	view[-3] = 0x49;
      else if (size == 32 && op1 == 0x44)
	view[-3] = 0x41;
      view[-2] = 0xc7;
      view[-1] = 0xc0 | reg;
    }
  else if (reg == 4)
    {
      // Special handling for %rsp.
      if (op1 == 0x4c)
	view[-3] = 0x49;
      else if (size == 32 && op1 == 0x44)
	view[-3] = 0x41;
      view[-2] = 0x81;
      view[-1] = 0xc0 | reg;
    }
  else
    {
      // addq
      if (op1 == 0x4c)
	view[-3] = 0x4d;
      else if (size == 32 && op1 == 0x44)
	view[-3] = 0x45;
      view[-2] = 0x8d;
      view[-1] = 0x80 | reg | (reg << 3);
    }

  if (tls_segment != NULL)
    value -= tls_segment->memsz();
  Relocate_functions<size, false>::rela32(view, value, 0);
}

// Relocate section data.

template<int size>
void
Target_x86_64<size>::relocate_section(
    const Relocate_info<size, false>* relinfo,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr address,
    section_size_type view_size,
    const Reloc_symbol_changes* reloc_symbol_changes)
{
  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
      Classify_reloc;

  gold_assert(sh_type == elfcpp::SHT_RELA);

  gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
			 gold::Default_comdat_behavior, Classify_reloc>(
    relinfo,
    this,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    view,
    address,
    view_size,
    reloc_symbol_changes);
}

// Apply an incremental relocation.  Incremental relocations always refer
// to global symbols.

template<int size>
void
Target_x86_64<size>::apply_relocation(
    const Relocate_info<size, false>* relinfo,
    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
    unsigned int r_type,
    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
    const Symbol* gsym,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr address,
    section_size_type view_size)
{
  gold::apply_relocation<size, false, Target_x86_64<size>,
			 typename Target_x86_64<size>::Relocate>(
    relinfo,
    this,
    r_offset,
    r_type,
    r_addend,
    gsym,
    view,
    address,
    view_size);
}

// Scan the relocs during a relocatable link.

template<int size>
void
Target_x86_64<size>::scan_relocatable_relocs(
    Symbol_table* symtab,
    Layout* layout,
    Sized_relobj_file<size, false>* object,
    unsigned int data_shndx,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    const unsigned char* plocal_symbols,
    Relocatable_relocs* rr)
{
  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
      Classify_reloc;
  typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
      Scan_relocatable_relocs;

  gold_assert(sh_type == elfcpp::SHT_RELA);

  gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
    symtab,
    layout,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols,
    rr);
}

// Scan the relocs for --emit-relocs.

template<int size>
void
Target_x86_64<size>::emit_relocs_scan(
    Symbol_table* symtab,
    Layout* layout,
    Sized_relobj_file<size, false>* object,
    unsigned int data_shndx,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    const unsigned char* plocal_syms,
    Relocatable_relocs* rr)
{
  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
      Classify_reloc;
  typedef gold::Default_emit_relocs_strategy<Classify_reloc>
      Emit_relocs_strategy;

  gold_assert(sh_type == elfcpp::SHT_RELA);

  gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
    symtab,
    layout,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_syms,
    rr);
}

// Relocate a section during a relocatable link.

template<int size>
void
Target_x86_64<size>::relocate_relocs(
    const Relocate_info<size, false>* relinfo,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
{
  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
      Classify_reloc;

  gold_assert(sh_type == elfcpp::SHT_RELA);

  gold::relocate_relocs<size, false, Classify_reloc>(
    relinfo,
    prelocs,
    reloc_count,
    output_section,
    offset_in_output_section,
    view,
    view_address,
    view_size,
    reloc_view,
    reloc_view_size);
}

// Return the value to use for a dynamic which requires special
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.

template<int size>
uint64_t
Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
{
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  return this->plt_address_for_global(gsym);
}

// Return a string used to fill a code section with nops to take up
// the specified length.

template<int size>
std::string
Target_x86_64<size>::do_code_fill(section_size_type length) const
{
  if (length >= 16)
    {
      // Build a jmpq instruction to skip over the bytes.
      unsigned char jmp[5];
      jmp[0] = 0xe9;
      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
	      + std::string(length - 5, static_cast<char>(0x90)));
    }

  // Nop sequences of various lengths.
  const char nop1[1] = { '\x90' };                 // nop
  const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
  const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
  const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
			 '\x00'};
  const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
			 '\x00', '\x00' };
  const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
			 '\x44', '\x00', '\x00' };
  const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
			 '\x00', '\x00', '\x00',
			 '\x00' };
  const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
			 '\x00', '\x00', '\x00',
			 '\x00', '\x00' };
  const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
			 '\x84', '\x00', '\x00',
			 '\x00', '\x00', '\x00' };
  const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
			   '\x1f', '\x84', '\x00',
			   '\x00', '\x00', '\x00',
			   '\x00' };
  const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
			   '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
			   '\x00', '\x00', '\x00',
			   '\x00', '\x00' };
  const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
			   '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
			   '\x84', '\x00', '\x00',
			   '\x00', '\x00', '\x00' };
  const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
			   '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
			   '\x1f', '\x84', '\x00',
			   '\x00', '\x00', '\x00',
			   '\x00' };
  const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
			   '\x66', '\x66', '\x2e', // data16
			   '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
			   '\x00', '\x00', '\x00',
			   '\x00', '\x00' };
  const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
			   '\x66', '\x66', '\x66', // data16; data16
			   '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
			   '\x84', '\x00', '\x00',
			   '\x00', '\x00', '\x00' };

  const char* nops[16] = {
    NULL,
    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
  };

  return std::string(nops[length], length);
}

// Return the addend to use for a target specific relocation.  The
// only target specific relocation is R_X86_64_TLSDESC for a local
// symbol.  We want to set the addend is the offset of the local
// symbol in the TLS segment.

template<int size>
uint64_t
Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
				     uint64_t) const
{
  gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
  uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
  gold_assert(intarg < this->tlsdesc_reloc_info_.size());
  const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
  const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
  gold_assert(psymval->is_tls_symbol());
  // The value of a TLS symbol is the offset in the TLS segment.
  return psymval->value(ti.object, 0);
}

// Return the value to use for the base of a DW_EH_PE_datarel offset
// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
// assembler can not write out the difference between two labels in
// different sections, so instead of using a pc-relative value they
// use an offset from the GOT.

template<int size>
uint64_t
Target_x86_64<size>::do_ehframe_datarel_base() const
{
  gold_assert(this->global_offset_table_ != NULL);
  Symbol* sym = this->global_offset_table_;
  Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
  return ssym->value();
}

// FNOFFSET in section SHNDX in OBJECT is the start of a function
// compiled with -fsplit-stack.  The function calls non-split-stack
// code.  We have to change the function so that it always ensures
// that it has enough stack space to run some random function.

static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };

static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };

template<int size>
void
Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
					section_offset_type fnoffset,
					section_size_type fnsize,
					const unsigned char*,
					size_t,
					unsigned char* view,
					section_size_type view_size,
					std::string* from,
					std::string* to) const
{
  const char* const cmp_insn = reinterpret_cast<const char*>
      (size == 32 ? cmp_insn_32 : cmp_insn_64);
  const char* const lea_r10_insn = reinterpret_cast<const char*>
      (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
  const char* const lea_r11_insn = reinterpret_cast<const char*>
      (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);

  const size_t cmp_insn_len =
      (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
  const size_t lea_r10_insn_len =
      (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
  const size_t lea_r11_insn_len =
      (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
  const size_t nop_len = (size == 32 ? 7 : 8);

  // The function starts with a comparison of the stack pointer and a
  // field in the TCB.  This is followed by a jump.

  // cmp %fs:NN,%rsp
  if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
      && fnsize > nop_len + 1)
    {
      // We will call __morestack if the carry flag is set after this
      // comparison.  We turn the comparison into an stc instruction
      // and some nops.
      view[fnoffset] = '\xf9';
      this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
    }
  // lea NN(%rsp),%r10
  // lea NN(%rsp),%r11
  else if ((this->match_view(view, view_size, fnoffset,
			     lea_r10_insn, lea_r10_insn_len)
	    || this->match_view(view, view_size, fnoffset,
				lea_r11_insn, lea_r11_insn_len))
	   && fnsize > 8)
    {
      // This is loading an offset from the stack pointer for a
      // comparison.  The offset is negative, so we decrease the
      // offset by the amount of space we need for the stack.  This
      // means we will avoid calling __morestack if there happens to
      // be plenty of space on the stack already.
      unsigned char* pval = view + fnoffset + 4;
      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
      val -= parameters->options().split_stack_adjust_size();
      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
    }
  else
    {
      if (!object->has_no_split_stack())
	object->error(_("failed to match split-stack sequence at "
			"section %u offset %0zx"),
		      shndx, static_cast<size_t>(fnoffset));
      return;
    }

  // We have to change the function so that it calls
  // __morestack_non_split instead of __morestack.  The former will
  // allocate additional stack space.
  *from = "__morestack";
  *to = "__morestack_non_split";
}

// The selector for x86_64 object files.  Note this is never instantiated
// directly.  It's only used in Target_selector_x86_64_nacl, below.

template<int size>
class Target_selector_x86_64 : public Target_selector_freebsd
{
public:
  Target_selector_x86_64()
    : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
			      (size == 64
			       ? "elf64-x86-64" : "elf32-x86-64"),
			      (size == 64
			       ? "elf64-x86-64-freebsd"
			       : "elf32-x86-64-freebsd"),
			      (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
  { }

  Target*
  do_instantiate_target()
  { return new Target_x86_64<size>(); }

};

// NaCl variant.  It uses different PLT contents.

template<int size>
class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
{
 public:
  Output_data_plt_x86_64_nacl(Layout* layout,
			      Output_data_got<64, false>* got,
			      Output_data_got_plt_x86_64* got_plt,
			      Output_data_space* got_irelative)
    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
				   got, got_plt, got_irelative)
  { }

  Output_data_plt_x86_64_nacl(Layout* layout,
			      Output_data_got<64, false>* got,
			      Output_data_got_plt_x86_64* got_plt,
			      Output_data_space* got_irelative,
			      unsigned int plt_count)
    : Output_data_plt_x86_64<size>(layout, plt_entry_size,
				   got, got_plt, got_irelative,
				   plt_count)
  { }

 protected:
  virtual unsigned int
  do_get_plt_entry_size() const
  { return plt_entry_size; }

  virtual void
  do_add_eh_frame(Layout* layout)
  {
    layout->add_eh_frame_for_plt(this,
				 this->plt_eh_frame_cie,
				 this->plt_eh_frame_cie_size,
				 plt_eh_frame_fde,
				 plt_eh_frame_fde_size);
  }

  virtual void
  do_fill_first_plt_entry(unsigned char* pov,
			  typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
			  typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);

  virtual unsigned int
  do_fill_plt_entry(unsigned char* pov,
		    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
		    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
		    unsigned int got_offset,
		    unsigned int plt_offset,
		    unsigned int plt_index);

  virtual void
  do_fill_tlsdesc_entry(unsigned char* pov,
			typename elfcpp::Elf_types<size>::Elf_Addr got_address,
			typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
			typename elfcpp::Elf_types<size>::Elf_Addr got_base,
			unsigned int tlsdesc_got_offset,
			unsigned int plt_offset);

 private:
  // The size of an entry in the PLT.
  static const int plt_entry_size = 64;

  // The first entry in the PLT.
  static const unsigned char first_plt_entry[plt_entry_size];

  // Other entries in the PLT for an executable.
  static const unsigned char plt_entry[plt_entry_size];

  // The reserved TLSDESC entry in the PLT for an executable.
  static const unsigned char tlsdesc_plt_entry[plt_entry_size];

  // The .eh_frame unwind information for the PLT.
  static const int plt_eh_frame_fde_size = 32;
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
};

template<int size>
class Target_x86_64_nacl : public Target_x86_64<size>
{
 public:
  Target_x86_64_nacl()
    : Target_x86_64<size>(&x86_64_nacl_info)
  { }

  virtual Output_data_plt_x86_64<size>*
  do_make_data_plt(Layout* layout,
		   Output_data_got<64, false>* got,
		   Output_data_got_plt_x86_64* got_plt,
		   Output_data_space* got_irelative)
  {
    return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
						 got_irelative);
  }

  virtual Output_data_plt_x86_64<size>*
  do_make_data_plt(Layout* layout,
		   Output_data_got<64, false>* got,
		   Output_data_got_plt_x86_64* got_plt,
		   Output_data_space* got_irelative,
		   unsigned int plt_count)
  {
    return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
						 got_irelative,
						 plt_count);
  }

  virtual std::string
  do_code_fill(section_size_type length) const;

 private:
  static const Target::Target_info x86_64_nacl_info;
};

template<>
const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
{
  64,			// size
  false,		// is_big_endian
  elfcpp::EM_X86_64,	// machine_code
  false,		// has_make_symbol
  false,		// has_resolve
  true,			// has_code_fill
  true,			// is_default_stack_executable
  true,			// can_icf_inline_merge_sections
  '\0',			// wrap_char
  "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
  0x20000,		// default_text_segment_address
  0x10000,		// abi_pagesize (overridable by -z max-page-size)
  0x10000,		// common_pagesize (overridable by -z common-page-size)
  true,                 // isolate_execinstr
  0x10000000,           // rosegment_gap
  elfcpp::SHN_UNDEF,	// small_common_shndx
  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
  0,			// small_common_section_flags
  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
  NULL,			// attributes_section
  NULL,			// attributes_vendor
  "_start",		// entry_symbol_name
  32,			// hash_entry_size
  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
};

template<>
const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
{
  32,			// size
  false,		// is_big_endian
  elfcpp::EM_X86_64,	// machine_code
  false,		// has_make_symbol
  false,		// has_resolve
  true,			// has_code_fill
  true,			// is_default_stack_executable
  true,			// can_icf_inline_merge_sections
  '\0',			// wrap_char
  "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
  0x20000,		// default_text_segment_address
  0x10000,		// abi_pagesize (overridable by -z max-page-size)
  0x10000,		// common_pagesize (overridable by -z common-page-size)
  true,                 // isolate_execinstr
  0x10000000,           // rosegment_gap
  elfcpp::SHN_UNDEF,	// small_common_shndx
  elfcpp::SHN_X86_64_LCOMMON,	// large_common_shndx
  0,			// small_common_section_flags
  elfcpp::SHF_X86_64_LARGE,	// large_common_section_flags
  NULL,			// attributes_section
  NULL,			// attributes_vendor
  "_start",		// entry_symbol_name
  32,			// hash_entry_size
  elfcpp::SHT_X86_64_UNWIND,	// unwind_section_type
};

#define	NACLMASK	0xe0            // 32-byte alignment mask.

// The first entry in the PLT.

template<int size>
const unsigned char
Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
{
  0xff, 0x35,                         // pushq contents of memory address
  0, 0, 0, 0,                         // replaced with address of .got + 8
  0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
  0, 0, 0, 0,                         // replaced with address of .got + 16
  0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
  0x4d, 0x01, 0xfb,                   // add %r15, %r11
  0x41, 0xff, 0xe3,                   // jmpq *%r11

  // 9-byte nop sequence to pad out to the next 32-byte boundary.
  0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)

  // 32 bytes of nop to pad out to the standard size
  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
  0x66,                                  // excess data32 prefix
  0x90                                   // nop
};

template<int size>
void
Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
{
  memcpy(pov, first_plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      (got_address + 8
					       - (plt_address + 2 + 4)));
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
					      (got_address + 16
					       - (plt_address + 9 + 4)));
}

// Subsequent entries in the PLT.

template<int size>
const unsigned char
Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
{
  0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
  0, 0, 0, 0,                    // replaced with address of symbol in .got
  0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
  0x4d, 0x01, 0xfb,              // add %r15, %r11
  0x41, 0xff, 0xe3,              // jmpq *%r11

  // 15-byte nop sequence to pad out to the next 32-byte boundary.
  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)

  // Lazy GOT entries point here (32-byte aligned).
  0x68,                       // pushq immediate
  0, 0, 0, 0,                 // replaced with index into relocation table
  0xe9,                       // jmp relative
  0, 0, 0, 0,                 // replaced with offset to start of .plt0

  // 22 bytes of nop to pad out to the standard size.
  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
  0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
};

template<int size>
unsigned int
Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
    unsigned int got_offset,
    unsigned int plt_offset,
    unsigned int plt_index)
{
  memcpy(pov, plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
					      (got_address + got_offset
					       - (plt_address + plt_offset
						  + 3 + 4)));

  elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
					      - (plt_offset + 38 + 4));

  return 32;
}

// The reserved TLSDESC entry in the PLT.

template<int size>
const unsigned char
Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
{
  0xff, 0x35,			// pushq x(%rip)
  0, 0, 0, 0,	// replaced with address of linkmap GOT entry (at PLTGOT + 8)
  0x4c, 0x8b, 0x1d,		// mov y(%rip),%r11
  0, 0, 0, 0,	// replaced with offset of reserved TLSDESC_GOT entry
  0x41, 0x83, 0xe3, NACLMASK,	// and $-32, %r11d
  0x4d, 0x01, 0xfb,             // add %r15, %r11
  0x41, 0xff, 0xe3,             // jmpq *%r11

  // 41 bytes of nop to pad out to the standard size.
  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
  0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
  0x66, 0x66,                            // excess data32 prefixes
  0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
};

template<int size>
void
Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
    unsigned char* pov,
    typename elfcpp::Elf_types<size>::Elf_Addr got_address,
    typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
    typename elfcpp::Elf_types<size>::Elf_Addr got_base,
    unsigned int tlsdesc_got_offset,
    unsigned int plt_offset)
{
  memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
					      (got_address + 8
					       - (plt_address + plt_offset
						  + 2 + 4)));
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
					      (got_base
					       + tlsdesc_got_offset
					       - (plt_address + plt_offset
						  + 9 + 4)));
}

// The .eh_frame unwind information for the PLT.

template<int size>
const unsigned char
Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
{
  0, 0, 0, 0,				// Replaced with offset to .plt.
  0, 0, 0, 0,				// Replaced with size of .plt.
  0,					// Augmentation size.
  elfcpp::DW_CFA_def_cfa_offset, 16,	// DW_CFA_def_cfa_offset: 16.
  elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_def_cfa_offset, 24,	// DW_CFA_def_cfa_offset: 24.
  elfcpp::DW_CFA_advance_loc + 58,	// Advance 58 to __PLT__ + 64.
  elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
  13,					// Block length.
  elfcpp::DW_OP_breg7, 8,		// Push %rsp + 8.
  elfcpp::DW_OP_breg16, 0,		// Push %rip.
  elfcpp::DW_OP_const1u, 63,		// Push 0x3f.
  elfcpp::DW_OP_and,			// & (%rip & 0x3f).
  elfcpp::DW_OP_const1u, 37,            // Push 0x25.
  elfcpp::DW_OP_ge,			// >= ((%rip & 0x3f) >= 0x25)
  elfcpp::DW_OP_lit3,			// Push 3.
  elfcpp::DW_OP_shl,			// << (((%rip & 0x3f) >= 0x25) << 3)
  elfcpp::DW_OP_plus,			// + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
  elfcpp::DW_CFA_nop,			// Align to 32 bytes.
  elfcpp::DW_CFA_nop
};

// Return a string used to fill a code section with nops.
// For NaCl, long NOPs are only valid if they do not cross
// bundle alignment boundaries, so keep it simple with one-byte NOPs.
template<int size>
std::string
Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
{
  return std::string(length, static_cast<char>(0x90));
}

// The selector for x86_64-nacl object files.

template<int size>
class Target_selector_x86_64_nacl
  : public Target_selector_nacl<Target_selector_x86_64<size>,
				Target_x86_64_nacl<size> >
{
 public:
  Target_selector_x86_64_nacl()
    : Target_selector_nacl<Target_selector_x86_64<size>,
			   Target_x86_64_nacl<size> >("x86-64",
						      size == 64
						      ? "elf64-x86-64-nacl"
						      : "elf32-x86-64-nacl",
						      size == 64
						      ? "elf_x86_64_nacl"
						      : "elf32_x86_64_nacl")
  { }
};

Target_selector_x86_64_nacl<64> target_selector_x86_64;
Target_selector_x86_64_nacl<32> target_selector_x32;

} // End anonymous namespace.