1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
//
// BCUtilStringDNA.m
// BioCocoa
//
// Created by John Timmer on Fri Jul 16 2004.
// Copyright (c) 2004 The BioCocoa Project. All rights reserved.
//
#import "BCUtilStringDNA.h"
@implementation BCUtilStringDNA
static BCUtilStringDNA *sharedDNASequenceObject = nil;
// we create a bunch of objects at allocation so that we don't waste time
// and memory every time we call a method
- (BCUtilStringDNA *) init {
self = [super init];
if ( !self )
return nil;
// create a dictionary of the corresponding bases
NSMutableDictionary *complementaryBases = [NSMutableDictionary dictionary];
[complementaryBases setObject: @"G" forKey: @"C"];
[complementaryBases setObject: @"C" forKey: @"G"];
[complementaryBases setObject: @"A" forKey: @"T"];
[complementaryBases setObject: @"T" forKey: @"A"];
[complementaryBases setObject: @"R" forKey: @"Y"];
[complementaryBases setObject: @"Y" forKey: @"R"];
[complementaryBases setObject: @"M" forKey: @"K"];
[complementaryBases setObject: @"K" forKey: @"M"];
[complementaryBases setObject: @"W" forKey: @"S"];
[complementaryBases setObject: @"S" forKey: @"W"];
[complementaryBases setObject: @"H" forKey: @"D"];
[complementaryBases setObject: @"D" forKey: @"H"];
[complementaryBases setObject: @"V" forKey: @"B"];
[complementaryBases setObject: @"B" forKey: @"V"];
[complementaryBases setObject: @"N" forKey: @"N"];
baseComplements = [complementaryBases copy];
// generate a few character sets
// we use all caps here and uppercase anything we get sent
normalBaseSet = [[NSCharacterSet characterSetWithCharactersInString: @"ATCG"] retain];
strictBaseSet = [[NSCharacterSet characterSetWithCharactersInString: @"GATCN"] retain];
looseBaseSet = [[NSCharacterSet characterSetWithCharactersInString: @"GATCNMKRYWSHVDB"] retain];
// this is used to return the full list of bases when given a single letter that
// represents more than one base
basesAndReplacements = [NSDictionary
dictionaryWithObjects: [NSArray arrayWithObjects: @"CA", @"GT", @"AG", @"CT", @"AT", @"GC", @"ACT", @"ACG", @"AGT", @"CGT", @"ACGT", nil]
forKeys: [NSArray arrayWithObjects: @"M", @"K" , @"R", @"Y", @"W", @"S", @"H", @"V", @"D", @"B", @"N", nil] ];
[basesAndReplacements retain];
return self;
}
// preferred method for obtaining this object.
+ (BCUtilStringDNA *)sharedDNAUtilObject {
if (sharedDNASequenceObject == nil) sharedDNASequenceObject = [[BCUtilStringDNA alloc] init];
return sharedDNASequenceObject;
}
// the strict method allows ATCGN
- (NSString *) stripNonDNACharacters_Strict: (NSString *)entry {
NSMutableString *theReturn = [NSMutableString stringWithString: @""];
NSString *tempString = nil;
NSScanner *validBaseScanner = [NSScanner scannerWithString: [entry uppercaseString]];
while ( ![validBaseScanner isAtEnd] ) {
// grab valid characters and add them to the string to be used
if ( [validBaseScanner scanCharactersFromSet: strictBaseSet intoString: &tempString] )
[theReturn appendString: tempString];
// move the scanner's index forward to the next valid character
else
[validBaseScanner scanUpToCharactersFromSet: strictBaseSet intoString: nil];
}
return [[theReturn copy] autorelease];
}
// This method allows the full spectrum of possible nucleotides: ATCGNMKRYWSHVDB
- (NSString *) stripNonDNACharacters: (NSString *)entry {
NSMutableString *theReturn = [NSMutableString stringWithString: @""];
NSString *tempString = nil;
NSScanner *validBaseScanner = [NSScanner scannerWithString: [entry uppercaseString]];
while ( ![validBaseScanner isAtEnd] ) {
// grab valid characters and add them to the string to be used
if ( [validBaseScanner scanCharactersFromSet: looseBaseSet intoString: &tempString] )
[theReturn appendString: tempString];
// move the scanner's index forward to the next valid character
else
[validBaseScanner scanUpToCharactersFromSet: looseBaseSet intoString: nil];
}
return [[theReturn copy] autorelease];
}
// Useful for pasted sequences or file reads - determines whether things need to be stripped out
// before using a sequence string for analysis.
- (BOOL) hasNonDNACharacters_Strict: (NSString *)entry {
if ( [strictBaseSet isSupersetOfSet: [NSCharacterSet characterSetWithCharactersInString: [entry uppercaseString]]] )
return NO;
return YES;
}
- (BOOL) hasNonDNACharacters: (NSString *)entry {
if ( [looseBaseSet isSupersetOfSet: [NSCharacterSet characterSetWithCharactersInString: [entry uppercaseString]]] )
return NO;
return YES;
}
// Complement and reverse complement should be self explanatory
- (NSString *) complementOfSequence: (NSString *)entry {
NSString *sequenceString = [entry uppercaseString];
NSMutableString *theReturn = [NSMutableString stringWithString: @""];
NSString *aBaseString;
int loopCounter;
for (loopCounter = 0; loopCounter < [sequenceString length]; loopCounter++ ) {
aBaseString = [sequenceString substringWithRange: NSMakeRange( loopCounter, 1) ];
[theReturn appendString: [baseComplements objectForKey: aBaseString]];
}
return theReturn;
}
- (NSString *) reverseComplementOfSequence: (NSString *)entry {
NSString *sequenceString = [entry uppercaseString];
NSMutableString *theReturn = [NSMutableString stringWithString: @""];
NSString *aBaseString;
int loopCounter;
for (loopCounter = 0; loopCounter < [sequenceString length]; loopCounter++ ) {
aBaseString = [sequenceString substringWithRange: NSMakeRange( loopCounter, 1) ];
[theReturn insertString: [baseComplements objectForKey: aBaseString] atIndex: 0];
}
return theReturn;
}
// given an ambiguous (but valid) sequence such as ATRNYGG, this will return an array
// where each entry represents a possible equivalent sequence using only ATCG.
- (NSArray *) getAllSitesForSequence: (NSString *) entry {
// we build up an array of possible sites, one base at a time.
int loopCounter, innerLoopCounter;
unsigned char aBase;
NSString *aBaseString, *tempString, *theReplacements;
NSString *theSequence = [entry uppercaseString];
NSEnumerator *theArrayEnumerator;
NSMutableArray *tempArray;
NSMutableArray *theReturn = [NSMutableArray arrayWithObject: [NSMutableString stringWithString: @""]];
for (loopCounter = 0; loopCounter < [theSequence length]; loopCounter++ ) {
// we need both the char and the string for different reasons
aBase = [theSequence characterAtIndex: loopCounter];
aBaseString = [theSequence substringWithRange: NSMakeRange( loopCounter, 1) ];
// first case - a regular base that we can tack on
if ( [normalBaseSet characterIsMember: aBase] ) {
for (innerLoopCounter = 0; innerLoopCounter < [theReturn count]; innerLoopCounter++ ) {
[theReturn replaceObjectAtIndex: innerLoopCounter withObject:
[[theReturn objectAtIndex: innerLoopCounter] stringByAppendingString: aBaseString] ];
}
}
// we append a number of bases, depending on what the character is, expanding the array to handle
// all the options.
else {
tempArray = [NSMutableArray array];
theArrayEnumerator = [theReturn objectEnumerator];
theReplacements = [basesAndReplacements objectForKey: aBaseString];
while ( tempString = [theArrayEnumerator nextObject] ) {
for (innerLoopCounter = 0; innerLoopCounter < [theReplacements length]; innerLoopCounter++ ) {
[tempArray addObject: [tempString stringByAppendingString: [theReplacements substringWithRange: NSMakeRange( innerLoopCounter, 1) ] ]];
}
}
theReturn = tempArray;
}
}
return theReturn;
}
- (NSRange) findLongestORFInSequence: (NSString *)entry startingWithATG: (BOOL)atgStart inBothDirections: (BOOL)bothDirections {
int currentORFStartLocation = -1;
int currentORFLength = 0;
int maxORFStartLocation = 0;
int maxORFLength = 0;
int outerLoopCounter, innerLoopCounter, currentCodonStart;
NSString *aCodon;
NSCharacterSet *aCodonsBases;
// set up some values to check against
NSSet *stopCodonSet = [NSSet setWithObjects: @"TAA", @"TAG", @"TGA", nil];
NSSet *reversedStopCodonSet = [NSSet setWithObjects: @"TTA", @"CTA", @"TCA", nil];
// to simplify searches, we capitalize the string
NSString *theSequence = [entry uppercaseString];
// Now that we have our copies, we can analyze the sequence
////////////////////////////////////////
// Two possible ways to analyze - one with a ATG start
// one with any ORF
//
// this one is the ATG start
////////////////////////////////////////
if ( atgStart ) {
NSRange currentATGRange;
// we'll do this once forward and (possibly) once reverse - this is the forward
currentATGRange = [theSequence rangeOfString: @"ATG"];
while ( currentATGRange.location != NSNotFound ) {
currentORFStartLocation = currentATGRange.location;
currentORFLength = 3;
innerLoopCounter = currentORFStartLocation + 3;
while ( innerLoopCounter + 3 < [theSequence length] ) {
// find the closest stop codon
aCodon = [theSequence substringWithRange: NSMakeRange( innerLoopCounter, 3 ) ];
// if the sequence is ambiguous, we call an end to any open ORFs
aCodonsBases = [NSCharacterSet characterSetWithCharactersInString: aCodon];
if ( ![strictBaseSet isSupersetOfSet: aCodonsBases] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength - 1;
maxORFStartLocation = currentORFStartLocation;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = -1;
break;
}
// do the same thing if it's a stop codon
else if ( [stopCodonSet containsObject: aCodon] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength - 1;
maxORFStartLocation = currentORFStartLocation;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = -1;
break;
}
// otherwise, we just keep going to the next codon
currentORFLength = currentORFLength + 3;
innerLoopCounter = innerLoopCounter + 3;
}
// the loop through the sequence has ended
// we need to confirm that we haven't run off the far end of the sequence within an ORF
if ( currentORFStartLocation != -1 ) {
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength;
maxORFStartLocation = currentORFStartLocation;
}
}
// move on to the next ATG
currentATGRange = [theSequence rangeOfString: @"ATG" options: NSCaseInsensitiveSearch range: NSMakeRange( currentATGRange.location + 1, [theSequence length] - currentATGRange.location - 2 ) ];
}
if ( bothDirections ) {
// we do everything in reverse, though the logic is largely the same
currentATGRange = [theSequence rangeOfString: @"CAT" options: NSBackwardsSearch range: NSMakeRange( 0, [theSequence length]) ];
while ( currentATGRange.location != NSNotFound ) {
currentORFStartLocation = currentATGRange.location;
currentORFLength = 3;
innerLoopCounter = currentORFStartLocation - 3;
while ( innerLoopCounter - 3 > 0 ) {
// find the closest stop codon
aCodon = [theSequence substringWithRange: NSMakeRange( innerLoopCounter, 3 ) ];
// if the sequence is ambiguous, we call an end to any open ORFs
aCodonsBases = [NSCharacterSet characterSetWithCharactersInString: aCodon];
if ( ![strictBaseSet isSupersetOfSet: aCodonsBases] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength;
// the start location is actually wrong, since it's the far end - we need the start
maxORFStartLocation = currentORFStartLocation - currentORFLength + 2;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = -1;
break;
}
// do the same thing if it's a stop codon
else if ( [reversedStopCodonSet containsObject: aCodon] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength;
// the start location is actually wrong, since it's the far end - we need the start
maxORFStartLocation = currentORFStartLocation - currentORFLength + 2;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = -1;
break;
}
// otherwise, we just keep going to the next codon
currentORFLength = currentORFLength + 3;
innerLoopCounter = innerLoopCounter - 3;
}
// we need to confirm that we haven't run off the far end of the sequence within an ORF
if ( currentORFStartLocation != -1 ) {
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength;
// the start location is actually wrong, since it's the far end - we need the start
maxORFStartLocation = 0;
}
}
currentATGRange = [theSequence rangeOfString: @"CAT" options: NSBackwardsSearch range: NSMakeRange( 0, currentATGRange.location) ];
}
}
}
////////////////////////////////////////
// ORFs without an ATG found here
////////////////////////////////////////
else {
// we'll do this once forward and once reverse - this is the forward
for ( outerLoopCounter=0; outerLoopCounter < 3; outerLoopCounter++ ) {
// we miss the very last codon this way, but it's an acceptable risk, since it'll mostly be low quality trace
for (innerLoopCounter = 0; innerLoopCounter < (([theSequence length] / 3) - 1); innerLoopCounter++ ) {
currentCodonStart = innerLoopCounter * 3 + outerLoopCounter;
aCodon = [theSequence substringWithRange: NSMakeRange( currentCodonStart, 3 ) ];
// if the sequence is ambiguous, we skip it and call an end to any open ORFs
aCodonsBases = [NSCharacterSet characterSetWithCharactersInString: aCodon];
if ( ![strictBaseSet isSupersetOfSet: aCodonsBases] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength - 1;
maxORFStartLocation = currentORFStartLocation;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = -1;
}
// do the same thing if it's a stop codon
else if ( [stopCodonSet containsObject: aCodon] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength - 1;
maxORFStartLocation = currentORFStartLocation;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = -1;
}
// must have a plain old codon
else {
// two choices - starting an ORF, or continuing it
if ( currentORFStartLocation == -1 ) { // start a new one
currentORFStartLocation = currentCodonStart;
currentORFLength = 3;
}
else {
currentORFLength = currentORFLength + 3;
}
}
}
// we've finished a pass of the inner loop (a run through of one reading frame
// see if the ORF is still open
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength;
maxORFStartLocation = currentORFStartLocation;
}
// reset the values
currentORFLength = 0;
currentORFStartLocation = -1;
}
//////////////////////////////////////////////////
// do it over again, looking for the reverse of stop codons.
//////////////////////////////////////////////////
if ( bothDirections ) {
for ( outerLoopCounter=0; outerLoopCounter < 3; outerLoopCounter++ ) {
// we miss the very last codon this way, but it's an acceptable risk, since it'll mostly be low quality trace
for (innerLoopCounter = 0; innerLoopCounter < (([theSequence length] / 3) - 1); innerLoopCounter++ ) {
currentCodonStart = innerLoopCounter * 3 + outerLoopCounter;
aCodon = [theSequence substringWithRange: NSMakeRange( currentCodonStart, 3 ) ];
// if the sequence is ambiguous, we skip it and call an end to any open ORFs
aCodonsBases = [NSCharacterSet characterSetWithCharactersInString: aCodon];
if ( ![strictBaseSet isSupersetOfSet: aCodonsBases] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength - 1;
maxORFStartLocation = currentORFStartLocation;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = - 1;
}
// do the same thing if it's a stop codon
else if ( [reversedStopCodonSet containsObject: aCodon] ) {
// see if we've got the longest one yet
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength - 1;
maxORFStartLocation = currentORFStartLocation;
}
// now, reset our values
currentORFLength = 0;
currentORFStartLocation = - 1;
}
// must have a plain old codon
else {
// two choices - starting an ORF, or continuing it
if ( currentORFStartLocation == -1 ) { // start a new one
currentORFStartLocation = currentCodonStart;
currentORFLength = 3;
}
else {
currentORFLength = currentORFLength + 3;
}
}
}
// we've finished a pass of the inner loop (a run through of one reading frame
// see if the ORF is still open
if ( currentORFLength > maxORFLength ) {
maxORFLength = currentORFLength;
maxORFStartLocation = currentORFStartLocation;
}
// reset the values
currentORFLength = 0;
currentORFStartLocation = -1;
}
}
}
///////// WE'RE DONE! //////////////////
return NSMakeRange( maxORFStartLocation, maxORFLength);
}
@end
|