File: World.java

package info (click to toggle)
biogenesis 0.8-3.3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 868 kB
  • sloc: java: 6,254; xml: 53; makefile: 5; sh: 4
file content (631 lines) | stat: -rw-r--r-- 19,423 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/* Copyright (C) 2006-2010  Joan Queralt Molina
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 */
package biogenesis;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Collections;
import java.io.*;
import java.awt.*;
/**
 * This class contains all the information needed to run a world:
 * the organisms, the substances and the biological corridors. It
 * also contains a reference to the visible part of the world,
 * {@link VisibleWorld}, and its statistics {@link WorldStatistics}.
 * There are methods to do all needed operations to the world: manage
 * organisms and substances.
 */
public class World implements Serializable{
	/**
	 * Version number of the class
	 */
	private static final long serialVersionUID = Utils.FILE_VERSION;
	/**
	 * World width
	 */
	protected int _width;
	/**
	 * World height
	 */
	protected int _height;
	/**
	 * A list of the organisms in the world, even dead ones.
	 * Note that this must be a synchronized list so it is mandatory to
	 * manually synchronize when iterating over it. 
	 */
	protected List<Organism> _organisms;
	/**
	 * A list of all input biological corridors from where organisms
	 * of other hosts will arrive.
	 * Note that this must be a synchronized list so it is mandatory to
	 * manually synchronize when iterating over it.
	 */
	transient protected List<InCorridor> inCorridors;
	/**
	 * A list of all output biological corridors to send organisms
	 * to other hosts.
	 * Note that this must be a synchronized list so it is mandatory to
	 * manually synchronize when iterating over it.
	 */
	transient protected List<OutCorridor> outCorridors;
	/**
	 * Number of living organisms in the world
	 */
	protected int _population = 0;
	/**
	 * The next identification number that will be assigned to an organism
	 * in this world
	 */
	protected int NEXT_ID;
	/**
	 * A reference to the visible world part of this world used basically
	 * to indicate which parts of the world should be repainted due to
	 * events in the world.
	 */
	transient protected VisibleWorld _visibleWorld;
	/**
	 * Frame counter. 256 frames are a time unit. This value is used to count
	 * time and to trigger some window updating at regular intervals.
	 */
	private int nFrames;
	/**
	 * The amount of O2 in the atmosphere of this world. 
	 */
	protected double _O2;
	/**
	 * The amount of CO2 in the atmosphere of this world.
	 */
	protected double _CO2;
	/**
	 * Reference to the object that keeps track of all world statistics. 
	 */
	protected WorldStatistics worldStatistics;
	/**
	 * Called by the JRE when an instance of this class is read from a file
	 * 
	 * @param in  The stream from where the object comes from
	 * @throws IOException
	 * @throws ClassNotFoundException 
	 */
	private void readObject(java.io.ObjectInputStream in)
    throws IOException, ClassNotFoundException {
		in.defaultReadObject();
		inCorridors = Collections.synchronizedList(new ArrayList<InCorridor>());
		outCorridors = Collections.synchronizedList(new ArrayList<OutCorridor>());
	}
	/**
	 * Returns a new StatisticsWindow refering to this world.
	 * 
	 * @return  A newly created StatisticsWindow.
	 */
	public StatisticsWindow createStatisticsWindow() {
		return new StatisticsWindow(_visibleWorld._mainWindow, worldStatistics, _organisms);
	}
	/**
	 * Finds an organism that has the given coordinates inside its bounding box and
	 * returns a reference to it. If more than on organism satisfies this condition,
	 * if possible, an alive organism is returned. If non organism satisfies this
	 * condition, this method returns null.
	 * 
	 * @param x  X coordinate
	 * @param y  Y coordinate
	 * @return  An organism with the point (x,y) inside its bounding box, or null
	 * if such organism doesn't exist.
	 */
	public Organism findOrganismFromPosition(int x, int y) {
		Organism b;
		Organism deadOrganism = null;
		synchronized(_organisms) {
			for (Iterator<Organism> it = _organisms.iterator(); it.hasNext(); ) {
				b = it.next();
				if (b.contains(x,y)) {
					if (b.isAlive())
						return b;
					deadOrganism = b;
				}
			}
		}
		return deadOrganism;
	}
	/**
	 * Returns the world's width.
	 * 
	 * @return  The world's width.
	 */
	public int getWidth() {
		return _width;
	}
	/**
	 * Returns the world's height.
	 * 
	 * @return  The world's height.
	 */
	public int getHeight() {
		return _height;
	}
	/**
	 * Returns the next available organism identification number.
	 * 
	 * @return  A unique number used to identify an organism.
	 */
	public int getNewId() {
		return NEXT_ID++;
	}
	/**
	 * Returns the actual time.
	 * 
	 * @return  The actual time.
	 */
	public long getTime() {
		return worldStatistics.getTime();
	}
	/**
	 * Returns the number of corpses that still have energy and drawn in the
	 * world.
	 * 
	 * @return  The number of corpses in the world.
	 */
	public int getNCorpses() {
		return _organisms.size() - _population;
	}
	/**
	 * Returns the number of alive organisms that populate the world.
	 * 
	 * @return  The number of alive organisms in the world.
	 */
	public int getPopulation() {
		return _population;
	}
	/**
	 * Increase the population counter by one.
	 * 
	 * This method should be called every time a new organism is
	 * created. Normally, it is called by addOrganism, but in some
	 * cases it may be used directly.
	 */
	public void increasePopulation() {
		_population++;
		worldStatistics.eventPopulationIncrease(_population);
	}
	/**
	 * Decrease the population counter by one.
	 * 
	 * This method should be called every time an organism dies.
	 * Normally, it is called by Organism.die or Organism.breath,
	 * but in some cases it may be used directly.
	 */
	public void decreasePopulation() {
		_population--;
		worldStatistics.eventPopulationDecrease(_population);
	}
	/**
	 * Returns the amount of O2 that exist in the atmosphere.
	 * 
	 * @return  The amount of O2.
	 */
	public double getO2() {
		return _O2;
	}
	/**
	 * Returns the amount of CO2 that exist in the atmosphere.
	 * 
	 * @return  The amount of CO2.
	 */
	public double getCO2() {
		return _CO2;
	}
	/**
	 * Add O2 to the atmosphere.
	 * 
	 * @param q  The amount of O2 to add.
	 */
	public void addO2(double q) {
		_O2 += q;
	}
	/**
	 * Add CO2 to the atmosphere.
	 * 
	 * @param q  The amount of CO2 to add.
	 */
	public void addCO2(double q) {
		_CO2 += q;
	}
	/**
	 * Substracts O2 from the atmosphere.
	 * 
	 * @param q  The amount of O2 to substract.
	 */
	public void decreaseO2(double q) {
		_O2 -= Math.min(q, _O2);
	}
	/**
	 * Substract CO2 from the atmosphere.
	 * 
	 * @param q  The amount of CO2 to substract.
	 */
	public void decreaseCO2(double q) {
		_CO2 -= Math.min(q, _CO2);
	}
	/**
	 * Consume O2 from the atmosphere to realize the respiration process
	 * needed to consume accumulated chemical energy. Frees the same
	 * amount of CO2 to the atmosphere than O2 consumed.
	 * 
	 * @param q  The amount of O2 required.
	 * @return  The amount of O2 obtained. This is always <code>q</code>
	 * unless there weren't enough O2 in the atmosphere.
	 */
	public double respiration(double q) {
		double d = Math.min(q,_O2);
		_O2 -= d;
		_CO2 += d;
		return d;
	}
	/**
	 * Consume CO2 from the atmosphere to realize the photosynthesis process
	 * needed to obtain chemical energy from the Sun. Frees the same amount
	 * of O2 to the atmosphere than CO2 consumed.
	 * 
	 * The CO2 obtained is calculated as follows: the total length of the
	 * organism's green segments is divided by a fixed parameter that indicates
	 * green segment effectiveness. Then, the result is multiplied by the total
	 * CO2 in the atmosphere and divided by another parameter that indicates
	 * the concentration of CO2 needed to absorve it. The result is the total
	 * amount of CO2 that the organism can get. This value can't be greater than
	 * the total amount of CO2 in the atmosphere, nor the effectiveness of the
	 * initial length.
	 * 
	 * @param q  The total length of the organism's green segments.
	 * @return  The amount of CO2 obtained. 
	 */
	public double photosynthesis(double q) {
		q /= Utils.GREEN_OBTAINED_ENERGY_DIVISOR;
		q = Utils.min(q,q*_CO2/Utils.DRAIN_SUBS_DIVISOR,_CO2);
		_CO2 -= q;
		_O2 += q;
		return q;
	}
	/**
	 * Constructor of the World class. All internal structures are initialized and
	 * the world's size is obtained from parameters.
	 * 
	 * @param visibleWorld  A reference to the visual representation of this world.
	 */
	public World(VisibleWorld visibleWorld) {
		_visibleWorld = visibleWorld;
		_width = Utils.WORLD_WIDTH;
		_height = Utils.WORLD_HEIGHT;
		_organisms = Collections.synchronizedList(new ArrayList<Organism>(Utils.ORGANISMS_VECTOR_SIZE));
		inCorridors = Collections.synchronizedList(new ArrayList<InCorridor>());
		outCorridors = Collections.synchronizedList(new ArrayList<OutCorridor>());
		worldStatistics = new WorldStatistics();
	}
	/**
	 * When a world object is read from a file, it must be linked with its visualization.
	 * That is what this method does.
	 * 
	 * @param visibleWorld  A reference to the visual representation of this world.
	 */
	public void init(VisibleWorld visibleWorld) {
		_visibleWorld = visibleWorld;
		_visibleWorld.setPreferredSize(new Dimension(getWidth(), getHeight()));
	}
	/**
	 * Populate the word with a new set of organisms.
	 * This is used to destroy a world and create a new one.
	 */
	public void genesis() {
		// Reset atributs
		nFrames = 0;
		_O2 = Utils.INITIAL_O2;
		_CO2 = Utils.INITIAL_CO2;
		NEXT_ID = 0;
		_population = 0;
		_visibleWorld.setSelectedOrganism(null);
		_organisms.clear();
		// Initialize size
		_width = Utils.WORLD_WIDTH;
		_height = Utils.WORLD_HEIGHT;
		_visibleWorld.setPreferredSize(new Dimension(Utils.WORLD_WIDTH, Utils.WORLD_HEIGHT));
		// Create statistics
		worldStatistics = new WorldStatistics();
		// Create organisms
		for (int i=0; i<Utils.INITIAL_ORGANISMS; i++) {
			Organism b = new Organism(this);
			// Only add the new organism if it can be placed in the world
			if (b.randomCreate())
				addOrganism(b,null);
		}
	}
	/**
	 * Remove all corpses from the world and return their organic matter to
	 * the atmosphere in the form of CO2.
	 */
	public void disperseAll() {
		Organism b;
		synchronized (_organisms) {
			for (Iterator<Organism> it = _organisms.iterator(); it.hasNext();) {
				b = it.next();
				if (!b.isAlive())
					b.useEnergy(b.getEnergy());
			}
		}
	}
	/**
	 * Kill all organisms in the world.
	 */
	public void killAll() {
		Organism org;
		synchronized (_organisms) {
			for (Iterator<Organism> it = _organisms.iterator(); it.hasNext();) {
				org = it.next();
				if (org.isAlive())
					org.die(null);
			}
		}
	}
	/**
	 * Draws all visible components of the world to a graphic context.
	 * This includes organisms and corridors. Called from {@link biogenesis.VisibleWorld.paintComponents}.
	 * 
	 * @param g  The graphic context to draw to.
	 */
	public void draw(Graphics g) {
		Organism b;
		Corridor c;
		synchronized (inCorridors) {
			for (Iterator<InCorridor> it = inCorridors.iterator(); it.hasNext();) {
				c = it.next();
				c.draw(g);
			}
		}
		synchronized (outCorridors) {
			for (Iterator<OutCorridor> it = outCorridors.iterator(); it.hasNext();) {
				c = it.next();
				c.draw(g);			
			}
		}
		synchronized (_organisms) {
			for (Iterator<Organism> it = _organisms.iterator(); it.hasNext();) {
				b = it.next();
				b.draw(g);
			}
		}
	}
	/**
	 * Determines the world's region that needs to be repainted in the associated
	 * {@link biogenesis.VisualWorld} and instructs it to do it.
	 * 
	 * For optimization, only paints organisms that has moved in the last frame.
	 */
	public void setPaintingRegion() {
		Organism b;
		Corridor c;
		synchronized (inCorridors) {
			for (Iterator<InCorridor> it = inCorridors.iterator(); it.hasNext();) {
				c = it.next();
				_visibleWorld.repaint(c);
			}
		}
		synchronized (outCorridors) {
			for (Iterator<OutCorridor> it = outCorridors.iterator(); it.hasNext();) {
				c = it.next();
				_visibleWorld.repaint(c);
				if (c.getTravellingOrganism() != null)
					_visibleWorld.repaint(c.getTravellingOrganism());
			}
		}
		synchronized (_organisms) {
			for (Iterator<Organism> it = _organisms.iterator(); it.hasNext();) {
				b = it.next();
				if (b.hasMoved) {
					_visibleWorld.repaint(b.lastFrame);
					_visibleWorld.repaint(b);
				}
			}
		}
	}
	/**
	 * Executes a frame. This method iterates through all objects in the world
	 * and make them to execute a movement. Here is the place where all action
	 * occurs: organism movement, interaction, birth and death.
	 * 
	 * Additionally, every 20 frames the {@link InfoWindow} is updated, if showed,
	 * and every 256 frames the time counter is increased by 1.
	 */
	public void time() {
		int i;
		Organism b;
		InCorridor c;
		synchronized (inCorridors) {
			for (Iterator<InCorridor> it = inCorridors.iterator(); it.hasNext();) {
				c = it.next();
				c.frame();
			}
		}
		synchronized (_organisms) {
			/* We can't use an Iterator here because this list has to be changed
			 * inside Organism.move (when new organisms are born) and we need to
			 * remove organisms with no energy, so a ConcurrentModificationException
			 * will be thrown.
			 */
			int l = _organisms.size();
			for (i=0; i<l; i++) {
				b = _organisms.get(i);
				if (!b.move()) {
					// Organism has no energy -> remove from the list
					_visibleWorld.repaint(b);
					_organisms.remove(i);
					if (_visibleWorld.getSelectedOrganism() == b)
						_visibleWorld.setSelectedOrganism(null);
					l--;
					i--;
				}
			}
		}
		if (nFrames++ % 20 == 0)
			_visibleWorld._mainWindow.getInfoPanel().recalculate();
		if (nFrames % 256 == 0) {
			nFrames = 0;
			worldStatistics.eventTime(_population, _O2, _CO2);
		}
	}
	/**
	 * Add a pair of biological corridors to the world.
	 * This method is called by {@link biogenesis.Connection.setState} when
	 * a new connection is stablished in order to activate the pair
	 * of corridors associated with the new connection.
	 * 
	 * @param in  The corridor where organisms will arrive from another world.
	 * @param out  The corridor where organisms will leave this world.
	 */
	public void addCorridors(InCorridor in, OutCorridor out) {
		inCorridors.add(in);
		outCorridors.add(out);
	}
	/**
	 * Remove a pair of biological corridors from the world.
	 * This method is called by {@link biogenesis.Connection.setState} when
	 * a connection is closed in order to remove the pair of corridors
	 * associated with the closing connection.
	 * 
	 * @param in  The corridor where organisms were arriving from the other world.
	 * @param out  The corridor where organisms were leaving from this world.
	 */
	public void removeCorridors(InCorridor in, OutCorridor out) {
		inCorridors.remove(in);
		outCorridors.remove(out);
		in.width++;
		in.height++;
		out.width++;
		out.height++;
		_visibleWorld.repaint(in);
		_visibleWorld.repaint(out);
	}
	/**
	 * Checks if an organism enters an output corridor. It is considered
	 * that the organism has entered a corridor if its center is inside
	 * the corridor.
	 * 
	 * @param org  The organism that is being checked.
	 * @return  The corridor that the organism is in, or null if it is not
	 * inside any corridor.
	 */
	public OutCorridor checkHitCorridor(Organism org) {
		OutCorridor c;
		synchronized (outCorridors) {
			for (Iterator<OutCorridor> it = outCorridors.iterator(); it.hasNext();) {
				c = it.next();
				if (c.contains(org._centerX, org._centerY))
					return c;
			}
		}
		return null;
	}
	/**
	 * Checks if an organism has a high probability of being in touch with
	 * another organism. This is done by checking if the bounding rectangles
	 * of both organisms overlaps. 
	 * 
	 * @param b1  The organism that is being checked.
	 * @return  The organism which bounding rectangle is touching the bounding
	 * rectangle of {@code b1} or null if there is no such organism. 
	 */
	public Organism fastCheckHit(Organism b1) {
		Organism b;
		synchronized (_organisms) {
			for (Iterator<Organism> it = _organisms.iterator(); it.hasNext(); ) { 
				b = it.next();
				if (b1 != b) {
					if (b1.intersects(b)) {
						return b1;
					}
				}
			}
		}
		return null;
	}
	/**
	 * Checks if an organism hits another organism.
	 * 
	 * @param org1  The organism to check.
	 * @return  The organism that is touching {@code org1} or null if not such
	 * organism exists. 
	 */
	public Organism checkHit(Organism org1) {
		Organism org;
		synchronized(_organisms) {
			for (Iterator<Organism> it = _organisms.iterator(); it.hasNext(); ) { 
				org = it.next();
				if (org1 != org) {
					// First check if the bounding boxes intersect
					if (org1.intersects(org)) {
						// Check if they are touching
						if (org1.contact(org))
							return org1;
					}
				}
			}
		}
		return null;
	}
	/**
	 * Adds an organism to the world. Once added, the new organism will move at every
	 * frame and interact with other organisms in the world.
	 * 
	 * Updates world statistics, population and the {@link biogenesis.InfoWindow}, if necessary.
	 * 
	 * @param child  The organism that needs to be added.
	 * @param parent  The parent of the added organism, or null if there is no parent.
	 */
	public void addOrganism(Organism child, Organism parent) {
		_organisms.add(child);
		if (parent == _visibleWorld.getSelectedOrganism())
			_visibleWorld._mainWindow.getInfoPanel().changeNChildren();
		if (parent != null) {
			worldStatistics.eventOrganismBorn(child, parent);
		}
		worldStatistics.eventOrganismCreated();
		increasePopulation();
	}
	/**
	 * Informs the world of a defunction event. This will update statistics.
	 * 
	 * @param dyingOrganism  The organism that has just died.
	 * @param killingOrganism  The organism that has killed the other organism, if any.
	 */
	public void organismHasDied(Organism dyingOrganism, Organism killingOrganism) {
		worldStatistics.eventOrganismDie(dyingOrganism, killingOrganism);
		if (killingOrganism == _visibleWorld.getSelectedOrganism())
			_visibleWorld._mainWindow.getInfoPanel().changeNKills();
		if (dyingOrganism == _visibleWorld.getSelectedOrganism())
			_visibleWorld.showDeadToolbar();
	}
	/**
	 * Informs the world of an infection event. This will update statistics.
	 * 
	 * @param infectedOrganism  The organism that has just been infected.
	 * @param infectingOrganism  The organism that has infected the other organism.
	 */
	public void organismHasBeenInfected(Organism infectedOrganism, Organism infectingOrganism) {
		worldStatistics.eventOrganismInfects(infectedOrganism, infectingOrganism);
		if (infectingOrganism == _visibleWorld.getSelectedOrganism())
			_visibleWorld._mainWindow.getInfoPanel().changeNInfected();
	}
}