File: rio.java

package info (click to toggle)
biojava6-live 6.1.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 109,220 kB
  • sloc: java: 245,626; xml: 27,410; python: 64; makefile: 39; sh: 31
file content (526 lines) | stat: -rw-r--r-- 25,296 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
// $Id:
// FORESTER -- software libraries and applications
// for evolutionary biology research and applications.
//
// Copyright (C) 2008-2009 Christian M. Zmasek
// Copyright (C) 2008-2009 Burnham Institute for Medical Research
// Copyright (C) 2000-2001 Washington University School of Medicine
// and Howard Hughes Medical Institute
// All rights reserved
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
//
// Contact: phylosoft @ gmail . com
// WWW: https://sites.google.com/site/cmzmasek/home/software/forester

package org.forester.application;

import java.io.File;
import java.io.IOException;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;

import org.forester.datastructures.IntMatrix;
import org.forester.io.parsers.IteratingPhylogenyParser;
import org.forester.io.parsers.PhylogenyParser;
import org.forester.io.parsers.nexus.NexusPhylogeniesParser;
import org.forester.io.parsers.nhx.NHXParser;
import org.forester.io.parsers.nhx.NHXParser.TAXONOMY_EXTRACTION;
import org.forester.io.parsers.phyloxml.PhyloXmlParser;
import org.forester.io.parsers.util.ParserUtils;
import org.forester.io.writers.PhylogenyWriter;
import org.forester.phylogeny.Phylogeny;
import org.forester.rio.RIO;
import org.forester.rio.RIO.REROOTING;
import org.forester.rio.RIOException;
import org.forester.sdi.SDIException;
import org.forester.sdi.SDIutil.ALGORITHM;
import org.forester.util.BasicDescriptiveStatistics;
import org.forester.util.CommandLineArguments;
import org.forester.util.EasyWriter;
import org.forester.util.ForesterUtil;

public class rio {

    final static private String PRG_NAME                 = "rio";
    final static private String PRG_VERSION              = "4.000 beta 10";
    final static private String PRG_DATE                 = "140211";
    final static private String E_MAIL                   = "phyloxml@gmail.com";
    final static private String WWW                      = "https://sites.google.com/site/cmzmasek/home/software/forester";
    final static private String HELP_OPTION_1            = "help";
    final static private String HELP_OPTION_2            = "h";
    final static private String GT_FIRST                 = "f";
    final static private String GT_LAST                  = "l";
    final static private String REROOTING_OPT            = "r";
    final static private String OUTGROUP                 = "o";
    final static private String RETURN_SPECIES_TREE      = "s";
    final static private String RETURN_BEST_GENE_TREE    = "g";
    final static private String USE_SDIR                 = "b";
    final static private String TRANSFER_TAXONOMY_OPTION = "t";

    public static void main( final String[] args ) {
        ForesterUtil.printProgramInformation( PRG_NAME,
                                              "resampled inference of orthologs",
                                              PRG_VERSION,
                                              PRG_DATE,
                                              E_MAIL,
                                              WWW,
                                              ForesterUtil.getForesterLibraryInformation() );
        CommandLineArguments cla = null;
        try {
            cla = new CommandLineArguments( args );
        }
        catch ( final Exception e ) {
            ForesterUtil.fatalError( e.getMessage() );
        }
        if ( cla.isOptionSet( HELP_OPTION_1 ) || cla.isOptionSet( HELP_OPTION_2 ) || ( args.length == 0 ) ) {
            printHelp();
        }
        if ( ( args.length < 3 ) || ( args.length > 11 ) || ( cla.getNumberOfNames() < 3 ) ) {
            System.out.println();
            System.out.println( "error: incorrect number of arguments" );
            System.out.println();
            printHelp();
        }
        final List<String> allowed_options = new ArrayList<String>();
        allowed_options.add( GT_FIRST );
        allowed_options.add( GT_LAST );
        allowed_options.add( REROOTING_OPT );
        allowed_options.add( OUTGROUP );
        allowed_options.add( USE_SDIR );
        allowed_options.add( RETURN_SPECIES_TREE );
        allowed_options.add( RETURN_BEST_GENE_TREE );
        allowed_options.add( TRANSFER_TAXONOMY_OPTION );
        final String dissallowed_options = cla.validateAllowedOptionsAsString( allowed_options );
        if ( dissallowed_options.length() > 0 ) {
            ForesterUtil.fatalError( "unknown option(s): " + dissallowed_options );
        }
        final File gene_trees_file = cla.getFile( 0 );
        final File species_tree_file = cla.getFile( 1 );
        final File orthology_outtable = cla.getFile( 2 );
        final File logfile;
        if ( cla.getNumberOfNames() > 3 ) {
            logfile = cla.getFile( 3 );
            if ( logfile.exists() ) {
                ForesterUtil.fatalError( "\"" + logfile + "\" already exists" );
            }
        }
        else {
            logfile = null;
        }
        boolean sdir = false;
        if ( cla.isOptionSet( USE_SDIR ) ) {
            if ( cla.isOptionHasAValue( USE_SDIR ) ) {
                ForesterUtil.fatalError( "no value allowed for -" + USE_SDIR );
            }
            sdir = true;
            if ( logfile != null ) {
                ForesterUtil.fatalError( "no logfile output for SDIR algorithm" );
            }
        }
        String outgroup = null;
        if ( cla.isOptionSet( OUTGROUP ) ) {
            if ( !cla.isOptionHasAValue( OUTGROUP ) ) {
                ForesterUtil.fatalError( "no value for -" + OUTGROUP );
            }
            if ( sdir ) {
                ForesterUtil.fatalError( "no outgroup option for SDIR algorithm" );
            }
            outgroup = cla.getOptionValueAsCleanString( OUTGROUP );
        }
        REROOTING rerooting = REROOTING.BY_ALGORITHM;
        if ( cla.isOptionSet( REROOTING_OPT ) ) {
            if ( !cla.isOptionHasAValue( REROOTING_OPT ) ) {
                ForesterUtil.fatalError( "no value for -" + REROOTING_OPT );
            }
            if ( sdir ) {
                ForesterUtil.fatalError( "no re-rooting option for SDIR algorithm" );
            }
            final String rerooting_str = cla.getOptionValueAsCleanString( REROOTING_OPT ).toLowerCase();
            if ( rerooting_str.equals( "none" ) ) {
                rerooting = REROOTING.NONE;
            }
            else if ( rerooting_str.equals( "midpoint" ) ) {
                rerooting = REROOTING.MIDPOINT;
            }
            else if ( rerooting_str.equals( "outgroup" ) ) {
                rerooting = REROOTING.OUTGROUP;
            }
            else {
                ForesterUtil
                .fatalError( "values for re-rooting are: 'none', 'midpoint', or 'outgroup' (minizming duplications is default)" );
            }
        }
        if ( ForesterUtil.isEmpty( outgroup ) && ( rerooting == REROOTING.OUTGROUP ) ) {
            ForesterUtil.fatalError( "selected re-rooting by outgroup, but outgroup not set" );
        }
        if ( !ForesterUtil.isEmpty( outgroup ) && ( rerooting != REROOTING.OUTGROUP ) ) {
            ForesterUtil.fatalError( "outgroup set, but selected re-rooting by other approach" );
        }
        int gt_first = RIO.DEFAULT_RANGE;
        int gt_last = RIO.DEFAULT_RANGE;
        if ( cla.isOptionSet( GT_FIRST ) ) {
            if ( !cla.isOptionHasAValue( GT_FIRST ) ) {
                ForesterUtil.fatalError( "no value for -" + GT_FIRST );
            }
            if ( sdir ) {
                ForesterUtil.fatalError( "no gene tree range option for SDIR algorithm" );
            }
            try {
                gt_first = cla.getOptionValueAsInt( GT_FIRST );
            }
            catch ( final IOException e ) {
                ForesterUtil.fatalError( "could not parse integer for -" + GT_FIRST + " option" );
            }
            if ( gt_first < 0 ) {
                ForesterUtil.fatalError( "attempt to set index of first tree to analyze to: " + gt_first );
            }
        }
        if ( cla.isOptionSet( GT_LAST ) ) {
            if ( !cla.isOptionHasAValue( GT_LAST ) ) {
                ForesterUtil.fatalError( "no value for -" + GT_LAST );
            }
            if ( sdir ) {
                ForesterUtil.fatalError( "no gene tree range option for SDIR algorithm" );
            }
            try {
                gt_last = cla.getOptionValueAsInt( GT_LAST );
            }
            catch ( final IOException e ) {
                ForesterUtil.fatalError( "could not parse integer for -" + GT_LAST + " option" );
            }
            if ( gt_last < 0 ) {
                ForesterUtil.fatalError( "attempt to set index of last tree to analyze to: " + gt_last );
            }
        }
        if ( ( ( gt_last != RIO.DEFAULT_RANGE ) && ( gt_first != RIO.DEFAULT_RANGE ) ) && ( ( gt_last < gt_first ) ) ) {
            ForesterUtil.fatalError( "attempt to set range (0-based) of gene to analyze to: from " + gt_first + " to "
                    + gt_last );
        }
        File return_species_tree = null;
        if ( !sdir && cla.isOptionSet( RETURN_SPECIES_TREE ) ) {
            if ( !cla.isOptionHasAValue( RETURN_SPECIES_TREE ) ) {
                ForesterUtil.fatalError( "no value for -" + RETURN_SPECIES_TREE );
            }
            final String s = cla.getOptionValueAsCleanString( RETURN_SPECIES_TREE );
            return_species_tree = new File( s );
            if ( return_species_tree.exists() ) {
                ForesterUtil.fatalError( "\"" + return_species_tree + "\" already exists" );
            }
        }
        File return_gene_tree = null;
        if ( !sdir && cla.isOptionSet( RETURN_BEST_GENE_TREE ) ) {
            if ( !cla.isOptionHasAValue( RETURN_BEST_GENE_TREE ) ) {
                ForesterUtil.fatalError( "no value for -" + RETURN_BEST_GENE_TREE );
            }
            final String s = cla.getOptionValueAsCleanString( RETURN_BEST_GENE_TREE );
            return_gene_tree = new File( s );
            if ( return_gene_tree.exists() ) {
                ForesterUtil.fatalError( "\"" + return_gene_tree + "\" already exists" );
            }
        }
        boolean transfer_taxonomy = false;
        if ( !sdir && cla.isOptionSet( TRANSFER_TAXONOMY_OPTION ) ) {
            if ( return_gene_tree == null ) {
                ForesterUtil.fatalError( "no point in transferring taxonomy data without returning best gene tree" );
            }
            transfer_taxonomy = true;
        }
        ForesterUtil.fatalErrorIfFileNotReadable( gene_trees_file );
        ForesterUtil.fatalErrorIfFileNotReadable( species_tree_file );
        if ( orthology_outtable.exists() ) {
            ForesterUtil.fatalError( "\"" + orthology_outtable + "\" already exists" );
        }
        long time = 0;
        System.out.println( "Gene trees                : " + gene_trees_file );
        System.out.println( "Species tree              : " + species_tree_file );
        System.out.println( "All vs all orthology table: " + orthology_outtable );
        if ( logfile != null ) {
            System.out.println( "Logfile                   : " + logfile );
        }
        if ( gt_first != RIO.DEFAULT_RANGE ) {
            System.out.println( "First gene tree to analyze: " + gt_first );
        }
        if ( gt_last != RIO.DEFAULT_RANGE ) {
            System.out.println( "Last gene tree to analyze : " + gt_last );
        }
        String rerooting_str = "";
        switch ( rerooting ) {
            case BY_ALGORITHM: {
                rerooting_str = "by minimizing duplications";
                break;
            }
            case MIDPOINT: {
                rerooting_str = "by midpoint method";
                break;
            }
            case OUTGROUP: {
                rerooting_str = "by outgroup: " + outgroup;
                break;
            }
            case NONE: {
                rerooting_str = "none";
                break;
            }
        }
        System.out.println( "Re-rooting                : " + rerooting_str );
        if ( !sdir ) {
            System.out.println( "Non binary species tree   : allowed" );
        }
        else {
            System.out.println( "Non binary species tree   : disallowed" );
        }
        if ( return_species_tree != null ) {
            System.out.println( "Write used species tree to: " + return_species_tree );
        }
        if ( return_gene_tree != null ) {
            System.out.println( "Write best gene tree to   : " + return_gene_tree );
            System.out.println( "Transfer taxonomic data   : " + transfer_taxonomy );
        }
        time = System.currentTimeMillis();
        final ALGORITHM algorithm;
        if ( sdir ) {
            algorithm = ALGORITHM.SDIR;
        }
        else {
            algorithm = ALGORITHM.GSDIR;
        }
        try {
            final RIO rio;
            boolean iterating = false;
            final PhylogenyParser p = ParserUtils.createParserDependingOnFileType( gene_trees_file, true );
            if ( p instanceof PhyloXmlParser ) {
                rio = RIO.executeAnalysis( gene_trees_file,
                                           species_tree_file,
                                           algorithm,
                                           rerooting,
                                           outgroup,
                                           gt_first,
                                           gt_last,
                                           logfile != null,
                                           true,
                                           transfer_taxonomy );
            }
            else {
                iterating = true;
                if ( p instanceof NHXParser ) {
                    final NHXParser nhx = ( NHXParser ) p;
                    nhx.setReplaceUnderscores( false );
                    nhx.setIgnoreQuotes( true );
                    nhx.setTaxonomyExtraction( TAXONOMY_EXTRACTION.AGGRESSIVE );
                }
                else if ( p instanceof NexusPhylogeniesParser ) {
                    final NexusPhylogeniesParser nex = ( NexusPhylogeniesParser ) p;
                    nex.setReplaceUnderscores( false );
                    nex.setIgnoreQuotes( true );
                    nex.setTaxonomyExtraction( TAXONOMY_EXTRACTION.AGGRESSIVE );
                }
                else {
                    throw new RuntimeException( "unknown parser type: " + p );
                }
                final IteratingPhylogenyParser ip = ( IteratingPhylogenyParser ) p;
                ip.setSource( gene_trees_file );
                rio = RIO.executeAnalysis( ip,
                                           species_tree_file,
                                           algorithm,
                                           rerooting,
                                           outgroup,
                                           gt_first,
                                           gt_last,
                                           logfile != null,
                                           true,
                                           transfer_taxonomy );
            }
            if ( algorithm == ALGORITHM.GSDIR ) {
                System.out.println( "Taxonomy linking based on : " + rio.getGSDIRtaxCompBase() );
            }
            final IntMatrix m;
            if ( iterating ) {
                m = rio.getOrthologTable();
            }
            else {
                m = RIO.calculateOrthologTable( rio.getAnalyzedGeneTrees(), true );
            }
            final BasicDescriptiveStatistics stats = rio.getDuplicationsStatistics();
            writeTable( orthology_outtable, stats.getN(), m );
            if ( ( algorithm != ALGORITHM.SDIR ) && ( logfile != null ) ) {
                writeLogFile( logfile,
                              rio,
                              species_tree_file,
                              gene_trees_file,
                              orthology_outtable,
                              PRG_NAME,
                              PRG_VERSION,
                              PRG_DATE,
                              ForesterUtil.getForesterLibraryInformation() );
            }
            if ( return_species_tree != null ) {
                writeTree( rio.getSpeciesTree(), return_species_tree, "Wrote (stripped) species tree to" );
            }
            if ( return_gene_tree != null ) {
                String tt = "";
                if ( transfer_taxonomy ) {
                    tt = "(with transferred taxonomic data) ";
                }
                writeTree( rio.getMinDuplicationsGeneTree(),
                           return_gene_tree,
                           "Wrote (one) minimal duplication gene tree " + tt + "to" );
            }
            final java.text.DecimalFormat df = new java.text.DecimalFormat( "0.#" );
            System.out.println( "Mean number of duplications  : " + df.format( stats.arithmeticMean() ) + " (sd: "
                    + df.format( stats.sampleStandardDeviation() ) + ") ("
                    + df.format( ( 100.0 * stats.arithmeticMean() ) / rio.getIntNodesOfAnalyzedGeneTrees() ) + "%)" );
            if ( stats.getN() > 3 ) {
                System.out.println( "Median number of duplications: " + df.format( stats.median() ) + " ("
                        + df.format( ( 100.0 * stats.median() ) / rio.getIntNodesOfAnalyzedGeneTrees() ) + "%)" );
            }
            System.out.println( "Minimum duplications         : " + ( int ) stats.getMin() + " ("
                    + df.format( ( 100.0 * stats.getMin() ) / rio.getIntNodesOfAnalyzedGeneTrees() ) + "%)" );
            System.out.println( "Maximum duplications         : " + ( int ) stats.getMax() + " ("
                    + df.format( ( 100.0 * stats.getMax() ) / rio.getIntNodesOfAnalyzedGeneTrees() ) + "%)" );
            System.out.println( "Gene tree internal nodes     : " + rio.getIntNodesOfAnalyzedGeneTrees() );
            System.out.println( "Gene tree external nodes     : " + rio.getExtNodesOfAnalyzedGeneTrees() );
        }
        catch ( final RIOException e ) {
            ForesterUtil.fatalError( e.getLocalizedMessage() );
        }
        catch ( final SDIException e ) {
            ForesterUtil.fatalError( e.getLocalizedMessage() );
        }
        catch ( final IOException e ) {
            ForesterUtil.fatalError( e.getLocalizedMessage() );
        }
        catch ( final OutOfMemoryError e ) {
            ForesterUtil.outOfMemoryError( e );
        }
        catch ( final Exception e ) {
            ForesterUtil.unexpectedFatalError( e );
        }
        catch ( final Error e ) {
            ForesterUtil.unexpectedFatalError( e );
        }
        time = System.currentTimeMillis() - time;
        System.out.println( "Time: " + time + "ms" );
        System.out.println( "OK" );
        System.exit( 0 );
    }

    private final static void printHelp() {
        System.out.println( "Usage" );
        System.out.println();
        System.out
        .println( PRG_NAME
                  + " [options] <gene trees infile> <species tree infile> <all vs all orthology table outfile> [logfile]" );
        System.out.println();
        System.out.println( " Options" );
        System.out.println( "  -" + GT_FIRST + "=<first>     : first gene tree to analyze (0-based index)" );
        System.out.println( "  -" + GT_LAST + "=<last>      : last gene tree to analyze (0-based index)" );
        System.out.println( "  -" + REROOTING_OPT
                            + "=<re-rooting>: re-rooting method for gene trees, possible values or 'none', 'midpoint'," );
        System.out.println( "                   or 'outgroup' (default: by minizming duplications)" );
        System.out.println( "  -" + OUTGROUP
                            + "=<outgroup>  : for rooting by outgroup, name of outgroup (external gene tree node)" );
        System.out
        .println( "  -" + RETURN_SPECIES_TREE + "=<outfile>   : to write the (stripped) species tree to file" );
        System.out.println( "  -" + RETURN_BEST_GENE_TREE
                            + "=<outfile>   : to write (one) minimal duplication gene tree to file" );
        System.out
        .println( "  -"
                + TRANSFER_TAXONOMY_OPTION
                + "             : to transfer taxonomic data from species tree to returned minimal duplication gene tree\n"
                + "                   (if -" + RETURN_BEST_GENE_TREE + " option is used)" );
        System.out.println( "  -" + USE_SDIR
                            + "             : to use SDIR instead of GSDIR (faster, but non-binary species trees are" );
        System.out.println( "                   disallowed, as are most options)" );
        System.out.println();
        System.out.println( " Formats" );
        System.out
        .println( "  The gene trees, as well as the species tree, ideally are in phyloXML (www.phyloxml.org) format," );
        System.out
        .println( "  but can also be in New Hamphshire (Newick) or Nexus format as long as species information can be" );
        System.out
        .println( "  extracted from the gene names (e.g. \"HUMAN\" from \"BCL2_HUMAN\") and matched to a single species" );
        System.out.println( "  in the species tree." );
        System.out.println();
        System.out.println( " Examples" );
        System.out.println( "  \"rio gene_trees.nh species.xml outtable.tsv log.txt\"" );
        System.out.println();
        System.out.println( " More information: http://code.google.com/p/forester/wiki/RIO" );
        System.out.println();
        System.exit( -1 );
    }

    private static void writeLogFile( final File logfile,
                                      final RIO rio,
                                      final File species_tree_file,
                                      final File gene_trees_file,
                                      final File outtable,
                                      final String prg_name,
                                      final String prg_v,
                                      final String prg_date,
                                      final String f ) throws IOException {
        final EasyWriter out = ForesterUtil.createEasyWriter( logfile );
        out.println( prg_name );
        out.println( "version : " + prg_v );
        out.println( "date    : " + prg_date );
        out.println( "based on: " + f );
        out.println( "----------------------------------" );
        out.println( "Gene trees                                      : " + gene_trees_file );
        out.println( "Species tree                                    : " + species_tree_file );
        out.println( "All vs all orthology table                      : " + outtable );
        out.flush();
        out.println( rio.getLog().toString() );
        out.close();
        System.out.println( "Wrote log to \"" + logfile + "\"" );
    }

    private static void writeTable( final File table_outfile, final int gene_trees_analyzed, final IntMatrix m )
            throws IOException {
        final EasyWriter w = ForesterUtil.createEasyWriter( table_outfile );
        final java.text.DecimalFormat df = new java.text.DecimalFormat( "0.####" );
        df.setDecimalSeparatorAlwaysShown( false );
        df.setRoundingMode( RoundingMode.HALF_UP );
        for( int i = 0; i < m.size(); ++i ) {
            w.print( "\t" );
            w.print( m.getLabel( i ) );
        }
        w.println();
        for( int x = 0; x < m.size(); ++x ) {
            w.print( m.getLabel( x ) );
            for( int y = 0; y < m.size(); ++y ) {
                w.print( "\t" );
                if ( x == y ) {
                    if ( m.get( x, y ) != gene_trees_analyzed ) {
                        ForesterUtil.unexpectedFatalError( "diagonal value is off" );
                    }
                    w.print( "-" );
                }
                else {
                    w.print( df.format( ( ( double ) m.get( x, y ) ) / gene_trees_analyzed ) );
                }
            }
            w.println();
        }
        w.close();
        System.out.println( "Wrote table to \"" + table_outfile + "\"" );
    }

    private static void writeTree( final Phylogeny p, final File f, final String comment ) throws IOException {
        final PhylogenyWriter writer = new PhylogenyWriter();
        writer.toPhyloXML( f, p, 0 );
        System.out.println( comment + " \"" + f + "\"" );
    }
}