1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
# This is -*-Perl-*- code
## Bioperl Test Harness Script for Modules
##
# $Id: PAML.t,v 1.12 2003/07/09 02:14:10 jason Exp $
# Before `make install' is performed this script should be runnable with
# `make test'. After `make install' it should work as `perl test.t'
use strict;
use vars qw($NUMTESTS $error);
BEGIN {
# to handle systems with no installed Test module
# we include the t dir (where a copy of Test.pm is located)
# as a fallback
eval { require Test; };
$error = 0;
if( $@ ) {
use lib 't';
}
use Test;
$NUMTESTS = 116;
plan tests => $NUMTESTS;
eval { require IO::String;
require Bio::Tools::Phylo::PAML;};
if( $@ ) { print STDERR "no IO string installed\n";
$error = 1;
}
}
END {
foreach ( $Test::ntest .. $NUMTESTS ) {
skip("unable to run all of the PAML tests",1);
}
}
exit(0) if( $error );
my $testnum;
my $verbose = 0;
## End of black magic.
##
## Insert additional test code below but remember to change
## the print "1..x\n" in the BEGIN block to reflect the
## total number of tests that will be run.
use Bio::Root::IO;
my $inpaml = new Bio::Tools::Phylo::PAML(-file => Bio::Root::IO->catfile(qw(t data codeml.mlc)));
ok($inpaml);
my $result = $inpaml->next_result;
ok($result);
ok($result->model, 'several dN/dS ratios for branches');
ok($result->version, qr'3\.12');
my $MLmat = $result->get_MLmatrix;
my $NGmat = $result->get_NGmatrix;
ok($NGmat->[0]->[1]->{'omega'}, 0.2507);
ok($NGmat->[0]->[1]->{'dN'}, 0.0863);
ok($NGmat->[0]->[1]->{'dS'}, 0.3443);
ok($NGmat->[2]->[3]->{'omega'}, 0.2178);
ok($NGmat->[2]->[3]->{'dN'}, 0.1348);
ok($NGmat->[2]->[3]->{'dS'}, 0.6187);
ok($MLmat->[0]->[1]->{'omega'}, 0.1948);
ok($MLmat->[0]->[1]->{'dN'}, 0.0839);
ok($MLmat->[0]->[1]->{'dS'}, 0.4309);
ok($MLmat->[0]->[1]->{'lnL'}, -1508.607268);
ok($MLmat->[2]->[3]->{'omega'}, 0.1611);
ok($MLmat->[2]->[3]->{'dN'}, 0.1306);
ok($MLmat->[2]->[3]->{'dS'}, 0.8105);
ok($MLmat->[2]->[3]->{'lnL'},-1666.440696);
my @codonposfreq = $result->get_codon_pos_basefreq();
ok($codonposfreq[0]->{'A'}, 0.23579);
ok($codonposfreq[0]->{'T'}, 0.14737);
ok($codonposfreq[1]->{'C'}, 0.25123);
ok($codonposfreq[2]->{'G'}, 0.32842);
# AAML parsing - Empirical model
$inpaml = new Bio::Tools::Phylo::PAML(-file => Bio::Root::IO->catfile
(qw(t data aaml.mlc)));
ok($inpaml);
$result = $inpaml->next_result;
ok($result);
ok($result->model, 'Empirical (wag.dat)');
my @trees = $result->get_trees;
ok(@trees, 1);
ok($trees[0]->score, -1042.768973);
ok((scalar grep { $_->is_Leaf } $trees[0]->get_nodes), $result->get_seqs);
my $aadistmat = $result->get_AADistMatrix();
ok($aadistmat);
ok($aadistmat->get_entry('Cow', 'Horse'), 0.5462);
ok($aadistmat->get_entry('Baboon', 'Langur'), 0.1077);
my %aafreq = %{$result->get_AAFreqs()};
ok(%aafreq);
ok($aafreq{'Human'}->{'N'}, 0.0769);
ok($aafreq{'Human'}->{'R'}, 0.1077);
my %ratfreqs = %{$result->get_AAFreqs('Rat')};
ok($ratfreqs{'R'},0.0923);
ok($ratfreqs{'F'},0.0154);
my %avgfreqs = %{$result->get_AAFreqs('Average')};
ok($avgfreqs{'Q'},0.0411);
ok($result->get_AAFreqs('Average')->{'I'},0.0424);
my $patterns = $result->patterns;
my @pat = @{$patterns->{'-patterns'}};
ok(scalar @pat, 98);
ok($patterns->{'-ns'}, 6);
ok($patterns->{'-ls'}, 130);
ok((sort $result->get_stat_names)[0], 'constant_sites');
ok($result->get_stat('constant_sites'), 46);
ok($result->get_stat('constant_sites_percentage'), 35.38);
# AAML parsing - pairwise model
$inpaml = new Bio::Tools::Phylo::PAML(-file => Bio::Root::IO->catfile
(qw(t data aaml_pairwise.mlc)));
ok($inpaml);
$result = $inpaml->next_result;
ok($result);
ok($result->model, 'Empirical_F (wag.dat)');
ok($result->get_stat('loglikelihood'),-1189.106658);
ok($result->get_stat('constant_sites'), 170);
ok($result->get_stat('constant_sites_percentage'), 59.65);
ok($result->get_AAFreqs('Average')->{'R'},0.0211);
ok($result->get_AAFreqs('rabbit')->{'L'},0.1228);
$aadistmat = $result->get_AADistMatrix();
ok($aadistmat);
ok($aadistmat->get_entry('rabbit', 'marsupial'), 0.2877);
ok($aadistmat->get_entry('human', 'goat-cow'), 0.1439);
$aadistmat = $result->get_AAMLDistMatrix();
ok($aadistmat);
ok($aadistmat->get_entry('rabbit', 'marsupial'), 0.3392);
ok($aadistmat->get_entry('human', 'goat-cow'), 0.1551);
my @seqs = $result->get_seqs;
ok($seqs[0]->display_id, 'human');
# YN00 parsing, pairwise Ka/Ks from Yang & Nielsen 2000
$inpaml = new Bio::Tools::Phylo::PAML(-file => Bio::Root::IO->catfile
(qw(t data yn00.mlc)));
ok($inpaml);
$result = $inpaml->next_result;
ok($result);
$MLmat = $result->get_MLmatrix;
$NGmat = $result->get_NGmatrix;
ok($NGmat->[0]->[1]->{'omega'}, 0.251);
ok($NGmat->[0]->[1]->{'dN'}, 0.0863);
ok($NGmat->[0]->[1]->{'dS'}, 0.3443);
ok($NGmat->[2]->[3]->{'omega'}, 0.218);
ok($NGmat->[2]->[3]->{'dN'}, 0.1348);
ok($NGmat->[2]->[3]->{'dS'}, 0.6187);
ok($MLmat->[0]->[1]->{'omega'}, 0.1625);
ok($MLmat->[0]->[1]->{'dN'}, 0.0818);
ok($MLmat->[0]->[1]->{'dS'}, 0.5031);
ok($MLmat->[2]->[3]->{'omega'}, 0.1262);
ok($MLmat->[2]->[3]->{'dN'}, 0.1298);
ok($MLmat->[2]->[3]->{'dN_SE'}, 0.0149);
ok($MLmat->[2]->[3]->{'dS'}, 1.0286);
ok($MLmat->[2]->[3]->{'dS_SE'}, 0.2614);
# codeml NSSites parsing
$inpaml = new Bio::Tools::Phylo::PAML
(-file => Bio::Root::IO->catfile(qw(t data codeml_nssites.mlc)));
ok($inpaml);
$result = $inpaml->next_result;
ok($result);
ok($result->model, 'One dN/dS ratio dGamma (ncatG=11)');
ok($result->version, 'paml 3.13, August 2002');
$NGmat = $result->get_NGmatrix;
ok($NGmat);
ok($NGmat->[0]->[1]->{'omega'}, 0.2782);
ok($NGmat->[0]->[1]->{'dN'}, 0.0133);
ok($NGmat->[0]->[1]->{'dS'}, 0.0478);
ok($NGmat->[1]->[2]->{'omega'}, 1.1055);
ok($NGmat->[1]->[2]->{'dN'}, 0.0742);
ok($NGmat->[1]->[2]->{'dS'}, 0.0671);
# this is
# model num description
# kappa log-likelihood tree length time used
# shape alpha/gamma r f
my @tstr = ([qw(0 one-ratio 0
4.54006 -906.017440 0.55764
)],
[qw(1 neutral 2
4.29790 -902.503869 0.56529
)],
[qw(2 selection 3
5.12250 -900.076500 0.6032
)],
);
my $iter = 0;
my $lastmodel;
foreach my $model ( $result->get_NSSite_results ) {
my $i = 0;
my $r = shift @tstr;
ok($model->model_num, $r->[$i++]);
ok($model->model_description, qr/$r->[$i++]/);
ok($model->num_site_classes,$r->[$i++]);
my $tree = $model->next_tree;
ok($model->kappa, $r->[$i++]);
ok($model->likelihood,$r->[$i]);
ok($tree->score, $r->[$i++]);
ok($tree->total_branch_length, $r->[$i++]);
if( $iter == 0 ) {
my $params = $model->shape_params;
ok($params->{'shape'}, 'alpha');
ok($params->{'gamma'}, '0.50000');
ok($params->{'r'}->[0], '1.00000');
ok($params->{'f'}->[0], '1.00000');
} elsif( $iter == 2 ) {
my $class = $model->dnds_site_classes;
ok($class->{'p'}->[0], '0.38160');
ok($class->{'w'}->[1], '1.00000');
}
$iter++;
$lastmodel = $model;
}
my ($firstsite) = $lastmodel->get_pos_selected_sites;
ok($firstsite->[0], 15);
ok($firstsite->[1], 'L');
ok($firstsite->[2], 0.6588);
|