1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
# -*-Perl-*-
## Bioperl Test Harness Script for Modules
##
my $error;
use strict;
use vars qw($DEBUG);
$DEBUG = $ENV{'BIOPERLDEBUG'} || 0;
BEGIN {
# to handle systems with no installed Test module
# we include the t dir (where a copy of Test.pm is located)
# as a fallback
$error = 0;
eval { require Test; };
if( $@ ) {
use lib 't';
}
use Test;
use vars qw($TESTCOUNT);
$TESTCOUNT = 22;
plan tests => $TESTCOUNT;
}
use Bio::TreeIO;
my $verbose = 0;
my $treeio = new Bio::TreeIO(-verbose => $verbose,
-format => 'nhx',
-file => Bio::Root::IO->catfile('t','data',
'test.nhx'));
my $tree = $treeio->next_tree;
my @nodes = $tree->find_node('ADH2');
ok(@nodes, 2);
if( $verbose ) {
$treeio = new Bio::TreeIO(-verbose => $verbose,
-format => 'nhx',
);
$treeio->write_tree($tree);
print "nodes are: \n",
join(", ", map { $_->id . ":". (defined $_->branch_length ?
$_->branch_length : '' ) } @nodes), "\n";
}
$treeio = new Bio::TreeIO(-format => 'newick',
-file => Bio::Root::IO->catfile('t','data',
'test.nh'));
$tree = $treeio->next_tree;
if( $verbose ) {
my $out = new Bio::TreeIO(-format => 'tabtree');
$out->write_tree($tree);
}
my @hADH = ( $tree->find_node('hADH1'),
$tree->find_node('hADH2') );
my ($n4) = $tree->find_node('yADH4');
ok($tree->is_monophyletic(-nodes => \@hADH,
-outgroup => $n4));
my @mixgroup = ( $tree->find_node('hADH1'),
$tree->find_node('yADH2'),
$tree->find_node('yADH3'),
);
my ($iADHX) = $tree->find_node('iADHX');
ok(! $tree->is_monophyletic(-nodes => \@mixgroup,
-outgroup=> $iADHX));
my $in = new Bio::TreeIO(-format => 'newick',
-fh => \*DATA);
$tree = $in->next_tree;
my ($a,$b,$c,$d) = ( $tree->find_node('A'),
$tree->find_node('B'),
$tree->find_node('C'),
$tree->find_node('D'));
ok($tree->is_monophyletic(-nodes => [$b,$c],
-outgroup => $d));
ok($tree->is_monophyletic(-nodes => [$b,$a],
-outgroup => $d) );
$tree = $in->next_tree;
my ($e,$f,$i);
($a,$b,$c,$d,$e,$f,$i) = ( $tree->find_node('A'),
$tree->find_node('B'),
$tree->find_node('C'),
$tree->find_node('D'),
$tree->find_node('E'),
$tree->find_node('F'),
$tree->find_node('I'),
);
ok(! $tree->is_monophyletic(-nodes => [$b,$f],
-outgroup => $d) );
ok($tree->is_monophyletic(-nodes => [$b,$a],
-outgroup => $f));
# test for paraphyly
ok( $tree->is_paraphyletic(-nodes => [$a,$b,$c],
-outgroup => $d), 0);
ok( $tree->is_paraphyletic(-nodes => [$a,$f,$e],
-outgroup => $i), 1);
# test for rerooting the tree
$tree = $in->next_tree;
$tree->verbose( -1 ) unless $DEBUG;
# reroot on an internal node: should work fine
$a = $tree->find_node('A');
my $node_cnt_orig = scalar($tree->get_nodes);
my $total_length_orig = $tree->total_branch_length;
ok($tree->reroot($a->ancestor) eq '1');
ok($node_cnt_orig, scalar($tree->get_nodes));
my $total_length_new = $tree->total_branch_length;
my $eps = 0.001 * $total_length_new; # tolerance for checking length
ok(($total_length_orig >= $tree->total_branch_length - $eps)
and ($total_length_orig <= $tree->total_branch_length + $eps));
ok($tree->get_root_node, $a->ancestor);
# try to reroot on a leaf: should end up rerooting on its ancestor
$a = $tree->find_node('C');
ok($tree->reroot($a) eq '1');
ok($node_cnt_orig, scalar($tree->get_nodes));
ok(($total_length_orig >= $tree->total_branch_length - $eps)
and ($total_length_orig <= $tree->total_branch_length + $eps));
ok($tree->get_root_node, $a->ancestor);
# try to reroot on existing root: should fail
$a = $tree->get_root_node;
ok($tree->reroot($a) eq '0');
# try a more realistic tree
$tree = $in->next_tree;
$a = $tree->find_node('VV');
$node_cnt_orig = scalar($tree->get_nodes);
$total_length_orig = $tree->total_branch_length;
ok($tree->reroot($a->ancestor) eq '1');
ok($node_cnt_orig, scalar($tree->get_nodes));
$total_length_new = $tree->total_branch_length;
$eps = 0.001 * $total_length_new; # tolerance for checking length
ok(($total_length_orig >= $tree->total_branch_length - $eps)
and ($total_length_orig <= $tree->total_branch_length + $eps));
ok($tree->get_root_node, $a->ancestor);
__DATA__
(D,(C,(A,B)));
(I,((D,(C,(A,B))),(E,(F,G))));
((A:0.3,B:2.1):0.000003,C:1e-2,D:4);
(A:0.031162,((((((B:0.022910,C:0.002796):0.010713,(D:0.015277,E:0.020484):0.005336):0.005588,((F:0.013293,(G:0.018374,H:0.003108):0.005318):0.006047,I:0.014607):0.001677):0.004196,(((((J:0.003307,K:0.001523):0.011884,L:0.006960):0.006514,((M:0.001683,N:0.000100):0.002226,O:0.007085):0.014649):0.008004,P:0.037422):0.005201,(Q:0.000805,R:0.000100):0.015280):0.005736):0.004612,S:0.042283):0.017979,(T:0.006883,U:0.016655):0.040226):0.014239,((((((V:0.000726,W:0.000100):0.028490,((((X:0.011182,Y:0.001407):0.005293,Z:0.011175):0.004701,AA:0.007825):0.016256,BB:0.029618):0.008146):0.004279,CC:0.035012):0.060215,((((((DD:0.014933,(EE:0.008148,FF:0.000100):0.015458):0.003891,GG:0.010996):0.001489,(HH:0.000100,II:0.000100):0.054265):0.003253,JJ:0.019722):0.013796,((KK:0.001960,LL:0.004924):0.013034,MM:0.010071):0.043273):0.011912,(NN:0.031543,OO:0.018307):0.059182):0.026517):0.011087,((PP:0.000100,QQ:0.002916):0.067214,(RR:0.064486,SS:0.013444):0.011613):0.050846):0.015644,((TT:0.000100,UU:0.009287):0.072710,(VV:0.009242,WW:0.009690):0.035346):0.042993):0.060365);
|