File: FactoryX.pm

package info (click to toggle)
bioperl 1.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 50,136 kB
  • sloc: perl: 172,618; xml: 22,869; lisp: 2,034; sh: 1,984; makefile: 19
file content (257 lines) | stat: -rw-r--r-- 6,355 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#
# Module for Bio::PhyloNetwork::FactoryX
#
# Please direct questions and support issues to <bioperl-l@bioperl.org> 
#
# Cared for by Gabriel Cardona <gabriel(dot)cardona(at)uib(dot)es>
#
# Copyright Gabriel Cardona
#
# You may distribute this module under the same terms as perl itself

# POD documentation - main docs before the code

=head1 NAME

Bio::PhyloNetwork::FactoryX - Module to sequentially generate
Phylogenetic Networks

=head1 SYNOPSIS

 use strict;
 use warnings;

 use Bio::PhyloNetwork;
 use Bio::PhyloNetwork::Factory;

 # Will generate sequentially all the 4059 binary tree-child phylogenetic
 # networks with 4 leaves

 my $factory=Bio::PhyloNetwork::Factory->new(-numleaves=>4);

 my @nets;

 while (my $net=$factory->next_network()) {
   push @nets,$net;
   print "".(scalar @nets).": ".$net->eNewick()."\n";
 }

=head1 DESCRIPTION

Sequentially builds a (binary tree-child) phylogenetic network each time
next_network is called.

=head1 AUTHOR

Gabriel Cardona, gabriel(dot)cardona(at)uib(dot)es

=head1 SEE ALSO

L<Bio::PhyloNetwork>

=head1 APPENDIX

The rest of the documentation details each of the object methods.

=cut

package Bio::PhyloNetwork::FactoryX;

use strict;
use warnings;

use Data::Dumper;

use base qw(Bio::Root::Root);

use Bio::PhyloNetwork;
use Bio::PhyloNetwork::TreeFactoryX;

=head2 new

 Title   : new
 Usage   : my $factory = new Bio::PhyloNetwork::Factory();
 Function: Creates a new Bio::PhyloNetwork::Factory
 Returns : Bio::PhyloNetwork::RandomFactory
 Args    : -numleaves => integer
            OR
           -leaves => reference to an array (of leaves names)
           -numhybrids => integer [default = numleaves -1]
           -recurse => boolean [optional]

Returns a Bio::PhyloNetwork::Factory object. Such an object will
sequentially create binary tree-child phylogenetic networks
each time next_network is called.

If the parameter -leaves=E<gt>\@leaves is given, then the set of leaves of
these networks will be @leaves. If it is given the parameter
-numleaves=E<gt>$numleaves, then the set of leaves will be "l1"..."l$numleaves".

If the parameter -numhybrids=E<gt>$numhybrids is given, then the generated
networks will have at most $numhybrids hybrid nodes. Note that, necessarily,
$numhybrids E<lt> $numleaves.

If the parameter -recurse=E<gt>1 is given, then all networks with number of hybrid
nodes less or equal to $numhybrids will be given; otherwise only those with
exactly $numhybrids hybrid nodes.

=cut

sub new {
  my ($pkg,@args)=@_;
  my $self=$pkg->SUPER::new(@args);

  my ($leavesR,$numleaves,$numhybrids)=
    $self->_rearrange([qw(LEAVES
			  NUMLEAVES
			  NUMHYBRIDS)],@args);
  my @leaves;
  if ((! defined $leavesR) && (defined $numleaves)) {
    @leaves=map {"l$_"} (1..$numleaves);
    $leavesR=\@leaves;
  }
  if (! defined $leavesR) {
    $self->throw("No leaves set neither numleaves given");
  }
  @leaves=@$leavesR;
  $self->{leaves}=$leavesR;
  $numleaves=@leaves;
  $self->{numleaves}=$numleaves;

  if (! defined $numhybrids) {
    $numhybrids=$numleaves-1;
  }
  $self->{numhybrids}=$numhybrids;
  if ($numhybrids ==0) {
    return Bio::PhyloNetwork::TreeFactoryX->new(-leaves=>\@leaves);
  }
  my $parent;
  if ($numhybrids > 1) {
    $parent=new($pkg,'-leaves'=>\@leaves,
		'-numhybrids'=>($numhybrids-1)
	       );
    my @subfactories=@{$parent->{subfactories}};
    push @subfactories,$parent;
#    print "$numhybrids : ".(scalar @subfactories);
#    print "\n";
    $self->{subfactories}=\@subfactories;
#    print "$numhybrids: ".(scalar @subfactories)."\n";
  }
  else {
    $parent=Bio::PhyloNetwork::TreeFactoryX->new(-leaves=>\@leaves);
    $self->{subfactories}=[$parent];
  }
  $self->{parent}=$parent;
  $self->update();
  $self->{found}=[];
  $self->{thrown}=0;
  $self->{hybnow}=0;
  bless($self,$pkg);
}

sub update {
  my ($self)=@_;

  if (defined $self->{oldnet}) {
    my @candidates=$self->{oldnet}->edges();
    $self->{candidates}=\@candidates;
    $self->{numcandidates}=(scalar @candidates);
    $self->{index1}=0;
    $self->{index2}=0;
  } else {
    $self->{candidates}=[];
    $self->{numcandidates}=0;
    $self->{index1}=0;
    $self->{index2}=0;
  }
}

sub next_network_repeated {
  my ($self)=@_;

  return 0 if ($self->{thrown} >= (scalar @{$self->{found}}));
  $self->{thrown}=$self->{thrown}+1;
  return $self->{found}->[$self->{thrown}-1];
}

sub next_network_new {
  my ($self)=@_;
 START:
#  print $self->{index1}.",".$self->{index2}.":".$self->{numcandidates}."\n";
  if ($self->{index1} >= $self->{numcandidates}) {
    $self->{index2}++;
    $self->{index1}=0;
  }
#  print $self->{index1}.",".$self->{index2}.":".$self->{numcandidates}."\n";
  if ($self->{index2} >= $self->{numcandidates}) {
    my $oldnet=$self->{parent}->next_network_repeated();
    if (! $oldnet) {
#      print "notoldnet\n";
      return 0;
    }
    $self->{oldnet}=$oldnet;
    $self->update();
  }
  my $u1=$self->{candidates}->[$self->{index1}]->[0];
  my $v1=$self->{candidates}->[$self->{index1}]->[1];
  my $u2=$self->{candidates}->[$self->{index2}]->[0];
  my $v2=$self->{candidates}->[$self->{index2}]->[1];
  my $lbl=$self->{numhybrids};
  if ($self->{oldnet}->is_attackable($u1,$v1,$u2,$v2)) {
    my $net=Bio::PhyloNetwork->new(-graph=>$self->{oldnet}->graph);
    $net->do_attack($u1,$v1,$u2,$v2,$lbl);
    $self->{index1}++;
    my @found=@{$self->{found}};
    foreach my $netant (@found) {
      if ($net->is_mu_isomorphic($netant) ) {
	goto START;
      }
    }
    push @found,$net;
    $self->{found}=\@found;
    return $net;
  }
  else {
    $self->{index1}++;
    goto START;
  }
}

=head2 next_network

 Title   : next_network
 Usage   : my $net=$factory->next_network()
 Function: returns a network
 Returns : Bio::PhyloNetwork
 Args    : none

=cut

sub next_network {
  my ($self)=@_;
  my $hybnow;
 WTF:
  $hybnow=$self->{hybnow};
#  print $hybnow;
#  print Dumper($self->{subfactories}->[$hybnow]);
#   print "$hybnow\n";
#   print (scalar @{$self->{subfactories}});
#   print "\n";
  my $net;
  if ($hybnow < $self->{numhybrids}) {
    $net=$self->{subfactories}->[$hybnow]->next_network_new();
  } else {
     $net=$self->next_network_new();
  }
  if (! $net) {
    if ($hybnow < $self->{numhybrids}) {
      $self->{hybnow}=$self->{hybnow}+1;
      goto WTF;
    }
    return 0;
  }
  return $net;
}

1;