File: interpro.xml

package info (click to toggle)
bioperl 1.7.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 35,788 kB
  • sloc: perl: 94,019; xml: 14,811; makefile: 20
file content (3299 lines) | stat: -rw-r--r-- 154,646 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interprodb SYSTEM "interpro.dtd">
<interprodb>
<release>
  <dbinfo dbname="PANTHER" entry_count="30128" file_date="04-OCT-06" version="6.1"/>
  <dbinfo dbname="PFAM" entry_count="11912" file_date="01-SEP-09" version="24.0"/>
  <dbinfo dbname="PIRSF" entry_count="3222" file_date="18-MAR-10" version="2.72"/>
  <dbinfo dbname="PRINTS" entry_count="2000" file_date="09-FEB-10" version="40.0"/>
  <dbinfo dbname="PRODOM" entry_count="1894" file_date="23-APR-09" version="2006.1"/>
  <dbinfo dbname="PROSITE" entry_count="1308" file_date="28-JUL-09" version="20.52"/>
  <dbinfo dbname="PROFILE" entry_count="860" file_date="28-JUL-09" version="20.52"/>
  <dbinfo dbname="SMART" entry_count="809" file_date="24-MAR-09" version="6.0"/>
  <dbinfo dbname="TIGRFAMs" entry_count="3808" file_date="11-NOV-09" version="9.0"/>
  <dbinfo dbname="GENE3D" entry_count="2147" file_date="11-SEP-06" version="3.0.0"/>
  <dbinfo dbname="SSF" entry_count="1538" file_date="30-NOV-06" version="1.69"/>
  <dbinfo dbname="SWISSPROT" entry_count="517100" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="TREMBL" entry_count="10867798" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="INTERPRO" entry_count="20329" file_date="24-MAR-10" version="26.0"/>
  <dbinfo dbname="GO" entry_count="23937" file_date="27-MAR-07" version="N/A"/>
  <dbinfo dbname="MEROPS" entry_count="3802" file_date="25-MAR-10" version="9.1"/>
  <dbinfo dbname="UniProt" entry_count="11384898" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="HAMAP" entry_count="1633" file_date="28-MAY-09" version="280509"/>
  <dbinfo dbname="PFAMB" entry_count="142303" file_date="02-DEC-09" version="24.0"/>
</release>
<interpro id="IPR000001" protein_count="655" short_name="Kringle" type="Domain">
  <name>Kringle</name>
  <abstract>
<p>Kringles are autonomous structural domains, found throughout the blood clotting and fibrinolytic proteins. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00002414"/>, <cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>]. 
Kringle domains [<cite idref="PUB00003400"/>, <cite idref="PUB00000803"/>, <cite idref="PUB00001620"/>] are characterised by a triple loop, 3-disulphide bridge structure, whose  conformation is defined by a number of hydrogen bonds and small pieces of  anti-parallel beta-sheet. They are found in a varying number  of  copies  in some plasma proteins including prothrombin and urokinase-type plasminogen activator, which are serine proteases belonging to MEROPS peptidase family S1A.</p>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00747"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P98119"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q08048"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q24488"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000803">
      <author_list>Patthy L.</author_list>
      <title>Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.</title>
      <db_xref db="PUBMED" dbkey="3891096"/>
      <journal>Cell</journal>
      <location issue="3" pages="657-63" volume="41"/>
      <year>1985</year>
    </publication>
    <publication id="PUB00001541">
      <author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
      <title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
      <db_xref db="PUBMED" dbkey="6373375"/>
      <journal>FEBS Lett.</journal>
      <location issue="1" pages="131-6" volume="171"/>
      <year>1984</year>
    </publication>
    <publication id="PUB00002414">
      <author_list>McMullen BA, Fujikawa K.</author_list>
      <title>Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor).</title>
      <db_xref db="PUBMED" dbkey="3886654"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="9" pages="5328-41" volume="260"/>
      <year>1985</year>
    </publication>
    <publication id="PUB00001620">
      <author_list>Ikeo K, Takahashi K, Gojobori T.</author_list>
      <title>Evolutionary origin of numerous kringles in human and simian apolipoprotein(a).</title>
      <db_xref db="PUBMED" dbkey="1879523"/>
      <journal>FEBS Lett.</journal>
      <location issue="1-2" pages="146-8" volume="287"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00006168">
      <author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
      <title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
      <db_xref db="PUBMED" dbkey="8165128"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="7" pages="1161-6" volume="22"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00015853">
      <author_list>Schwabe JW, Teichmann SA.</author_list>
      <title>Nuclear receptors: the evolution of diversity.</title>
      <db_xref db="PUBMED" dbkey="14747695"/>
      <journal>Sci. STKE</journal>
      <location issue="217" pages="pe4" volume="2004"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00003257">
      <author_list>Atkinson RA, Williams RJ.</author_list>
      <title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
      <db_xref db="PUBMED" dbkey="2157850"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="3" pages="541-52" volume="212"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00003400">
      <author_list>Castellino FJ, Beals JM.</author_list>
      <title>The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII.</title>
      <db_xref db="PUBMED" dbkey="3131537"/>
      <journal>J. Mol. Evol.</journal>
      <location issue="4" pages="358-69" volume="26"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00004464">
      <author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
      <title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
      <db_xref db="PUBMED" dbkey="7899080"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="606-11" volume="23"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR013806"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018059"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR018056"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR001314"/>
    <rel_ref ipr_ref="IPR011358"/>
    <rel_ref ipr_ref="IPR012051"/>
    <rel_ref ipr_ref="IPR014394"/>
    <rel_ref ipr_ref="IPR016247"/>
    <rel_ref ipr_ref="IPR017076"/>
    <rel_ref ipr_ref="IPR020715"/>
  </found_in>
  <member_list>
    <db_xref protein_count="630" db="PFAM" dbkey="PF00051" name="Kringle"/>
    <db_xref protein_count="645" db="PROFILE" dbkey="PS50070" name="KRINGLE_2"/>
    <db_xref protein_count="651" db="SMART" dbkey="SM00130" name="KR"/>
    <db_xref protein_count="618" db="GENE3D" dbkey="G3DSA:2.40.20.10" name="Kringle"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00051"/>
    <db_xref db="MSDsite" dbkey="PS00021"/>
    <db_xref db="BLOCKS" dbkey="IPB000001"/>
    <db_xref db="MEROPS" dbkey="S1"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00020"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a0h"/>
    <db_xref db="PDB" dbkey="1a5h"/>
    <db_xref db="PDB" dbkey="1b2i"/>
    <db_xref db="PDB" dbkey="1bda"/>
    <db_xref db="PDB" dbkey="1bht"/>
    <db_xref db="PDB" dbkey="1bml"/>
    <db_xref db="PDB" dbkey="1bui"/>
    <db_xref db="PDB" dbkey="1cea"/>
    <db_xref db="PDB" dbkey="1ceb"/>
    <db_xref db="PDB" dbkey="1ddj"/>
    <db_xref db="PDB" dbkey="1gmn"/>
    <db_xref db="PDB" dbkey="1gmo"/>
    <db_xref db="PDB" dbkey="1gp9"/>
    <db_xref db="PDB" dbkey="1hpj"/>
    <db_xref db="PDB" dbkey="1hpk"/>
    <db_xref db="PDB" dbkey="1i5k"/>
    <db_xref db="PDB" dbkey="1i71"/>
    <db_xref db="PDB" dbkey="1jfn"/>
    <db_xref db="PDB" dbkey="1kdu"/>
    <db_xref db="PDB" dbkey="1ki0"/>
    <db_xref db="PDB" dbkey="1kiv"/>
    <db_xref db="PDB" dbkey="1krn"/>
    <db_xref db="PDB" dbkey="1l4d"/>
    <db_xref db="PDB" dbkey="1l4z"/>
    <db_xref db="PDB" dbkey="1nk1"/>
    <db_xref db="PDB" dbkey="1nl1"/>
    <db_xref db="PDB" dbkey="1nl2"/>
    <db_xref db="PDB" dbkey="1pk2"/>
    <db_xref db="PDB" dbkey="1pk4"/>
    <db_xref db="PDB" dbkey="1pkr"/>
    <db_xref db="PDB" dbkey="1pmk"/>
    <db_xref db="PDB" dbkey="1pml"/>
    <db_xref db="PDB" dbkey="1qrz"/>
    <db_xref db="PDB" dbkey="1rjx"/>
    <db_xref db="PDB" dbkey="1rtf"/>
    <db_xref db="PDB" dbkey="1tpg"/>
    <db_xref db="PDB" dbkey="1tpk"/>
    <db_xref db="PDB" dbkey="1urk"/>
    <db_xref db="PDB" dbkey="2doh"/>
    <db_xref db="PDB" dbkey="2doi"/>
    <db_xref db="PDB" dbkey="2fd6"/>
    <db_xref db="PDB" dbkey="2hgf"/>
    <db_xref db="PDB" dbkey="2hpp"/>
    <db_xref db="PDB" dbkey="2hpq"/>
    <db_xref db="PDB" dbkey="2i9a"/>
    <db_xref db="PDB" dbkey="2i9b"/>
    <db_xref db="PDB" dbkey="2pf1"/>
    <db_xref db="PDB" dbkey="2pf2"/>
    <db_xref db="PDB" dbkey="2pk4"/>
    <db_xref db="PDB" dbkey="2qj2"/>
    <db_xref db="PDB" dbkey="2qj4"/>
    <db_xref db="PDB" dbkey="2spt"/>
    <db_xref db="PDB" dbkey="3bt1"/>
    <db_xref db="PDB" dbkey="3bt2"/>
    <db_xref db="PDB" dbkey="3e6p"/>
    <db_xref db="PDB" dbkey="3kiv"/>
    <db_xref db="PDB" dbkey="4kiv"/>
    <db_xref db="PDB" dbkey="5hpg"/>
    <db_xref db="CATH" dbkey="2.10.25.10"/>
    <db_xref db="CATH" dbkey="2.40.20.10"/>
    <db_xref db="CATH" dbkey="3.50.4.10"/>
    <db_xref db="SCOP" dbkey="b.47.1.2"/>
    <db_xref db="SCOP" dbkey="g.10.1.1"/>
    <db_xref db="SCOP" dbkey="g.14.1.1"/>
    <db_xref db="SCOP" dbkey="g.3.11.1"/>
    <db_xref db="SCOP" dbkey="g.32.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="653"/>
    <taxon_data name="Nematoda" proteins_count="5"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="5"/>
    <taxon_data name="Arthropoda" proteins_count="34"/>
    <taxon_data name="Fruit Fly" proteins_count="2"/>
    <taxon_data name="Chordata" proteins_count="529"/>
    <taxon_data name="Human" proteins_count="79"/>
    <taxon_data name="Mouse" proteins_count="41"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Green Plants" proteins_count="14"/>
    <taxon_data name="Metazoa" proteins_count="618"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018059"/>
  </sec_list>
</interpro>
<interpro id="IPR000003" protein_count="452" short_name="RtnoidX_rcpt" type="Family">
  <name>Retinoid X receptor</name>
  <abstract>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
<p>The retinoic acid (retinoid X) receptor consists of 3 functional and 
               structural domains: an N-terminal (modulatory) domain; a DNA binding domain
               that mediates specific binding to target DNA sequences (ligand-responsive
               elements); and a hormone binding domain. The N-terminal domain differs 
               between retinoic acid isoforms; the small highly-conserved DNA-binding
               domain (~65 residues) occupies the central portion of the protein; and 
               the ligand binding domain lies at the receptor C terminus.</p>
<p>Synonym(s): 2B nuclear receptor</p>
</abstract>
  <class_list>
    <classification id="GO:0003677" class_type="GO">
      <category>Molecular Function</category>
      <description>DNA binding</description>
    </classification>
    <classification id="GO:0004879" class_type="GO">
      <category>Molecular Function</category>
      <description>ligand-dependent nuclear receptor activity</description>
    </classification>
    <classification id="GO:0005496" class_type="GO">
      <category>Molecular Function</category>
      <description>steroid binding</description>
    </classification>
    <classification id="GO:0005634" class_type="GO">
      <category>Cellular Component</category>
      <description>nucleus</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
    <classification id="GO:0008270" class_type="GO">
      <category>Molecular Function</category>
      <description>zinc ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O44960"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O95718"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22449"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P28700"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P49866"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004464">
      <author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
      <title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
      <db_xref db="PUBMED" dbkey="7899080"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="606-11" volume="23"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00006168">
      <author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
      <title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
      <db_xref db="PUBMED" dbkey="8165128"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="7" pages="1161-6" volume="22"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00015853">
      <author_list>Schwabe JW, Teichmann SA.</author_list>
      <title>Nuclear receptors: the evolution of diversity.</title>
      <db_xref db="PUBMED" dbkey="14747695"/>
      <journal>Sci. STKE</journal>
      <location issue="217" pages="pe4" volume="2004"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR001723"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR000536"/>
    <rel_ref ipr_ref="IPR008946"/>
  </contains>
  <member_list>
    <db_xref protein_count="452" db="PRINTS" dbkey="PR00545" name="RETINOIDXR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000003"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1by4"/>
    <db_xref db="PDB" dbkey="1dkf"/>
    <db_xref db="PDB" dbkey="1dsz"/>
    <db_xref db="PDB" dbkey="1fby"/>
    <db_xref db="PDB" dbkey="1fm6"/>
    <db_xref db="PDB" dbkey="1fm9"/>
    <db_xref db="PDB" dbkey="1g1u"/>
    <db_xref db="PDB" dbkey="1g2n"/>
    <db_xref db="PDB" dbkey="1g5y"/>
    <db_xref db="PDB" dbkey="1h9u"/>
    <db_xref db="PDB" dbkey="1k74"/>
    <db_xref db="PDB" dbkey="1kv6"/>
    <db_xref db="PDB" dbkey="1lbd"/>
    <db_xref db="PDB" dbkey="1lo1"/>
    <db_xref db="PDB" dbkey="1lv2"/>
    <db_xref db="PDB" dbkey="1m7w"/>
    <db_xref db="PDB" dbkey="1mv9"/>
    <db_xref db="PDB" dbkey="1mvc"/>
    <db_xref db="PDB" dbkey="1mzn"/>
    <db_xref db="PDB" dbkey="1pzl"/>
    <db_xref db="PDB" dbkey="1r0n"/>
    <db_xref db="PDB" dbkey="1r1k"/>
    <db_xref db="PDB" dbkey="1r20"/>
    <db_xref db="PDB" dbkey="1rdt"/>
    <db_xref db="PDB" dbkey="1rxr"/>
    <db_xref db="PDB" dbkey="1s9p"/>
    <db_xref db="PDB" dbkey="1s9q"/>
    <db_xref db="PDB" dbkey="1tfc"/>
    <db_xref db="PDB" dbkey="1uhl"/>
    <db_xref db="PDB" dbkey="1vjb"/>
    <db_xref db="PDB" dbkey="1xb7"/>
    <db_xref db="PDB" dbkey="1xdk"/>
    <db_xref db="PDB" dbkey="1xiu"/>
    <db_xref db="PDB" dbkey="1xls"/>
    <db_xref db="PDB" dbkey="1xv9"/>
    <db_xref db="PDB" dbkey="1xvp"/>
    <db_xref db="PDB" dbkey="1ynw"/>
    <db_xref db="PDB" dbkey="2acl"/>
    <db_xref db="PDB" dbkey="2e2r"/>
    <db_xref db="PDB" dbkey="2ewp"/>
    <db_xref db="PDB" dbkey="2gl8"/>
    <db_xref db="PDB" dbkey="2gp7"/>
    <db_xref db="PDB" dbkey="2gpo"/>
    <db_xref db="PDB" dbkey="2gpp"/>
    <db_xref db="PDB" dbkey="2gpu"/>
    <db_xref db="PDB" dbkey="2gpv"/>
    <db_xref db="PDB" dbkey="2nll"/>
    <db_xref db="PDB" dbkey="2nxx"/>
    <db_xref db="PDB" dbkey="2p1t"/>
    <db_xref db="PDB" dbkey="2p1u"/>
    <db_xref db="PDB" dbkey="2p1v"/>
    <db_xref db="PDB" dbkey="2p7a"/>
    <db_xref db="PDB" dbkey="2p7g"/>
    <db_xref db="PDB" dbkey="2p7z"/>
    <db_xref db="PDB" dbkey="2pjl"/>
    <db_xref db="PDB" dbkey="2q60"/>
    <db_xref db="PDB" dbkey="2r40"/>
    <db_xref db="PDB" dbkey="2zas"/>
    <db_xref db="PDB" dbkey="2zbs"/>
    <db_xref db="PDB" dbkey="3cbb"/>
    <db_xref db="PDB" dbkey="3d24"/>
    <db_xref db="PDB" dbkey="3eyb"/>
    <db_xref db="CATH" dbkey="1.10.565.10"/>
    <db_xref db="CATH" dbkey="3.30.50.10"/>
    <db_xref db="SCOP" dbkey="a.123.1.1"/>
    <db_xref db="SCOP" dbkey="g.39.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="452"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="119"/>
    <taxon_data name="Fruit Fly" proteins_count="7"/>
    <taxon_data name="Chordata" proteins_count="305"/>
    <taxon_data name="Human" proteins_count="45"/>
    <taxon_data name="Mouse" proteins_count="30"/>
    <taxon_data name="Metazoa" proteins_count="452"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000005" protein_count="22704" short_name="HTH_AraC-typ" type="Domain">
  <name>Helix-turn-helix, AraC type</name>
  <abstract>
<p>Many bacterial transcription regulation proteins bind DNA through a
'helix-turn-helix' (HTH) motif. One major subfamily of these proteins [<cite idref="PUB00004444"/>, <cite idref="PUB00003566"/>] is related to the arabinose 
operon regulatory protein AraC [<cite idref="PUB00004444"/>], <cite idref="PUB00003566"/>. Except for celD [<cite idref="PUB00001933"/>], all of these proteins seem to be positive transcriptional factors.</p>
<p>Although the sequences belonging to this family differ somewhat in length, in nearly every case the HTH motif is situated towards the C terminus in the third quarter of most of the sequences. The minimal DNA binding domain spans roughly 100 residues and comprises two HTH subdomains; the classical HTH domain and another HTH subdomain with similarity to the classical HTH domain but with an insertion of one residue in the turn-region. The  N-terminal and  central regions of these proteins are presumed to interact with effector molecules and may be involved in dimerisation [<cite idref="PUB00004817"/>].</p>
<p>The known structure of MarA (<db_xref db="SWISSPROT" dbkey="P27246"/>) shows that the AraC domain is alpha helical and shows the two HTH subdomains both bind the major groove of the DNA. The two HTH subdomains are separated by only 27
angstroms, which causes the cognate DNA to bend.</p>
</abstract>
  <class_list>
    <classification id="GO:0003700" class_type="GO">
      <category>Molecular Function</category>
      <description>transcription factor activity</description>
    </classification>
    <classification id="GO:0005622" class_type="GO">
      <category>Cellular Component</category>
      <description>intracellular</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
    <classification id="GO:0043565" class_type="GO">
      <category>Molecular Function</category>
      <description>sequence-specific DNA binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P06134"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001933">
      <author_list>Parker LL, Hall BG.</author_list>
      <title>Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.</title>
      <db_xref db="PUBMED" dbkey="2179047"/>
      <journal>Genetics</journal>
      <location issue="3" pages="455-71" volume="124"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00003566">
      <author_list>Henikoff S, Wallace JC, Brown JP.</author_list>
      <title>Finding protein similarities with nucleotide sequence databases.</title>
      <db_xref db="PUBMED" dbkey="2314271"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="111-32" volume="183"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00004444">
      <author_list>Gallegos MT, Michan C, Ramos JL.</author_list>
      <title>The XylS/AraC family of regulators.</title>
      <db_xref db="PUBMED" dbkey="8451183"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="807-10" volume="21"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004817">
      <author_list>Bustos SA, Schleif RF.</author_list>
      <title>Functional domains of the AraC protein.</title>
      <db_xref db="PUBMED" dbkey="8516313"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="12" pages="5638-42" volume="90"/>
      <year>1993</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR012287"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018062"/>
    <rel_ref ipr_ref="IPR020449"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR011983"/>
    <rel_ref ipr_ref="IPR016220"/>
    <rel_ref ipr_ref="IPR016221"/>
    <rel_ref ipr_ref="IPR016981"/>
    <rel_ref ipr_ref="IPR018060"/>
  </found_in>
  <member_list>
    <db_xref protein_count="22704" db="PFAM" dbkey="PF00165" name="HTH_AraC"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00165"/>
    <db_xref db="MSDsite" dbkey="PS00041"/>
    <db_xref db="BLOCKS" dbkey="IPB000005"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00040"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1bl0"/>
    <db_xref db="PDB" dbkey="1d5y"/>
    <db_xref db="PDB" dbkey="1xs9"/>
    <db_xref db="CATH" dbkey="1.10.10.60"/>
    <db_xref db="SCOP" dbkey="a.4.1.8"/>
    <db_xref db="SCOP" dbkey="i.11.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="22594"/>
    <taxon_data name="Cyanobacteria" proteins_count="150"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="4"/>
    <taxon_data name="Archaea" proteins_count="4"/>
    <taxon_data name="Eukaryota" proteins_count="100"/>
    <taxon_data name="Rice spp." proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="43"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Unclassified" proteins_count="3"/>
    <taxon_data name="Plastid Group" proteins_count="54"/>
    <taxon_data name="Green Plants" proteins_count="54"/>
    <taxon_data name="Metazoa" proteins_count="45"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018062"/>
    <sec_ac acc="IPR020449"/>
  </sec_list>
</interpro>
<interpro id="IPR000006" protein_count="253" short_name="Metallothionein_vert" type="Family">
  <name>Metallothionein, vertebrate</name>
  <abstract>
<p>Metallothioneins (MT) are small proteins that bind heavy metals, such as zinc, copper, cadmium, nickel, etc. They have a high content of cysteine residues that bind the metal ions through clusters of thiolate bonds [<cite idref="PUB00003570"/>, <cite idref="PUB00001490"/>]. An empirical classification into three classes has been proposed by Fowler and coworkers [<cite idref="PUB00005944"/>] and Kojima [<cite idref="PUB00003571"/>]. Members of class I are defined to include polypeptides related in the positions of their cysteines to equine MT-1B, and include mammalian MTs as well as from crustaceans and molluscs. Class II groups MTs from a variety of species, including sea urchins,
fungi, insects and cyanobacteria. Class III MTs are atypical polypeptides composed of gamma-glutamylcysteinyl units [<cite idref="PUB00005944"/>].</p>
<p>This original classification system has been found to be limited, in the sense that it does not allow clear differentiation of patterns of structural similarities, either between or within classes. Consequently, all class I and class II MTs (the proteinaceous sequences) have now been grouped into families of phylogenetically-related and thus alignable sequences. This system subdivides the MT superfamily into families, subfamilies, subgroups, and isolated isoforms and alleles. </p>
<p>The metallothionein superfamily comprises all polypeptides that resemble equine renal metallothionein in several respects [<cite idref="PUB00005944"/>]: e.g., low molecular weight; high metal content; amino acid composition with high Cys and low aromatic residue content; unique sequence with characteristic distribution of cysteines, and spectroscopic manifestations indicative of metal thiolate clusters. A MT family subsumes MTs that share particular sequence-specific features and are thought to be evolutionarily related. The inclusion of a MT within a family presupposes that its amino acid sequence is alignable with that of all members. Fifteen MT families have been characterised, each family being identified by its number and its taxonomic range: e.g., Family 1: vertebrate MTs [see http://www.bioc.unizh.ch/mtpage/protali.html]. </p>
<p> The members of family 1 are recognised by the sequence pattern K-x(1,2)-C-C-x-C-C-P-x(2)-C located at the beginning of the third exon. 
The taxonomic range of the members extends to vertebrates. 
Known characteristics: 60 to 68 AAs; 20 Cys (21 in one case), 19 of them are totally conserved; the protein sequence is divided into two structural domains, containing 9 and 11 Cys all binding 3 and 4 bivalent metal ions, respectively. The gene is composed of 3 exons, 2 introns and the splicing sites are conserved. Family 1 includes subfamilies: m1, m2, m3, m4, m, a, a1, a2, b, ba, t, all of them hit the same InterPro entry. 
</p>
</abstract>
  <class_list>
    <classification id="GO:0046872" class_type="GO">
      <category>Molecular Function</category>
      <description>metal ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02795"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02802"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P04355"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001490">
      <author_list>Kagi JH, Kojima Y.</author_list>
      <title>Chemistry and biochemistry of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="2959513"/>
      <journal>Experientia Suppl.</journal>
      <location pages="25-61" volume="52"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00003570">
      <author_list>Kagi JH.</author_list>
      <title>Overview of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="1779825"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="613-26" volume="205"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003571">
      <author_list>Kojima Y.</author_list>
      <title>Definitions and nomenclature of metallothioneins.</title>
      <db_xref db="PUBMED" dbkey="1779826"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="8-10" volume="205"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00005944">
      <author_list>Fowler BA, Hildebrand CE, Kojima Y, Webb M.</author_list>
      <title>Nomenclature of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="2959504"/>
      <journal>Experientia Suppl.</journal>
      <location pages="19-22" volume="52"/>
      <year>1987</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR003019"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR017854"/>
    <rel_ref ipr_ref="IPR018064"/>
  </contains>
  <member_list>
    <db_xref protein_count="250" db="PANTHER" dbkey="PTHR23299" name="Metallothionein_vert"/>
    <db_xref protein_count="220" db="PRINTS" dbkey="PR00860" name="MTVERTEBRATE"/>
    <db_xref protein_count="238" db="GENE3D" dbkey="G3DSA:4.10.10.10" name="Metallothionein_vert"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS00203"/>
    <db_xref db="COMe" dbkey="PRX001296"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00180"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1dfs"/>
    <db_xref db="PDB" dbkey="1dft"/>
    <db_xref db="PDB" dbkey="1ji9"/>
    <db_xref db="PDB" dbkey="1m0g"/>
    <db_xref db="PDB" dbkey="1m0j"/>
    <db_xref db="PDB" dbkey="1mhu"/>
    <db_xref db="PDB" dbkey="1mrb"/>
    <db_xref db="PDB" dbkey="1mrt"/>
    <db_xref db="PDB" dbkey="2mhu"/>
    <db_xref db="PDB" dbkey="2mrb"/>
    <db_xref db="PDB" dbkey="2mrt"/>
    <db_xref db="PDB" dbkey="4mt2"/>
    <db_xref db="CATH" dbkey="4.10.10.10"/>
    <db_xref db="SCOP" dbkey="g.46.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="253"/>
    <taxon_data name="Chordata" proteins_count="249"/>
    <taxon_data name="Human" proteins_count="27"/>
    <taxon_data name="Mouse" proteins_count="15"/>
    <taxon_data name="Metazoa" proteins_count="251"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000007" protein_count="355" short_name="Tubby_C" type="Domain">
  <name>Tubby, C-terminal</name>
  <abstract>
<p> Tubby, an autosomal recessive mutation, mapping to mouse  chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This  mutation  maps to the tub gene [<cite idref="PUB00000932"/>, <cite idref="PUB00004232"/>]. The mouse  tubby mutation is  the  cause  of  maturity-onset  obesity, insulin resistance and  sensory  deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue  culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [<cite idref="PUB00007281"/>], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [<cite idref="PUB00014197"/>].</p>
<p>Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (<db_xref db="INTERPRO" dbkey="IPR005398"/>) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed beta-barrel that surrounds a central alpha helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [<cite idref="PUB00007281"/>].</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00294"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O80699"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P50586"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q09306"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q10LG8"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000932">
      <author_list>Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glucksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ.</author_list>
      <title>Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family.</title>
      <db_xref db="PUBMED" dbkey="8612280"/>
      <journal>Cell</journal>
      <location issue="2" pages="281-90" volume="85"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00004232">
      <author_list>Noben-Trauth K, Naggert JK, North MA, Nishina PM.</author_list>
      <title>A candidate gene for the mouse mutation tubby.</title>
      <db_xref db="PUBMED" dbkey="8606774"/>
      <journal>Nature</journal>
      <location issue="6574" pages="534-8" volume="380"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00007281">
      <author_list>Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L.</author_list>
      <title>Implication of tubby proteins as transcription factors by structure-based functional analysis.</title>
      <db_xref db="PUBMED" dbkey="10591637"/>
      <journal>Science</journal>
      <location issue="5447" pages="2119-25" volume="286"/>
      <year>1999</year>
    </publication>
    <publication id="PUB00014197">
      <author_list>Carroll K, Gomez C, Shapiro L.</author_list>
      <title>Tubby proteins: the plot thickens.</title>
      <db_xref db="PUBMED" dbkey="14708010"/>
      <journal>Nat. Rev. Mol. Cell Biol.</journal>
      <location issue="1" pages="55-63" volume="5"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018066"/>
  </contains>
  <member_list>
    <db_xref protein_count="345" db="PFAM" dbkey="PF01167" name="Tub"/>
    <db_xref protein_count="284" db="PRINTS" dbkey="PR01573" name="SUPERTUBBY"/>
    <db_xref protein_count="324" db="GENE3D" dbkey="G3DSA:3.20.90.10" name="Tubby_C"/>
    <db_xref protein_count="345" db="SSF" dbkey="SSF54518" name="Tubby_C"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01167"/>
    <db_xref db="MSDsite" dbkey="PS01200"/>
    <db_xref db="MSDsite" dbkey="PS01201"/>
    <db_xref db="BLOCKS" dbkey="IPB000007"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00923"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1c8z"/>
    <db_xref db="PDB" dbkey="1i7e"/>
    <db_xref db="PDB" dbkey="1s31"/>
    <db_xref db="PDB" dbkey="2fim"/>
    <db_xref db="PDB" dbkey="3c5n"/>
    <db_xref db="CATH" dbkey="3.20.90.10"/>
    <db_xref db="SCOP" dbkey="d.23.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="355"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="16"/>
    <taxon_data name="Rice spp." proteins_count="48"/>
    <taxon_data name="Fungi" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="16"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="2"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="2"/>
    <taxon_data name="Arthropoda" proteins_count="40"/>
    <taxon_data name="Fruit Fly" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="64"/>
    <taxon_data name="Human" proteins_count="13"/>
    <taxon_data name="Mouse" proteins_count="16"/>
    <taxon_data name="Plastid Group" proteins_count="161"/>
    <taxon_data name="Green Plants" proteins_count="161"/>
    <taxon_data name="Metazoa" proteins_count="124"/>
    <taxon_data name="Plastid Group" proteins_count="38"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000008" protein_count="5988" short_name="C2_Ca-dep" type="Domain">
  <name>C2 calcium-dependent membrane targeting</name>
  <abstract>
The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about  116  amino-acid  residues and is located between the two copies of
the C1 domain in Protein Kinase C (that bind phorbol esters and diacylglycerol) (see <db_xref db="PROSITEDOC" dbkey="PDOC00379"/>)
and the  protein  kinase  catalytic  domain  (see <db_xref db="PROSITEDOC" dbkey="PDOC00100"/>).  Regions with
significant homology [<cite idref="PUB00002925"/>] to  the C2-domain have been found in many proteins.
The C2  domain  is  thought  to  be involved in calcium-dependent phospholipid
binding [<cite idref="PUB00002815"/>] and in membrane targetting processes such as subcellular localisation. <p>The 3D  structure  of  the
C2 domain of synaptotagmin has been reported
[<cite idref="PUB00000918"/>], the domain forms an eight-stranded beta sandwich constructed around a 
conserved 4-stranded motif, designated a C2 key [<cite idref="PUB00000918"/>]. Calcium binds in
a cup-shaped depression formed by the N- and C-terminal loops of the
C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca<sup>2+</sup>-binding loops are located at the end of an 8 stranded antiparallel beta sandwich. </p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A0FGR8"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P11792"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P27715"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P28867"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9VVI3"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000918">
      <author_list>Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR.</author_list>
      <title>Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold.</title>
      <db_xref db="PUBMED" dbkey="7697723"/>
      <journal>Cell</journal>
      <location issue="6" pages="929-38" volume="80"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00002815">
      <author_list>Davletov BA, Sudhof TC.</author_list>
      <title>A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding.</title>
      <db_xref db="PUBMED" dbkey="8253763"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="35" pages="26386-90" volume="268"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00002925">
      <author_list>Brose N, Hofmann K, Hata Y, Sudhof TC.</author_list>
      <title>Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins.</title>
      <db_xref db="PUBMED" dbkey="7559667"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="42" pages="25273-80" volume="270"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR008973"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018029"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR001565"/>
    <rel_ref ipr_ref="IPR020477"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR001192"/>
    <rel_ref ipr_ref="IPR011402"/>
    <rel_ref ipr_ref="IPR014375"/>
    <rel_ref ipr_ref="IPR014376"/>
    <rel_ref ipr_ref="IPR014638"/>
    <rel_ref ipr_ref="IPR014705"/>
    <rel_ref ipr_ref="IPR015427"/>
    <rel_ref ipr_ref="IPR015428"/>
    <rel_ref ipr_ref="IPR016279"/>
    <rel_ref ipr_ref="IPR016280"/>
    <rel_ref ipr_ref="IPR017147"/>
  </found_in>
  <member_list>
    <db_xref protein_count="5145" db="PFAM" dbkey="PF00168" name="C2"/>
    <db_xref protein_count="5888" db="SMART" dbkey="SM00239" name="C2"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00168"/>
    <db_xref db="BLOCKS" dbkey="IPB000008"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00380"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a25"/>
    <db_xref db="PDB" dbkey="1bci"/>
    <db_xref db="PDB" dbkey="1bdy"/>
    <db_xref db="PDB" dbkey="1byn"/>
    <db_xref db="PDB" dbkey="1cjy"/>
    <db_xref db="PDB" dbkey="1djg"/>
    <db_xref db="PDB" dbkey="1djh"/>
    <db_xref db="PDB" dbkey="1dji"/>
    <db_xref db="PDB" dbkey="1djw"/>
    <db_xref db="PDB" dbkey="1djx"/>
    <db_xref db="PDB" dbkey="1djy"/>
    <db_xref db="PDB" dbkey="1djz"/>
    <db_xref db="PDB" dbkey="1dqv"/>
    <db_xref db="PDB" dbkey="1dsy"/>
    <db_xref db="PDB" dbkey="1gmi"/>
    <db_xref db="PDB" dbkey="1k5w"/>
    <db_xref db="PDB" dbkey="1qas"/>
    <db_xref db="PDB" dbkey="1qat"/>
    <db_xref db="PDB" dbkey="1rh8"/>
    <db_xref db="PDB" dbkey="1rlw"/>
    <db_xref db="PDB" dbkey="1rsy"/>
    <db_xref db="PDB" dbkey="1tjm"/>
    <db_xref db="PDB" dbkey="1tjx"/>
    <db_xref db="PDB" dbkey="1ugk"/>
    <db_xref db="PDB" dbkey="1uov"/>
    <db_xref db="PDB" dbkey="1uow"/>
    <db_xref db="PDB" dbkey="1v27"/>
    <db_xref db="PDB" dbkey="1w15"/>
    <db_xref db="PDB" dbkey="1w16"/>
    <db_xref db="PDB" dbkey="1wfj"/>
    <db_xref db="PDB" dbkey="1wfm"/>
    <db_xref db="PDB" dbkey="1yrk"/>
    <db_xref db="PDB" dbkey="2bwq"/>
    <db_xref db="PDB" dbkey="2chd"/>
    <db_xref db="PDB" dbkey="2cjs"/>
    <db_xref db="PDB" dbkey="2cjt"/>
    <db_xref db="PDB" dbkey="2cm5"/>
    <db_xref db="PDB" dbkey="2cm6"/>
    <db_xref db="PDB" dbkey="2d8k"/>
    <db_xref db="PDB" dbkey="2enp"/>
    <db_xref db="PDB" dbkey="2ep6"/>
    <db_xref db="PDB" dbkey="2fju"/>
    <db_xref db="PDB" dbkey="2fk9"/>
    <db_xref db="PDB" dbkey="2isd"/>
    <db_xref db="PDB" dbkey="2k3h"/>
    <db_xref db="PDB" dbkey="2nq3"/>
    <db_xref db="PDB" dbkey="2nsq"/>
    <db_xref db="PDB" dbkey="2r83"/>
    <db_xref db="PDB" dbkey="2rd0"/>
    <db_xref db="PDB" dbkey="2uzp"/>
    <db_xref db="PDB" dbkey="2yrb"/>
    <db_xref db="PDB" dbkey="2zkm"/>
    <db_xref db="PDB" dbkey="3bxj"/>
    <db_xref db="PDB" dbkey="3fdw"/>
    <db_xref db="PDB" dbkey="3rpb"/>
    <db_xref db="CATH" dbkey="2.20.170.10"/>
    <db_xref db="CATH" dbkey="2.60.40.150"/>
    <db_xref db="SCOP" dbkey="b.7.1.1"/>
    <db_xref db="SCOP" dbkey="b.7.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="3"/>
    <taxon_data name="Cyanobacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="5994"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="161"/>
    <taxon_data name="Rice spp." proteins_count="274"/>
    <taxon_data name="Fungi" proteins_count="816"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="68"/>
    <taxon_data name="Other Eukaryotes" proteins_count="57"/>
    <taxon_data name="Other Eukaryotes" proteins_count="82"/>
    <taxon_data name="Nematoda" proteins_count="76"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="76"/>
    <taxon_data name="Arthropoda" proteins_count="839"/>
    <taxon_data name="Fruit Fly" proteins_count="132"/>
    <taxon_data name="Chordata" proteins_count="1924"/>
    <taxon_data name="Human" proteins_count="436"/>
    <taxon_data name="Mouse" proteins_count="371"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="54"/>
    <taxon_data name="Plastid Group" proteins_count="1230"/>
    <taxon_data name="Green Plants" proteins_count="1230"/>
    <taxon_data name="Metazoa" proteins_count="4034"/>
    <taxon_data name="Plastid Group" proteins_count="243"/>
    <taxon_data name="Plastid Group" proteins_count="109"/>
    <taxon_data name="Other Eukaryotes" proteins_count="84"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018029"/>
  </sec_list>
</interpro>
<interpro id="IPR000009" protein_count="339" short_name="PP2A_PR55" type="Family">
  <name>Protein phosphatase 2A, regulatory subunit PR55</name>
  <abstract>
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase implicated 
in many cellular processes, including the regulation of metabolic enzymes 
and proteins involved in signal transduction [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PP2A is a trimer
composed of a 36 kDa catalytic subunit, a 65 kDa regulatory subunit 
(subunit A) and a variable third subunit (subunit B) [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. 
<p>One form of the third subunit is a 55 kDa protein (PR55), which exists in
<taxon tax_id="7227">Drosophila melanogaster</taxon> and yeast, and has up to three forms in mammals [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PR55 may act
as a substrate recognition unit, or may help to target the enzyme to the
correct subcellular location [<cite idref="PUB00000344"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0000159" class_type="GO">
      <category>Cellular Component</category>
      <description>protein phosphatase type 2A complex</description>
    </classification>
    <classification id="GO:0007165" class_type="GO">
      <category>Biological Process</category>
      <description>signal transduction</description>
    </classification>
    <classification id="GO:0008601" class_type="GO">
      <category>Molecular Function</category>
      <description>protein phosphatase type 2A regulator activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P36872"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P63151"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q00362"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q38821"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q6P1F6"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000344">
      <author_list>Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, Merlevede W, Hofsteenge J, Hemmings BA.</author_list>
      <title>Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform.</title>
      <db_xref db="PUBMED" dbkey="1849734"/>
      <journal>Biochemistry</journal>
      <location issue="15" pages="3589-97" volume="30"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003499">
      <author_list>Pallas DC, Weller W, Jaspers S, Miller TB, Lane WS, Roberts TM.</author_list>
      <title>The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens.</title>
      <db_xref db="PUBMED" dbkey="1370560"/>
      <journal>J. Virol.</journal>
      <location issue="2" pages="886-93" volume="66"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR001680"/>
    <rel_ref ipr_ref="IPR011046"/>
    <rel_ref ipr_ref="IPR018067"/>
    <rel_ref ipr_ref="IPR019775"/>
    <rel_ref ipr_ref="IPR019781"/>
  </contains>
  <member_list>
    <db_xref protein_count="326" db="PANTHER" dbkey="PTHR11871" name="Pp2A_PR55"/>
    <db_xref protein_count="224" db="PIRSF" dbkey="PIRSF037309" name="PP2A_PR55"/>
    <db_xref protein_count="332" db="PRINTS" dbkey="PR00600" name="PP2APR55"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS01024"/>
    <db_xref db="MSDsite" dbkey="PS01025"/>
    <db_xref db="BLOCKS" dbkey="IPB000009"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00785"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2"/>
    <taxon_data name="Cyanobacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="337"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
    <taxon_data name="Rice spp." proteins_count="15"/>
    <taxon_data name="Fungi" proteins_count="73"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="77"/>
    <taxon_data name="Fruit Fly" proteins_count="2"/>
    <taxon_data name="Chordata" proteins_count="76"/>
    <taxon_data name="Human" proteins_count="18"/>
    <taxon_data name="Mouse" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="59"/>
    <taxon_data name="Green Plants" proteins_count="59"/>
    <taxon_data name="Metazoa" proteins_count="243"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000010" protein_count="956" short_name="Prot_inh_cystat" type="Domain">
  <name>Proteinase inhibitor I25, cystatin</name>
  <abstract>
<p>Peptide proteinase inhibitors can be found as single domain proteins or as single or multiple domains within proteins; these are referred to as either simple or compound inhibitors, respectively. In many cases they are synthesised as part of a larger precursor protein, either as a prepropeptide or as an N-terminal domain associated with an inactive peptidase or zymogen. This domain prevents access of the substrate to the active site.  Removal of the N-terminal inhibitor domain either by interaction with a second peptidase or by autocatalytic cleavage activates the zymogen. Other inhibitors interact direct with proteinases using a simple noncovalent lock and key mechanism; while yet others use a conformational change-based trapping mechanism that depends on their structural and thermodynamic properties. </p>
<p>The cystatins are cysteine proteinase inhibitors belonging to MEROPS inhibitor family I25, clan IH [<cite idref="PUB00003412"/>, <cite idref="PUB00014312"/>, <cite idref="PUB00001614"/>]. They mainly inhibit peptidases belonging to peptidase families C1 (papain family) and  C13 (legumain family).  The cystatin family includes:</p>
<ul>
<li>
The Type 1 cystatins, which are intracellular cystatins that are present in the cytosol of many cell types, but can also appear in body fluids at significant concentrations. They are single-chain polypeptides of about 100 residues, which have neither disulphide bonds nor carbohydrate side chains. </li>
<li>The Type 2 cystatins, which are mainly extracellular secreted polypeptides synthesised with a 19-28 residue signal peptide. They are broadly distributed  and found in most body fluids. </li>
<li>The Type 3 cystatins, which are multidomain proteins. The mammalian representatives of this group are the kininogens. There are three different kininogens in mammals: H- (high molecular mass, <db_xref db="INTERPRO" dbkey="IPR002395"/>) and L- (low molecular mass) kininogen which are found in a number of species, and T-kininogen that is found only in rat. </li>
<li>Unclassified cystatins. These are cystatin-like proteins found in a range of organisms: plant phytocystatins, fetuin in mammals, insect cystatins and a puff adder venom cystatin which inhibits metalloproteases  of the MEROPS peptidase family M12 (astacin/adamalysin). Also a number of the cystatins-like proteins have been shown to be devoid of inhibitory activity. </li>
    </ul>
<p>All true cystatins inhibit cysteine peptidases of the papain family (MEROPS peptidase family C1), and some also inhibit legumain family enzymes (MEROPS peptidase family C13). These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus in animals cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but in other organisms may also participate in defence against biotic and abiotic stress. </p>
</abstract>
  <class_list>
    <classification id="GO:0004869" class_type="GO">
      <category>Molecular Function</category>
      <description>cysteine-type endopeptidase inhibitor activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O08677"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O76096"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P09229"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P23779"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q41906"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001614">
      <author_list>Turk V, Bode W.</author_list>
      <title>The cystatins: protein inhibitors of cysteine proteinases.</title>
      <db_xref db="PUBMED" dbkey="1855589"/>
      <journal>FEBS Lett.</journal>
      <location issue="2" pages="213-9" volume="285"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003412">
      <author_list>Rawlings ND, Barrett AJ.</author_list>
      <title>Evolution of proteins of the cystatin superfamily.</title>
      <db_xref db="PUBMED" dbkey="2107324"/>
      <journal>J. Mol. Evol.</journal>
      <location issue="1" pages="60-71" volume="30"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00014312">
      <author_list>Abrahamson M, Alvarez-Fernandez M, Nathanson CM.</author_list>
      <title>Cystatins.</title>
      <db_xref db="PUBMED" dbkey="14587292"/>
      <journal>Biochem. Soc. Symp.</journal>
      <location issue="70" pages="179-99"/>
      <year>2003</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR001713"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR001363"/>
    <rel_ref ipr_ref="IPR018073"/>
    <rel_ref ipr_ref="IPR020381"/>
  </contains>
  <member_list>
    <db_xref protein_count="937" db="PFAM" dbkey="PF00031" name="Cystatin"/>
    <db_xref protein_count="845" db="SMART" dbkey="SM00043" name="CY"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00031"/>
    <db_xref db="MSDsite" dbkey="PS00287"/>
    <db_xref db="BLOCKS" dbkey="IPB000010"/>
    <db_xref db="MEROPS" dbkey="C1"/>
    <db_xref db="MEROPS" dbkey="C13"/>
    <db_xref db="MEROPS" dbkey="I25"/>
    <db_xref db="MEROPS" dbkey="M10"/>
    <db_xref db="MEROPS" dbkey="M12"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00259"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a67"/>
    <db_xref db="PDB" dbkey="1a90"/>
    <db_xref db="PDB" dbkey="1cew"/>
    <db_xref db="PDB" dbkey="1cyu"/>
    <db_xref db="PDB" dbkey="1cyv"/>
    <db_xref db="PDB" dbkey="1dvc"/>
    <db_xref db="PDB" dbkey="1dvd"/>
    <db_xref db="PDB" dbkey="1eqk"/>
    <db_xref db="PDB" dbkey="1g96"/>
    <db_xref db="PDB" dbkey="1gd3"/>
    <db_xref db="PDB" dbkey="1gd4"/>
    <db_xref db="PDB" dbkey="1n9j"/>
    <db_xref db="PDB" dbkey="1nb3"/>
    <db_xref db="PDB" dbkey="1nb5"/>
    <db_xref db="PDB" dbkey="1r4c"/>
    <db_xref db="PDB" dbkey="1rn7"/>
    <db_xref db="PDB" dbkey="1roa"/>
    <db_xref db="PDB" dbkey="1stf"/>
    <db_xref db="PDB" dbkey="1tij"/>
    <db_xref db="PDB" dbkey="1yvb"/>
    <db_xref db="CATH" dbkey="3.10.450.10"/>
    <db_xref db="SCOP" dbkey="d.17.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="39"/>
    <taxon_data name="Eukaryota" proteins_count="873"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
    <taxon_data name="Rice spp." proteins_count="35"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="122"/>
    <taxon_data name="Fruit Fly" proteins_count="6"/>
    <taxon_data name="Chordata" proteins_count="376"/>
    <taxon_data name="Human" proteins_count="40"/>
    <taxon_data name="Mouse" proteins_count="69"/>
    <taxon_data name="Virus" proteins_count="44"/>
    <taxon_data name="Plastid Group" proteins_count="305"/>
    <taxon_data name="Green Plants" proteins_count="305"/>
    <taxon_data name="Metazoa" proteins_count="546"/>
    <taxon_data name="Plastid Group" proteins_count="11"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR001713"/>
  </sec_list>
</interpro>
<interpro id="IPR000011" protein_count="359" short_name="UBQ-activ_enz_E1-like" type="Region">
  <name>Ubiquitin-activating enzyme, E1-like</name>
  <abstract>
<p>The post-translational attachment of ubiquitin (<db_xref db="INTERPRO" dbkey="IPR000626"/>) to proteins (ubiquitinylation) alters the function, location or trafficking of a protein, or targets it to the 26S proteasome for degradation [<cite idref="PUB00015621"/>, <cite idref="PUB00015619"/>, <cite idref="PUB00015625"/>]. Ubiquitinylation is an ATP-dependent process that involves the action of at least three enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2, <db_xref db="INTERPRO" dbkey="IPR000608"/>), and a ubiquitin ligase (E3, <db_xref db="INTERPRO" dbkey="IPR000569"/>, <db_xref db="INTERPRO" dbkey="IPR003613"/>), which work sequentially in a cascade [<cite idref="PUB00015620"/>]. The E1 enzyme is responsible for activating ubiquitin, the first step in ubiquitinylation. The E1 enzyme hydrolyses ATP and adenylates the C-terminal glycine residue of ubiquitin, and then links this residue to the active site cysteine of E1, yielding a ubiquitin-thioester and free AMP. To be fully active, E1 must non-covalently bind to and adenylate a second ubiquitin molecule. The E1 enzyme can then transfer the thioester-linked ubiquitin molecule to a cysteine residue on the ubiquitin-conjugating enzyme, E2, in an ATP-dependent reaction.</p>
</abstract>
  <class_list>
    <classification id="GO:0006464" class_type="GO">
      <category>Biological Process</category>
      <description>protein modification process</description>
    </classification>
    <classification id="GO:0008641" class_type="GO">
      <category>Molecular Function</category>
      <description>small protein activating enzyme activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A2VE14"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O42939"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22515"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q02053"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9UBE0"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00015619">
      <author_list>Burger AM, Seth AK.</author_list>
      <title>The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications.</title>
      <db_xref db="PUBMED" dbkey="15454246"/>
      <journal>Eur. J. Cancer</journal>
      <location issue="15" pages="2217-29" volume="40"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00015620">
      <author_list>Passmore LA, Barford D.</author_list>
      <title>Getting into position: the catalytic mechanisms of protein ubiquitylation.</title>
      <db_xref db="PUBMED" dbkey="14998368"/>
      <journal>Biochem. J.</journal>
      <location issue="Pt 3" pages="513-25" volume="379"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00015621">
      <author_list>Pickart CM, Fushman D.</author_list>
      <title>Polyubiquitin chains: polymeric protein signals.</title>
      <db_xref db="PUBMED" dbkey="15556404"/>
      <location issue="6" pages="610-6" volume="8"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00015625">
      <author_list>Sun L, Chen ZJ.</author_list>
      <title>The novel functions of ubiquitination in signaling.</title>
      <db_xref db="PUBMED" dbkey="15196553"/>
      <journal>Curr. Opin. Cell Biol.</journal>
      <location issue="2" pages="119-26" volume="16"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR000594"/>
    <rel_ref ipr_ref="IPR009036"/>
    <rel_ref ipr_ref="IPR018074"/>
    <rel_ref ipr_ref="IPR019572"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR018075"/>
  </found_in>
  <member_list>
    <db_xref protein_count="359" db="PRINTS" dbkey="PR01849" name="UBIQUITINACT"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS00536"/>
    <db_xref db="MSDsite" dbkey="PS00865"/>
    <db_xref db="BLOCKS" dbkey="IPB000011"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00463"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1y8q"/>
    <db_xref db="PDB" dbkey="1y8r"/>
    <db_xref db="CATH" dbkey="3.40.50.720"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="359"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="6"/>
    <taxon_data name="Rice spp." proteins_count="13"/>
    <taxon_data name="Fungi" proteins_count="110"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="5"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="43"/>
    <taxon_data name="Fruit Fly" proteins_count="9"/>
    <taxon_data name="Chordata" proteins_count="55"/>
    <taxon_data name="Human" proteins_count="10"/>
    <taxon_data name="Mouse" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
    <taxon_data name="Plastid Group" proteins_count="50"/>
    <taxon_data name="Green Plants" proteins_count="50"/>
    <taxon_data name="Metazoa" proteins_count="225"/>
    <taxon_data name="Plastid Group" proteins_count="38"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000012" protein_count="3972" short_name="RetroV_VpR/X" type="Family">
  <name>Retroviral VpR/VpX protein</name>
  <abstract>
<taxon tax_id="12721">Human immunodeficiency virus</taxon> (HIV) is the human retrovirus associated with AIDS (acquired immune deficiency syndrome), and SIV its simian counterpart. Three main groups of primate lentivirus are known, designated <taxon tax_id="11676">Human immunodeficiency virus 1</taxon> (HIV-1), <taxon tax_id="11709">Human immunodeficiency virus 2</taxon> (HIV-2)/<taxon tax_id="11711">Simian immunodeficiency virus - mac</taxon> (SIVMAC)/<taxon tax_id="11712">Simian immunodeficiency virus - sm</taxon> (SIVSM) and <taxon tax_id="11726">Simian immunodeficiency virus - agm</taxon> (SIVAGM). <taxon tax_id="12830">Simian immunodeficiency virus - mnd</taxon> (SIVMND) has been suggested to represent a fourth distinct group [<cite idref="PUB00004048"/>]. These groups are believed to have diverged from a common ancestor long before the spread of AIDS in humans. Genetic variation in HIV-1 and HIV-2 has been studied extensively, and the nucleotide sequences reported for several strains [<cite idref="PUB00000018"/>].<p> ORF analysis has revealed two open reading frames, yielding the so-called R- and X-ORF proteins, whose functions are unknown, but which show a high degree of              sequence similarity.</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P05954"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000018">
      <author_list>Hasegawa A, Tsujimoto H, Maki N, Ishikawa K, Miura T, Fukasawa M, Miki K, Hayami M.</author_list>
      <title>Genomic divergence of HIV-2 from Ghana.</title>
      <db_xref db="PUBMED" dbkey="2611042"/>
      <journal>AIDS Res. Hum. Retroviruses</journal>
      <location issue="6" pages="593-604" volume="5"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00004048">
      <author_list>Tsujimoto H, Hasegawa A, Maki N, Fukasawa M, Miura T, Speidel S, Cooper RW, Moriyama EN, Gojobori T, Hayami M.</author_list>
      <title>Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill.</title>
      <db_xref db="PUBMED" dbkey="2797181"/>
      <journal>Nature</journal>
      <location issue="6242" pages="539-41" volume="341"/>
      <year>1989</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="3972" db="PFAM" dbkey="PF00522" name="VPR"/>
    <db_xref protein_count="3833" db="PRINTS" dbkey="PR00444" name="HIVVPRVPX"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00522"/>
    <db_xref db="BLOCKS" dbkey="IPB000012"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1bde"/>
    <db_xref db="PDB" dbkey="1ceu"/>
    <db_xref db="PDB" dbkey="1dsj"/>
    <db_xref db="PDB" dbkey="1dsk"/>
    <db_xref db="PDB" dbkey="1esx"/>
    <db_xref db="PDB" dbkey="1fi0"/>
    <db_xref db="PDB" dbkey="1kzs"/>
    <db_xref db="PDB" dbkey="1kzt"/>
    <db_xref db="PDB" dbkey="1kzv"/>
    <db_xref db="PDB" dbkey="1m8l"/>
    <db_xref db="PDB" dbkey="1vpc"/>
    <db_xref db="PDB" dbkey="1x9v"/>
    <db_xref db="CATH" dbkey="1.10.1690.10"/>
    <db_xref db="CATH" dbkey="1.20.5.90"/>
    <db_xref db="SCOP" dbkey="j.11.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Virus" proteins_count="3972"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000013" protein_count="41" short_name="Peptidase_M7" type="Family">
  <name>Peptidase M7, snapalysin</name>
  <abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
 <li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and  binding. </p>
<p>Metalloproteases are the most diverse of the four main types of protease, with more than 50 families identified to date. In these enzymes, a divalent cation, usually zinc, activates the water molecule. The metal ion is held in place by amino acid ligands, usually three in number. The known metal ligands are His, Glu, Asp or Lys and at least one other residue is required for catalysis, which may play an electrophillic role. 
Of the known metalloproteases, around half contain an HEXXH motif, which has been shown in crystallographic studies to form part of the metal-binding site [<cite idref="PUB00003579"/>]. The HEXXH motif is relatively common, but can be more stringently defined for metalloproteases as 'abXHEbbHbc', where 'a' is most often valine or threonine and forms part of the S1' subsite in thermolysin and neprilysin, 'b' is an uncharged residue, and 'c' a hydrophobic residue. Proline is never found in this site, possibly because it would break the helical structure adopted by this motif in metalloproteases [<cite idref="PUB00003579"/>].</p>
<p>This group of metallopeptidases belong to the MEROPS peptidase family M7 (snapalysin family, clan MA(M)). The protein fold of the peptidase domain for members of this family resembles that of thermolysin, the type example for clan MA.</p>
<p>With a molecular weight of around 16kDa, Streptomyces extracellular neutral protease is one of the smallest known proteases [<cite idref="PUB00003579"/>]; it is capable of hydrolysing milk proteins [<cite idref="PUB00003579"/>]. The enzyme is synthesised as a proenzyme with a signal peptide, a propeptide and an active domain that contains the conserved HEXXH motif characteristic of metalloproteases. Although family M7 shows active site sequence similarity to other members, it differs in one major respect: the third zinc ligand appears to be an aspartate residue rather than the usual histidine.</p>
</abstract>
  <class_list>
    <classification id="GO:0004222" class_type="GO">
      <category>Molecular Function</category>
      <description>metalloendopeptidase activity</description>
    </classification>
    <classification id="GO:0005576" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular region</description>
    </classification>
    <classification id="GO:0006508" class_type="GO">
      <category>Biological Process</category>
      <description>proteolysis</description>
    </classification>
    <classification id="GO:0008270" class_type="GO">
      <category>Molecular Function</category>
      <description>zinc ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P56406"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00003579">
      <author_list>Rawlings ND, Barrett AJ.</author_list>
      <title>Evolutionary families of metallopeptidases.</title>
      <db_xref db="PUBMED" dbkey="7674922"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="183-228" volume="248"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="41" db="PFAM" dbkey="PF02031" name="Peptidase_M7"/>
    <db_xref protein_count="34" db="PIRSF" dbkey="PIRSF016573" name="Peptidase_M7"/>
    <db_xref protein_count="39" db="PRINTS" dbkey="PR00787" name="NEUTRALPTASE"/>
    <db_xref protein_count="38" db="PRODOM" dbkey="PD016028" name="Peptidase_M7"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF02031"/>
    <db_xref db="BLOCKS" dbkey="IPB000013"/>
    <db_xref db="EC" dbkey="3.4.24.77"/>
    <db_xref db="MEROPS" dbkey="M7"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1c7k"/>
    <db_xref db="PDB" dbkey="1kuh"/>
    <db_xref db="CATH" dbkey="3.40.390.10"/>
    <db_xref db="SCOP" dbkey="d.92.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="41"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000014" protein_count="31843" short_name="PAS" type="Domain">
  <name>PAS</name>
  <abstract>
<p>PAS domains are involved in many signalling proteins where they
are used as a signal sensor domain. PAS domains appear in archaea,
bacteria and eukaryotes. Several PAS-domain proteins are known to
detect their signal by way of an associated cofactor. Haeme,
flavin, and a 4-hydroxycinnamyl chromophore are used in different
proteins. The PAS domain was named after three proteins that it
occurs in: </p>
<li>Per- period circadian protein</li>
<li>Arnt- Ah receptor nuclear translocator protein</li>
<li>Sim-  single-minded protein.</li>
<p>PAS domains are often associated with
PAC domains <db_xref db="INTERPRO" dbkey="IPR001610"/>.  It appears that these domains are directly linked, and that together they form the conserved 3D PAS fold.  The division between the PAS and PAC domains is caused by major differences in sequences in the region connecting these two motifs [<cite idref="PUB00014500"/>].  In human PAS kinase, this region has been shown to be very flexible, and adopts different conformations depending on the bound ligand [<cite idref="PUB00014501"/>].
Probably the most surprising identification of a PAS domain was that in
EAG-like K<sup>+</sup>-channels [<cite idref="PUB00005472"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0004871" class_type="GO">
      <category>Molecular Function</category>
      <description>signal transducer activity</description>
    </classification>
    <classification id="GO:0007165" class_type="GO">
      <category>Biological Process</category>
      <description>signal transduction</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O44712"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O54943"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O60658"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07663"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P19541"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00005472">
      <author_list>Zhulin IB, Taylor BL, Dixon R.</author_list>
      <title>PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.</title>
      <db_xref db="PUBMED" dbkey="9301332"/>
      <journal>Trends Biochem. Sci.</journal>
      <location issue="9" pages="331-3" volume="22"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00014500">
      <author_list>Hefti MH, Francoijs KJ, de Vries SC, Dixon R, Vervoort J.</author_list>
      <title>The PAS fold. A redefinition of the PAS domain based upon structural prediction.</title>
      <db_xref db="PUBMED" dbkey="15009198"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="6" pages="1198-208" volume="271"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00014501">
      <author_list>Amezcua CA, Harper SM, Rutter J, Gardner KH.</author_list>
      <title>Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation.</title>
      <db_xref db="PUBMED" dbkey="12377121"/>
      <journal>Structure</journal>
      <location issue="10" pages="1349-61" volume="10"/>
      <year>2002</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR013655"/>
    <rel_ref ipr_ref="IPR013656"/>
    <rel_ref ipr_ref="IPR013767"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR001294"/>
    <rel_ref ipr_ref="IPR001321"/>
    <rel_ref ipr_ref="IPR003949"/>
    <rel_ref ipr_ref="IPR003950"/>
    <rel_ref ipr_ref="IPR011785"/>
    <rel_ref ipr_ref="IPR012129"/>
    <rel_ref ipr_ref="IPR012130"/>
    <rel_ref ipr_ref="IPR012226"/>
    <rel_ref ipr_ref="IPR012704"/>
    <rel_ref ipr_ref="IPR014285"/>
    <rel_ref ipr_ref="IPR014310"/>
    <rel_ref ipr_ref="IPR014409"/>
    <rel_ref ipr_ref="IPR015524"/>
    <rel_ref ipr_ref="IPR017181"/>
    <rel_ref ipr_ref="IPR017232"/>
  </found_in>
  <member_list>
    <db_xref protein_count="21263" db="PROFILE" dbkey="PS50112" name="PAS"/>
    <db_xref protein_count="30445" db="SMART" dbkey="SM00091" name="PAS"/>
    <db_xref protein_count="21449" db="TIGRFAMs" dbkey="TIGR00229" name="sensory_box"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000014"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50112"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1byw"/>
    <db_xref db="PDB" dbkey="1d06"/>
    <db_xref db="PDB" dbkey="1d7e"/>
    <db_xref db="PDB" dbkey="1dp6"/>
    <db_xref db="PDB" dbkey="1dp8"/>
    <db_xref db="PDB" dbkey="1dp9"/>
    <db_xref db="PDB" dbkey="1drm"/>
    <db_xref db="PDB" dbkey="1ew0"/>
    <db_xref db="PDB" dbkey="1f98"/>
    <db_xref db="PDB" dbkey="1f9i"/>
    <db_xref db="PDB" dbkey="1g28"/>
    <db_xref db="PDB" dbkey="1gsv"/>
    <db_xref db="PDB" dbkey="1gsw"/>
    <db_xref db="PDB" dbkey="1gsx"/>
    <db_xref db="PDB" dbkey="1jnu"/>
    <db_xref db="PDB" dbkey="1kou"/>
    <db_xref db="PDB" dbkey="1ll8"/>
    <db_xref db="PDB" dbkey="1lsv"/>
    <db_xref db="PDB" dbkey="1lsw"/>
    <db_xref db="PDB" dbkey="1lsx"/>
    <db_xref db="PDB" dbkey="1lt0"/>
    <db_xref db="PDB" dbkey="1mzu"/>
    <db_xref db="PDB" dbkey="1n9l"/>
    <db_xref db="PDB" dbkey="1n9n"/>
    <db_xref db="PDB" dbkey="1n9o"/>
    <db_xref db="PDB" dbkey="1nwz"/>
    <db_xref db="PDB" dbkey="1odv"/>
    <db_xref db="PDB" dbkey="1ot6"/>
    <db_xref db="PDB" dbkey="1ot9"/>
    <db_xref db="PDB" dbkey="1ota"/>
    <db_xref db="PDB" dbkey="1otb"/>
    <db_xref db="PDB" dbkey="1otd"/>
    <db_xref db="PDB" dbkey="1ote"/>
    <db_xref db="PDB" dbkey="1oti"/>
    <db_xref db="PDB" dbkey="1p97"/>
    <db_xref db="PDB" dbkey="1s1y"/>
    <db_xref db="PDB" dbkey="1s1z"/>
    <db_xref db="PDB" dbkey="1s4r"/>
    <db_xref db="PDB" dbkey="1s4s"/>
    <db_xref db="PDB" dbkey="1s66"/>
    <db_xref db="PDB" dbkey="1s67"/>
    <db_xref db="PDB" dbkey="1t18"/>
    <db_xref db="PDB" dbkey="1t19"/>
    <db_xref db="PDB" dbkey="1t1a"/>
    <db_xref db="PDB" dbkey="1t1b"/>
    <db_xref db="PDB" dbkey="1t1c"/>
    <db_xref db="PDB" dbkey="1ts0"/>
    <db_xref db="PDB" dbkey="1ts6"/>
    <db_xref db="PDB" dbkey="1ts7"/>
    <db_xref db="PDB" dbkey="1ts8"/>
    <db_xref db="PDB" dbkey="1ugu"/>
    <db_xref db="PDB" dbkey="1uwn"/>
    <db_xref db="PDB" dbkey="1uwp"/>
    <db_xref db="PDB" dbkey="1v9y"/>
    <db_xref db="PDB" dbkey="1v9z"/>
    <db_xref db="PDB" dbkey="1vb6"/>
    <db_xref db="PDB" dbkey="1wa9"/>
    <db_xref db="PDB" dbkey="1xfn"/>
    <db_xref db="PDB" dbkey="1xfq"/>
    <db_xref db="PDB" dbkey="1xj2"/>
    <db_xref db="PDB" dbkey="1xj3"/>
    <db_xref db="PDB" dbkey="1xj4"/>
    <db_xref db="PDB" dbkey="1xj6"/>
    <db_xref db="PDB" dbkey="1y28"/>
    <db_xref db="PDB" dbkey="1ztu"/>
    <db_xref db="PDB" dbkey="2a24"/>
    <db_xref db="PDB" dbkey="2cmn"/>
    <db_xref db="PDB" dbkey="2d01"/>
    <db_xref db="PDB" dbkey="2d02"/>
    <db_xref db="PDB" dbkey="2i9v"/>
    <db_xref db="PDB" dbkey="2o9b"/>
    <db_xref db="PDB" dbkey="2o9c"/>
    <db_xref db="PDB" dbkey="2ohh"/>
    <db_xref db="PDB" dbkey="2ohi"/>
    <db_xref db="PDB" dbkey="2ohj"/>
    <db_xref db="PDB" dbkey="2owh"/>
    <db_xref db="PDB" dbkey="2owj"/>
    <db_xref db="PDB" dbkey="2phy"/>
    <db_xref db="PDB" dbkey="2pyp"/>
    <db_xref db="PDB" dbkey="2pyr"/>
    <db_xref db="PDB" dbkey="2qj5"/>
    <db_xref db="PDB" dbkey="2qj7"/>
    <db_xref db="PDB" dbkey="2qws"/>
    <db_xref db="PDB" dbkey="2r78"/>
    <db_xref db="PDB" dbkey="2vea"/>
    <db_xref db="PDB" dbkey="2vv6"/>
    <db_xref db="PDB" dbkey="2vv7"/>
    <db_xref db="PDB" dbkey="2vv8"/>
    <db_xref db="PDB" dbkey="3b33"/>
    <db_xref db="PDB" dbkey="3bwl"/>
    <db_xref db="PDB" dbkey="3f1n"/>
    <db_xref db="PDB" dbkey="3f1o"/>
    <db_xref db="PDB" dbkey="3f1p"/>
    <db_xref db="PDB" dbkey="3phy"/>
    <db_xref db="PDB" dbkey="3pyp"/>
    <db_xref db="CATH" dbkey="3.30.450.20"/>
    <db_xref db="CATH" dbkey="3.60.15.10"/>
    <db_xref db="SCOP" dbkey="d.110.3.1"/>
    <db_xref db="SCOP" dbkey="d.110.3.2"/>
    <db_xref db="SCOP" dbkey="d.110.3.5"/>
    <db_xref db="SCOP" dbkey="d.110.3.6"/>
    <db_xref db="SCOP" dbkey="d.110.3.7"/>
    <db_xref db="SCOP" dbkey="d.110.3.9"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="27271"/>
    <taxon_data name="Cyanobacteria" proteins_count="1122"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="33"/>
    <taxon_data name="Archaea" proteins_count="997"/>
    <taxon_data name="Eukaryota" proteins_count="3570"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="64"/>
    <taxon_data name="Rice spp." proteins_count="44"/>
    <taxon_data name="Fungi" proteins_count="548"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="23"/>
    <taxon_data name="Other Eukaryotes" proteins_count="112"/>
    <taxon_data name="Other Eukaryotes" proteins_count="82"/>
    <taxon_data name="Nematoda" proteins_count="17"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="17"/>
    <taxon_data name="Arthropoda" proteins_count="772"/>
    <taxon_data name="Fruit Fly" proteins_count="39"/>
    <taxon_data name="Chordata" proteins_count="848"/>
    <taxon_data name="Human" proteins_count="110"/>
    <taxon_data name="Mouse" proteins_count="109"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="3"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="892"/>
    <taxon_data name="Green Plants" proteins_count="892"/>
    <taxon_data name="Metazoa" proteins_count="2256"/>
    <taxon_data name="Plastid Group" proteins_count="120"/>
    <taxon_data name="Plastid Group" proteins_count="26"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="20"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR013655"/>
    <sec_ac acc="IPR013656"/>
    <sec_ac acc="IPR013767"/>
  </sec_list>
</interpro>
<interpro id="IPR000015" protein_count="2173" short_name="Fimb_usher" type="Family">
  <name>Fimbrial biogenesis outer membrane usher protein</name>
  <abstract>
In Gram-negative bacteria the biogenesis of fimbriae (or pili) requires a two-
component assembly  and  transport  system  which is composed of a periplasmic
chaperone (see <db_xref db="PROSITEDOC" dbkey="PDOC00552"/>)  and  an  outer  membrane  protein which has been
termed a  molecular  'usher'  [<cite idref="PUB00002841"/>, <cite idref="PUB00002237"/>, <cite idref="PUB00005083"/>]. <p>The usher protein is rather large (from 86 to
100 Kd) and seems to be mainly composed  of  membrane-spanning  beta-sheets, a
structure reminiscent  of  porins.  
Although the degree of sequence similarity of these proteins is not very high
they  share a number of characteristics. One of these is the presence of two pairs
of cysteines, the first one located in the N-terminal part and the second
at the  C-terminal  extremity that are probably involved in disulphide bonds.
The best conserved region is located in the central part of these proteins.</p>
</abstract>
  <class_list>
    <classification id="GO:0005215" class_type="GO">
      <category>Molecular Function</category>
      <description>transporter activity</description>
    </classification>
    <classification id="GO:0006810" class_type="GO">
      <category>Biological Process</category>
      <description>transport</description>
    </classification>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07110"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002237">
      <author_list>Schifferli DM, Alrutz MA.</author_list>
      <title>Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli.</title>
      <db_xref db="PUBMED" dbkey="7906265"/>
      <journal>J. Bacteriol.</journal>
      <location issue="4" pages="1099-110" volume="176"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00002841">
      <author_list>Jacob-Dubuisson F, Striker R, Hultgren SJ.</author_list>
      <title>Chaperone-assisted self-assembly of pili independent of cellular energy.</title>
      <db_xref db="PUBMED" dbkey="7909802"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="17" pages="12447-55" volume="269"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005083">
      <author_list>Van Rosmalen M, Saier MH Jr.</author_list>
      <title>Structural and evolutionary relationships between two families of bacterial extracytoplasmic chaperone proteins which function cooperatively in fimbrial assembly.</title>
      <db_xref db="PUBMED" dbkey="7906046"/>
      <journal>Res. Microbiol.</journal>
      <location issue="7" pages="507-27" volume="144"/>
      <year>1993</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018030"/>
  </contains>
  <member_list>
    <db_xref protein_count="2173" db="PFAM" dbkey="PF00577" name="Usher"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00577"/>
    <db_xref db="MSDsite" dbkey="PS01151"/>
    <db_xref db="BLOCKS" dbkey="IPB000015"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00886"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1zdv"/>
    <db_xref db="PDB" dbkey="1zdx"/>
    <db_xref db="PDB" dbkey="1ze3"/>
    <db_xref db="PDB" dbkey="3bwu"/>
    <db_xref db="SCOP" dbkey="b.167.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2168"/>
    <taxon_data name="Cyanobacteria" proteins_count="2"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="5"/>
    <taxon_data name="Rice spp." proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="5"/>
    <taxon_data name="Green Plants" proteins_count="5"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000018" protein_count="25" short_name="P2Y4_purnocptor" type="Family">
  <name>P2Y4 purinoceptor</name>
  <abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>In addition to their role in energy metabolism, purines (especially
adenosine and adenine nucleotides) produce a wide range of pharmacological
effects mediated by activation of cell surface receptors [<cite idref="PUB00005868"/>]. ATP is a
co-transmitter in sympathetic nerves in the autonomic nervous system,
where it exerts an important physiological role in the regulation of
smooth muscle activity, stimulating relaxation of intestinal smooth muscle
and contraction of the bladder. Receptors for adenine nucleotides are
involved in a number of other physiological pathways, including stimulation
of platelet activation by ADP, which is released from the vascular
endothelium following injury. ATP has excitatory effects in the CNS [<cite idref="PUB00005868"/>].
Distinct receptors exist for adenosine. The main effects of adenosine in
the periphery include vasodilation, bronchoconstriction, immunosuppression,
inhibition of platelet aggregation, cardiac depression, stimulation of
nociceptive afferents, inhibition of neurotransmitter release, and
inhibition of the release of hormones. In the CNS, adenosine exerts a
pre- and post-synaptic depressant action, reducing motor activity,
depressing respiration, inducing sleep and relieving anxiety. The
physiological role of adenosine is believed to be to adjust energy demands
in line with oxygen supply [<cite idref="PUB00005868"/>].</p>
<p>Purinoceptors have been classified as P1 or P2, depending on their
preference for adenosine or adenine nucleotides respectively. Adenosine
receptors (P1 purinoceptors) are characterised by their affinity for
adenosine and by the ability of methylxanthines to act as antagonists [<cite idref="PUB00005868"/>].
Adenosine has very low affinity for P2 purinoceptors.</p>
<p>The P2Y receptor is found in smooth muscle (e.g., taeni caeci) and in
vascular tissue, where it induces vasodilation through endothelium-dependent
release of nitric oxide. The receptor activates phosphoinositide metabolism
through a pertussis-toxin-insensitive G-protein, probably belonging to
the Gi/Go class [<cite idref="PUB00005868"/>].</p>
<p>A new subtype of P2 purinoceptors has been isolated [<cite idref="PUB00002940"/>]. Its deduced amino acid sequence is consistent with a GPCR that is 51% identical to the human P2Y2 receptor and 35% identical to the chicken P2Y1 receptor [<cite idref="PUB00002940"/>]. P2Y4 is expressed in the placenta, with low levels in the lung and vascular smoothmuscle.  In cells stably expressing the receptor, UTP and UDP have been shown to stimulate the formation of inositol phosphates with equivalent potency and maximal effect, while ATP behaves as a partial agonist, and ADP is almost inactive [<cite idref="PUB00002940"/>]. The receptor is thus a new member of the P2 purinergic receptor family that functionally behaves as a pyrimidinergic receptor [<cite idref="PUB00002940"/>].  P2Y4 can couple to both Gi and Gq proteins to activate phospholipase C [<cite idref="PUB00007771"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0007186" class_type="GO">
      <category>Biological Process</category>
      <description>G-protein coupled receptor protein signaling pathway</description>
    </classification>
    <classification id="GO:0016021" class_type="GO">
      <category>Cellular Component</category>
      <description>integral to membrane</description>
    </classification>
    <classification id="GO:0045028" class_type="GO">
      <category>Molecular Function</category>
      <description>purinergic nucleotide receptor activity, G-protein coupled</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O35811"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P51582"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9JJS7"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000131">
      <author_list>Birnbaumer L.</author_list>
      <title>G proteins in signal transduction.</title>
      <db_xref db="PUBMED" dbkey="2111655"/>
      <journal>Annu. Rev. Pharmacol. Toxicol.</journal>
      <location pages="675-705" volume="30"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00002477">
      <author_list>Casey PJ, Gilman AG.</author_list>
      <title>G protein involvement in receptor-effector coupling.</title>
      <db_xref db="PUBMED" dbkey="2830256"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="6" pages="2577-80" volume="263"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00002940">
      <author_list>Communi D, Pirotton S, Parmentier M, Boeynaems JM.</author_list>
      <title>Cloning and functional expression of a human uridine nucleotide receptor.</title>
      <db_xref db="PUBMED" dbkey="8537336"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="52" pages="30849-52" volume="270"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00004960">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8386361"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="167-76" volume="6"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00007771">
      <author_list>Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM.</author_list>
      <title>Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors.</title>
      <db_xref db="PUBMED" dbkey="10889463"/>
      <journal>Cell. Signal.</journal>
      <location issue="6" pages="351-60" volume="12"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00004961">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Fingerprinting G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8170923"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="195-203" volume="7"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005868">
      <author_list>Watson S, Arkinstall S.</author_list>
      <title>Adenosine and adenine nucleotides.</title>
      <book_title>ISBN:0127384405</book_title>
      <location pages="19-31"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR002286"/>
  </parent_list>
  <member_list>
    <db_xref protein_count="24" db="PANTHER" dbkey="PTHR19264:SF154" name="P2Y4_purnocptor"/>
    <db_xref protein_count="20" db="PRINTS" dbkey="PR01066" name="P2Y4PRNOCPTR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000018"/>
    <db_xref db="IUPHAR" dbkey="2396"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="25"/>
    <taxon_data name="Chordata" proteins_count="25"/>
    <taxon_data name="Human" proteins_count="4"/>
    <taxon_data name="Mouse" proteins_count="2"/>
    <taxon_data name="Metazoa" proteins_count="25"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000020" protein_count="188" short_name="Anaphylatoxin/fibulin" type="Domain">
  <name>Anaphylatoxin/fibulin</name>
  <abstract>
<p>Complement components C3, C4 and C5 are large glycoproteins that have important functions in the immune response and host defence [<cite idref="PUB00003181"/>]. They have a wide variety of biological activities and are proteolytically activated by cleavage at a specific site, forming a- and b-fragments [<cite idref="PUB00002512"/>]. A-fragments form distinct structural domains of approximately 76 amino acids, coded for by a single exon within the complement protein gene. The C3a, C4a and C5a components are referred to as anaphylatoxins [<cite idref="PUB00002512"/>, <cite idref="PUB00001343"/>]: they cause smooth muscle contraction, histamine release from mast cells, and enhanced vascular permeability [<cite idref="PUB00001343"/>]. They also mediate chemotaxis, inflammation, and generation of cytotoxic oxygen radicals [<cite idref="PUB00001343"/>]. The proteins are highly hydrophilic, with a mainly alpha-helical structure held together by 3 disulphide bridges [<cite idref="PUB00001343"/>].</p>
<p> Fibulins are secreted glycoproteins that become incorporated into a fibrillar extracellular matrix when expressed by cultured cells or added exogenously to cell monolayers [<cite idref="PUB00003065"/>, <cite idref="PUB00011223"/>]. The five known members of the family share an elongated structure and many calcium-binding sites, owing to the presence of tandem arrays of epidermal growth factor-like domains. They have overlapping binding sites for several basement-membrane proteins, tropoelastin, fibrillin, fibronectin and proteoglycans, and they participate in diverse supramolecular structures. The amino-terminal domain I of fibulin consists of three anaphylatoxin-like (AT) modules, each approximately 40 residues long and containing four or six cysteines. The structure of an AT module was determined for the complement-derived anaphylatoxin C3a, and  was found to be a compact alpha-helical fold that is stabilised by three disulphide bridges in the pattern Cys1-4, Cys2-5 and Cys3-6 (where Cys is cysteine). The bulk of the remaining portion of the fibulin molecule is a series of nine EGF-like repeats [<cite idref="PUB00003073"/>]. </p>
</abstract>
  <class_list>
    <classification id="GO:0005576" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular region</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O77469"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01029"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01031"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01032"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001343">
      <author_list>Gennaro R, Simonic T, Negri A, Mottola C, Secchi C, Ronchi S, Romeo D.</author_list>
      <title>C5a fragment of bovine complement. Purification, bioassays, amino-acid sequence and other structural studies.</title>
      <db_xref db="PUBMED" dbkey="3081348"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="1" pages="77-86" volume="155"/>
      <year>1986</year>
    </publication>
    <publication id="PUB00002512">
      <author_list>Ogata RT, Rosa PA, Zepf NE.</author_list>
      <title>Sequence of the gene for murine complement component C4.</title>
      <db_xref db="PUBMED" dbkey="2777798"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="28" pages="16565-72" volume="264"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003065">
      <author_list>Argraves WS, Tran H, Burgess WH, Dickerson K.</author_list>
      <title>Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure.</title>
      <db_xref db="PUBMED" dbkey="2269669"/>
      <journal>J. Cell Biol.</journal>
      <location issue="6 Pt 2" pages="3155-64" volume="111"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00011223">
      <author_list>Timpl R, Sasaki T, Kostka G, Chu ML.</author_list>
      <title>Fibulins: a versatile family of extracellular matrix proteins.</title>
      <db_xref db="PUBMED" dbkey="12778127"/>
      <journal>Nat. Rev. Mol. Cell Biol.</journal>
      <location issue="6" pages="479-89" volume="4"/>
      <year>2003</year>
    </publication>
    <publication id="PUB00003073">
      <author_list>Pan TC, Sasaki T, Zhang RZ, Fassler R, Timpl R, Chu ML.</author_list>
      <title>Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding.</title>
      <db_xref db="PUBMED" dbkey="8245130"/>
      <journal>J. Cell Biol.</journal>
      <location issue="5" pages="1269-77" volume="123"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00003181">
      <author_list>Fritzinger DC, Petrella EC, Connelly MB, Bredehorst R, Vogel CW.</author_list>
      <title>Primary structure of cobra complement component C3.</title>
      <db_xref db="PUBMED" dbkey="1431125"/>
      <journal>J. Immunol.</journal>
      <location issue="11" pages="3554-62" volume="149"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR018081"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR017048"/>
  </found_in>
  <member_list>
    <db_xref protein_count="182" db="PFAM" dbkey="PF01821" name="ANATO"/>
    <db_xref protein_count="143" db="PROSITE" dbkey="PS01177" name="ANAPHYLATOXIN_1"/>
    <db_xref protein_count="178" db="PROFILE" dbkey="PS01178" name="ANAPHYLATOXIN_2"/>
    <db_xref protein_count="155" db="SMART" dbkey="SM00104" name="ANATO"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01821"/>
    <db_xref db="MSDsite" dbkey="PS01177"/>
    <db_xref db="BLOCKS" dbkey="IPB000020"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00906"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1c5a"/>
    <db_xref db="PDB" dbkey="1cfa"/>
    <db_xref db="PDB" dbkey="1kjs"/>
    <db_xref db="CATH" dbkey="1.20.91.20"/>
    <db_xref db="SCOP" dbkey="a.50.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="188"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="178"/>
    <taxon_data name="Human" proteins_count="46"/>
    <taxon_data name="Mouse" proteins_count="19"/>
    <taxon_data name="Metazoa" proteins_count="188"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018081"/>
  </sec_list>
</interpro>
<interpro id="IPR000021" protein_count="435" short_name="Hok/gef_toxin" type="Family">
  <name>Hok/gef cell toxic protein</name>
  <abstract>
The hok/gef family of Gram-negative bacterial proteins are toxic to cells
when over-expressed, killing the cells from within by interfering with a
vital function in the cell membrane [<cite idref="PUB00003728"/>]. Some family members (flm) increase the stability of unstable RNA [<cite idref="PUB00003728"/>], some (pnd) induce the degradation of stable RNA at higher than optimum growth temperatures [<cite idref="PUB00000587"/>], while others affect the release of cellular magnesium by membrane alterations [<cite idref="PUB00000587"/>]. The
proteins are short (50-70 residues), consisting of an N-terminal hydrophobic (possibly membrane spanning) domain, and a C-terminal periplasmic region, which contains the toxic domain. The C-terminal region contains a conserved cysteine residue that mediates homo-dimerisation in the gef protein, although dimerisation is not necessary for the toxic effect [<cite idref="PUB00003810"/>].
</abstract>
  <class_list>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P0ACG4"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000587">
      <author_list>Sakikawa T, Akimoto S, Ohnishi Y.</author_list>
      <title>The pnd gene in E. coli plasmid R16: nucleotide sequence and gene expression leading to cell Mg2+ release and stable RNA degradation.</title>
      <db_xref db="PUBMED" dbkey="2465777"/>
      <journal>Biochim. Biophys. Acta</journal>
      <location issue="2" pages="158-66" volume="1007"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003728">
      <author_list>Golub EI, Panzer HA.</author_list>
      <title>The F factor of Escherichia coli carries a locus of stable plasmid inheritance stm, similar to the parB locus of plasmid RI.</title>
      <db_xref db="PUBMED" dbkey="3070354"/>
      <journal>Mol. Gen. Genet.</journal>
      <location issue="2" pages="353-7" volume="214"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00003810">
      <author_list>Poulsen LK, Refn A, Molin S, Andersson P.</author_list>
      <title>Topographic analysis of the toxic Gef protein from Escherichia coli.</title>
      <db_xref db="PUBMED" dbkey="1943700"/>
      <journal>Mol. Microbiol.</journal>
      <location issue="7" pages="1627-37" volume="5"/>
      <year>1991</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018084"/>
  </contains>
  <member_list>
    <db_xref protein_count="435" db="PFAM" dbkey="PF01848" name="HOK_GEF"/>
    <db_xref protein_count="385" db="PRINTS" dbkey="PR00281" name="HOKGEFTOXIC"/>
    <db_xref protein_count="405" db="PRODOM" dbkey="PD005979" name="Hok/gef_toxin"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01848"/>
    <db_xref db="MSDsite" dbkey="PS00556"/>
    <db_xref db="BLOCKS" dbkey="IPB000021"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00481"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="424"/>
    <taxon_data name="Virus" proteins_count="8"/>
    <taxon_data name="Unclassified" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000022" protein_count="5636" short_name="Carboxyl_trans" type="Domain">
  <name>Carboxyl transferase</name>
  <abstract>
<p>Members in this domain include biotin dependent carboxylases
[<cite idref="PUB00001442"/>, <cite idref="PUB00002227"/>].
The carboxyl transferase domain carries out the following reaction;
transcarboxylation from biotin to an acceptor molecule. There are
two recognised types of carboxyl transferase. One of them uses acyl-CoA
and the other uses 2-oxo acid as the acceptor molecule of carbon dioxide.  
All of the members in this family utilise acyl-CoA as the acceptor
molecule.</p>
</abstract>
  <class_list>
    <classification id="GO:0016874" class_type="GO">
      <category>Molecular Function</category>
      <description>ligase activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00763"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P34385"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q00955"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q3ULD5"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9V9A7"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001442">
      <author_list>Toh H, Kondo H, Tanabe T.</author_list>
      <title>Molecular evolution of biotin-dependent carboxylases.</title>
      <db_xref db="PUBMED" dbkey="8102604"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="3" pages="687-96" volume="215"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00002227">
      <author_list>Thornton CG, Kumar GK, Haase FC, Phillips NF, Woo SB, Park VM, Magner WJ, Shenoy BC, Wood HG, Samols D.</author_list>
      <title>Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli.</title>
      <db_xref db="PUBMED" dbkey="8366018"/>
      <journal>J. Bacteriol.</journal>
      <location issue="17" pages="5301-8" volume="175"/>
      <year>1993</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR011762"/>
    <rel_ref ipr_ref="IPR011763"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR000438"/>
    <rel_ref ipr_ref="IPR005783"/>
    <rel_ref ipr_ref="IPR017556"/>
  </found_in>
  <member_list>
    <db_xref protein_count="5637" db="PFAM" dbkey="PF01039" name="Carboxyl_trans"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01039"/>
    <db_xref db="BLOCKS" dbkey="IPB000022"/>
    <db_xref db="EC" dbkey="6.4.1.2"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1od2"/>
    <db_xref db="PDB" dbkey="1od4"/>
    <db_xref db="PDB" dbkey="1on3"/>
    <db_xref db="PDB" dbkey="1on9"/>
    <db_xref db="PDB" dbkey="1pix"/>
    <db_xref db="PDB" dbkey="1uyr"/>
    <db_xref db="PDB" dbkey="1uys"/>
    <db_xref db="PDB" dbkey="1uyt"/>
    <db_xref db="PDB" dbkey="1uyv"/>
    <db_xref db="PDB" dbkey="1vrg"/>
    <db_xref db="PDB" dbkey="1w2x"/>
    <db_xref db="PDB" dbkey="1x0u"/>
    <db_xref db="PDB" dbkey="1xnv"/>
    <db_xref db="PDB" dbkey="1xnw"/>
    <db_xref db="PDB" dbkey="1xny"/>
    <db_xref db="PDB" dbkey="1xo6"/>
    <db_xref db="PDB" dbkey="2a7s"/>
    <db_xref db="PDB" dbkey="2bzr"/>
    <db_xref db="PDB" dbkey="2f9y"/>
    <db_xref db="CATH" dbkey="3.90.226.10"/>
    <db_xref db="SCOP" dbkey="c.14.1.4"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="3755"/>
    <taxon_data name="Cyanobacteria" proteins_count="56"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="91"/>
    <taxon_data name="Eukaryota" proteins_count="1789"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
    <taxon_data name="Rice spp." proteins_count="14"/>
    <taxon_data name="Fungi" proteins_count="150"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
    <taxon_data name="Nematoda" proteins_count="6"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="6"/>
    <taxon_data name="Arthropoda" proteins_count="41"/>
    <taxon_data name="Fruit Fly" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="110"/>
    <taxon_data name="Human" proteins_count="29"/>
    <taxon_data name="Mouse" proteins_count="18"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="1366"/>
    <taxon_data name="Green Plants" proteins_count="1366"/>
    <taxon_data name="Metazoa" proteins_count="333"/>
    <taxon_data name="Plastid Group" proteins_count="36"/>
    <taxon_data name="Plastid Group" proteins_count="19"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000023" protein_count="2630" short_name="Phosphofructokinase" type="Domain">
  <name>Phosphofructokinase</name>
  <abstract>
The enzyme-catalysed transfer of a phosphoryl group from ATP is an
important reaction in a wide variety of biological processes [<cite idref="PUB00004002"/>]. One
enzyme that utilises this reaction is phosphofructokinase (PFK), which
catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-
bisphosphate, a key regulatory step in the glycolytic pathway [<cite idref="PUB00014238"/>, <cite idref="PUB00000020"/>]. 
PFK exists as a homotetramer in bacteria and mammals (where each monomer
possesses 2 similar domains), and as an octomer in yeast (where there are
4 alpha- (PFK1) and 4 beta-chains (PFK2), the latter, like the mammalian
monomers, possessing 2 similar domains [<cite idref="PUB00000020"/>]). <p>PFK is ~300 amino acids in length, and structural studies of the
bacterial enzyme have shown it comprises two similar (alpha/beta) lobes: one involved in
ATP binding and the other housing both the substrate-binding site and the allosteric site (a regulatory binding site distinct from the active site, but that affects enzyme
activity). The identical tetramer subunits  adopt 2 
different conformations: in a 'closed' state, the bound magnesium ion
bridges the phosphoryl groups of the enzyme products (ADP and fructose-1,6-
bisphosphate); and in an 'open' state, the magnesium ion binds only the ADP
[<cite idref="PUB00003237"/>], as the 2 products are now further apart. These conformations are
thought to be successive stages of a reaction pathway that requires subunit
closure to bring the 2 molecules sufficiently close to react [<cite idref="PUB00003237"/>].</p>
<p>Deficiency in PFK leads to glycogenosis type VII (Tauri's disease), an
autosomal recessive disorder characterised by severe nausea, vomiting,
muscle cramps and myoglobinuria in response to bursts of intense or
vigorous exercise [<cite idref="PUB00000020"/>]. Sufferers are usually able to lead a reasonably
ordinary life by learning to adjust activity levels [<cite idref="PUB00000020"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0003872" class_type="GO">
      <category>Molecular Function</category>
      <description>6-phosphofructokinase activity</description>
    </classification>
    <classification id="GO:0005945" class_type="GO">
      <category>Cellular Component</category>
      <description>6-phosphofructokinase complex</description>
    </classification>
    <classification id="GO:0006096" class_type="GO">
      <category>Biological Process</category>
      <description>glycolysis</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P08237"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P12382"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P16861"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P52034"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q27483"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000020">
      <author_list>Raben N, Exelbert R, Spiegel R, Sherman JB, Nakajima H, Plotz P, Heinisch J.</author_list>
      <title>Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency.</title>
      <db_xref db="PUBMED" dbkey="7825568"/>
      <journal>Am. J. Hum. Genet.</journal>
      <location issue="1" pages="131-41" volume="56"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00003237">
      <author_list>Shirakihara Y, Evans PR.</author_list>
      <title>Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products.</title>
      <db_xref db="PUBMED" dbkey="2975709"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="4" pages="973-94" volume="204"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00004002">
      <author_list>Hellinga HW, Evans PR.</author_list>
      <title>Mutations in the active site of Escherichia coli phosphofructokinase.</title>
      <db_xref db="PUBMED" dbkey="2953977"/>
      <journal>Nature</journal>
      <location issue="6121" pages="437-9" volume="327"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00014238">
      <author_list>Wegener G, Krause U.</author_list>
      <title>Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle.</title>
      <db_xref db="PUBMED" dbkey="12023862"/>
      <journal>Biochem. Soc. Trans.</journal>
      <location issue="2" pages="264-70" volume="30"/>
      <year>2002</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR011183"/>
    <rel_ref ipr_ref="IPR011403"/>
    <rel_ref ipr_ref="IPR011404"/>
    <rel_ref ipr_ref="IPR011405"/>
    <rel_ref ipr_ref="IPR012003"/>
    <rel_ref ipr_ref="IPR012004"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR013981"/>
    <rel_ref ipr_ref="IPR015912"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR009161"/>
  </found_in>
  <member_list>
    <db_xref protein_count="2586" db="PFAM" dbkey="PF00365" name="PFK"/>
    <db_xref protein_count="2522" db="PRINTS" dbkey="PR00476" name="PHFRCTKINASE"/>
    <db_xref protein_count="2622" db="SSF" dbkey="SSF53784" name="Ppfruckinase"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00365"/>
    <db_xref db="BLOCKS" dbkey="IPB000023"/>
    <db_xref db="EC" dbkey="2.7.1.11"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1kzh"/>
    <db_xref db="PDB" dbkey="1mto"/>
    <db_xref db="PDB" dbkey="1pfk"/>
    <db_xref db="PDB" dbkey="1zxx"/>
    <db_xref db="PDB" dbkey="2f48"/>
    <db_xref db="PDB" dbkey="2pfk"/>
    <db_xref db="PDB" dbkey="3pfk"/>
    <db_xref db="PDB" dbkey="4pfk"/>
    <db_xref db="PDB" dbkey="6pfk"/>
    <db_xref db="CATH" dbkey="1.10.10.480"/>
    <db_xref db="CATH" dbkey="3.40.50.450"/>
    <db_xref db="CATH" dbkey="3.40.50.460"/>
    <db_xref db="SCOP" dbkey="c.89.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2023"/>
    <taxon_data name="Cyanobacteria" proteins_count="43"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
    <taxon_data name="Archaea" proteins_count="16"/>
    <taxon_data name="Eukaryota" proteins_count="587"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="15"/>
    <taxon_data name="Rice spp." proteins_count="50"/>
    <taxon_data name="Fungi" proteins_count="102"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
    <taxon_data name="Other Eukaryotes" proteins_count="13"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="25"/>
    <taxon_data name="Fruit Fly" proteins_count="3"/>
    <taxon_data name="Chordata" proteins_count="92"/>
    <taxon_data name="Human" proteins_count="27"/>
    <taxon_data name="Mouse" proteins_count="11"/>
    <taxon_data name="Virus" proteins_count="2"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="11"/>
    <taxon_data name="Plastid Group" proteins_count="199"/>
    <taxon_data name="Green Plants" proteins_count="199"/>
    <taxon_data name="Metazoa" proteins_count="283"/>
    <taxon_data name="Plastid Group" proteins_count="53"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="8"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR011183"/>
    <sec_ac acc="IPR011403"/>
    <sec_ac acc="IPR011404"/>
    <sec_ac acc="IPR011405"/>
    <sec_ac acc="IPR012003"/>
    <sec_ac acc="IPR012004"/>
  </sec_list>
</interpro>
<interpro id="IPR000024" protein_count="595" short_name="Frizzled_Cys-rich" type="Domain">
  <name>Frizzled cysteine-rich domain</name>
  <abstract>
The Frizzled CRD (cysteine rich domain) is conserved in diverse proteins including several receptor tyrosine kinases
[<cite idref="PUB00001039"/>, <cite idref="PUB00005055"/>, <cite idref="PUB00005486"/>].
In <taxon tax_id="7227">Drosophila melanogaster</taxon>, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have in their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. Sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development, include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2.
The structure of this domain is known and is composed mainly of alpha helices.
This domain contains ten conserved cysteines that form five disulphide bridges.
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00144"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O19116"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O77438"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P39061"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q24760"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001039">
      <author_list>Xu YK, Nusse R.</author_list>
      <title>The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases.</title>
      <db_xref db="PUBMED" dbkey="9637908"/>
      <journal>Curr. Biol.</journal>
      <location issue="12" pages="R405-6" volume="8"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00005055">
      <author_list>Saldanha J, Singh J, Mahadevan D.</author_list>
      <title>Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases.</title>
      <db_xref db="PUBMED" dbkey="9684897"/>
      <journal>Protein Sci.</journal>
      <location issue="7" pages="1632-5" volume="7"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00005486">
      <author_list>Rehn M, Pihlajaniemi T, Hofmann K, Bucher P.</author_list>
      <title>The frizzled motif: in how many different protein families does it occur?</title>
      <db_xref db="PUBMED" dbkey="9852758"/>
      <journal>Trends Biochem. Sci.</journal>
      <location issue="11" pages="415-7" volume="23"/>
      <year>1998</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR020067"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR020068"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR015526"/>
    <rel_ref ipr_ref="IPR017052"/>
    <rel_ref ipr_ref="IPR017343"/>
  </found_in>
  <member_list>
    <db_xref protein_count="542" db="GENE3D" dbkey="G3DSA:1.10.2000.10" name="Frizzled_Cys-rich"/>
    <db_xref protein_count="596" db="SSF" dbkey="SSF63501" name="Frizzled_Cys-rich"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01392"/>
    <db_xref db="BLOCKS" dbkey="IPB000024"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50038"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ijx"/>
    <db_xref db="PDB" dbkey="1ijy"/>
    <db_xref db="CATH" dbkey="1.10.2000.10"/>
    <db_xref db="SCOP" dbkey="a.141.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="596"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="8"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="8"/>
    <taxon_data name="Arthropoda" proteins_count="147"/>
    <taxon_data name="Fruit Fly" proteins_count="20"/>
    <taxon_data name="Chordata" proteins_count="366"/>
    <taxon_data name="Human" proteins_count="48"/>
    <taxon_data name="Mouse" proteins_count="49"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
    <taxon_data name="Green Plants" proteins_count="2"/>
    <taxon_data name="Metazoa" proteins_count="584"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR020068"/>
  </sec_list>
</interpro>
<interpro id="IPR000035" protein_count="241" short_name="Alkylbase_DNA_glycsylse_CS" type="Conserved_site">
  <name>Alkylbase DNA glycosidase, conserved site</name>
  <abstract>
<p>Alkylbase DNA glycosidases [<cite idref="PUB00000053"/>] are  DNA repair  enzymes  that hydrolyse the deoxyribose N-glycosidic bond to excise various alkylated bases from a damaged DNA polymer. In <taxon tax_id="562">Escherichia coli</taxon> there  are two alkylbase DNA glycosidases: one (gene tag) which is constitutively expressed and  which is specific for the removal of 3-methyladenine (<db_xref db="EC" dbkey="3.2.2.20"/>), and one (gene alkA) which is induced during adaptation to alkylation and which can remove a variety of alkylation products (<db_xref db="EC" dbkey="3.2.2.21"/>). Tag and alkA do not share any region of sequence similarity. In yeast there is  an alkylbase DNA glycosidase (gene MAG1) [<cite idref="PUB00001200"/>, <cite idref="PUB00001201"/>], which can remove 3-methyladenine or 7-methyladenine and which is structurally related to alkA. MAG and alkA are both proteins of about 300 amino acid residues.  While the C- and N-terminal ends appear to be unrelated, there is a central region of about 130 residues which is well conserved.</p>
</abstract>
  <class_list>
    <classification id="GO:0003905" class_type="GO">
      <category>Molecular Function</category>
      <description>alkylbase DNA N-glycosylase activity</description>
    </classification>
    <classification id="GO:0006281" class_type="GO">
      <category>Biological Process</category>
      <description>DNA repair</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O94468"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P04395"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22134"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000053">
      <author_list>Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y.</author_list>
      <title>Regulation and expression of the adaptive response to alkylating agents.</title>
      <db_xref db="PUBMED" dbkey="3052269"/>
      <journal>Annu. Rev. Biochem.</journal>
      <location pages="133-57" volume="57"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00001200">
      <author_list>Berdal KG, Bjoras M, Bjelland S, Seeberg E.</author_list>
      <title>Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene.</title>
      <db_xref db="PUBMED" dbkey="2265619"/>
      <journal>EMBO J.</journal>
      <location issue="13" pages="4563-8" volume="9"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00001201">
      <author_list>Chen J, Derfler B, Samson L.</author_list>
      <title>Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage.</title>
      <db_xref db="PUBMED" dbkey="2265620"/>
      <journal>EMBO J.</journal>
      <location issue="13" pages="4569-75" volume="9"/>
      <year>1990</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR003265"/>
    <rel_ref ipr_ref="IPR011257"/>
  </found_in>
  <member_list>
    <db_xref protein_count="241" db="PROSITE" dbkey="PS00516" name="ALKYLBASE_DNA_GLYCOS"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS00516"/>
    <db_xref db="EC" dbkey="3.2.2.21"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00447"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1diz"/>
    <db_xref db="PDB" dbkey="1mpg"/>
    <db_xref db="PDB" dbkey="1pvs"/>
    <db_xref db="PDB" dbkey="3cvs"/>
    <db_xref db="PDB" dbkey="3cvt"/>
    <db_xref db="PDB" dbkey="3cw7"/>
    <db_xref db="PDB" dbkey="3cwa"/>
    <db_xref db="PDB" dbkey="3cws"/>
    <db_xref db="PDB" dbkey="3cwt"/>
    <db_xref db="PDB" dbkey="3cwu"/>
    <db_xref db="PDB" dbkey="3d4v"/>
    <db_xref db="CATH" dbkey="1.10.1670.10"/>
    <db_xref db="CATH" dbkey="1.10.340.30"/>
    <db_xref db="SCOP" dbkey="a.96.1.3"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="214"/>
    <taxon_data name="Archaea" proteins_count="3"/>
    <taxon_data name="Eukaryota" proteins_count="23"/>
    <taxon_data name="Fungi" proteins_count="23"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="7"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="23"/>
  </taxonomy_distribution>
</interpro>
<deleted_entries>
  <del_ref id="IPR000000"/>
  <del_ref id="IPR000002"/>
  <del_ref id="IPR000051"/>
  <del_ref id="IPR000099"/>
  <del_ref id="IPR000140"/>
  <del_ref id="IPR000168"/>
  <del_ref id="IPR000205"/>
  <del_ref id="IPR000252"/>
  <del_ref id="IPR000282"/>
  <del_ref id="IPR000284"/>
  <del_ref id="IPR000311"/>
  <del_ref id="IPR000379"/>
  <del_ref id="IPR000437"/>
  <del_ref id="IPR000513"/>
  <del_ref id="IPR000616"/>
  <del_ref id="IPR000707"/>
  <del_ref id="IPR000733"/>
  <del_ref id="IPR000736"/>
  <del_ref id="IPR000790"/>
  <del_ref id="IPR000803"/>
  <del_ref id="IPR000862"/>
  <del_ref id="IPR000893"/>
  <del_ref id="IPR000950"/>
  <del_ref id="IPR001027"/>
  <del_ref id="IPR001042"/>
  <del_ref id="IPR001113"/>
  <del_ref id="IPR001143"/>
  <del_ref id="IPR001167"/>
  <del_ref id="IPR001201"/>
  <del_ref id="IPR001215"/>
  <del_ref id="IPR001255"/>
  <del_ref id="IPR001311"/>
  <del_ref id="IPR001410"/>
  <del_ref id="IPR001430"/>
  <del_ref id="IPR001472"/>
  <del_ref id="IPR001583"/>
  <del_ref id="IPR001601"/>
  <del_ref id="IPR001622"/>
  <del_ref id="IPR001682"/>
  <del_ref id="IPR002025"/>
  <del_ref id="IPR002032"/>
  <del_ref id="IPR002055"/>
  <del_ref id="IPR002106"/>
  <del_ref id="IPR002111"/>
  <del_ref id="IPR002149"/>
  <del_ref id="IPR002179"/>
  <del_ref id="IPR002294"/>
  <del_ref id="IPR002341"/>
  <del_ref id="IPR002370"/>
  <del_ref id="IPR002400"/>
  <del_ref id="IPR002414"/>
  <del_ref id="IPR002419"/>
  <del_ref id="IPR002422"/>
  <del_ref id="IPR002437"/>
  <del_ref id="IPR002465"/>
  <del_ref id="IPR002503"/>
  <del_ref id="IPR002537"/>
  <del_ref id="IPR002555"/>
  <del_ref id="IPR002564"/>
  <del_ref id="IPR002576"/>
  <del_ref id="IPR002581"/>
  <del_ref id="IPR002584"/>
  <del_ref id="IPR002590"/>
  <del_ref id="IPR002598"/>
  <del_ref id="IPR002604"/>
  <del_ref id="IPR002607"/>
  <del_ref id="IPR002617"/>
  <del_ref id="IPR002623"/>
  <del_ref id="IPR002626"/>
  <del_ref id="IPR002632"/>
  <del_ref id="IPR002651"/>
  <del_ref id="IPR002667"/>
  <del_ref id="IPR002688"/>
  <del_ref id="IPR002697"/>
  <del_ref id="IPR002707"/>
  <del_ref id="IPR002721"/>
  <del_ref id="IPR002722"/>
  <del_ref id="IPR002741"/>
  <del_ref id="IPR002752"/>
  <del_ref id="IPR002766"/>
  <del_ref id="IPR002776"/>
  <del_ref id="IPR002785"/>
  <del_ref id="IPR002787"/>
  <del_ref id="IPR002796"/>
  <del_ref id="IPR002799"/>
  <del_ref id="IPR002806"/>
  <del_ref id="IPR002814"/>
  <del_ref id="IPR002824"/>
  <del_ref id="IPR002851"/>
  <del_ref id="IPR002879"/>
  <del_ref id="IPR002887"/>
  <del_ref id="IPR002892"/>
  <del_ref id="IPR002894"/>
  <del_ref id="IPR002897"/>
  <del_ref id="IPR002916"/>
  <del_ref id="IPR002926"/>
  <del_ref id="IPR002965"/>
  <del_ref id="IPR002992"/>
  <del_ref id="IPR002996"/>
  <del_ref id="IPR003002"/>
  <del_ref id="IPR003003"/>
  <del_ref id="IPR003009"/>
  <del_ref id="IPR003030"/>
  <del_ref id="IPR003037"/>
  <del_ref id="IPR003039"/>
  <del_ref id="IPR003040"/>
  <del_ref id="IPR003041"/>
  <del_ref id="IPR003144"/>
  <del_ref id="IPR003145"/>
  <del_ref id="IPR003155"/>
  <del_ref id="IPR003160"/>
  <del_ref id="IPR003161"/>
  <del_ref id="IPR003167"/>
  <del_ref id="IPR003214"/>
  <del_ref id="IPR003215"/>
  <del_ref id="IPR003216"/>
  <del_ref id="IPR003218"/>
  <del_ref id="IPR003219"/>
  <del_ref id="IPR003229"/>
  <del_ref id="IPR003232"/>
  <del_ref id="IPR003233"/>
  <del_ref id="IPR003234"/>
  <del_ref id="IPR003237"/>
  <del_ref id="IPR003238"/>
  <del_ref id="IPR003239"/>
  <del_ref id="IPR003240"/>
  <del_ref id="IPR003241"/>
  <del_ref id="IPR003242"/>
  <del_ref id="IPR003243"/>
  <del_ref id="IPR003244"/>
  <del_ref id="IPR003246"/>
  <del_ref id="IPR003247"/>
  <del_ref id="IPR003249"/>
  <del_ref id="IPR003250"/>
  <del_ref id="IPR003253"/>
  <del_ref id="IPR003254"/>
  <del_ref id="IPR003255"/>
  <del_ref id="IPR003257"/>
  <del_ref id="IPR003259"/>
  <del_ref id="IPR003260"/>
  <del_ref id="IPR003261"/>
  <del_ref id="IPR003266"/>
  <del_ref id="IPR003320"/>
  <del_ref id="IPR003324"/>
  <del_ref id="IPR003336"/>
  <del_ref id="IPR003357"/>
  <del_ref id="IPR003363"/>
  <del_ref id="IPR003371"/>
  <del_ref id="IPR003401"/>
  <del_ref id="IPR003405"/>
  <del_ref id="IPR003408"/>
  <del_ref id="IPR003419"/>
  <del_ref id="IPR003455"/>
  <del_ref id="IPR003575"/>
  <del_ref id="IPR003592"/>
  <del_ref id="IPR003600"/>
  <del_ref id="IPR003623"/>
  <del_ref id="IPR003630"/>
  <del_ref id="IPR003631"/>
  <del_ref id="IPR003632"/>
  <del_ref id="IPR003636"/>
  <del_ref id="IPR003637"/>
  <del_ref id="IPR003638"/>
  <del_ref id="IPR003639"/>
  <del_ref id="IPR003640"/>
  <del_ref id="IPR003641"/>
  <del_ref id="IPR003642"/>
  <del_ref id="IPR003643"/>
  <del_ref id="IPR003665"/>
  <del_ref id="IPR003693"/>
  <del_ref id="IPR003707"/>
  <del_ref id="IPR003771"/>
  <del_ref id="IPR003792"/>
  <del_ref id="IPR003794"/>
  <del_ref id="IPR003799"/>
  <del_ref id="IPR003800"/>
  <del_ref id="IPR003803"/>
  <del_ref id="IPR003809"/>
  <del_ref id="IPR003843"/>
  <del_ref id="IPR003845"/>
  <del_ref id="IPR003858"/>
  <del_ref id="IPR003862"/>
  <del_ref id="IPR003865"/>
  <del_ref id="IPR003866"/>
  <del_ref id="IPR003867"/>
  <del_ref id="IPR003868"/>
  <del_ref id="IPR003885"/>
  <del_ref id="IPR003955"/>
  <del_ref id="IPR004024"/>
  <del_ref id="IPR004040"/>
  <del_ref id="IPR004051"/>
  <del_ref id="IPR004110"/>
  <del_ref id="IPR004128"/>
  <del_ref id="IPR004144"/>
  <del_ref id="IPR004200"/>
  <del_ref id="IPR004225"/>
  <del_ref id="IPR004246"/>
  <del_ref id="IPR004266"/>
  <del_ref id="IPR004287"/>
  <del_ref id="IPR004295"/>
  <del_ref id="IPR004309"/>
  <del_ref id="IPR004325"/>
  <del_ref id="IPR004348"/>
  <del_ref id="IPR004395"/>
  <del_ref id="IPR004587"/>
  <del_ref id="IPR004599"/>
  <del_ref id="IPR004774"/>
  <del_ref id="IPR004781"/>
  <del_ref id="IPR004824"/>
  <del_ref id="IPR004829"/>
  <del_ref id="IPR004831"/>
  <del_ref id="IPR004851"/>
  <del_ref id="IPR004857"/>
  <del_ref id="IPR004862"/>
  <del_ref id="IPR004880"/>
  <del_ref id="IPR004892"/>
  <del_ref id="IPR004904"/>
  <del_ref id="IPR004920"/>
  <del_ref id="IPR004924"/>
  <del_ref id="IPR004949"/>
  <del_ref id="IPR004989"/>
  <del_ref id="IPR004994"/>
  <del_ref id="IPR005014"/>
  <del_ref id="IPR005032"/>
  <del_ref id="IPR005040"/>
  <del_ref id="IPR005156"/>
  <del_ref id="IPR005157"/>
  <del_ref id="IPR005179"/>
  <del_ref id="IPR005191"/>
  <del_ref id="IPR005209"/>
  <del_ref id="IPR005278"/>
  <del_ref id="IPR005289"/>
  <del_ref id="IPR005307"/>
  <del_ref id="IPR005316"/>
  <del_ref id="IPR005340"/>
  <del_ref id="IPR005342"/>
  <del_ref id="IPR005347"/>
  <del_ref id="IPR005348"/>
  <del_ref id="IPR005355"/>
  <del_ref id="IPR005364"/>
  <del_ref id="IPR005470"/>
  <del_ref id="IPR005472"/>
  <del_ref id="IPR005473"/>
  <del_ref id="IPR005487"/>
  <del_ref id="IPR005505"/>
  <del_ref id="IPR005525"/>
  <del_ref id="IPR005544"/>
  <del_ref id="IPR005577"/>
  <del_ref id="IPR005596"/>
  <del_ref id="IPR005622"/>
  <del_ref id="IPR005767"/>
  <del_ref id="IPR005808"/>
  <del_ref id="IPR005820"/>
  <del_ref id="IPR005847"/>
  <del_ref id="IPR006022"/>
  <del_ref id="IPR006057"/>
  <del_ref id="IPR006071"/>
  <del_ref id="IPR006087"/>
  <del_ref id="IPR006088"/>
  <del_ref id="IPR006152"/>
  <del_ref id="IPR006174"/>
  <del_ref id="IPR006227"/>
  <del_ref id="IPR006229"/>
  <del_ref id="IPR006453"/>
  <del_ref id="IPR006559"/>
  <del_ref id="IPR006647"/>
  <del_ref id="IPR006648"/>
  <del_ref id="IPR006661"/>
  <del_ref id="IPR006663"/>
  <del_ref id="IPR006666"/>
  <del_ref id="IPR006672"/>
  <del_ref id="IPR006729"/>
  <del_ref id="IPR006831"/>
  <del_ref id="IPR006929"/>
  <del_ref id="IPR006945"/>
  <del_ref id="IPR006981"/>
  <del_ref id="IPR006987"/>
  <del_ref id="IPR006991"/>
  <del_ref id="IPR007017"/>
  <del_ref id="IPR007028"/>
  <del_ref id="IPR007030"/>
  <del_ref id="IPR007057"/>
  <del_ref id="IPR007058"/>
  <del_ref id="IPR007063"/>
  <del_ref id="IPR007088"/>
  <del_ref id="IPR007089"/>
  <del_ref id="IPR007090"/>
  <del_ref id="IPR007091"/>
  <del_ref id="IPR007092"/>
  <del_ref id="IPR007093"/>
  <del_ref id="IPR007095"/>
  <del_ref id="IPR007101"/>
  <del_ref id="IPR007102"/>
  <del_ref id="IPR007103"/>
  <del_ref id="IPR007104"/>
  <del_ref id="IPR007105"/>
  <del_ref id="IPR007106"/>
  <del_ref id="IPR007107"/>
  <del_ref id="IPR007108"/>
  <del_ref id="IPR007113"/>
  <del_ref id="IPR007114"/>
  <del_ref id="IPR007124"/>
  <del_ref id="IPR007189"/>
  <del_ref id="IPR007190"/>
  <del_ref id="IPR007200"/>
  <del_ref id="IPR007261"/>
  <del_ref id="IPR007270"/>
  <del_ref id="IPR007279"/>
  <del_ref id="IPR007283"/>
  <del_ref id="IPR007299"/>
  <del_ref id="IPR007333"/>
  <del_ref id="IPR007363"/>
  <del_ref id="IPR007377"/>
  <del_ref id="IPR007388"/>
  <del_ref id="IPR007389"/>
  <del_ref id="IPR007399"/>
  <del_ref id="IPR007467"/>
  <del_ref id="IPR007469"/>
  <del_ref id="IPR007491"/>
  <del_ref id="IPR007510"/>
  <del_ref id="IPR007550"/>
  <del_ref id="IPR007552"/>
  <del_ref id="IPR007558"/>
  <del_ref id="IPR007559"/>
  <del_ref id="IPR007571"/>
  <del_ref id="IPR007628"/>
  <del_ref id="IPR007661"/>
  <del_ref id="IPR007665"/>
  <del_ref id="IPR007683"/>
  <del_ref id="IPR007723"/>
  <del_ref id="IPR007762"/>
  <del_ref id="IPR007766"/>
  <del_ref id="IPR007819"/>
  <del_ref id="IPR007821"/>
  <del_ref id="IPR007830"/>
  <del_ref id="IPR007843"/>
  <del_ref id="IPR007909"/>
  <del_ref id="IPR007913"/>
  <del_ref id="IPR007916"/>
  <del_ref id="IPR007924"/>
  <del_ref id="IPR007950"/>
  <del_ref id="IPR007976"/>
  <del_ref id="IPR007983"/>
  <del_ref id="IPR007993"/>
  <del_ref id="IPR007997"/>
  <del_ref id="IPR008038"/>
  <del_ref id="IPR008137"/>
  <del_ref id="IPR008140"/>
  <del_ref id="IPR008149"/>
  <del_ref id="IPR008151"/>
  <del_ref id="IPR008159"/>
  <del_ref id="IPR008161"/>
  <del_ref id="IPR008165"/>
  <del_ref id="IPR008167"/>
  <del_ref id="IPR008169"/>
  <del_ref id="IPR008171"/>
  <del_ref id="IPR008182"/>
  <del_ref id="IPR008184"/>
  <del_ref id="IPR008186"/>
  <del_ref id="IPR008188"/>
  <del_ref id="IPR008190"/>
  <del_ref id="IPR008192"/>
  <del_ref id="IPR008194"/>
  <del_ref id="IPR008196"/>
  <del_ref id="IPR008198"/>
  <del_ref id="IPR008202"/>
  <del_ref id="IPR008204"/>
  <del_ref id="IPR008206"/>
  <del_ref id="IPR008208"/>
  <del_ref id="IPR008212"/>
  <del_ref id="IPR008214"/>
  <del_ref id="IPR008267"/>
  <del_ref id="IPR008298"/>
  <del_ref id="IPR008413"/>
  <del_ref id="IPR008443"/>
  <del_ref id="IPR008459"/>
  <del_ref id="IPR008460"/>
  <del_ref id="IPR008488"/>
  <del_ref id="IPR008522"/>
  <del_ref id="IPR008531"/>
  <del_ref id="IPR008549"/>
  <del_ref id="IPR008556"/>
  <del_ref id="IPR008572"/>
  <del_ref id="IPR008575"/>
  <del_ref id="IPR008578"/>
  <del_ref id="IPR008582"/>
  <del_ref id="IPR008600"/>
  <del_ref id="IPR008607"/>
  <del_ref id="IPR008623"/>
  <del_ref id="IPR008624"/>
  <del_ref id="IPR008641"/>
  <del_ref id="IPR008643"/>
  <del_ref id="IPR008666"/>
  <del_ref id="IPR008667"/>
  <del_ref id="IPR008678"/>
  <del_ref id="IPR008679"/>
  <del_ref id="IPR008682"/>
  <del_ref id="IPR008695"/>
  <del_ref id="IPR008697"/>
  <del_ref id="IPR008714"/>
  <del_ref id="IPR008747"/>
  <del_ref id="IPR008755"/>
  <del_ref id="IPR008759"/>
  <del_ref id="IPR008782"/>
  <del_ref id="IPR008788"/>
  <del_ref id="IPR008793"/>
  <del_ref id="IPR008804"/>
  <del_ref id="IPR008809"/>
  <del_ref id="IPR008817"/>
  <del_ref id="IPR008830"/>
  <del_ref id="IPR008852"/>
  <del_ref id="IPR008870"/>
  <del_ref id="IPR008885"/>
  <del_ref id="IPR008904"/>
  <del_ref id="IPR008923"/>
  <del_ref id="IPR008931"/>
  <del_ref id="IPR008933"/>
  <del_ref id="IPR008938"/>
  <del_ref id="IPR008941"/>
  <del_ref id="IPR008943"/>
  <del_ref id="IPR008945"/>
  <del_ref id="IPR008975"/>
  <del_ref id="IPR008994"/>
  <del_ref id="IPR009037"/>
  <del_ref id="IPR009041"/>
  <del_ref id="IPR009043"/>
  <del_ref id="IPR009046"/>
  <del_ref id="IPR009058"/>
  <del_ref id="IPR009059"/>
  <del_ref id="IPR009065"/>
  <del_ref id="IPR009070"/>
  <del_ref id="IPR009074"/>
  <del_ref id="IPR009085"/>
  <del_ref id="IPR009098"/>
  <del_ref id="IPR009102"/>
  <del_ref id="IPR009250"/>
  <del_ref id="IPR009255"/>
  <del_ref id="IPR009298"/>
  <del_ref id="IPR009336"/>
  <del_ref id="IPR009375"/>
  <del_ref id="IPR009393"/>
  <del_ref id="IPR009399"/>
  <del_ref id="IPR009411"/>
  <del_ref id="IPR009442"/>
  <del_ref id="IPR009478"/>
  <del_ref id="IPR009481"/>
  <del_ref id="IPR009541"/>
  <del_ref id="IPR009546"/>
  <del_ref id="IPR009549"/>
  <del_ref id="IPR009552"/>
  <del_ref id="IPR009586"/>
  <del_ref id="IPR009687"/>
  <del_ref id="IPR009691"/>
  <del_ref id="IPR009710"/>
  <del_ref id="IPR009740"/>
  <del_ref id="IPR009747"/>
  <del_ref id="IPR009756"/>
  <del_ref id="IPR009763"/>
  <del_ref id="IPR009789"/>
  <del_ref id="IPR009817"/>
  <del_ref id="IPR009831"/>
  <del_ref id="IPR009877"/>
  <del_ref id="IPR009892"/>
  <del_ref id="IPR009934"/>
  <del_ref id="IPR010150"/>
  <del_ref id="IPR010151"/>
  <del_ref id="IPR010257"/>
  <del_ref id="IPR010283"/>
  <del_ref id="IPR010289"/>
  <del_ref id="IPR010320"/>
  <del_ref id="IPR010322"/>
  <del_ref id="IPR010337"/>
  <del_ref id="IPR010338"/>
  <del_ref id="IPR010355"/>
  <del_ref id="IPR010361"/>
  <del_ref id="IPR010395"/>
  <del_ref id="IPR010429"/>
  <del_ref id="IPR010459"/>
  <del_ref id="IPR010460"/>
  <del_ref id="IPR010464"/>
  <del_ref id="IPR010467"/>
  <del_ref id="IPR010469"/>
  <del_ref id="IPR010484"/>
  <del_ref id="IPR010485"/>
  <del_ref id="IPR010501"/>
  <del_ref id="IPR010552"/>
  <del_ref id="IPR010553"/>
  <del_ref id="IPR010556"/>
  <del_ref id="IPR010589"/>
  <del_ref id="IPR010612"/>
  <del_ref id="IPR010616"/>
  <del_ref id="IPR010631"/>
  <del_ref id="IPR010638"/>
  <del_ref id="IPR010641"/>
  <del_ref id="IPR010668"/>
  <del_ref id="IPR010669"/>
  <del_ref id="IPR010670"/>
  <del_ref id="IPR010676"/>
  <del_ref id="IPR010687"/>
  <del_ref id="IPR010689"/>
  <del_ref id="IPR010698"/>
  <del_ref id="IPR010700"/>
  <del_ref id="IPR010704"/>
  <del_ref id="IPR010705"/>
  <del_ref id="IPR010717"/>
  <del_ref id="IPR010726"/>
  <del_ref id="IPR010728"/>
  <del_ref id="IPR010731"/>
  <del_ref id="IPR010735"/>
  <del_ref id="IPR010745"/>
  <del_ref id="IPR010755"/>
  <del_ref id="IPR010757"/>
  <del_ref id="IPR010782"/>
  <del_ref id="IPR010783"/>
  <del_ref id="IPR010786"/>
  <del_ref id="IPR010804"/>
  <del_ref id="IPR010830"/>
  <del_ref id="IPR010834"/>
  <del_ref id="IPR010842"/>
  <del_ref id="IPR010847"/>
  <del_ref id="IPR010885"/>
  <del_ref id="IPR010913"/>
  <del_ref id="IPR010922"/>
  <del_ref id="IPR010936"/>
  <del_ref id="IPR010937"/>
  <del_ref id="IPR010959"/>
  <del_ref id="IPR010983"/>
  <del_ref id="IPR010984"/>
  <del_ref id="IPR010986"/>
  <del_ref id="IPR010988"/>
  <del_ref id="IPR011000"/>
  <del_ref id="IPR011003"/>
  <del_ref id="IPR011007"/>
  <del_ref id="IPR011027"/>
  <del_ref id="IPR011036"/>
  <del_ref id="IPR011073"/>
  <del_ref id="IPR011091"/>
  <del_ref id="IPR011117"/>
  <del_ref id="IPR011131"/>
  <del_ref id="IPR011157"/>
  <del_ref id="IPR011180"/>
  <del_ref id="IPR011209"/>
  <del_ref id="IPR011253"/>
  <del_ref id="IPR011353"/>
  <del_ref id="IPR011362"/>
  <del_ref id="IPR011382"/>
  <del_ref id="IPR011441"/>
  <del_ref id="IPR011445"/>
  <del_ref id="IPR011462"/>
  <del_ref id="IPR011469"/>
  <del_ref id="IPR011472"/>
  <del_ref id="IPR011482"/>
  <del_ref id="IPR011484"/>
  <del_ref id="IPR011523"/>
  <del_ref id="IPR011550"/>
  <del_ref id="IPR011558"/>
  <del_ref id="IPR011560"/>
  <del_ref id="IPR011561"/>
  <del_ref id="IPR011562"/>
  <del_ref id="IPR011563"/>
  <del_ref id="IPR011565"/>
  <del_ref id="IPR011567"/>
  <del_ref id="IPR011568"/>
  <del_ref id="IPR011569"/>
  <del_ref id="IPR011570"/>
  <del_ref id="IPR011571"/>
  <del_ref id="IPR011572"/>
  <del_ref id="IPR011580"/>
  <del_ref id="IPR011581"/>
  <del_ref id="IPR011582"/>
  <del_ref id="IPR011586"/>
  <del_ref id="IPR011587"/>
  <del_ref id="IPR011588"/>
  <del_ref id="IPR011591"/>
  <del_ref id="IPR011592"/>
  <del_ref id="IPR011593"/>
  <del_ref id="IPR011594"/>
  <del_ref id="IPR011595"/>
  <del_ref id="IPR011596"/>
  <del_ref id="IPR011597"/>
  <del_ref id="IPR011609"/>
  <del_ref id="IPR011617"/>
  <del_ref id="IPR011634"/>
  <del_ref id="IPR011693"/>
  <del_ref id="IPR011730"/>
  <del_ref id="IPR011731"/>
  <del_ref id="IPR011769"/>
  <del_ref id="IPR011997"/>
  <del_ref id="IPR012024"/>
  <del_ref id="IPR012060"/>
  <del_ref id="IPR012076"/>
  <del_ref id="IPR012077"/>
  <del_ref id="IPR012109"/>
  <del_ref id="IPR012140"/>
  <del_ref id="IPR012236"/>
  <del_ref id="IPR012240"/>
  <del_ref id="IPR012248"/>
  <del_ref id="IPR012277"/>
  <del_ref id="IPR012283"/>
  <del_ref id="IPR012333"/>
  <del_ref id="IPR012342"/>
  <del_ref id="IPR012343"/>
  <del_ref id="IPR012350"/>
  <del_ref id="IPR012482"/>
  <del_ref id="IPR012581"/>
  <del_ref id="IPR012841"/>
  <del_ref id="IPR012949"/>
  <del_ref id="IPR012979"/>
  <del_ref id="IPR012998"/>
  <del_ref id="IPR013001"/>
  <del_ref id="IPR013002"/>
  <del_ref id="IPR013003"/>
  <del_ref id="IPR013004"/>
  <del_ref id="IPR013008"/>
  <del_ref id="IPR013047"/>
  <del_ref id="IPR013051"/>
  <del_ref id="IPR013052"/>
  <del_ref id="IPR013053"/>
  <del_ref id="IPR013054"/>
  <del_ref id="IPR013058"/>
  <del_ref id="IPR013060"/>
  <del_ref id="IPR013062"/>
  <del_ref id="IPR013063"/>
  <del_ref id="IPR013064"/>
  <del_ref id="IPR013065"/>
  <del_ref id="IPR013066"/>
  <del_ref id="IPR013067"/>
  <del_ref id="IPR013070"/>
  <del_ref id="IPR013071"/>
  <del_ref id="IPR013072"/>
  <del_ref id="IPR013073"/>
  <del_ref id="IPR013074"/>
  <del_ref id="IPR013075"/>
  <del_ref id="IPR013076"/>
  <del_ref id="IPR013077"/>
  <del_ref id="IPR013080"/>
  <del_ref id="IPR013119"/>
  <del_ref id="IPR013127"/>
  <del_ref id="IPR013133"/>
  <del_ref id="IPR013142"/>
  <del_ref id="IPR013179"/>
  <del_ref id="IPR013224"/>
  <del_ref id="IPR013250"/>
  <del_ref id="IPR013330"/>
  <del_ref id="IPR013379"/>
  <del_ref id="IPR013511"/>
  <del_ref id="IPR013541"/>
  <del_ref id="IPR013553"/>
  <del_ref id="IPR013590"/>
  <del_ref id="IPR013628"/>
  <del_ref id="IPR013631"/>
  <del_ref id="IPR013634"/>
  <del_ref id="IPR013639"/>
  <del_ref id="IPR013794"/>
  <del_ref id="IPR013811"/>
  <del_ref id="IPR013841"/>
  <del_ref id="IPR013844"/>
  <del_ref id="IPR013850"/>
  <del_ref id="IPR013864"/>
  <del_ref id="IPR013891"/>
  <del_ref id="IPR013916"/>
  <del_ref id="IPR014035"/>
  <del_ref id="IPR014050"/>
  <del_ref id="IPR014173"/>
  <del_ref id="IPR014489"/>
  <del_ref id="IPR014504"/>
  <del_ref id="IPR014708"/>
  <del_ref id="IPR014850"/>
  <del_ref id="IPR014865"/>
  <del_ref id="IPR014899"/>
  <del_ref id="IPR014970"/>
  <del_ref id="IPR015023"/>
  <del_ref id="IPR015052"/>
  <del_ref id="IPR015114"/>
  <del_ref id="IPR015119"/>
  <del_ref id="IPR015140"/>
  <del_ref id="IPR015175"/>
  <del_ref id="IPR015204"/>
  <del_ref id="IPR015301"/>
  <del_ref id="IPR015363"/>
  <del_ref id="IPR015441"/>
  <del_ref id="IPR015638"/>
  <del_ref id="IPR015755"/>
  <del_ref id="IPR015809"/>
  <del_ref id="IPR015821"/>
  <del_ref id="IPR015909"/>
  <del_ref id="IPR015913"/>
  <del_ref id="IPR015968"/>
  <del_ref id="IPR015975"/>
  <del_ref id="IPR015983"/>
  <del_ref id="IPR016076"/>
  <del_ref id="IPR016096"/>
  <del_ref id="IPR016144"/>
  <del_ref id="IPR017594"/>
  <del_ref id="IPR017759"/>
  <del_ref id="IPR017876"/>
  <del_ref id="IPR017883"/>
  <del_ref id="IPR017886"/>
  <del_ref id="IPR018007"/>
  <del_ref id="IPR018010"/>
  <del_ref id="IPR018014"/>
  <del_ref id="IPR018069"/>
  <del_ref id="IPR018128"/>
  <del_ref id="IPR018132"/>
  <del_ref id="IPR018210"/>
  <del_ref id="IPR018217"/>
  <del_ref id="IPR018308"/>
  <del_ref id="IPR018398"/>
  <del_ref id="IPR018411"/>
  <del_ref id="IPR018458"/>
  <del_ref id="IPR018603"/>
  <del_ref id="IPR018623"/>
  <del_ref id="IPR018675"/>
  <del_ref id="IPR018703"/>
  <del_ref id="IPR018726"/>
  <del_ref id="IPR018761"/>
  <del_ref id="IPR018806"/>
  <del_ref id="IPR018813"/>
  <del_ref id="IPR018956"/>
  <del_ref id="IPR018986"/>
  <del_ref id="IPR018991"/>
  <del_ref id="IPR019000"/>
  <del_ref id="IPR019022"/>
  <del_ref id="IPR019040"/>
  <del_ref id="IPR019047"/>
  <del_ref id="IPR019124"/>
  <del_ref id="IPR019125"/>
  <del_ref id="IPR019157"/>
  <del_ref id="IPR019203"/>
  <del_ref id="IPR019229"/>
  <del_ref id="IPR019252"/>
  <del_ref id="IPR019259"/>
  <del_ref id="IPR019274"/>
  <del_ref id="IPR019279"/>
  <del_ref id="IPR019299"/>
  <del_ref id="IPR019360"/>
  <del_ref id="IPR019390"/>
  <del_ref id="IPR019418"/>
  <del_ref id="IPR019444"/>
  <del_ref id="IPR019472"/>
  <del_ref id="IPR019567"/>
  <del_ref id="IPR019573"/>
  <del_ref id="IPR019578"/>
  <del_ref id="IPR019641"/>
  <del_ref id="IPR019696"/>
  <del_ref id="IPR019849"/>
  <del_ref id="IPR019997"/>
  <del_ref id="IPR020035"/>
  <del_ref id="IPR020078"/>
  <del_ref id="IPR020106"/>
  <del_ref id="IPR020116"/>
  <del_ref id="IPR020778"/>
  <del_ref id="IPR020812"/>
  <del_ref id="IPR022375"/>
  <del_ref id="IPR022685"/>
</deleted_entries>
</interprodb>