1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interprodb SYSTEM "interpro.dtd">
<interprodb>
<release>
<dbinfo dbname="PANTHER" entry_count="30128" file_date="04-OCT-06" version="6.1"/>
<dbinfo dbname="PFAM" entry_count="11912" file_date="01-SEP-09" version="24.0"/>
<dbinfo dbname="PIRSF" entry_count="3222" file_date="18-MAR-10" version="2.72"/>
<dbinfo dbname="PRINTS" entry_count="2000" file_date="09-FEB-10" version="40.0"/>
<dbinfo dbname="PRODOM" entry_count="1894" file_date="23-APR-09" version="2006.1"/>
<dbinfo dbname="PROSITE" entry_count="1308" file_date="28-JUL-09" version="20.52"/>
<dbinfo dbname="PROFILE" entry_count="860" file_date="28-JUL-09" version="20.52"/>
<dbinfo dbname="SMART" entry_count="809" file_date="24-MAR-09" version="6.0"/>
<dbinfo dbname="TIGRFAMs" entry_count="3808" file_date="11-NOV-09" version="9.0"/>
<dbinfo dbname="GENE3D" entry_count="2147" file_date="11-SEP-06" version="3.0.0"/>
<dbinfo dbname="SSF" entry_count="1538" file_date="30-NOV-06" version="1.69"/>
<dbinfo dbname="SWISSPROT" entry_count="517100" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="TREMBL" entry_count="10867798" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="INTERPRO" entry_count="20329" file_date="24-MAR-10" version="26.0"/>
<dbinfo dbname="GO" entry_count="23937" file_date="27-MAR-07" version="N/A"/>
<dbinfo dbname="MEROPS" entry_count="3802" file_date="25-MAR-10" version="9.1"/>
<dbinfo dbname="UniProt" entry_count="11384898" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="HAMAP" entry_count="1633" file_date="28-MAY-09" version="280509"/>
<dbinfo dbname="PFAMB" entry_count="142303" file_date="02-DEC-09" version="24.0"/>
</release>
<interpro id="IPR000001" protein_count="655" short_name="Kringle" type="Domain">
<name>Kringle</name>
<abstract>
<p>Kringles are autonomous structural domains, found throughout the blood clotting and fibrinolytic proteins. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00002414"/>, <cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>].
Kringle domains [<cite idref="PUB00003400"/>, <cite idref="PUB00000803"/>, <cite idref="PUB00001620"/>] are characterised by a triple loop, 3-disulphide bridge structure, whose conformation is defined by a number of hydrogen bonds and small pieces of anti-parallel beta-sheet. They are found in a varying number of copies in some plasma proteins including prothrombin and urokinase-type plasminogen activator, which are serine proteases belonging to MEROPS peptidase family S1A.</p>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P00747"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P98119"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q08048"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q24488"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000803">
<author_list>Patthy L.</author_list>
<title>Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.</title>
<db_xref db="PUBMED" dbkey="3891096"/>
<journal>Cell</journal>
<location issue="3" pages="657-63" volume="41"/>
<year>1985</year>
</publication>
<publication id="PUB00001541">
<author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
<title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
<db_xref db="PUBMED" dbkey="6373375"/>
<journal>FEBS Lett.</journal>
<location issue="1" pages="131-6" volume="171"/>
<year>1984</year>
</publication>
<publication id="PUB00002414">
<author_list>McMullen BA, Fujikawa K.</author_list>
<title>Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor).</title>
<db_xref db="PUBMED" dbkey="3886654"/>
<journal>J. Biol. Chem.</journal>
<location issue="9" pages="5328-41" volume="260"/>
<year>1985</year>
</publication>
<publication id="PUB00001620">
<author_list>Ikeo K, Takahashi K, Gojobori T.</author_list>
<title>Evolutionary origin of numerous kringles in human and simian apolipoprotein(a).</title>
<db_xref db="PUBMED" dbkey="1879523"/>
<journal>FEBS Lett.</journal>
<location issue="1-2" pages="146-8" volume="287"/>
<year>1991</year>
</publication>
<publication id="PUB00006168">
<author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
<title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
<db_xref db="PUBMED" dbkey="8165128"/>
<journal>Nucleic Acids Res.</journal>
<location issue="7" pages="1161-6" volume="22"/>
<year>1994</year>
</publication>
<publication id="PUB00015853">
<author_list>Schwabe JW, Teichmann SA.</author_list>
<title>Nuclear receptors: the evolution of diversity.</title>
<db_xref db="PUBMED" dbkey="14747695"/>
<journal>Sci. STKE</journal>
<location issue="217" pages="pe4" volume="2004"/>
<year>2004</year>
</publication>
<publication id="PUB00003257">
<author_list>Atkinson RA, Williams RJ.</author_list>
<title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
<db_xref db="PUBMED" dbkey="2157850"/>
<journal>J. Mol. Biol.</journal>
<location issue="3" pages="541-52" volume="212"/>
<year>1990</year>
</publication>
<publication id="PUB00003400">
<author_list>Castellino FJ, Beals JM.</author_list>
<title>The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII.</title>
<db_xref db="PUBMED" dbkey="3131537"/>
<journal>J. Mol. Evol.</journal>
<location issue="4" pages="358-69" volume="26"/>
<year>1987</year>
</publication>
<publication id="PUB00004464">
<author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
<title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
<db_xref db="PUBMED" dbkey="7899080"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="606-11" volume="23"/>
<year>1995</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR013806"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018059"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR018056"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR001314"/>
<rel_ref ipr_ref="IPR011358"/>
<rel_ref ipr_ref="IPR012051"/>
<rel_ref ipr_ref="IPR014394"/>
<rel_ref ipr_ref="IPR016247"/>
<rel_ref ipr_ref="IPR017076"/>
<rel_ref ipr_ref="IPR020715"/>
</found_in>
<member_list>
<db_xref protein_count="630" db="PFAM" dbkey="PF00051" name="Kringle"/>
<db_xref protein_count="645" db="PROFILE" dbkey="PS50070" name="KRINGLE_2"/>
<db_xref protein_count="651" db="SMART" dbkey="SM00130" name="KR"/>
<db_xref protein_count="618" db="GENE3D" dbkey="G3DSA:2.40.20.10" name="Kringle"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00051"/>
<db_xref db="MSDsite" dbkey="PS00021"/>
<db_xref db="BLOCKS" dbkey="IPB000001"/>
<db_xref db="MEROPS" dbkey="S1"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00020"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a0h"/>
<db_xref db="PDB" dbkey="1a5h"/>
<db_xref db="PDB" dbkey="1b2i"/>
<db_xref db="PDB" dbkey="1bda"/>
<db_xref db="PDB" dbkey="1bht"/>
<db_xref db="PDB" dbkey="1bml"/>
<db_xref db="PDB" dbkey="1bui"/>
<db_xref db="PDB" dbkey="1cea"/>
<db_xref db="PDB" dbkey="1ceb"/>
<db_xref db="PDB" dbkey="1ddj"/>
<db_xref db="PDB" dbkey="1gmn"/>
<db_xref db="PDB" dbkey="1gmo"/>
<db_xref db="PDB" dbkey="1gp9"/>
<db_xref db="PDB" dbkey="1hpj"/>
<db_xref db="PDB" dbkey="1hpk"/>
<db_xref db="PDB" dbkey="1i5k"/>
<db_xref db="PDB" dbkey="1i71"/>
<db_xref db="PDB" dbkey="1jfn"/>
<db_xref db="PDB" dbkey="1kdu"/>
<db_xref db="PDB" dbkey="1ki0"/>
<db_xref db="PDB" dbkey="1kiv"/>
<db_xref db="PDB" dbkey="1krn"/>
<db_xref db="PDB" dbkey="1l4d"/>
<db_xref db="PDB" dbkey="1l4z"/>
<db_xref db="PDB" dbkey="1nk1"/>
<db_xref db="PDB" dbkey="1nl1"/>
<db_xref db="PDB" dbkey="1nl2"/>
<db_xref db="PDB" dbkey="1pk2"/>
<db_xref db="PDB" dbkey="1pk4"/>
<db_xref db="PDB" dbkey="1pkr"/>
<db_xref db="PDB" dbkey="1pmk"/>
<db_xref db="PDB" dbkey="1pml"/>
<db_xref db="PDB" dbkey="1qrz"/>
<db_xref db="PDB" dbkey="1rjx"/>
<db_xref db="PDB" dbkey="1rtf"/>
<db_xref db="PDB" dbkey="1tpg"/>
<db_xref db="PDB" dbkey="1tpk"/>
<db_xref db="PDB" dbkey="1urk"/>
<db_xref db="PDB" dbkey="2doh"/>
<db_xref db="PDB" dbkey="2doi"/>
<db_xref db="PDB" dbkey="2fd6"/>
<db_xref db="PDB" dbkey="2hgf"/>
<db_xref db="PDB" dbkey="2hpp"/>
<db_xref db="PDB" dbkey="2hpq"/>
<db_xref db="PDB" dbkey="2i9a"/>
<db_xref db="PDB" dbkey="2i9b"/>
<db_xref db="PDB" dbkey="2pf1"/>
<db_xref db="PDB" dbkey="2pf2"/>
<db_xref db="PDB" dbkey="2pk4"/>
<db_xref db="PDB" dbkey="2qj2"/>
<db_xref db="PDB" dbkey="2qj4"/>
<db_xref db="PDB" dbkey="2spt"/>
<db_xref db="PDB" dbkey="3bt1"/>
<db_xref db="PDB" dbkey="3bt2"/>
<db_xref db="PDB" dbkey="3e6p"/>
<db_xref db="PDB" dbkey="3kiv"/>
<db_xref db="PDB" dbkey="4kiv"/>
<db_xref db="PDB" dbkey="5hpg"/>
<db_xref db="CATH" dbkey="2.10.25.10"/>
<db_xref db="CATH" dbkey="2.40.20.10"/>
<db_xref db="CATH" dbkey="3.50.4.10"/>
<db_xref db="SCOP" dbkey="b.47.1.2"/>
<db_xref db="SCOP" dbkey="g.10.1.1"/>
<db_xref db="SCOP" dbkey="g.14.1.1"/>
<db_xref db="SCOP" dbkey="g.3.11.1"/>
<db_xref db="SCOP" dbkey="g.32.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="653"/>
<taxon_data name="Nematoda" proteins_count="5"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="5"/>
<taxon_data name="Arthropoda" proteins_count="34"/>
<taxon_data name="Fruit Fly" proteins_count="2"/>
<taxon_data name="Chordata" proteins_count="529"/>
<taxon_data name="Human" proteins_count="79"/>
<taxon_data name="Mouse" proteins_count="41"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Green Plants" proteins_count="14"/>
<taxon_data name="Metazoa" proteins_count="618"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018059"/>
</sec_list>
</interpro>
<interpro id="IPR000003" protein_count="452" short_name="RtnoidX_rcpt" type="Family">
<name>Retinoid X receptor</name>
<abstract>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
<p>The retinoic acid (retinoid X) receptor consists of 3 functional and
structural domains: an N-terminal (modulatory) domain; a DNA binding domain
that mediates specific binding to target DNA sequences (ligand-responsive
elements); and a hormone binding domain. The N-terminal domain differs
between retinoic acid isoforms; the small highly-conserved DNA-binding
domain (~65 residues) occupies the central portion of the protein; and
the ligand binding domain lies at the receptor C terminus.</p>
<p>Synonym(s): 2B nuclear receptor</p>
</abstract>
<class_list>
<classification id="GO:0003677" class_type="GO">
<category>Molecular Function</category>
<description>DNA binding</description>
</classification>
<classification id="GO:0004879" class_type="GO">
<category>Molecular Function</category>
<description>ligand-dependent nuclear receptor activity</description>
</classification>
<classification id="GO:0005496" class_type="GO">
<category>Molecular Function</category>
<description>steroid binding</description>
</classification>
<classification id="GO:0005634" class_type="GO">
<category>Cellular Component</category>
<description>nucleus</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
<classification id="GO:0008270" class_type="GO">
<category>Molecular Function</category>
<description>zinc ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O44960"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O95718"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22449"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P28700"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P49866"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004464">
<author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
<title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
<db_xref db="PUBMED" dbkey="7899080"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="606-11" volume="23"/>
<year>1995</year>
</publication>
<publication id="PUB00006168">
<author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
<title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
<db_xref db="PUBMED" dbkey="8165128"/>
<journal>Nucleic Acids Res.</journal>
<location issue="7" pages="1161-6" volume="22"/>
<year>1994</year>
</publication>
<publication id="PUB00015853">
<author_list>Schwabe JW, Teichmann SA.</author_list>
<title>Nuclear receptors: the evolution of diversity.</title>
<db_xref db="PUBMED" dbkey="14747695"/>
<journal>Sci. STKE</journal>
<location issue="217" pages="pe4" volume="2004"/>
<year>2004</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR001723"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR000536"/>
<rel_ref ipr_ref="IPR008946"/>
</contains>
<member_list>
<db_xref protein_count="452" db="PRINTS" dbkey="PR00545" name="RETINOIDXR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000003"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1by4"/>
<db_xref db="PDB" dbkey="1dkf"/>
<db_xref db="PDB" dbkey="1dsz"/>
<db_xref db="PDB" dbkey="1fby"/>
<db_xref db="PDB" dbkey="1fm6"/>
<db_xref db="PDB" dbkey="1fm9"/>
<db_xref db="PDB" dbkey="1g1u"/>
<db_xref db="PDB" dbkey="1g2n"/>
<db_xref db="PDB" dbkey="1g5y"/>
<db_xref db="PDB" dbkey="1h9u"/>
<db_xref db="PDB" dbkey="1k74"/>
<db_xref db="PDB" dbkey="1kv6"/>
<db_xref db="PDB" dbkey="1lbd"/>
<db_xref db="PDB" dbkey="1lo1"/>
<db_xref db="PDB" dbkey="1lv2"/>
<db_xref db="PDB" dbkey="1m7w"/>
<db_xref db="PDB" dbkey="1mv9"/>
<db_xref db="PDB" dbkey="1mvc"/>
<db_xref db="PDB" dbkey="1mzn"/>
<db_xref db="PDB" dbkey="1pzl"/>
<db_xref db="PDB" dbkey="1r0n"/>
<db_xref db="PDB" dbkey="1r1k"/>
<db_xref db="PDB" dbkey="1r20"/>
<db_xref db="PDB" dbkey="1rdt"/>
<db_xref db="PDB" dbkey="1rxr"/>
<db_xref db="PDB" dbkey="1s9p"/>
<db_xref db="PDB" dbkey="1s9q"/>
<db_xref db="PDB" dbkey="1tfc"/>
<db_xref db="PDB" dbkey="1uhl"/>
<db_xref db="PDB" dbkey="1vjb"/>
<db_xref db="PDB" dbkey="1xb7"/>
<db_xref db="PDB" dbkey="1xdk"/>
<db_xref db="PDB" dbkey="1xiu"/>
<db_xref db="PDB" dbkey="1xls"/>
<db_xref db="PDB" dbkey="1xv9"/>
<db_xref db="PDB" dbkey="1xvp"/>
<db_xref db="PDB" dbkey="1ynw"/>
<db_xref db="PDB" dbkey="2acl"/>
<db_xref db="PDB" dbkey="2e2r"/>
<db_xref db="PDB" dbkey="2ewp"/>
<db_xref db="PDB" dbkey="2gl8"/>
<db_xref db="PDB" dbkey="2gp7"/>
<db_xref db="PDB" dbkey="2gpo"/>
<db_xref db="PDB" dbkey="2gpp"/>
<db_xref db="PDB" dbkey="2gpu"/>
<db_xref db="PDB" dbkey="2gpv"/>
<db_xref db="PDB" dbkey="2nll"/>
<db_xref db="PDB" dbkey="2nxx"/>
<db_xref db="PDB" dbkey="2p1t"/>
<db_xref db="PDB" dbkey="2p1u"/>
<db_xref db="PDB" dbkey="2p1v"/>
<db_xref db="PDB" dbkey="2p7a"/>
<db_xref db="PDB" dbkey="2p7g"/>
<db_xref db="PDB" dbkey="2p7z"/>
<db_xref db="PDB" dbkey="2pjl"/>
<db_xref db="PDB" dbkey="2q60"/>
<db_xref db="PDB" dbkey="2r40"/>
<db_xref db="PDB" dbkey="2zas"/>
<db_xref db="PDB" dbkey="2zbs"/>
<db_xref db="PDB" dbkey="3cbb"/>
<db_xref db="PDB" dbkey="3d24"/>
<db_xref db="PDB" dbkey="3eyb"/>
<db_xref db="CATH" dbkey="1.10.565.10"/>
<db_xref db="CATH" dbkey="3.30.50.10"/>
<db_xref db="SCOP" dbkey="a.123.1.1"/>
<db_xref db="SCOP" dbkey="g.39.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="452"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="119"/>
<taxon_data name="Fruit Fly" proteins_count="7"/>
<taxon_data name="Chordata" proteins_count="305"/>
<taxon_data name="Human" proteins_count="45"/>
<taxon_data name="Mouse" proteins_count="30"/>
<taxon_data name="Metazoa" proteins_count="452"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000005" protein_count="22704" short_name="HTH_AraC-typ" type="Domain">
<name>Helix-turn-helix, AraC type</name>
<abstract>
<p>Many bacterial transcription regulation proteins bind DNA through a
'helix-turn-helix' (HTH) motif. One major subfamily of these proteins [<cite idref="PUB00004444"/>, <cite idref="PUB00003566"/>] is related to the arabinose
operon regulatory protein AraC [<cite idref="PUB00004444"/>], <cite idref="PUB00003566"/>. Except for celD [<cite idref="PUB00001933"/>], all of these proteins seem to be positive transcriptional factors.</p>
<p>Although the sequences belonging to this family differ somewhat in length, in nearly every case the HTH motif is situated towards the C terminus in the third quarter of most of the sequences. The minimal DNA binding domain spans roughly 100 residues and comprises two HTH subdomains; the classical HTH domain and another HTH subdomain with similarity to the classical HTH domain but with an insertion of one residue in the turn-region. The N-terminal and central regions of these proteins are presumed to interact with effector molecules and may be involved in dimerisation [<cite idref="PUB00004817"/>].</p>
<p>The known structure of MarA (<db_xref db="SWISSPROT" dbkey="P27246"/>) shows that the AraC domain is alpha helical and shows the two HTH subdomains both bind the major groove of the DNA. The two HTH subdomains are separated by only 27
angstroms, which causes the cognate DNA to bend.</p>
</abstract>
<class_list>
<classification id="GO:0003700" class_type="GO">
<category>Molecular Function</category>
<description>transcription factor activity</description>
</classification>
<classification id="GO:0005622" class_type="GO">
<category>Cellular Component</category>
<description>intracellular</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
<classification id="GO:0043565" class_type="GO">
<category>Molecular Function</category>
<description>sequence-specific DNA binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P06134"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001933">
<author_list>Parker LL, Hall BG.</author_list>
<title>Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.</title>
<db_xref db="PUBMED" dbkey="2179047"/>
<journal>Genetics</journal>
<location issue="3" pages="455-71" volume="124"/>
<year>1990</year>
</publication>
<publication id="PUB00003566">
<author_list>Henikoff S, Wallace JC, Brown JP.</author_list>
<title>Finding protein similarities with nucleotide sequence databases.</title>
<db_xref db="PUBMED" dbkey="2314271"/>
<journal>Meth. Enzymol.</journal>
<location pages="111-32" volume="183"/>
<year>1990</year>
</publication>
<publication id="PUB00004444">
<author_list>Gallegos MT, Michan C, Ramos JL.</author_list>
<title>The XylS/AraC family of regulators.</title>
<db_xref db="PUBMED" dbkey="8451183"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="807-10" volume="21"/>
<year>1993</year>
</publication>
<publication id="PUB00004817">
<author_list>Bustos SA, Schleif RF.</author_list>
<title>Functional domains of the AraC protein.</title>
<db_xref db="PUBMED" dbkey="8516313"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="12" pages="5638-42" volume="90"/>
<year>1993</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR012287"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018062"/>
<rel_ref ipr_ref="IPR020449"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR011983"/>
<rel_ref ipr_ref="IPR016220"/>
<rel_ref ipr_ref="IPR016221"/>
<rel_ref ipr_ref="IPR016981"/>
<rel_ref ipr_ref="IPR018060"/>
</found_in>
<member_list>
<db_xref protein_count="22704" db="PFAM" dbkey="PF00165" name="HTH_AraC"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00165"/>
<db_xref db="MSDsite" dbkey="PS00041"/>
<db_xref db="BLOCKS" dbkey="IPB000005"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00040"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1bl0"/>
<db_xref db="PDB" dbkey="1d5y"/>
<db_xref db="PDB" dbkey="1xs9"/>
<db_xref db="CATH" dbkey="1.10.10.60"/>
<db_xref db="SCOP" dbkey="a.4.1.8"/>
<db_xref db="SCOP" dbkey="i.11.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="22594"/>
<taxon_data name="Cyanobacteria" proteins_count="150"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="4"/>
<taxon_data name="Archaea" proteins_count="4"/>
<taxon_data name="Eukaryota" proteins_count="100"/>
<taxon_data name="Rice spp." proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="43"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Unclassified" proteins_count="3"/>
<taxon_data name="Plastid Group" proteins_count="54"/>
<taxon_data name="Green Plants" proteins_count="54"/>
<taxon_data name="Metazoa" proteins_count="45"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018062"/>
<sec_ac acc="IPR020449"/>
</sec_list>
</interpro>
<interpro id="IPR000006" protein_count="253" short_name="Metallothionein_vert" type="Family">
<name>Metallothionein, vertebrate</name>
<abstract>
<p>Metallothioneins (MT) are small proteins that bind heavy metals, such as zinc, copper, cadmium, nickel, etc. They have a high content of cysteine residues that bind the metal ions through clusters of thiolate bonds [<cite idref="PUB00003570"/>, <cite idref="PUB00001490"/>]. An empirical classification into three classes has been proposed by Fowler and coworkers [<cite idref="PUB00005944"/>] and Kojima [<cite idref="PUB00003571"/>]. Members of class I are defined to include polypeptides related in the positions of their cysteines to equine MT-1B, and include mammalian MTs as well as from crustaceans and molluscs. Class II groups MTs from a variety of species, including sea urchins,
fungi, insects and cyanobacteria. Class III MTs are atypical polypeptides composed of gamma-glutamylcysteinyl units [<cite idref="PUB00005944"/>].</p>
<p>This original classification system has been found to be limited, in the sense that it does not allow clear differentiation of patterns of structural similarities, either between or within classes. Consequently, all class I and class II MTs (the proteinaceous sequences) have now been grouped into families of phylogenetically-related and thus alignable sequences. This system subdivides the MT superfamily into families, subfamilies, subgroups, and isolated isoforms and alleles. </p>
<p>The metallothionein superfamily comprises all polypeptides that resemble equine renal metallothionein in several respects [<cite idref="PUB00005944"/>]: e.g., low molecular weight; high metal content; amino acid composition with high Cys and low aromatic residue content; unique sequence with characteristic distribution of cysteines, and spectroscopic manifestations indicative of metal thiolate clusters. A MT family subsumes MTs that share particular sequence-specific features and are thought to be evolutionarily related. The inclusion of a MT within a family presupposes that its amino acid sequence is alignable with that of all members. Fifteen MT families have been characterised, each family being identified by its number and its taxonomic range: e.g., Family 1: vertebrate MTs [see http://www.bioc.unizh.ch/mtpage/protali.html]. </p>
<p> The members of family 1 are recognised by the sequence pattern K-x(1,2)-C-C-x-C-C-P-x(2)-C located at the beginning of the third exon.
The taxonomic range of the members extends to vertebrates.
Known characteristics: 60 to 68 AAs; 20 Cys (21 in one case), 19 of them are totally conserved; the protein sequence is divided into two structural domains, containing 9 and 11 Cys all binding 3 and 4 bivalent metal ions, respectively. The gene is composed of 3 exons, 2 introns and the splicing sites are conserved. Family 1 includes subfamilies: m1, m2, m3, m4, m, a, a1, a2, b, ba, t, all of them hit the same InterPro entry.
</p>
</abstract>
<class_list>
<classification id="GO:0046872" class_type="GO">
<category>Molecular Function</category>
<description>metal ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P02795"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P02802"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P04355"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001490">
<author_list>Kagi JH, Kojima Y.</author_list>
<title>Chemistry and biochemistry of metallothionein.</title>
<db_xref db="PUBMED" dbkey="2959513"/>
<journal>Experientia Suppl.</journal>
<location pages="25-61" volume="52"/>
<year>1987</year>
</publication>
<publication id="PUB00003570">
<author_list>Kagi JH.</author_list>
<title>Overview of metallothionein.</title>
<db_xref db="PUBMED" dbkey="1779825"/>
<journal>Meth. Enzymol.</journal>
<location pages="613-26" volume="205"/>
<year>1991</year>
</publication>
<publication id="PUB00003571">
<author_list>Kojima Y.</author_list>
<title>Definitions and nomenclature of metallothioneins.</title>
<db_xref db="PUBMED" dbkey="1779826"/>
<journal>Meth. Enzymol.</journal>
<location pages="8-10" volume="205"/>
<year>1991</year>
</publication>
<publication id="PUB00005944">
<author_list>Fowler BA, Hildebrand CE, Kojima Y, Webb M.</author_list>
<title>Nomenclature of metallothionein.</title>
<db_xref db="PUBMED" dbkey="2959504"/>
<journal>Experientia Suppl.</journal>
<location pages="19-22" volume="52"/>
<year>1987</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR003019"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR017854"/>
<rel_ref ipr_ref="IPR018064"/>
</contains>
<member_list>
<db_xref protein_count="250" db="PANTHER" dbkey="PTHR23299" name="Metallothionein_vert"/>
<db_xref protein_count="220" db="PRINTS" dbkey="PR00860" name="MTVERTEBRATE"/>
<db_xref protein_count="238" db="GENE3D" dbkey="G3DSA:4.10.10.10" name="Metallothionein_vert"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS00203"/>
<db_xref db="COMe" dbkey="PRX001296"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00180"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1dfs"/>
<db_xref db="PDB" dbkey="1dft"/>
<db_xref db="PDB" dbkey="1ji9"/>
<db_xref db="PDB" dbkey="1m0g"/>
<db_xref db="PDB" dbkey="1m0j"/>
<db_xref db="PDB" dbkey="1mhu"/>
<db_xref db="PDB" dbkey="1mrb"/>
<db_xref db="PDB" dbkey="1mrt"/>
<db_xref db="PDB" dbkey="2mhu"/>
<db_xref db="PDB" dbkey="2mrb"/>
<db_xref db="PDB" dbkey="2mrt"/>
<db_xref db="PDB" dbkey="4mt2"/>
<db_xref db="CATH" dbkey="4.10.10.10"/>
<db_xref db="SCOP" dbkey="g.46.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="253"/>
<taxon_data name="Chordata" proteins_count="249"/>
<taxon_data name="Human" proteins_count="27"/>
<taxon_data name="Mouse" proteins_count="15"/>
<taxon_data name="Metazoa" proteins_count="251"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000007" protein_count="355" short_name="Tubby_C" type="Domain">
<name>Tubby, C-terminal</name>
<abstract>
<p> Tubby, an autosomal recessive mutation, mapping to mouse chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This mutation maps to the tub gene [<cite idref="PUB00000932"/>, <cite idref="PUB00004232"/>]. The mouse tubby mutation is the cause of maturity-onset obesity, insulin resistance and sensory deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [<cite idref="PUB00007281"/>], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [<cite idref="PUB00014197"/>].</p>
<p>Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (<db_xref db="INTERPRO" dbkey="IPR005398"/>) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed beta-barrel that surrounds a central alpha helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [<cite idref="PUB00007281"/>].</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00294"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O80699"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P50586"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q09306"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q10LG8"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000932">
<author_list>Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glucksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ.</author_list>
<title>Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family.</title>
<db_xref db="PUBMED" dbkey="8612280"/>
<journal>Cell</journal>
<location issue="2" pages="281-90" volume="85"/>
<year>1996</year>
</publication>
<publication id="PUB00004232">
<author_list>Noben-Trauth K, Naggert JK, North MA, Nishina PM.</author_list>
<title>A candidate gene for the mouse mutation tubby.</title>
<db_xref db="PUBMED" dbkey="8606774"/>
<journal>Nature</journal>
<location issue="6574" pages="534-8" volume="380"/>
<year>1996</year>
</publication>
<publication id="PUB00007281">
<author_list>Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L.</author_list>
<title>Implication of tubby proteins as transcription factors by structure-based functional analysis.</title>
<db_xref db="PUBMED" dbkey="10591637"/>
<journal>Science</journal>
<location issue="5447" pages="2119-25" volume="286"/>
<year>1999</year>
</publication>
<publication id="PUB00014197">
<author_list>Carroll K, Gomez C, Shapiro L.</author_list>
<title>Tubby proteins: the plot thickens.</title>
<db_xref db="PUBMED" dbkey="14708010"/>
<journal>Nat. Rev. Mol. Cell Biol.</journal>
<location issue="1" pages="55-63" volume="5"/>
<year>2004</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018066"/>
</contains>
<member_list>
<db_xref protein_count="345" db="PFAM" dbkey="PF01167" name="Tub"/>
<db_xref protein_count="284" db="PRINTS" dbkey="PR01573" name="SUPERTUBBY"/>
<db_xref protein_count="324" db="GENE3D" dbkey="G3DSA:3.20.90.10" name="Tubby_C"/>
<db_xref protein_count="345" db="SSF" dbkey="SSF54518" name="Tubby_C"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01167"/>
<db_xref db="MSDsite" dbkey="PS01200"/>
<db_xref db="MSDsite" dbkey="PS01201"/>
<db_xref db="BLOCKS" dbkey="IPB000007"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00923"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1c8z"/>
<db_xref db="PDB" dbkey="1i7e"/>
<db_xref db="PDB" dbkey="1s31"/>
<db_xref db="PDB" dbkey="2fim"/>
<db_xref db="PDB" dbkey="3c5n"/>
<db_xref db="CATH" dbkey="3.20.90.10"/>
<db_xref db="SCOP" dbkey="d.23.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="355"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="16"/>
<taxon_data name="Rice spp." proteins_count="48"/>
<taxon_data name="Fungi" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="16"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="2"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="2"/>
<taxon_data name="Arthropoda" proteins_count="40"/>
<taxon_data name="Fruit Fly" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="64"/>
<taxon_data name="Human" proteins_count="13"/>
<taxon_data name="Mouse" proteins_count="16"/>
<taxon_data name="Plastid Group" proteins_count="161"/>
<taxon_data name="Green Plants" proteins_count="161"/>
<taxon_data name="Metazoa" proteins_count="124"/>
<taxon_data name="Plastid Group" proteins_count="38"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000008" protein_count="5988" short_name="C2_Ca-dep" type="Domain">
<name>C2 calcium-dependent membrane targeting</name>
<abstract>
The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about 116 amino-acid residues and is located between the two copies of
the C1 domain in Protein Kinase C (that bind phorbol esters and diacylglycerol) (see <db_xref db="PROSITEDOC" dbkey="PDOC00379"/>)
and the protein kinase catalytic domain (see <db_xref db="PROSITEDOC" dbkey="PDOC00100"/>). Regions with
significant homology [<cite idref="PUB00002925"/>] to the C2-domain have been found in many proteins.
The C2 domain is thought to be involved in calcium-dependent phospholipid
binding [<cite idref="PUB00002815"/>] and in membrane targetting processes such as subcellular localisation. <p>The 3D structure of the
C2 domain of synaptotagmin has been reported
[<cite idref="PUB00000918"/>], the domain forms an eight-stranded beta sandwich constructed around a
conserved 4-stranded motif, designated a C2 key [<cite idref="PUB00000918"/>]. Calcium binds in
a cup-shaped depression formed by the N- and C-terminal loops of the
C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca<sup>2+</sup>-binding loops are located at the end of an 8 stranded antiparallel beta sandwich. </p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A0FGR8"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P11792"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P27715"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P28867"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9VVI3"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000918">
<author_list>Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR.</author_list>
<title>Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold.</title>
<db_xref db="PUBMED" dbkey="7697723"/>
<journal>Cell</journal>
<location issue="6" pages="929-38" volume="80"/>
<year>1995</year>
</publication>
<publication id="PUB00002815">
<author_list>Davletov BA, Sudhof TC.</author_list>
<title>A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding.</title>
<db_xref db="PUBMED" dbkey="8253763"/>
<journal>J. Biol. Chem.</journal>
<location issue="35" pages="26386-90" volume="268"/>
<year>1993</year>
</publication>
<publication id="PUB00002925">
<author_list>Brose N, Hofmann K, Hata Y, Sudhof TC.</author_list>
<title>Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins.</title>
<db_xref db="PUBMED" dbkey="7559667"/>
<journal>J. Biol. Chem.</journal>
<location issue="42" pages="25273-80" volume="270"/>
<year>1995</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR008973"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018029"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR001565"/>
<rel_ref ipr_ref="IPR020477"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR001192"/>
<rel_ref ipr_ref="IPR011402"/>
<rel_ref ipr_ref="IPR014375"/>
<rel_ref ipr_ref="IPR014376"/>
<rel_ref ipr_ref="IPR014638"/>
<rel_ref ipr_ref="IPR014705"/>
<rel_ref ipr_ref="IPR015427"/>
<rel_ref ipr_ref="IPR015428"/>
<rel_ref ipr_ref="IPR016279"/>
<rel_ref ipr_ref="IPR016280"/>
<rel_ref ipr_ref="IPR017147"/>
</found_in>
<member_list>
<db_xref protein_count="5145" db="PFAM" dbkey="PF00168" name="C2"/>
<db_xref protein_count="5888" db="SMART" dbkey="SM00239" name="C2"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00168"/>
<db_xref db="BLOCKS" dbkey="IPB000008"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00380"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a25"/>
<db_xref db="PDB" dbkey="1bci"/>
<db_xref db="PDB" dbkey="1bdy"/>
<db_xref db="PDB" dbkey="1byn"/>
<db_xref db="PDB" dbkey="1cjy"/>
<db_xref db="PDB" dbkey="1djg"/>
<db_xref db="PDB" dbkey="1djh"/>
<db_xref db="PDB" dbkey="1dji"/>
<db_xref db="PDB" dbkey="1djw"/>
<db_xref db="PDB" dbkey="1djx"/>
<db_xref db="PDB" dbkey="1djy"/>
<db_xref db="PDB" dbkey="1djz"/>
<db_xref db="PDB" dbkey="1dqv"/>
<db_xref db="PDB" dbkey="1dsy"/>
<db_xref db="PDB" dbkey="1gmi"/>
<db_xref db="PDB" dbkey="1k5w"/>
<db_xref db="PDB" dbkey="1qas"/>
<db_xref db="PDB" dbkey="1qat"/>
<db_xref db="PDB" dbkey="1rh8"/>
<db_xref db="PDB" dbkey="1rlw"/>
<db_xref db="PDB" dbkey="1rsy"/>
<db_xref db="PDB" dbkey="1tjm"/>
<db_xref db="PDB" dbkey="1tjx"/>
<db_xref db="PDB" dbkey="1ugk"/>
<db_xref db="PDB" dbkey="1uov"/>
<db_xref db="PDB" dbkey="1uow"/>
<db_xref db="PDB" dbkey="1v27"/>
<db_xref db="PDB" dbkey="1w15"/>
<db_xref db="PDB" dbkey="1w16"/>
<db_xref db="PDB" dbkey="1wfj"/>
<db_xref db="PDB" dbkey="1wfm"/>
<db_xref db="PDB" dbkey="1yrk"/>
<db_xref db="PDB" dbkey="2bwq"/>
<db_xref db="PDB" dbkey="2chd"/>
<db_xref db="PDB" dbkey="2cjs"/>
<db_xref db="PDB" dbkey="2cjt"/>
<db_xref db="PDB" dbkey="2cm5"/>
<db_xref db="PDB" dbkey="2cm6"/>
<db_xref db="PDB" dbkey="2d8k"/>
<db_xref db="PDB" dbkey="2enp"/>
<db_xref db="PDB" dbkey="2ep6"/>
<db_xref db="PDB" dbkey="2fju"/>
<db_xref db="PDB" dbkey="2fk9"/>
<db_xref db="PDB" dbkey="2isd"/>
<db_xref db="PDB" dbkey="2k3h"/>
<db_xref db="PDB" dbkey="2nq3"/>
<db_xref db="PDB" dbkey="2nsq"/>
<db_xref db="PDB" dbkey="2r83"/>
<db_xref db="PDB" dbkey="2rd0"/>
<db_xref db="PDB" dbkey="2uzp"/>
<db_xref db="PDB" dbkey="2yrb"/>
<db_xref db="PDB" dbkey="2zkm"/>
<db_xref db="PDB" dbkey="3bxj"/>
<db_xref db="PDB" dbkey="3fdw"/>
<db_xref db="PDB" dbkey="3rpb"/>
<db_xref db="CATH" dbkey="2.20.170.10"/>
<db_xref db="CATH" dbkey="2.60.40.150"/>
<db_xref db="SCOP" dbkey="b.7.1.1"/>
<db_xref db="SCOP" dbkey="b.7.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="3"/>
<taxon_data name="Cyanobacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="5994"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="161"/>
<taxon_data name="Rice spp." proteins_count="274"/>
<taxon_data name="Fungi" proteins_count="816"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="68"/>
<taxon_data name="Other Eukaryotes" proteins_count="57"/>
<taxon_data name="Other Eukaryotes" proteins_count="82"/>
<taxon_data name="Nematoda" proteins_count="76"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="76"/>
<taxon_data name="Arthropoda" proteins_count="839"/>
<taxon_data name="Fruit Fly" proteins_count="132"/>
<taxon_data name="Chordata" proteins_count="1924"/>
<taxon_data name="Human" proteins_count="436"/>
<taxon_data name="Mouse" proteins_count="371"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="54"/>
<taxon_data name="Plastid Group" proteins_count="1230"/>
<taxon_data name="Green Plants" proteins_count="1230"/>
<taxon_data name="Metazoa" proteins_count="4034"/>
<taxon_data name="Plastid Group" proteins_count="243"/>
<taxon_data name="Plastid Group" proteins_count="109"/>
<taxon_data name="Other Eukaryotes" proteins_count="84"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018029"/>
</sec_list>
</interpro>
<interpro id="IPR000009" protein_count="339" short_name="PP2A_PR55" type="Family">
<name>Protein phosphatase 2A, regulatory subunit PR55</name>
<abstract>
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase implicated
in many cellular processes, including the regulation of metabolic enzymes
and proteins involved in signal transduction [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PP2A is a trimer
composed of a 36 kDa catalytic subunit, a 65 kDa regulatory subunit
(subunit A) and a variable third subunit (subunit B) [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>].
<p>One form of the third subunit is a 55 kDa protein (PR55), which exists in
<taxon tax_id="7227">Drosophila melanogaster</taxon> and yeast, and has up to three forms in mammals [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PR55 may act
as a substrate recognition unit, or may help to target the enzyme to the
correct subcellular location [<cite idref="PUB00000344"/>].</p>
</abstract>
<class_list>
<classification id="GO:0000159" class_type="GO">
<category>Cellular Component</category>
<description>protein phosphatase type 2A complex</description>
</classification>
<classification id="GO:0007165" class_type="GO">
<category>Biological Process</category>
<description>signal transduction</description>
</classification>
<classification id="GO:0008601" class_type="GO">
<category>Molecular Function</category>
<description>protein phosphatase type 2A regulator activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P36872"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P63151"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q00362"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q38821"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q6P1F6"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000344">
<author_list>Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, Merlevede W, Hofsteenge J, Hemmings BA.</author_list>
<title>Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform.</title>
<db_xref db="PUBMED" dbkey="1849734"/>
<journal>Biochemistry</journal>
<location issue="15" pages="3589-97" volume="30"/>
<year>1991</year>
</publication>
<publication id="PUB00003499">
<author_list>Pallas DC, Weller W, Jaspers S, Miller TB, Lane WS, Roberts TM.</author_list>
<title>The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens.</title>
<db_xref db="PUBMED" dbkey="1370560"/>
<journal>J. Virol.</journal>
<location issue="2" pages="886-93" volume="66"/>
<year>1992</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR001680"/>
<rel_ref ipr_ref="IPR011046"/>
<rel_ref ipr_ref="IPR018067"/>
<rel_ref ipr_ref="IPR019775"/>
<rel_ref ipr_ref="IPR019781"/>
</contains>
<member_list>
<db_xref protein_count="326" db="PANTHER" dbkey="PTHR11871" name="Pp2A_PR55"/>
<db_xref protein_count="224" db="PIRSF" dbkey="PIRSF037309" name="PP2A_PR55"/>
<db_xref protein_count="332" db="PRINTS" dbkey="PR00600" name="PP2APR55"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS01024"/>
<db_xref db="MSDsite" dbkey="PS01025"/>
<db_xref db="BLOCKS" dbkey="IPB000009"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00785"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2"/>
<taxon_data name="Cyanobacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="337"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
<taxon_data name="Rice spp." proteins_count="15"/>
<taxon_data name="Fungi" proteins_count="73"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="77"/>
<taxon_data name="Fruit Fly" proteins_count="2"/>
<taxon_data name="Chordata" proteins_count="76"/>
<taxon_data name="Human" proteins_count="18"/>
<taxon_data name="Mouse" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="59"/>
<taxon_data name="Green Plants" proteins_count="59"/>
<taxon_data name="Metazoa" proteins_count="243"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000010" protein_count="956" short_name="Prot_inh_cystat" type="Domain">
<name>Proteinase inhibitor I25, cystatin</name>
<abstract>
<p>Peptide proteinase inhibitors can be found as single domain proteins or as single or multiple domains within proteins; these are referred to as either simple or compound inhibitors, respectively. In many cases they are synthesised as part of a larger precursor protein, either as a prepropeptide or as an N-terminal domain associated with an inactive peptidase or zymogen. This domain prevents access of the substrate to the active site. Removal of the N-terminal inhibitor domain either by interaction with a second peptidase or by autocatalytic cleavage activates the zymogen. Other inhibitors interact direct with proteinases using a simple noncovalent lock and key mechanism; while yet others use a conformational change-based trapping mechanism that depends on their structural and thermodynamic properties. </p>
<p>The cystatins are cysteine proteinase inhibitors belonging to MEROPS inhibitor family I25, clan IH [<cite idref="PUB00003412"/>, <cite idref="PUB00014312"/>, <cite idref="PUB00001614"/>]. They mainly inhibit peptidases belonging to peptidase families C1 (papain family) and C13 (legumain family). The cystatin family includes:</p>
<ul>
<li>
The Type 1 cystatins, which are intracellular cystatins that are present in the cytosol of many cell types, but can also appear in body fluids at significant concentrations. They are single-chain polypeptides of about 100 residues, which have neither disulphide bonds nor carbohydrate side chains. </li>
<li>The Type 2 cystatins, which are mainly extracellular secreted polypeptides synthesised with a 19-28 residue signal peptide. They are broadly distributed and found in most body fluids. </li>
<li>The Type 3 cystatins, which are multidomain proteins. The mammalian representatives of this group are the kininogens. There are three different kininogens in mammals: H- (high molecular mass, <db_xref db="INTERPRO" dbkey="IPR002395"/>) and L- (low molecular mass) kininogen which are found in a number of species, and T-kininogen that is found only in rat. </li>
<li>Unclassified cystatins. These are cystatin-like proteins found in a range of organisms: plant phytocystatins, fetuin in mammals, insect cystatins and a puff adder venom cystatin which inhibits metalloproteases of the MEROPS peptidase family M12 (astacin/adamalysin). Also a number of the cystatins-like proteins have been shown to be devoid of inhibitory activity. </li>
</ul>
<p>All true cystatins inhibit cysteine peptidases of the papain family (MEROPS peptidase family C1), and some also inhibit legumain family enzymes (MEROPS peptidase family C13). These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus in animals cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but in other organisms may also participate in defence against biotic and abiotic stress. </p>
</abstract>
<class_list>
<classification id="GO:0004869" class_type="GO">
<category>Molecular Function</category>
<description>cysteine-type endopeptidase inhibitor activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O08677"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O76096"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P09229"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P23779"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q41906"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001614">
<author_list>Turk V, Bode W.</author_list>
<title>The cystatins: protein inhibitors of cysteine proteinases.</title>
<db_xref db="PUBMED" dbkey="1855589"/>
<journal>FEBS Lett.</journal>
<location issue="2" pages="213-9" volume="285"/>
<year>1991</year>
</publication>
<publication id="PUB00003412">
<author_list>Rawlings ND, Barrett AJ.</author_list>
<title>Evolution of proteins of the cystatin superfamily.</title>
<db_xref db="PUBMED" dbkey="2107324"/>
<journal>J. Mol. Evol.</journal>
<location issue="1" pages="60-71" volume="30"/>
<year>1990</year>
</publication>
<publication id="PUB00014312">
<author_list>Abrahamson M, Alvarez-Fernandez M, Nathanson CM.</author_list>
<title>Cystatins.</title>
<db_xref db="PUBMED" dbkey="14587292"/>
<journal>Biochem. Soc. Symp.</journal>
<location issue="70" pages="179-99"/>
<year>2003</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR001713"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR001363"/>
<rel_ref ipr_ref="IPR018073"/>
<rel_ref ipr_ref="IPR020381"/>
</contains>
<member_list>
<db_xref protein_count="937" db="PFAM" dbkey="PF00031" name="Cystatin"/>
<db_xref protein_count="845" db="SMART" dbkey="SM00043" name="CY"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00031"/>
<db_xref db="MSDsite" dbkey="PS00287"/>
<db_xref db="BLOCKS" dbkey="IPB000010"/>
<db_xref db="MEROPS" dbkey="C1"/>
<db_xref db="MEROPS" dbkey="C13"/>
<db_xref db="MEROPS" dbkey="I25"/>
<db_xref db="MEROPS" dbkey="M10"/>
<db_xref db="MEROPS" dbkey="M12"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00259"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a67"/>
<db_xref db="PDB" dbkey="1a90"/>
<db_xref db="PDB" dbkey="1cew"/>
<db_xref db="PDB" dbkey="1cyu"/>
<db_xref db="PDB" dbkey="1cyv"/>
<db_xref db="PDB" dbkey="1dvc"/>
<db_xref db="PDB" dbkey="1dvd"/>
<db_xref db="PDB" dbkey="1eqk"/>
<db_xref db="PDB" dbkey="1g96"/>
<db_xref db="PDB" dbkey="1gd3"/>
<db_xref db="PDB" dbkey="1gd4"/>
<db_xref db="PDB" dbkey="1n9j"/>
<db_xref db="PDB" dbkey="1nb3"/>
<db_xref db="PDB" dbkey="1nb5"/>
<db_xref db="PDB" dbkey="1r4c"/>
<db_xref db="PDB" dbkey="1rn7"/>
<db_xref db="PDB" dbkey="1roa"/>
<db_xref db="PDB" dbkey="1stf"/>
<db_xref db="PDB" dbkey="1tij"/>
<db_xref db="PDB" dbkey="1yvb"/>
<db_xref db="CATH" dbkey="3.10.450.10"/>
<db_xref db="SCOP" dbkey="d.17.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="39"/>
<taxon_data name="Eukaryota" proteins_count="873"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
<taxon_data name="Rice spp." proteins_count="35"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="122"/>
<taxon_data name="Fruit Fly" proteins_count="6"/>
<taxon_data name="Chordata" proteins_count="376"/>
<taxon_data name="Human" proteins_count="40"/>
<taxon_data name="Mouse" proteins_count="69"/>
<taxon_data name="Virus" proteins_count="44"/>
<taxon_data name="Plastid Group" proteins_count="305"/>
<taxon_data name="Green Plants" proteins_count="305"/>
<taxon_data name="Metazoa" proteins_count="546"/>
<taxon_data name="Plastid Group" proteins_count="11"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR001713"/>
</sec_list>
</interpro>
<interpro id="IPR000011" protein_count="359" short_name="UBQ-activ_enz_E1-like" type="Region">
<name>Ubiquitin-activating enzyme, E1-like</name>
<abstract>
<p>The post-translational attachment of ubiquitin (<db_xref db="INTERPRO" dbkey="IPR000626"/>) to proteins (ubiquitinylation) alters the function, location or trafficking of a protein, or targets it to the 26S proteasome for degradation [<cite idref="PUB00015621"/>, <cite idref="PUB00015619"/>, <cite idref="PUB00015625"/>]. Ubiquitinylation is an ATP-dependent process that involves the action of at least three enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2, <db_xref db="INTERPRO" dbkey="IPR000608"/>), and a ubiquitin ligase (E3, <db_xref db="INTERPRO" dbkey="IPR000569"/>, <db_xref db="INTERPRO" dbkey="IPR003613"/>), which work sequentially in a cascade [<cite idref="PUB00015620"/>]. The E1 enzyme is responsible for activating ubiquitin, the first step in ubiquitinylation. The E1 enzyme hydrolyses ATP and adenylates the C-terminal glycine residue of ubiquitin, and then links this residue to the active site cysteine of E1, yielding a ubiquitin-thioester and free AMP. To be fully active, E1 must non-covalently bind to and adenylate a second ubiquitin molecule. The E1 enzyme can then transfer the thioester-linked ubiquitin molecule to a cysteine residue on the ubiquitin-conjugating enzyme, E2, in an ATP-dependent reaction.</p>
</abstract>
<class_list>
<classification id="GO:0006464" class_type="GO">
<category>Biological Process</category>
<description>protein modification process</description>
</classification>
<classification id="GO:0008641" class_type="GO">
<category>Molecular Function</category>
<description>small protein activating enzyme activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A2VE14"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O42939"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22515"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q02053"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9UBE0"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00015619">
<author_list>Burger AM, Seth AK.</author_list>
<title>The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications.</title>
<db_xref db="PUBMED" dbkey="15454246"/>
<journal>Eur. J. Cancer</journal>
<location issue="15" pages="2217-29" volume="40"/>
<year>2004</year>
</publication>
<publication id="PUB00015620">
<author_list>Passmore LA, Barford D.</author_list>
<title>Getting into position: the catalytic mechanisms of protein ubiquitylation.</title>
<db_xref db="PUBMED" dbkey="14998368"/>
<journal>Biochem. J.</journal>
<location issue="Pt 3" pages="513-25" volume="379"/>
<year>2004</year>
</publication>
<publication id="PUB00015621">
<author_list>Pickart CM, Fushman D.</author_list>
<title>Polyubiquitin chains: polymeric protein signals.</title>
<db_xref db="PUBMED" dbkey="15556404"/>
<location issue="6" pages="610-6" volume="8"/>
<year>2004</year>
</publication>
<publication id="PUB00015625">
<author_list>Sun L, Chen ZJ.</author_list>
<title>The novel functions of ubiquitination in signaling.</title>
<db_xref db="PUBMED" dbkey="15196553"/>
<journal>Curr. Opin. Cell Biol.</journal>
<location issue="2" pages="119-26" volume="16"/>
<year>2004</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR000594"/>
<rel_ref ipr_ref="IPR009036"/>
<rel_ref ipr_ref="IPR018074"/>
<rel_ref ipr_ref="IPR019572"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR018075"/>
</found_in>
<member_list>
<db_xref protein_count="359" db="PRINTS" dbkey="PR01849" name="UBIQUITINACT"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS00536"/>
<db_xref db="MSDsite" dbkey="PS00865"/>
<db_xref db="BLOCKS" dbkey="IPB000011"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00463"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1y8q"/>
<db_xref db="PDB" dbkey="1y8r"/>
<db_xref db="CATH" dbkey="3.40.50.720"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="359"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="6"/>
<taxon_data name="Rice spp." proteins_count="13"/>
<taxon_data name="Fungi" proteins_count="110"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="5"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="43"/>
<taxon_data name="Fruit Fly" proteins_count="9"/>
<taxon_data name="Chordata" proteins_count="55"/>
<taxon_data name="Human" proteins_count="10"/>
<taxon_data name="Mouse" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
<taxon_data name="Plastid Group" proteins_count="50"/>
<taxon_data name="Green Plants" proteins_count="50"/>
<taxon_data name="Metazoa" proteins_count="225"/>
<taxon_data name="Plastid Group" proteins_count="38"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000012" protein_count="3972" short_name="RetroV_VpR/X" type="Family">
<name>Retroviral VpR/VpX protein</name>
<abstract>
<taxon tax_id="12721">Human immunodeficiency virus</taxon> (HIV) is the human retrovirus associated with AIDS (acquired immune deficiency syndrome), and SIV its simian counterpart. Three main groups of primate lentivirus are known, designated <taxon tax_id="11676">Human immunodeficiency virus 1</taxon> (HIV-1), <taxon tax_id="11709">Human immunodeficiency virus 2</taxon> (HIV-2)/<taxon tax_id="11711">Simian immunodeficiency virus - mac</taxon> (SIVMAC)/<taxon tax_id="11712">Simian immunodeficiency virus - sm</taxon> (SIVSM) and <taxon tax_id="11726">Simian immunodeficiency virus - agm</taxon> (SIVAGM). <taxon tax_id="12830">Simian immunodeficiency virus - mnd</taxon> (SIVMND) has been suggested to represent a fourth distinct group [<cite idref="PUB00004048"/>]. These groups are believed to have diverged from a common ancestor long before the spread of AIDS in humans. Genetic variation in HIV-1 and HIV-2 has been studied extensively, and the nucleotide sequences reported for several strains [<cite idref="PUB00000018"/>].<p> ORF analysis has revealed two open reading frames, yielding the so-called R- and X-ORF proteins, whose functions are unknown, but which show a high degree of sequence similarity.</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P05954"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000018">
<author_list>Hasegawa A, Tsujimoto H, Maki N, Ishikawa K, Miura T, Fukasawa M, Miki K, Hayami M.</author_list>
<title>Genomic divergence of HIV-2 from Ghana.</title>
<db_xref db="PUBMED" dbkey="2611042"/>
<journal>AIDS Res. Hum. Retroviruses</journal>
<location issue="6" pages="593-604" volume="5"/>
<year>1989</year>
</publication>
<publication id="PUB00004048">
<author_list>Tsujimoto H, Hasegawa A, Maki N, Fukasawa M, Miura T, Speidel S, Cooper RW, Moriyama EN, Gojobori T, Hayami M.</author_list>
<title>Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill.</title>
<db_xref db="PUBMED" dbkey="2797181"/>
<journal>Nature</journal>
<location issue="6242" pages="539-41" volume="341"/>
<year>1989</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="3972" db="PFAM" dbkey="PF00522" name="VPR"/>
<db_xref protein_count="3833" db="PRINTS" dbkey="PR00444" name="HIVVPRVPX"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00522"/>
<db_xref db="BLOCKS" dbkey="IPB000012"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1bde"/>
<db_xref db="PDB" dbkey="1ceu"/>
<db_xref db="PDB" dbkey="1dsj"/>
<db_xref db="PDB" dbkey="1dsk"/>
<db_xref db="PDB" dbkey="1esx"/>
<db_xref db="PDB" dbkey="1fi0"/>
<db_xref db="PDB" dbkey="1kzs"/>
<db_xref db="PDB" dbkey="1kzt"/>
<db_xref db="PDB" dbkey="1kzv"/>
<db_xref db="PDB" dbkey="1m8l"/>
<db_xref db="PDB" dbkey="1vpc"/>
<db_xref db="PDB" dbkey="1x9v"/>
<db_xref db="CATH" dbkey="1.10.1690.10"/>
<db_xref db="CATH" dbkey="1.20.5.90"/>
<db_xref db="SCOP" dbkey="j.11.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Virus" proteins_count="3972"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000013" protein_count="41" short_name="Peptidase_M7" type="Family">
<name>Peptidase M7, snapalysin</name>
<abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
<li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. </p>
<p>Metalloproteases are the most diverse of the four main types of protease, with more than 50 families identified to date. In these enzymes, a divalent cation, usually zinc, activates the water molecule. The metal ion is held in place by amino acid ligands, usually three in number. The known metal ligands are His, Glu, Asp or Lys and at least one other residue is required for catalysis, which may play an electrophillic role.
Of the known metalloproteases, around half contain an HEXXH motif, which has been shown in crystallographic studies to form part of the metal-binding site [<cite idref="PUB00003579"/>]. The HEXXH motif is relatively common, but can be more stringently defined for metalloproteases as 'abXHEbbHbc', where 'a' is most often valine or threonine and forms part of the S1' subsite in thermolysin and neprilysin, 'b' is an uncharged residue, and 'c' a hydrophobic residue. Proline is never found in this site, possibly because it would break the helical structure adopted by this motif in metalloproteases [<cite idref="PUB00003579"/>].</p>
<p>This group of metallopeptidases belong to the MEROPS peptidase family M7 (snapalysin family, clan MA(M)). The protein fold of the peptidase domain for members of this family resembles that of thermolysin, the type example for clan MA.</p>
<p>With a molecular weight of around 16kDa, Streptomyces extracellular neutral protease is one of the smallest known proteases [<cite idref="PUB00003579"/>]; it is capable of hydrolysing milk proteins [<cite idref="PUB00003579"/>]. The enzyme is synthesised as a proenzyme with a signal peptide, a propeptide and an active domain that contains the conserved HEXXH motif characteristic of metalloproteases. Although family M7 shows active site sequence similarity to other members, it differs in one major respect: the third zinc ligand appears to be an aspartate residue rather than the usual histidine.</p>
</abstract>
<class_list>
<classification id="GO:0004222" class_type="GO">
<category>Molecular Function</category>
<description>metalloendopeptidase activity</description>
</classification>
<classification id="GO:0005576" class_type="GO">
<category>Cellular Component</category>
<description>extracellular region</description>
</classification>
<classification id="GO:0006508" class_type="GO">
<category>Biological Process</category>
<description>proteolysis</description>
</classification>
<classification id="GO:0008270" class_type="GO">
<category>Molecular Function</category>
<description>zinc ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P56406"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00003579">
<author_list>Rawlings ND, Barrett AJ.</author_list>
<title>Evolutionary families of metallopeptidases.</title>
<db_xref db="PUBMED" dbkey="7674922"/>
<journal>Meth. Enzymol.</journal>
<location pages="183-228" volume="248"/>
<year>1995</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="41" db="PFAM" dbkey="PF02031" name="Peptidase_M7"/>
<db_xref protein_count="34" db="PIRSF" dbkey="PIRSF016573" name="Peptidase_M7"/>
<db_xref protein_count="39" db="PRINTS" dbkey="PR00787" name="NEUTRALPTASE"/>
<db_xref protein_count="38" db="PRODOM" dbkey="PD016028" name="Peptidase_M7"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF02031"/>
<db_xref db="BLOCKS" dbkey="IPB000013"/>
<db_xref db="EC" dbkey="3.4.24.77"/>
<db_xref db="MEROPS" dbkey="M7"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1c7k"/>
<db_xref db="PDB" dbkey="1kuh"/>
<db_xref db="CATH" dbkey="3.40.390.10"/>
<db_xref db="SCOP" dbkey="d.92.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="41"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000014" protein_count="31843" short_name="PAS" type="Domain">
<name>PAS</name>
<abstract>
<p>PAS domains are involved in many signalling proteins where they
are used as a signal sensor domain. PAS domains appear in archaea,
bacteria and eukaryotes. Several PAS-domain proteins are known to
detect their signal by way of an associated cofactor. Haeme,
flavin, and a 4-hydroxycinnamyl chromophore are used in different
proteins. The PAS domain was named after three proteins that it
occurs in: </p>
<li>Per- period circadian protein</li>
<li>Arnt- Ah receptor nuclear translocator protein</li>
<li>Sim- single-minded protein.</li>
<p>PAS domains are often associated with
PAC domains <db_xref db="INTERPRO" dbkey="IPR001610"/>. It appears that these domains are directly linked, and that together they form the conserved 3D PAS fold. The division between the PAS and PAC domains is caused by major differences in sequences in the region connecting these two motifs [<cite idref="PUB00014500"/>]. In human PAS kinase, this region has been shown to be very flexible, and adopts different conformations depending on the bound ligand [<cite idref="PUB00014501"/>].
Probably the most surprising identification of a PAS domain was that in
EAG-like K<sup>+</sup>-channels [<cite idref="PUB00005472"/>].</p>
</abstract>
<class_list>
<classification id="GO:0004871" class_type="GO">
<category>Molecular Function</category>
<description>signal transducer activity</description>
</classification>
<classification id="GO:0007165" class_type="GO">
<category>Biological Process</category>
<description>signal transduction</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O44712"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O54943"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O60658"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P07663"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P19541"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00005472">
<author_list>Zhulin IB, Taylor BL, Dixon R.</author_list>
<title>PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.</title>
<db_xref db="PUBMED" dbkey="9301332"/>
<journal>Trends Biochem. Sci.</journal>
<location issue="9" pages="331-3" volume="22"/>
<year>1997</year>
</publication>
<publication id="PUB00014500">
<author_list>Hefti MH, Francoijs KJ, de Vries SC, Dixon R, Vervoort J.</author_list>
<title>The PAS fold. A redefinition of the PAS domain based upon structural prediction.</title>
<db_xref db="PUBMED" dbkey="15009198"/>
<journal>Eur. J. Biochem.</journal>
<location issue="6" pages="1198-208" volume="271"/>
<year>2004</year>
</publication>
<publication id="PUB00014501">
<author_list>Amezcua CA, Harper SM, Rutter J, Gardner KH.</author_list>
<title>Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation.</title>
<db_xref db="PUBMED" dbkey="12377121"/>
<journal>Structure</journal>
<location issue="10" pages="1349-61" volume="10"/>
<year>2002</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR013655"/>
<rel_ref ipr_ref="IPR013656"/>
<rel_ref ipr_ref="IPR013767"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR001294"/>
<rel_ref ipr_ref="IPR001321"/>
<rel_ref ipr_ref="IPR003949"/>
<rel_ref ipr_ref="IPR003950"/>
<rel_ref ipr_ref="IPR011785"/>
<rel_ref ipr_ref="IPR012129"/>
<rel_ref ipr_ref="IPR012130"/>
<rel_ref ipr_ref="IPR012226"/>
<rel_ref ipr_ref="IPR012704"/>
<rel_ref ipr_ref="IPR014285"/>
<rel_ref ipr_ref="IPR014310"/>
<rel_ref ipr_ref="IPR014409"/>
<rel_ref ipr_ref="IPR015524"/>
<rel_ref ipr_ref="IPR017181"/>
<rel_ref ipr_ref="IPR017232"/>
</found_in>
<member_list>
<db_xref protein_count="21263" db="PROFILE" dbkey="PS50112" name="PAS"/>
<db_xref protein_count="30445" db="SMART" dbkey="SM00091" name="PAS"/>
<db_xref protein_count="21449" db="TIGRFAMs" dbkey="TIGR00229" name="sensory_box"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000014"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50112"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1byw"/>
<db_xref db="PDB" dbkey="1d06"/>
<db_xref db="PDB" dbkey="1d7e"/>
<db_xref db="PDB" dbkey="1dp6"/>
<db_xref db="PDB" dbkey="1dp8"/>
<db_xref db="PDB" dbkey="1dp9"/>
<db_xref db="PDB" dbkey="1drm"/>
<db_xref db="PDB" dbkey="1ew0"/>
<db_xref db="PDB" dbkey="1f98"/>
<db_xref db="PDB" dbkey="1f9i"/>
<db_xref db="PDB" dbkey="1g28"/>
<db_xref db="PDB" dbkey="1gsv"/>
<db_xref db="PDB" dbkey="1gsw"/>
<db_xref db="PDB" dbkey="1gsx"/>
<db_xref db="PDB" dbkey="1jnu"/>
<db_xref db="PDB" dbkey="1kou"/>
<db_xref db="PDB" dbkey="1ll8"/>
<db_xref db="PDB" dbkey="1lsv"/>
<db_xref db="PDB" dbkey="1lsw"/>
<db_xref db="PDB" dbkey="1lsx"/>
<db_xref db="PDB" dbkey="1lt0"/>
<db_xref db="PDB" dbkey="1mzu"/>
<db_xref db="PDB" dbkey="1n9l"/>
<db_xref db="PDB" dbkey="1n9n"/>
<db_xref db="PDB" dbkey="1n9o"/>
<db_xref db="PDB" dbkey="1nwz"/>
<db_xref db="PDB" dbkey="1odv"/>
<db_xref db="PDB" dbkey="1ot6"/>
<db_xref db="PDB" dbkey="1ot9"/>
<db_xref db="PDB" dbkey="1ota"/>
<db_xref db="PDB" dbkey="1otb"/>
<db_xref db="PDB" dbkey="1otd"/>
<db_xref db="PDB" dbkey="1ote"/>
<db_xref db="PDB" dbkey="1oti"/>
<db_xref db="PDB" dbkey="1p97"/>
<db_xref db="PDB" dbkey="1s1y"/>
<db_xref db="PDB" dbkey="1s1z"/>
<db_xref db="PDB" dbkey="1s4r"/>
<db_xref db="PDB" dbkey="1s4s"/>
<db_xref db="PDB" dbkey="1s66"/>
<db_xref db="PDB" dbkey="1s67"/>
<db_xref db="PDB" dbkey="1t18"/>
<db_xref db="PDB" dbkey="1t19"/>
<db_xref db="PDB" dbkey="1t1a"/>
<db_xref db="PDB" dbkey="1t1b"/>
<db_xref db="PDB" dbkey="1t1c"/>
<db_xref db="PDB" dbkey="1ts0"/>
<db_xref db="PDB" dbkey="1ts6"/>
<db_xref db="PDB" dbkey="1ts7"/>
<db_xref db="PDB" dbkey="1ts8"/>
<db_xref db="PDB" dbkey="1ugu"/>
<db_xref db="PDB" dbkey="1uwn"/>
<db_xref db="PDB" dbkey="1uwp"/>
<db_xref db="PDB" dbkey="1v9y"/>
<db_xref db="PDB" dbkey="1v9z"/>
<db_xref db="PDB" dbkey="1vb6"/>
<db_xref db="PDB" dbkey="1wa9"/>
<db_xref db="PDB" dbkey="1xfn"/>
<db_xref db="PDB" dbkey="1xfq"/>
<db_xref db="PDB" dbkey="1xj2"/>
<db_xref db="PDB" dbkey="1xj3"/>
<db_xref db="PDB" dbkey="1xj4"/>
<db_xref db="PDB" dbkey="1xj6"/>
<db_xref db="PDB" dbkey="1y28"/>
<db_xref db="PDB" dbkey="1ztu"/>
<db_xref db="PDB" dbkey="2a24"/>
<db_xref db="PDB" dbkey="2cmn"/>
<db_xref db="PDB" dbkey="2d01"/>
<db_xref db="PDB" dbkey="2d02"/>
<db_xref db="PDB" dbkey="2i9v"/>
<db_xref db="PDB" dbkey="2o9b"/>
<db_xref db="PDB" dbkey="2o9c"/>
<db_xref db="PDB" dbkey="2ohh"/>
<db_xref db="PDB" dbkey="2ohi"/>
<db_xref db="PDB" dbkey="2ohj"/>
<db_xref db="PDB" dbkey="2owh"/>
<db_xref db="PDB" dbkey="2owj"/>
<db_xref db="PDB" dbkey="2phy"/>
<db_xref db="PDB" dbkey="2pyp"/>
<db_xref db="PDB" dbkey="2pyr"/>
<db_xref db="PDB" dbkey="2qj5"/>
<db_xref db="PDB" dbkey="2qj7"/>
<db_xref db="PDB" dbkey="2qws"/>
<db_xref db="PDB" dbkey="2r78"/>
<db_xref db="PDB" dbkey="2vea"/>
<db_xref db="PDB" dbkey="2vv6"/>
<db_xref db="PDB" dbkey="2vv7"/>
<db_xref db="PDB" dbkey="2vv8"/>
<db_xref db="PDB" dbkey="3b33"/>
<db_xref db="PDB" dbkey="3bwl"/>
<db_xref db="PDB" dbkey="3f1n"/>
<db_xref db="PDB" dbkey="3f1o"/>
<db_xref db="PDB" dbkey="3f1p"/>
<db_xref db="PDB" dbkey="3phy"/>
<db_xref db="PDB" dbkey="3pyp"/>
<db_xref db="CATH" dbkey="3.30.450.20"/>
<db_xref db="CATH" dbkey="3.60.15.10"/>
<db_xref db="SCOP" dbkey="d.110.3.1"/>
<db_xref db="SCOP" dbkey="d.110.3.2"/>
<db_xref db="SCOP" dbkey="d.110.3.5"/>
<db_xref db="SCOP" dbkey="d.110.3.6"/>
<db_xref db="SCOP" dbkey="d.110.3.7"/>
<db_xref db="SCOP" dbkey="d.110.3.9"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="27271"/>
<taxon_data name="Cyanobacteria" proteins_count="1122"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="33"/>
<taxon_data name="Archaea" proteins_count="997"/>
<taxon_data name="Eukaryota" proteins_count="3570"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="64"/>
<taxon_data name="Rice spp." proteins_count="44"/>
<taxon_data name="Fungi" proteins_count="548"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="23"/>
<taxon_data name="Other Eukaryotes" proteins_count="112"/>
<taxon_data name="Other Eukaryotes" proteins_count="82"/>
<taxon_data name="Nematoda" proteins_count="17"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="17"/>
<taxon_data name="Arthropoda" proteins_count="772"/>
<taxon_data name="Fruit Fly" proteins_count="39"/>
<taxon_data name="Chordata" proteins_count="848"/>
<taxon_data name="Human" proteins_count="110"/>
<taxon_data name="Mouse" proteins_count="109"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="3"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="892"/>
<taxon_data name="Green Plants" proteins_count="892"/>
<taxon_data name="Metazoa" proteins_count="2256"/>
<taxon_data name="Plastid Group" proteins_count="120"/>
<taxon_data name="Plastid Group" proteins_count="26"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="20"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR013655"/>
<sec_ac acc="IPR013656"/>
<sec_ac acc="IPR013767"/>
</sec_list>
</interpro>
<interpro id="IPR000015" protein_count="2173" short_name="Fimb_usher" type="Family">
<name>Fimbrial biogenesis outer membrane usher protein</name>
<abstract>
In Gram-negative bacteria the biogenesis of fimbriae (or pili) requires a two-
component assembly and transport system which is composed of a periplasmic
chaperone (see <db_xref db="PROSITEDOC" dbkey="PDOC00552"/>) and an outer membrane protein which has been
termed a molecular 'usher' [<cite idref="PUB00002841"/>, <cite idref="PUB00002237"/>, <cite idref="PUB00005083"/>]. <p>The usher protein is rather large (from 86 to
100 Kd) and seems to be mainly composed of membrane-spanning beta-sheets, a
structure reminiscent of porins.
Although the degree of sequence similarity of these proteins is not very high
they share a number of characteristics. One of these is the presence of two pairs
of cysteines, the first one located in the N-terminal part and the second
at the C-terminal extremity that are probably involved in disulphide bonds.
The best conserved region is located in the central part of these proteins.</p>
</abstract>
<class_list>
<classification id="GO:0005215" class_type="GO">
<category>Molecular Function</category>
<description>transporter activity</description>
</classification>
<classification id="GO:0006810" class_type="GO">
<category>Biological Process</category>
<description>transport</description>
</classification>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P07110"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002237">
<author_list>Schifferli DM, Alrutz MA.</author_list>
<title>Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli.</title>
<db_xref db="PUBMED" dbkey="7906265"/>
<journal>J. Bacteriol.</journal>
<location issue="4" pages="1099-110" volume="176"/>
<year>1994</year>
</publication>
<publication id="PUB00002841">
<author_list>Jacob-Dubuisson F, Striker R, Hultgren SJ.</author_list>
<title>Chaperone-assisted self-assembly of pili independent of cellular energy.</title>
<db_xref db="PUBMED" dbkey="7909802"/>
<journal>J. Biol. Chem.</journal>
<location issue="17" pages="12447-55" volume="269"/>
<year>1994</year>
</publication>
<publication id="PUB00005083">
<author_list>Van Rosmalen M, Saier MH Jr.</author_list>
<title>Structural and evolutionary relationships between two families of bacterial extracytoplasmic chaperone proteins which function cooperatively in fimbrial assembly.</title>
<db_xref db="PUBMED" dbkey="7906046"/>
<journal>Res. Microbiol.</journal>
<location issue="7" pages="507-27" volume="144"/>
<year>1993</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018030"/>
</contains>
<member_list>
<db_xref protein_count="2173" db="PFAM" dbkey="PF00577" name="Usher"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00577"/>
<db_xref db="MSDsite" dbkey="PS01151"/>
<db_xref db="BLOCKS" dbkey="IPB000015"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00886"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1zdv"/>
<db_xref db="PDB" dbkey="1zdx"/>
<db_xref db="PDB" dbkey="1ze3"/>
<db_xref db="PDB" dbkey="3bwu"/>
<db_xref db="SCOP" dbkey="b.167.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2168"/>
<taxon_data name="Cyanobacteria" proteins_count="2"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="5"/>
<taxon_data name="Rice spp." proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="5"/>
<taxon_data name="Green Plants" proteins_count="5"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000018" protein_count="25" short_name="P2Y4_purnocptor" type="Family">
<name>P2Y4 purinoceptor</name>
<abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>In addition to their role in energy metabolism, purines (especially
adenosine and adenine nucleotides) produce a wide range of pharmacological
effects mediated by activation of cell surface receptors [<cite idref="PUB00005868"/>]. ATP is a
co-transmitter in sympathetic nerves in the autonomic nervous system,
where it exerts an important physiological role in the regulation of
smooth muscle activity, stimulating relaxation of intestinal smooth muscle
and contraction of the bladder. Receptors for adenine nucleotides are
involved in a number of other physiological pathways, including stimulation
of platelet activation by ADP, which is released from the vascular
endothelium following injury. ATP has excitatory effects in the CNS [<cite idref="PUB00005868"/>].
Distinct receptors exist for adenosine. The main effects of adenosine in
the periphery include vasodilation, bronchoconstriction, immunosuppression,
inhibition of platelet aggregation, cardiac depression, stimulation of
nociceptive afferents, inhibition of neurotransmitter release, and
inhibition of the release of hormones. In the CNS, adenosine exerts a
pre- and post-synaptic depressant action, reducing motor activity,
depressing respiration, inducing sleep and relieving anxiety. The
physiological role of adenosine is believed to be to adjust energy demands
in line with oxygen supply [<cite idref="PUB00005868"/>].</p>
<p>Purinoceptors have been classified as P1 or P2, depending on their
preference for adenosine or adenine nucleotides respectively. Adenosine
receptors (P1 purinoceptors) are characterised by their affinity for
adenosine and by the ability of methylxanthines to act as antagonists [<cite idref="PUB00005868"/>].
Adenosine has very low affinity for P2 purinoceptors.</p>
<p>The P2Y receptor is found in smooth muscle (e.g., taeni caeci) and in
vascular tissue, where it induces vasodilation through endothelium-dependent
release of nitric oxide. The receptor activates phosphoinositide metabolism
through a pertussis-toxin-insensitive G-protein, probably belonging to
the Gi/Go class [<cite idref="PUB00005868"/>].</p>
<p>A new subtype of P2 purinoceptors has been isolated [<cite idref="PUB00002940"/>]. Its deduced amino acid sequence is consistent with a GPCR that is 51% identical to the human P2Y2 receptor and 35% identical to the chicken P2Y1 receptor [<cite idref="PUB00002940"/>]. P2Y4 is expressed in the placenta, with low levels in the lung and vascular smoothmuscle. In cells stably expressing the receptor, UTP and UDP have been shown to stimulate the formation of inositol phosphates with equivalent potency and maximal effect, while ATP behaves as a partial agonist, and ADP is almost inactive [<cite idref="PUB00002940"/>]. The receptor is thus a new member of the P2 purinergic receptor family that functionally behaves as a pyrimidinergic receptor [<cite idref="PUB00002940"/>]. P2Y4 can couple to both Gi and Gq proteins to activate phospholipase C [<cite idref="PUB00007771"/>].</p>
</abstract>
<class_list>
<classification id="GO:0007186" class_type="GO">
<category>Biological Process</category>
<description>G-protein coupled receptor protein signaling pathway</description>
</classification>
<classification id="GO:0016021" class_type="GO">
<category>Cellular Component</category>
<description>integral to membrane</description>
</classification>
<classification id="GO:0045028" class_type="GO">
<category>Molecular Function</category>
<description>purinergic nucleotide receptor activity, G-protein coupled</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O35811"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P51582"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9JJS7"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000131">
<author_list>Birnbaumer L.</author_list>
<title>G proteins in signal transduction.</title>
<db_xref db="PUBMED" dbkey="2111655"/>
<journal>Annu. Rev. Pharmacol. Toxicol.</journal>
<location pages="675-705" volume="30"/>
<year>1990</year>
</publication>
<publication id="PUB00002477">
<author_list>Casey PJ, Gilman AG.</author_list>
<title>G protein involvement in receptor-effector coupling.</title>
<db_xref db="PUBMED" dbkey="2830256"/>
<journal>J. Biol. Chem.</journal>
<location issue="6" pages="2577-80" volume="263"/>
<year>1988</year>
</publication>
<publication id="PUB00002940">
<author_list>Communi D, Pirotton S, Parmentier M, Boeynaems JM.</author_list>
<title>Cloning and functional expression of a human uridine nucleotide receptor.</title>
<db_xref db="PUBMED" dbkey="8537336"/>
<journal>J. Biol. Chem.</journal>
<location issue="52" pages="30849-52" volume="270"/>
<year>1995</year>
</publication>
<publication id="PUB00004960">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8386361"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="167-76" volume="6"/>
<year>1993</year>
</publication>
<publication id="PUB00007771">
<author_list>Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM.</author_list>
<title>Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors.</title>
<db_xref db="PUBMED" dbkey="10889463"/>
<journal>Cell. Signal.</journal>
<location issue="6" pages="351-60" volume="12"/>
<year>2000</year>
</publication>
<publication id="PUB00004961">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Fingerprinting G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8170923"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="195-203" volume="7"/>
<year>1994</year>
</publication>
<publication id="PUB00005868">
<author_list>Watson S, Arkinstall S.</author_list>
<title>Adenosine and adenine nucleotides.</title>
<book_title>ISBN:0127384405</book_title>
<location pages="19-31"/>
<year>1994</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR002286"/>
</parent_list>
<member_list>
<db_xref protein_count="24" db="PANTHER" dbkey="PTHR19264:SF154" name="P2Y4_purnocptor"/>
<db_xref protein_count="20" db="PRINTS" dbkey="PR01066" name="P2Y4PRNOCPTR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000018"/>
<db_xref db="IUPHAR" dbkey="2396"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="25"/>
<taxon_data name="Chordata" proteins_count="25"/>
<taxon_data name="Human" proteins_count="4"/>
<taxon_data name="Mouse" proteins_count="2"/>
<taxon_data name="Metazoa" proteins_count="25"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000020" protein_count="188" short_name="Anaphylatoxin/fibulin" type="Domain">
<name>Anaphylatoxin/fibulin</name>
<abstract>
<p>Complement components C3, C4 and C5 are large glycoproteins that have important functions in the immune response and host defence [<cite idref="PUB00003181"/>]. They have a wide variety of biological activities and are proteolytically activated by cleavage at a specific site, forming a- and b-fragments [<cite idref="PUB00002512"/>]. A-fragments form distinct structural domains of approximately 76 amino acids, coded for by a single exon within the complement protein gene. The C3a, C4a and C5a components are referred to as anaphylatoxins [<cite idref="PUB00002512"/>, <cite idref="PUB00001343"/>]: they cause smooth muscle contraction, histamine release from mast cells, and enhanced vascular permeability [<cite idref="PUB00001343"/>]. They also mediate chemotaxis, inflammation, and generation of cytotoxic oxygen radicals [<cite idref="PUB00001343"/>]. The proteins are highly hydrophilic, with a mainly alpha-helical structure held together by 3 disulphide bridges [<cite idref="PUB00001343"/>].</p>
<p> Fibulins are secreted glycoproteins that become incorporated into a fibrillar extracellular matrix when expressed by cultured cells or added exogenously to cell monolayers [<cite idref="PUB00003065"/>, <cite idref="PUB00011223"/>]. The five known members of the family share an elongated structure and many calcium-binding sites, owing to the presence of tandem arrays of epidermal growth factor-like domains. They have overlapping binding sites for several basement-membrane proteins, tropoelastin, fibrillin, fibronectin and proteoglycans, and they participate in diverse supramolecular structures. The amino-terminal domain I of fibulin consists of three anaphylatoxin-like (AT) modules, each approximately 40 residues long and containing four or six cysteines. The structure of an AT module was determined for the complement-derived anaphylatoxin C3a, and was found to be a compact alpha-helical fold that is stabilised by three disulphide bridges in the pattern Cys1-4, Cys2-5 and Cys3-6 (where Cys is cysteine). The bulk of the remaining portion of the fibulin molecule is a series of nine EGF-like repeats [<cite idref="PUB00003073"/>]. </p>
</abstract>
<class_list>
<classification id="GO:0005576" class_type="GO">
<category>Cellular Component</category>
<description>extracellular region</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O77469"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P01029"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P01031"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P01032"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001343">
<author_list>Gennaro R, Simonic T, Negri A, Mottola C, Secchi C, Ronchi S, Romeo D.</author_list>
<title>C5a fragment of bovine complement. Purification, bioassays, amino-acid sequence and other structural studies.</title>
<db_xref db="PUBMED" dbkey="3081348"/>
<journal>Eur. J. Biochem.</journal>
<location issue="1" pages="77-86" volume="155"/>
<year>1986</year>
</publication>
<publication id="PUB00002512">
<author_list>Ogata RT, Rosa PA, Zepf NE.</author_list>
<title>Sequence of the gene for murine complement component C4.</title>
<db_xref db="PUBMED" dbkey="2777798"/>
<journal>J. Biol. Chem.</journal>
<location issue="28" pages="16565-72" volume="264"/>
<year>1989</year>
</publication>
<publication id="PUB00003065">
<author_list>Argraves WS, Tran H, Burgess WH, Dickerson K.</author_list>
<title>Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure.</title>
<db_xref db="PUBMED" dbkey="2269669"/>
<journal>J. Cell Biol.</journal>
<location issue="6 Pt 2" pages="3155-64" volume="111"/>
<year>1990</year>
</publication>
<publication id="PUB00011223">
<author_list>Timpl R, Sasaki T, Kostka G, Chu ML.</author_list>
<title>Fibulins: a versatile family of extracellular matrix proteins.</title>
<db_xref db="PUBMED" dbkey="12778127"/>
<journal>Nat. Rev. Mol. Cell Biol.</journal>
<location issue="6" pages="479-89" volume="4"/>
<year>2003</year>
</publication>
<publication id="PUB00003073">
<author_list>Pan TC, Sasaki T, Zhang RZ, Fassler R, Timpl R, Chu ML.</author_list>
<title>Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding.</title>
<db_xref db="PUBMED" dbkey="8245130"/>
<journal>J. Cell Biol.</journal>
<location issue="5" pages="1269-77" volume="123"/>
<year>1993</year>
</publication>
<publication id="PUB00003181">
<author_list>Fritzinger DC, Petrella EC, Connelly MB, Bredehorst R, Vogel CW.</author_list>
<title>Primary structure of cobra complement component C3.</title>
<db_xref db="PUBMED" dbkey="1431125"/>
<journal>J. Immunol.</journal>
<location issue="11" pages="3554-62" volume="149"/>
<year>1992</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR018081"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR017048"/>
</found_in>
<member_list>
<db_xref protein_count="182" db="PFAM" dbkey="PF01821" name="ANATO"/>
<db_xref protein_count="143" db="PROSITE" dbkey="PS01177" name="ANAPHYLATOXIN_1"/>
<db_xref protein_count="178" db="PROFILE" dbkey="PS01178" name="ANAPHYLATOXIN_2"/>
<db_xref protein_count="155" db="SMART" dbkey="SM00104" name="ANATO"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01821"/>
<db_xref db="MSDsite" dbkey="PS01177"/>
<db_xref db="BLOCKS" dbkey="IPB000020"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00906"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1c5a"/>
<db_xref db="PDB" dbkey="1cfa"/>
<db_xref db="PDB" dbkey="1kjs"/>
<db_xref db="CATH" dbkey="1.20.91.20"/>
<db_xref db="SCOP" dbkey="a.50.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="188"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="178"/>
<taxon_data name="Human" proteins_count="46"/>
<taxon_data name="Mouse" proteins_count="19"/>
<taxon_data name="Metazoa" proteins_count="188"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018081"/>
</sec_list>
</interpro>
<interpro id="IPR000021" protein_count="435" short_name="Hok/gef_toxin" type="Family">
<name>Hok/gef cell toxic protein</name>
<abstract>
The hok/gef family of Gram-negative bacterial proteins are toxic to cells
when over-expressed, killing the cells from within by interfering with a
vital function in the cell membrane [<cite idref="PUB00003728"/>]. Some family members (flm) increase the stability of unstable RNA [<cite idref="PUB00003728"/>], some (pnd) induce the degradation of stable RNA at higher than optimum growth temperatures [<cite idref="PUB00000587"/>], while others affect the release of cellular magnesium by membrane alterations [<cite idref="PUB00000587"/>]. The
proteins are short (50-70 residues), consisting of an N-terminal hydrophobic (possibly membrane spanning) domain, and a C-terminal periplasmic region, which contains the toxic domain. The C-terminal region contains a conserved cysteine residue that mediates homo-dimerisation in the gef protein, although dimerisation is not necessary for the toxic effect [<cite idref="PUB00003810"/>].
</abstract>
<class_list>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P0ACG4"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000587">
<author_list>Sakikawa T, Akimoto S, Ohnishi Y.</author_list>
<title>The pnd gene in E. coli plasmid R16: nucleotide sequence and gene expression leading to cell Mg2+ release and stable RNA degradation.</title>
<db_xref db="PUBMED" dbkey="2465777"/>
<journal>Biochim. Biophys. Acta</journal>
<location issue="2" pages="158-66" volume="1007"/>
<year>1989</year>
</publication>
<publication id="PUB00003728">
<author_list>Golub EI, Panzer HA.</author_list>
<title>The F factor of Escherichia coli carries a locus of stable plasmid inheritance stm, similar to the parB locus of plasmid RI.</title>
<db_xref db="PUBMED" dbkey="3070354"/>
<journal>Mol. Gen. Genet.</journal>
<location issue="2" pages="353-7" volume="214"/>
<year>1988</year>
</publication>
<publication id="PUB00003810">
<author_list>Poulsen LK, Refn A, Molin S, Andersson P.</author_list>
<title>Topographic analysis of the toxic Gef protein from Escherichia coli.</title>
<db_xref db="PUBMED" dbkey="1943700"/>
<journal>Mol. Microbiol.</journal>
<location issue="7" pages="1627-37" volume="5"/>
<year>1991</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018084"/>
</contains>
<member_list>
<db_xref protein_count="435" db="PFAM" dbkey="PF01848" name="HOK_GEF"/>
<db_xref protein_count="385" db="PRINTS" dbkey="PR00281" name="HOKGEFTOXIC"/>
<db_xref protein_count="405" db="PRODOM" dbkey="PD005979" name="Hok/gef_toxin"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01848"/>
<db_xref db="MSDsite" dbkey="PS00556"/>
<db_xref db="BLOCKS" dbkey="IPB000021"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00481"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="424"/>
<taxon_data name="Virus" proteins_count="8"/>
<taxon_data name="Unclassified" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000022" protein_count="5636" short_name="Carboxyl_trans" type="Domain">
<name>Carboxyl transferase</name>
<abstract>
<p>Members in this domain include biotin dependent carboxylases
[<cite idref="PUB00001442"/>, <cite idref="PUB00002227"/>].
The carboxyl transferase domain carries out the following reaction;
transcarboxylation from biotin to an acceptor molecule. There are
two recognised types of carboxyl transferase. One of them uses acyl-CoA
and the other uses 2-oxo acid as the acceptor molecule of carbon dioxide.
All of the members in this family utilise acyl-CoA as the acceptor
molecule.</p>
</abstract>
<class_list>
<classification id="GO:0016874" class_type="GO">
<category>Molecular Function</category>
<description>ligase activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00763"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P34385"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q00955"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q3ULD5"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9V9A7"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001442">
<author_list>Toh H, Kondo H, Tanabe T.</author_list>
<title>Molecular evolution of biotin-dependent carboxylases.</title>
<db_xref db="PUBMED" dbkey="8102604"/>
<journal>Eur. J. Biochem.</journal>
<location issue="3" pages="687-96" volume="215"/>
<year>1993</year>
</publication>
<publication id="PUB00002227">
<author_list>Thornton CG, Kumar GK, Haase FC, Phillips NF, Woo SB, Park VM, Magner WJ, Shenoy BC, Wood HG, Samols D.</author_list>
<title>Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli.</title>
<db_xref db="PUBMED" dbkey="8366018"/>
<journal>J. Bacteriol.</journal>
<location issue="17" pages="5301-8" volume="175"/>
<year>1993</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR011762"/>
<rel_ref ipr_ref="IPR011763"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR000438"/>
<rel_ref ipr_ref="IPR005783"/>
<rel_ref ipr_ref="IPR017556"/>
</found_in>
<member_list>
<db_xref protein_count="5637" db="PFAM" dbkey="PF01039" name="Carboxyl_trans"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01039"/>
<db_xref db="BLOCKS" dbkey="IPB000022"/>
<db_xref db="EC" dbkey="6.4.1.2"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1od2"/>
<db_xref db="PDB" dbkey="1od4"/>
<db_xref db="PDB" dbkey="1on3"/>
<db_xref db="PDB" dbkey="1on9"/>
<db_xref db="PDB" dbkey="1pix"/>
<db_xref db="PDB" dbkey="1uyr"/>
<db_xref db="PDB" dbkey="1uys"/>
<db_xref db="PDB" dbkey="1uyt"/>
<db_xref db="PDB" dbkey="1uyv"/>
<db_xref db="PDB" dbkey="1vrg"/>
<db_xref db="PDB" dbkey="1w2x"/>
<db_xref db="PDB" dbkey="1x0u"/>
<db_xref db="PDB" dbkey="1xnv"/>
<db_xref db="PDB" dbkey="1xnw"/>
<db_xref db="PDB" dbkey="1xny"/>
<db_xref db="PDB" dbkey="1xo6"/>
<db_xref db="PDB" dbkey="2a7s"/>
<db_xref db="PDB" dbkey="2bzr"/>
<db_xref db="PDB" dbkey="2f9y"/>
<db_xref db="CATH" dbkey="3.90.226.10"/>
<db_xref db="SCOP" dbkey="c.14.1.4"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="3755"/>
<taxon_data name="Cyanobacteria" proteins_count="56"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="91"/>
<taxon_data name="Eukaryota" proteins_count="1789"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
<taxon_data name="Rice spp." proteins_count="14"/>
<taxon_data name="Fungi" proteins_count="150"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
<taxon_data name="Nematoda" proteins_count="6"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="6"/>
<taxon_data name="Arthropoda" proteins_count="41"/>
<taxon_data name="Fruit Fly" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="110"/>
<taxon_data name="Human" proteins_count="29"/>
<taxon_data name="Mouse" proteins_count="18"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="1366"/>
<taxon_data name="Green Plants" proteins_count="1366"/>
<taxon_data name="Metazoa" proteins_count="333"/>
<taxon_data name="Plastid Group" proteins_count="36"/>
<taxon_data name="Plastid Group" proteins_count="19"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000023" protein_count="2630" short_name="Phosphofructokinase" type="Domain">
<name>Phosphofructokinase</name>
<abstract>
The enzyme-catalysed transfer of a phosphoryl group from ATP is an
important reaction in a wide variety of biological processes [<cite idref="PUB00004002"/>]. One
enzyme that utilises this reaction is phosphofructokinase (PFK), which
catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-
bisphosphate, a key regulatory step in the glycolytic pathway [<cite idref="PUB00014238"/>, <cite idref="PUB00000020"/>].
PFK exists as a homotetramer in bacteria and mammals (where each monomer
possesses 2 similar domains), and as an octomer in yeast (where there are
4 alpha- (PFK1) and 4 beta-chains (PFK2), the latter, like the mammalian
monomers, possessing 2 similar domains [<cite idref="PUB00000020"/>]). <p>PFK is ~300 amino acids in length, and structural studies of the
bacterial enzyme have shown it comprises two similar (alpha/beta) lobes: one involved in
ATP binding and the other housing both the substrate-binding site and the allosteric site (a regulatory binding site distinct from the active site, but that affects enzyme
activity). The identical tetramer subunits adopt 2
different conformations: in a 'closed' state, the bound magnesium ion
bridges the phosphoryl groups of the enzyme products (ADP and fructose-1,6-
bisphosphate); and in an 'open' state, the magnesium ion binds only the ADP
[<cite idref="PUB00003237"/>], as the 2 products are now further apart. These conformations are
thought to be successive stages of a reaction pathway that requires subunit
closure to bring the 2 molecules sufficiently close to react [<cite idref="PUB00003237"/>].</p>
<p>Deficiency in PFK leads to glycogenosis type VII (Tauri's disease), an
autosomal recessive disorder characterised by severe nausea, vomiting,
muscle cramps and myoglobinuria in response to bursts of intense or
vigorous exercise [<cite idref="PUB00000020"/>]. Sufferers are usually able to lead a reasonably
ordinary life by learning to adjust activity levels [<cite idref="PUB00000020"/>].</p>
</abstract>
<class_list>
<classification id="GO:0003872" class_type="GO">
<category>Molecular Function</category>
<description>6-phosphofructokinase activity</description>
</classification>
<classification id="GO:0005945" class_type="GO">
<category>Cellular Component</category>
<description>6-phosphofructokinase complex</description>
</classification>
<classification id="GO:0006096" class_type="GO">
<category>Biological Process</category>
<description>glycolysis</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P08237"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P12382"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P16861"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P52034"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q27483"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000020">
<author_list>Raben N, Exelbert R, Spiegel R, Sherman JB, Nakajima H, Plotz P, Heinisch J.</author_list>
<title>Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency.</title>
<db_xref db="PUBMED" dbkey="7825568"/>
<journal>Am. J. Hum. Genet.</journal>
<location issue="1" pages="131-41" volume="56"/>
<year>1995</year>
</publication>
<publication id="PUB00003237">
<author_list>Shirakihara Y, Evans PR.</author_list>
<title>Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products.</title>
<db_xref db="PUBMED" dbkey="2975709"/>
<journal>J. Mol. Biol.</journal>
<location issue="4" pages="973-94" volume="204"/>
<year>1988</year>
</publication>
<publication id="PUB00004002">
<author_list>Hellinga HW, Evans PR.</author_list>
<title>Mutations in the active site of Escherichia coli phosphofructokinase.</title>
<db_xref db="PUBMED" dbkey="2953977"/>
<journal>Nature</journal>
<location issue="6121" pages="437-9" volume="327"/>
<year>1987</year>
</publication>
<publication id="PUB00014238">
<author_list>Wegener G, Krause U.</author_list>
<title>Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle.</title>
<db_xref db="PUBMED" dbkey="12023862"/>
<journal>Biochem. Soc. Trans.</journal>
<location issue="2" pages="264-70" volume="30"/>
<year>2002</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR011183"/>
<rel_ref ipr_ref="IPR011403"/>
<rel_ref ipr_ref="IPR011404"/>
<rel_ref ipr_ref="IPR011405"/>
<rel_ref ipr_ref="IPR012003"/>
<rel_ref ipr_ref="IPR012004"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR013981"/>
<rel_ref ipr_ref="IPR015912"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR009161"/>
</found_in>
<member_list>
<db_xref protein_count="2586" db="PFAM" dbkey="PF00365" name="PFK"/>
<db_xref protein_count="2522" db="PRINTS" dbkey="PR00476" name="PHFRCTKINASE"/>
<db_xref protein_count="2622" db="SSF" dbkey="SSF53784" name="Ppfruckinase"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00365"/>
<db_xref db="BLOCKS" dbkey="IPB000023"/>
<db_xref db="EC" dbkey="2.7.1.11"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1kzh"/>
<db_xref db="PDB" dbkey="1mto"/>
<db_xref db="PDB" dbkey="1pfk"/>
<db_xref db="PDB" dbkey="1zxx"/>
<db_xref db="PDB" dbkey="2f48"/>
<db_xref db="PDB" dbkey="2pfk"/>
<db_xref db="PDB" dbkey="3pfk"/>
<db_xref db="PDB" dbkey="4pfk"/>
<db_xref db="PDB" dbkey="6pfk"/>
<db_xref db="CATH" dbkey="1.10.10.480"/>
<db_xref db="CATH" dbkey="3.40.50.450"/>
<db_xref db="CATH" dbkey="3.40.50.460"/>
<db_xref db="SCOP" dbkey="c.89.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2023"/>
<taxon_data name="Cyanobacteria" proteins_count="43"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
<taxon_data name="Archaea" proteins_count="16"/>
<taxon_data name="Eukaryota" proteins_count="587"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="15"/>
<taxon_data name="Rice spp." proteins_count="50"/>
<taxon_data name="Fungi" proteins_count="102"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
<taxon_data name="Other Eukaryotes" proteins_count="13"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="25"/>
<taxon_data name="Fruit Fly" proteins_count="3"/>
<taxon_data name="Chordata" proteins_count="92"/>
<taxon_data name="Human" proteins_count="27"/>
<taxon_data name="Mouse" proteins_count="11"/>
<taxon_data name="Virus" proteins_count="2"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="11"/>
<taxon_data name="Plastid Group" proteins_count="199"/>
<taxon_data name="Green Plants" proteins_count="199"/>
<taxon_data name="Metazoa" proteins_count="283"/>
<taxon_data name="Plastid Group" proteins_count="53"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="8"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR011183"/>
<sec_ac acc="IPR011403"/>
<sec_ac acc="IPR011404"/>
<sec_ac acc="IPR011405"/>
<sec_ac acc="IPR012003"/>
<sec_ac acc="IPR012004"/>
</sec_list>
</interpro>
<interpro id="IPR000024" protein_count="595" short_name="Frizzled_Cys-rich" type="Domain">
<name>Frizzled cysteine-rich domain</name>
<abstract>
The Frizzled CRD (cysteine rich domain) is conserved in diverse proteins including several receptor tyrosine kinases
[<cite idref="PUB00001039"/>, <cite idref="PUB00005055"/>, <cite idref="PUB00005486"/>].
In <taxon tax_id="7227">Drosophila melanogaster</taxon>, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have in their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. Sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development, include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2.
The structure of this domain is known and is composed mainly of alpha helices.
This domain contains ten conserved cysteines that form five disulphide bridges.
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00144"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O19116"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O77438"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P39061"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q24760"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001039">
<author_list>Xu YK, Nusse R.</author_list>
<title>The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases.</title>
<db_xref db="PUBMED" dbkey="9637908"/>
<journal>Curr. Biol.</journal>
<location issue="12" pages="R405-6" volume="8"/>
<year>1998</year>
</publication>
<publication id="PUB00005055">
<author_list>Saldanha J, Singh J, Mahadevan D.</author_list>
<title>Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases.</title>
<db_xref db="PUBMED" dbkey="9684897"/>
<journal>Protein Sci.</journal>
<location issue="7" pages="1632-5" volume="7"/>
<year>1998</year>
</publication>
<publication id="PUB00005486">
<author_list>Rehn M, Pihlajaniemi T, Hofmann K, Bucher P.</author_list>
<title>The frizzled motif: in how many different protein families does it occur?</title>
<db_xref db="PUBMED" dbkey="9852758"/>
<journal>Trends Biochem. Sci.</journal>
<location issue="11" pages="415-7" volume="23"/>
<year>1998</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR020067"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR020068"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR015526"/>
<rel_ref ipr_ref="IPR017052"/>
<rel_ref ipr_ref="IPR017343"/>
</found_in>
<member_list>
<db_xref protein_count="542" db="GENE3D" dbkey="G3DSA:1.10.2000.10" name="Frizzled_Cys-rich"/>
<db_xref protein_count="596" db="SSF" dbkey="SSF63501" name="Frizzled_Cys-rich"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01392"/>
<db_xref db="BLOCKS" dbkey="IPB000024"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50038"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ijx"/>
<db_xref db="PDB" dbkey="1ijy"/>
<db_xref db="CATH" dbkey="1.10.2000.10"/>
<db_xref db="SCOP" dbkey="a.141.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="596"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="8"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="8"/>
<taxon_data name="Arthropoda" proteins_count="147"/>
<taxon_data name="Fruit Fly" proteins_count="20"/>
<taxon_data name="Chordata" proteins_count="366"/>
<taxon_data name="Human" proteins_count="48"/>
<taxon_data name="Mouse" proteins_count="49"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
<taxon_data name="Green Plants" proteins_count="2"/>
<taxon_data name="Metazoa" proteins_count="584"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR020068"/>
</sec_list>
</interpro>
<interpro id="IPR000035" protein_count="241" short_name="Alkylbase_DNA_glycsylse_CS" type="Conserved_site">
<name>Alkylbase DNA glycosidase, conserved site</name>
<abstract>
<p>Alkylbase DNA glycosidases [<cite idref="PUB00000053"/>] are DNA repair enzymes that hydrolyse the deoxyribose N-glycosidic bond to excise various alkylated bases from a damaged DNA polymer. In <taxon tax_id="562">Escherichia coli</taxon> there are two alkylbase DNA glycosidases: one (gene tag) which is constitutively expressed and which is specific for the removal of 3-methyladenine (<db_xref db="EC" dbkey="3.2.2.20"/>), and one (gene alkA) which is induced during adaptation to alkylation and which can remove a variety of alkylation products (<db_xref db="EC" dbkey="3.2.2.21"/>). Tag and alkA do not share any region of sequence similarity. In yeast there is an alkylbase DNA glycosidase (gene MAG1) [<cite idref="PUB00001200"/>, <cite idref="PUB00001201"/>], which can remove 3-methyladenine or 7-methyladenine and which is structurally related to alkA. MAG and alkA are both proteins of about 300 amino acid residues. While the C- and N-terminal ends appear to be unrelated, there is a central region of about 130 residues which is well conserved.</p>
</abstract>
<class_list>
<classification id="GO:0003905" class_type="GO">
<category>Molecular Function</category>
<description>alkylbase DNA N-glycosylase activity</description>
</classification>
<classification id="GO:0006281" class_type="GO">
<category>Biological Process</category>
<description>DNA repair</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O94468"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P04395"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22134"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000053">
<author_list>Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y.</author_list>
<title>Regulation and expression of the adaptive response to alkylating agents.</title>
<db_xref db="PUBMED" dbkey="3052269"/>
<journal>Annu. Rev. Biochem.</journal>
<location pages="133-57" volume="57"/>
<year>1988</year>
</publication>
<publication id="PUB00001200">
<author_list>Berdal KG, Bjoras M, Bjelland S, Seeberg E.</author_list>
<title>Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene.</title>
<db_xref db="PUBMED" dbkey="2265619"/>
<journal>EMBO J.</journal>
<location issue="13" pages="4563-8" volume="9"/>
<year>1990</year>
</publication>
<publication id="PUB00001201">
<author_list>Chen J, Derfler B, Samson L.</author_list>
<title>Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage.</title>
<db_xref db="PUBMED" dbkey="2265620"/>
<journal>EMBO J.</journal>
<location issue="13" pages="4569-75" volume="9"/>
<year>1990</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR003265"/>
<rel_ref ipr_ref="IPR011257"/>
</found_in>
<member_list>
<db_xref protein_count="241" db="PROSITE" dbkey="PS00516" name="ALKYLBASE_DNA_GLYCOS"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS00516"/>
<db_xref db="EC" dbkey="3.2.2.21"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00447"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1diz"/>
<db_xref db="PDB" dbkey="1mpg"/>
<db_xref db="PDB" dbkey="1pvs"/>
<db_xref db="PDB" dbkey="3cvs"/>
<db_xref db="PDB" dbkey="3cvt"/>
<db_xref db="PDB" dbkey="3cw7"/>
<db_xref db="PDB" dbkey="3cwa"/>
<db_xref db="PDB" dbkey="3cws"/>
<db_xref db="PDB" dbkey="3cwt"/>
<db_xref db="PDB" dbkey="3cwu"/>
<db_xref db="PDB" dbkey="3d4v"/>
<db_xref db="CATH" dbkey="1.10.1670.10"/>
<db_xref db="CATH" dbkey="1.10.340.30"/>
<db_xref db="SCOP" dbkey="a.96.1.3"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="214"/>
<taxon_data name="Archaea" proteins_count="3"/>
<taxon_data name="Eukaryota" proteins_count="23"/>
<taxon_data name="Fungi" proteins_count="23"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="7"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="23"/>
</taxonomy_distribution>
</interpro>
<deleted_entries>
<del_ref id="IPR000000"/>
<del_ref id="IPR000002"/>
<del_ref id="IPR000051"/>
<del_ref id="IPR000099"/>
<del_ref id="IPR000140"/>
<del_ref id="IPR000168"/>
<del_ref id="IPR000205"/>
<del_ref id="IPR000252"/>
<del_ref id="IPR000282"/>
<del_ref id="IPR000284"/>
<del_ref id="IPR000311"/>
<del_ref id="IPR000379"/>
<del_ref id="IPR000437"/>
<del_ref id="IPR000513"/>
<del_ref id="IPR000616"/>
<del_ref id="IPR000707"/>
<del_ref id="IPR000733"/>
<del_ref id="IPR000736"/>
<del_ref id="IPR000790"/>
<del_ref id="IPR000803"/>
<del_ref id="IPR000862"/>
<del_ref id="IPR000893"/>
<del_ref id="IPR000950"/>
<del_ref id="IPR001027"/>
<del_ref id="IPR001042"/>
<del_ref id="IPR001113"/>
<del_ref id="IPR001143"/>
<del_ref id="IPR001167"/>
<del_ref id="IPR001201"/>
<del_ref id="IPR001215"/>
<del_ref id="IPR001255"/>
<del_ref id="IPR001311"/>
<del_ref id="IPR001410"/>
<del_ref id="IPR001430"/>
<del_ref id="IPR001472"/>
<del_ref id="IPR001583"/>
<del_ref id="IPR001601"/>
<del_ref id="IPR001622"/>
<del_ref id="IPR001682"/>
<del_ref id="IPR002025"/>
<del_ref id="IPR002032"/>
<del_ref id="IPR002055"/>
<del_ref id="IPR002106"/>
<del_ref id="IPR002111"/>
<del_ref id="IPR002149"/>
<del_ref id="IPR002179"/>
<del_ref id="IPR002294"/>
<del_ref id="IPR002341"/>
<del_ref id="IPR002370"/>
<del_ref id="IPR002400"/>
<del_ref id="IPR002414"/>
<del_ref id="IPR002419"/>
<del_ref id="IPR002422"/>
<del_ref id="IPR002437"/>
<del_ref id="IPR002465"/>
<del_ref id="IPR002503"/>
<del_ref id="IPR002537"/>
<del_ref id="IPR002555"/>
<del_ref id="IPR002564"/>
<del_ref id="IPR002576"/>
<del_ref id="IPR002581"/>
<del_ref id="IPR002584"/>
<del_ref id="IPR002590"/>
<del_ref id="IPR002598"/>
<del_ref id="IPR002604"/>
<del_ref id="IPR002607"/>
<del_ref id="IPR002617"/>
<del_ref id="IPR002623"/>
<del_ref id="IPR002626"/>
<del_ref id="IPR002632"/>
<del_ref id="IPR002651"/>
<del_ref id="IPR002667"/>
<del_ref id="IPR002688"/>
<del_ref id="IPR002697"/>
<del_ref id="IPR002707"/>
<del_ref id="IPR002721"/>
<del_ref id="IPR002722"/>
<del_ref id="IPR002741"/>
<del_ref id="IPR002752"/>
<del_ref id="IPR002766"/>
<del_ref id="IPR002776"/>
<del_ref id="IPR002785"/>
<del_ref id="IPR002787"/>
<del_ref id="IPR002796"/>
<del_ref id="IPR002799"/>
<del_ref id="IPR002806"/>
<del_ref id="IPR002814"/>
<del_ref id="IPR002824"/>
<del_ref id="IPR002851"/>
<del_ref id="IPR002879"/>
<del_ref id="IPR002887"/>
<del_ref id="IPR002892"/>
<del_ref id="IPR002894"/>
<del_ref id="IPR002897"/>
<del_ref id="IPR002916"/>
<del_ref id="IPR002926"/>
<del_ref id="IPR002965"/>
<del_ref id="IPR002992"/>
<del_ref id="IPR002996"/>
<del_ref id="IPR003002"/>
<del_ref id="IPR003003"/>
<del_ref id="IPR003009"/>
<del_ref id="IPR003030"/>
<del_ref id="IPR003037"/>
<del_ref id="IPR003039"/>
<del_ref id="IPR003040"/>
<del_ref id="IPR003041"/>
<del_ref id="IPR003144"/>
<del_ref id="IPR003145"/>
<del_ref id="IPR003155"/>
<del_ref id="IPR003160"/>
<del_ref id="IPR003161"/>
<del_ref id="IPR003167"/>
<del_ref id="IPR003214"/>
<del_ref id="IPR003215"/>
<del_ref id="IPR003216"/>
<del_ref id="IPR003218"/>
<del_ref id="IPR003219"/>
<del_ref id="IPR003229"/>
<del_ref id="IPR003232"/>
<del_ref id="IPR003233"/>
<del_ref id="IPR003234"/>
<del_ref id="IPR003237"/>
<del_ref id="IPR003238"/>
<del_ref id="IPR003239"/>
<del_ref id="IPR003240"/>
<del_ref id="IPR003241"/>
<del_ref id="IPR003242"/>
<del_ref id="IPR003243"/>
<del_ref id="IPR003244"/>
<del_ref id="IPR003246"/>
<del_ref id="IPR003247"/>
<del_ref id="IPR003249"/>
<del_ref id="IPR003250"/>
<del_ref id="IPR003253"/>
<del_ref id="IPR003254"/>
<del_ref id="IPR003255"/>
<del_ref id="IPR003257"/>
<del_ref id="IPR003259"/>
<del_ref id="IPR003260"/>
<del_ref id="IPR003261"/>
<del_ref id="IPR003266"/>
<del_ref id="IPR003320"/>
<del_ref id="IPR003324"/>
<del_ref id="IPR003336"/>
<del_ref id="IPR003357"/>
<del_ref id="IPR003363"/>
<del_ref id="IPR003371"/>
<del_ref id="IPR003401"/>
<del_ref id="IPR003405"/>
<del_ref id="IPR003408"/>
<del_ref id="IPR003419"/>
<del_ref id="IPR003455"/>
<del_ref id="IPR003575"/>
<del_ref id="IPR003592"/>
<del_ref id="IPR003600"/>
<del_ref id="IPR003623"/>
<del_ref id="IPR003630"/>
<del_ref id="IPR003631"/>
<del_ref id="IPR003632"/>
<del_ref id="IPR003636"/>
<del_ref id="IPR003637"/>
<del_ref id="IPR003638"/>
<del_ref id="IPR003639"/>
<del_ref id="IPR003640"/>
<del_ref id="IPR003641"/>
<del_ref id="IPR003642"/>
<del_ref id="IPR003643"/>
<del_ref id="IPR003665"/>
<del_ref id="IPR003693"/>
<del_ref id="IPR003707"/>
<del_ref id="IPR003771"/>
<del_ref id="IPR003792"/>
<del_ref id="IPR003794"/>
<del_ref id="IPR003799"/>
<del_ref id="IPR003800"/>
<del_ref id="IPR003803"/>
<del_ref id="IPR003809"/>
<del_ref id="IPR003843"/>
<del_ref id="IPR003845"/>
<del_ref id="IPR003858"/>
<del_ref id="IPR003862"/>
<del_ref id="IPR003865"/>
<del_ref id="IPR003866"/>
<del_ref id="IPR003867"/>
<del_ref id="IPR003868"/>
<del_ref id="IPR003885"/>
<del_ref id="IPR003955"/>
<del_ref id="IPR004024"/>
<del_ref id="IPR004040"/>
<del_ref id="IPR004051"/>
<del_ref id="IPR004110"/>
<del_ref id="IPR004128"/>
<del_ref id="IPR004144"/>
<del_ref id="IPR004200"/>
<del_ref id="IPR004225"/>
<del_ref id="IPR004246"/>
<del_ref id="IPR004266"/>
<del_ref id="IPR004287"/>
<del_ref id="IPR004295"/>
<del_ref id="IPR004309"/>
<del_ref id="IPR004325"/>
<del_ref id="IPR004348"/>
<del_ref id="IPR004395"/>
<del_ref id="IPR004587"/>
<del_ref id="IPR004599"/>
<del_ref id="IPR004774"/>
<del_ref id="IPR004781"/>
<del_ref id="IPR004824"/>
<del_ref id="IPR004829"/>
<del_ref id="IPR004831"/>
<del_ref id="IPR004851"/>
<del_ref id="IPR004857"/>
<del_ref id="IPR004862"/>
<del_ref id="IPR004880"/>
<del_ref id="IPR004892"/>
<del_ref id="IPR004904"/>
<del_ref id="IPR004920"/>
<del_ref id="IPR004924"/>
<del_ref id="IPR004949"/>
<del_ref id="IPR004989"/>
<del_ref id="IPR004994"/>
<del_ref id="IPR005014"/>
<del_ref id="IPR005032"/>
<del_ref id="IPR005040"/>
<del_ref id="IPR005156"/>
<del_ref id="IPR005157"/>
<del_ref id="IPR005179"/>
<del_ref id="IPR005191"/>
<del_ref id="IPR005209"/>
<del_ref id="IPR005278"/>
<del_ref id="IPR005289"/>
<del_ref id="IPR005307"/>
<del_ref id="IPR005316"/>
<del_ref id="IPR005340"/>
<del_ref id="IPR005342"/>
<del_ref id="IPR005347"/>
<del_ref id="IPR005348"/>
<del_ref id="IPR005355"/>
<del_ref id="IPR005364"/>
<del_ref id="IPR005470"/>
<del_ref id="IPR005472"/>
<del_ref id="IPR005473"/>
<del_ref id="IPR005487"/>
<del_ref id="IPR005505"/>
<del_ref id="IPR005525"/>
<del_ref id="IPR005544"/>
<del_ref id="IPR005577"/>
<del_ref id="IPR005596"/>
<del_ref id="IPR005622"/>
<del_ref id="IPR005767"/>
<del_ref id="IPR005808"/>
<del_ref id="IPR005820"/>
<del_ref id="IPR005847"/>
<del_ref id="IPR006022"/>
<del_ref id="IPR006057"/>
<del_ref id="IPR006071"/>
<del_ref id="IPR006087"/>
<del_ref id="IPR006088"/>
<del_ref id="IPR006152"/>
<del_ref id="IPR006174"/>
<del_ref id="IPR006227"/>
<del_ref id="IPR006229"/>
<del_ref id="IPR006453"/>
<del_ref id="IPR006559"/>
<del_ref id="IPR006647"/>
<del_ref id="IPR006648"/>
<del_ref id="IPR006661"/>
<del_ref id="IPR006663"/>
<del_ref id="IPR006666"/>
<del_ref id="IPR006672"/>
<del_ref id="IPR006729"/>
<del_ref id="IPR006831"/>
<del_ref id="IPR006929"/>
<del_ref id="IPR006945"/>
<del_ref id="IPR006981"/>
<del_ref id="IPR006987"/>
<del_ref id="IPR006991"/>
<del_ref id="IPR007017"/>
<del_ref id="IPR007028"/>
<del_ref id="IPR007030"/>
<del_ref id="IPR007057"/>
<del_ref id="IPR007058"/>
<del_ref id="IPR007063"/>
<del_ref id="IPR007088"/>
<del_ref id="IPR007089"/>
<del_ref id="IPR007090"/>
<del_ref id="IPR007091"/>
<del_ref id="IPR007092"/>
<del_ref id="IPR007093"/>
<del_ref id="IPR007095"/>
<del_ref id="IPR007101"/>
<del_ref id="IPR007102"/>
<del_ref id="IPR007103"/>
<del_ref id="IPR007104"/>
<del_ref id="IPR007105"/>
<del_ref id="IPR007106"/>
<del_ref id="IPR007107"/>
<del_ref id="IPR007108"/>
<del_ref id="IPR007113"/>
<del_ref id="IPR007114"/>
<del_ref id="IPR007124"/>
<del_ref id="IPR007189"/>
<del_ref id="IPR007190"/>
<del_ref id="IPR007200"/>
<del_ref id="IPR007261"/>
<del_ref id="IPR007270"/>
<del_ref id="IPR007279"/>
<del_ref id="IPR007283"/>
<del_ref id="IPR007299"/>
<del_ref id="IPR007333"/>
<del_ref id="IPR007363"/>
<del_ref id="IPR007377"/>
<del_ref id="IPR007388"/>
<del_ref id="IPR007389"/>
<del_ref id="IPR007399"/>
<del_ref id="IPR007467"/>
<del_ref id="IPR007469"/>
<del_ref id="IPR007491"/>
<del_ref id="IPR007510"/>
<del_ref id="IPR007550"/>
<del_ref id="IPR007552"/>
<del_ref id="IPR007558"/>
<del_ref id="IPR007559"/>
<del_ref id="IPR007571"/>
<del_ref id="IPR007628"/>
<del_ref id="IPR007661"/>
<del_ref id="IPR007665"/>
<del_ref id="IPR007683"/>
<del_ref id="IPR007723"/>
<del_ref id="IPR007762"/>
<del_ref id="IPR007766"/>
<del_ref id="IPR007819"/>
<del_ref id="IPR007821"/>
<del_ref id="IPR007830"/>
<del_ref id="IPR007843"/>
<del_ref id="IPR007909"/>
<del_ref id="IPR007913"/>
<del_ref id="IPR007916"/>
<del_ref id="IPR007924"/>
<del_ref id="IPR007950"/>
<del_ref id="IPR007976"/>
<del_ref id="IPR007983"/>
<del_ref id="IPR007993"/>
<del_ref id="IPR007997"/>
<del_ref id="IPR008038"/>
<del_ref id="IPR008137"/>
<del_ref id="IPR008140"/>
<del_ref id="IPR008149"/>
<del_ref id="IPR008151"/>
<del_ref id="IPR008159"/>
<del_ref id="IPR008161"/>
<del_ref id="IPR008165"/>
<del_ref id="IPR008167"/>
<del_ref id="IPR008169"/>
<del_ref id="IPR008171"/>
<del_ref id="IPR008182"/>
<del_ref id="IPR008184"/>
<del_ref id="IPR008186"/>
<del_ref id="IPR008188"/>
<del_ref id="IPR008190"/>
<del_ref id="IPR008192"/>
<del_ref id="IPR008194"/>
<del_ref id="IPR008196"/>
<del_ref id="IPR008198"/>
<del_ref id="IPR008202"/>
<del_ref id="IPR008204"/>
<del_ref id="IPR008206"/>
<del_ref id="IPR008208"/>
<del_ref id="IPR008212"/>
<del_ref id="IPR008214"/>
<del_ref id="IPR008267"/>
<del_ref id="IPR008298"/>
<del_ref id="IPR008413"/>
<del_ref id="IPR008443"/>
<del_ref id="IPR008459"/>
<del_ref id="IPR008460"/>
<del_ref id="IPR008488"/>
<del_ref id="IPR008522"/>
<del_ref id="IPR008531"/>
<del_ref id="IPR008549"/>
<del_ref id="IPR008556"/>
<del_ref id="IPR008572"/>
<del_ref id="IPR008575"/>
<del_ref id="IPR008578"/>
<del_ref id="IPR008582"/>
<del_ref id="IPR008600"/>
<del_ref id="IPR008607"/>
<del_ref id="IPR008623"/>
<del_ref id="IPR008624"/>
<del_ref id="IPR008641"/>
<del_ref id="IPR008643"/>
<del_ref id="IPR008666"/>
<del_ref id="IPR008667"/>
<del_ref id="IPR008678"/>
<del_ref id="IPR008679"/>
<del_ref id="IPR008682"/>
<del_ref id="IPR008695"/>
<del_ref id="IPR008697"/>
<del_ref id="IPR008714"/>
<del_ref id="IPR008747"/>
<del_ref id="IPR008755"/>
<del_ref id="IPR008759"/>
<del_ref id="IPR008782"/>
<del_ref id="IPR008788"/>
<del_ref id="IPR008793"/>
<del_ref id="IPR008804"/>
<del_ref id="IPR008809"/>
<del_ref id="IPR008817"/>
<del_ref id="IPR008830"/>
<del_ref id="IPR008852"/>
<del_ref id="IPR008870"/>
<del_ref id="IPR008885"/>
<del_ref id="IPR008904"/>
<del_ref id="IPR008923"/>
<del_ref id="IPR008931"/>
<del_ref id="IPR008933"/>
<del_ref id="IPR008938"/>
<del_ref id="IPR008941"/>
<del_ref id="IPR008943"/>
<del_ref id="IPR008945"/>
<del_ref id="IPR008975"/>
<del_ref id="IPR008994"/>
<del_ref id="IPR009037"/>
<del_ref id="IPR009041"/>
<del_ref id="IPR009043"/>
<del_ref id="IPR009046"/>
<del_ref id="IPR009058"/>
<del_ref id="IPR009059"/>
<del_ref id="IPR009065"/>
<del_ref id="IPR009070"/>
<del_ref id="IPR009074"/>
<del_ref id="IPR009085"/>
<del_ref id="IPR009098"/>
<del_ref id="IPR009102"/>
<del_ref id="IPR009250"/>
<del_ref id="IPR009255"/>
<del_ref id="IPR009298"/>
<del_ref id="IPR009336"/>
<del_ref id="IPR009375"/>
<del_ref id="IPR009393"/>
<del_ref id="IPR009399"/>
<del_ref id="IPR009411"/>
<del_ref id="IPR009442"/>
<del_ref id="IPR009478"/>
<del_ref id="IPR009481"/>
<del_ref id="IPR009541"/>
<del_ref id="IPR009546"/>
<del_ref id="IPR009549"/>
<del_ref id="IPR009552"/>
<del_ref id="IPR009586"/>
<del_ref id="IPR009687"/>
<del_ref id="IPR009691"/>
<del_ref id="IPR009710"/>
<del_ref id="IPR009740"/>
<del_ref id="IPR009747"/>
<del_ref id="IPR009756"/>
<del_ref id="IPR009763"/>
<del_ref id="IPR009789"/>
<del_ref id="IPR009817"/>
<del_ref id="IPR009831"/>
<del_ref id="IPR009877"/>
<del_ref id="IPR009892"/>
<del_ref id="IPR009934"/>
<del_ref id="IPR010150"/>
<del_ref id="IPR010151"/>
<del_ref id="IPR010257"/>
<del_ref id="IPR010283"/>
<del_ref id="IPR010289"/>
<del_ref id="IPR010320"/>
<del_ref id="IPR010322"/>
<del_ref id="IPR010337"/>
<del_ref id="IPR010338"/>
<del_ref id="IPR010355"/>
<del_ref id="IPR010361"/>
<del_ref id="IPR010395"/>
<del_ref id="IPR010429"/>
<del_ref id="IPR010459"/>
<del_ref id="IPR010460"/>
<del_ref id="IPR010464"/>
<del_ref id="IPR010467"/>
<del_ref id="IPR010469"/>
<del_ref id="IPR010484"/>
<del_ref id="IPR010485"/>
<del_ref id="IPR010501"/>
<del_ref id="IPR010552"/>
<del_ref id="IPR010553"/>
<del_ref id="IPR010556"/>
<del_ref id="IPR010589"/>
<del_ref id="IPR010612"/>
<del_ref id="IPR010616"/>
<del_ref id="IPR010631"/>
<del_ref id="IPR010638"/>
<del_ref id="IPR010641"/>
<del_ref id="IPR010668"/>
<del_ref id="IPR010669"/>
<del_ref id="IPR010670"/>
<del_ref id="IPR010676"/>
<del_ref id="IPR010687"/>
<del_ref id="IPR010689"/>
<del_ref id="IPR010698"/>
<del_ref id="IPR010700"/>
<del_ref id="IPR010704"/>
<del_ref id="IPR010705"/>
<del_ref id="IPR010717"/>
<del_ref id="IPR010726"/>
<del_ref id="IPR010728"/>
<del_ref id="IPR010731"/>
<del_ref id="IPR010735"/>
<del_ref id="IPR010745"/>
<del_ref id="IPR010755"/>
<del_ref id="IPR010757"/>
<del_ref id="IPR010782"/>
<del_ref id="IPR010783"/>
<del_ref id="IPR010786"/>
<del_ref id="IPR010804"/>
<del_ref id="IPR010830"/>
<del_ref id="IPR010834"/>
<del_ref id="IPR010842"/>
<del_ref id="IPR010847"/>
<del_ref id="IPR010885"/>
<del_ref id="IPR010913"/>
<del_ref id="IPR010922"/>
<del_ref id="IPR010936"/>
<del_ref id="IPR010937"/>
<del_ref id="IPR010959"/>
<del_ref id="IPR010983"/>
<del_ref id="IPR010984"/>
<del_ref id="IPR010986"/>
<del_ref id="IPR010988"/>
<del_ref id="IPR011000"/>
<del_ref id="IPR011003"/>
<del_ref id="IPR011007"/>
<del_ref id="IPR011027"/>
<del_ref id="IPR011036"/>
<del_ref id="IPR011073"/>
<del_ref id="IPR011091"/>
<del_ref id="IPR011117"/>
<del_ref id="IPR011131"/>
<del_ref id="IPR011157"/>
<del_ref id="IPR011180"/>
<del_ref id="IPR011209"/>
<del_ref id="IPR011253"/>
<del_ref id="IPR011353"/>
<del_ref id="IPR011362"/>
<del_ref id="IPR011382"/>
<del_ref id="IPR011441"/>
<del_ref id="IPR011445"/>
<del_ref id="IPR011462"/>
<del_ref id="IPR011469"/>
<del_ref id="IPR011472"/>
<del_ref id="IPR011482"/>
<del_ref id="IPR011484"/>
<del_ref id="IPR011523"/>
<del_ref id="IPR011550"/>
<del_ref id="IPR011558"/>
<del_ref id="IPR011560"/>
<del_ref id="IPR011561"/>
<del_ref id="IPR011562"/>
<del_ref id="IPR011563"/>
<del_ref id="IPR011565"/>
<del_ref id="IPR011567"/>
<del_ref id="IPR011568"/>
<del_ref id="IPR011569"/>
<del_ref id="IPR011570"/>
<del_ref id="IPR011571"/>
<del_ref id="IPR011572"/>
<del_ref id="IPR011580"/>
<del_ref id="IPR011581"/>
<del_ref id="IPR011582"/>
<del_ref id="IPR011586"/>
<del_ref id="IPR011587"/>
<del_ref id="IPR011588"/>
<del_ref id="IPR011591"/>
<del_ref id="IPR011592"/>
<del_ref id="IPR011593"/>
<del_ref id="IPR011594"/>
<del_ref id="IPR011595"/>
<del_ref id="IPR011596"/>
<del_ref id="IPR011597"/>
<del_ref id="IPR011609"/>
<del_ref id="IPR011617"/>
<del_ref id="IPR011634"/>
<del_ref id="IPR011693"/>
<del_ref id="IPR011730"/>
<del_ref id="IPR011731"/>
<del_ref id="IPR011769"/>
<del_ref id="IPR011997"/>
<del_ref id="IPR012024"/>
<del_ref id="IPR012060"/>
<del_ref id="IPR012076"/>
<del_ref id="IPR012077"/>
<del_ref id="IPR012109"/>
<del_ref id="IPR012140"/>
<del_ref id="IPR012236"/>
<del_ref id="IPR012240"/>
<del_ref id="IPR012248"/>
<del_ref id="IPR012277"/>
<del_ref id="IPR012283"/>
<del_ref id="IPR012333"/>
<del_ref id="IPR012342"/>
<del_ref id="IPR012343"/>
<del_ref id="IPR012350"/>
<del_ref id="IPR012482"/>
<del_ref id="IPR012581"/>
<del_ref id="IPR012841"/>
<del_ref id="IPR012949"/>
<del_ref id="IPR012979"/>
<del_ref id="IPR012998"/>
<del_ref id="IPR013001"/>
<del_ref id="IPR013002"/>
<del_ref id="IPR013003"/>
<del_ref id="IPR013004"/>
<del_ref id="IPR013008"/>
<del_ref id="IPR013047"/>
<del_ref id="IPR013051"/>
<del_ref id="IPR013052"/>
<del_ref id="IPR013053"/>
<del_ref id="IPR013054"/>
<del_ref id="IPR013058"/>
<del_ref id="IPR013060"/>
<del_ref id="IPR013062"/>
<del_ref id="IPR013063"/>
<del_ref id="IPR013064"/>
<del_ref id="IPR013065"/>
<del_ref id="IPR013066"/>
<del_ref id="IPR013067"/>
<del_ref id="IPR013070"/>
<del_ref id="IPR013071"/>
<del_ref id="IPR013072"/>
<del_ref id="IPR013073"/>
<del_ref id="IPR013074"/>
<del_ref id="IPR013075"/>
<del_ref id="IPR013076"/>
<del_ref id="IPR013077"/>
<del_ref id="IPR013080"/>
<del_ref id="IPR013119"/>
<del_ref id="IPR013127"/>
<del_ref id="IPR013133"/>
<del_ref id="IPR013142"/>
<del_ref id="IPR013179"/>
<del_ref id="IPR013224"/>
<del_ref id="IPR013250"/>
<del_ref id="IPR013330"/>
<del_ref id="IPR013379"/>
<del_ref id="IPR013511"/>
<del_ref id="IPR013541"/>
<del_ref id="IPR013553"/>
<del_ref id="IPR013590"/>
<del_ref id="IPR013628"/>
<del_ref id="IPR013631"/>
<del_ref id="IPR013634"/>
<del_ref id="IPR013639"/>
<del_ref id="IPR013794"/>
<del_ref id="IPR013811"/>
<del_ref id="IPR013841"/>
<del_ref id="IPR013844"/>
<del_ref id="IPR013850"/>
<del_ref id="IPR013864"/>
<del_ref id="IPR013891"/>
<del_ref id="IPR013916"/>
<del_ref id="IPR014035"/>
<del_ref id="IPR014050"/>
<del_ref id="IPR014173"/>
<del_ref id="IPR014489"/>
<del_ref id="IPR014504"/>
<del_ref id="IPR014708"/>
<del_ref id="IPR014850"/>
<del_ref id="IPR014865"/>
<del_ref id="IPR014899"/>
<del_ref id="IPR014970"/>
<del_ref id="IPR015023"/>
<del_ref id="IPR015052"/>
<del_ref id="IPR015114"/>
<del_ref id="IPR015119"/>
<del_ref id="IPR015140"/>
<del_ref id="IPR015175"/>
<del_ref id="IPR015204"/>
<del_ref id="IPR015301"/>
<del_ref id="IPR015363"/>
<del_ref id="IPR015441"/>
<del_ref id="IPR015638"/>
<del_ref id="IPR015755"/>
<del_ref id="IPR015809"/>
<del_ref id="IPR015821"/>
<del_ref id="IPR015909"/>
<del_ref id="IPR015913"/>
<del_ref id="IPR015968"/>
<del_ref id="IPR015975"/>
<del_ref id="IPR015983"/>
<del_ref id="IPR016076"/>
<del_ref id="IPR016096"/>
<del_ref id="IPR016144"/>
<del_ref id="IPR017594"/>
<del_ref id="IPR017759"/>
<del_ref id="IPR017876"/>
<del_ref id="IPR017883"/>
<del_ref id="IPR017886"/>
<del_ref id="IPR018007"/>
<del_ref id="IPR018010"/>
<del_ref id="IPR018014"/>
<del_ref id="IPR018069"/>
<del_ref id="IPR018128"/>
<del_ref id="IPR018132"/>
<del_ref id="IPR018210"/>
<del_ref id="IPR018217"/>
<del_ref id="IPR018308"/>
<del_ref id="IPR018398"/>
<del_ref id="IPR018411"/>
<del_ref id="IPR018458"/>
<del_ref id="IPR018603"/>
<del_ref id="IPR018623"/>
<del_ref id="IPR018675"/>
<del_ref id="IPR018703"/>
<del_ref id="IPR018726"/>
<del_ref id="IPR018761"/>
<del_ref id="IPR018806"/>
<del_ref id="IPR018813"/>
<del_ref id="IPR018956"/>
<del_ref id="IPR018986"/>
<del_ref id="IPR018991"/>
<del_ref id="IPR019000"/>
<del_ref id="IPR019022"/>
<del_ref id="IPR019040"/>
<del_ref id="IPR019047"/>
<del_ref id="IPR019124"/>
<del_ref id="IPR019125"/>
<del_ref id="IPR019157"/>
<del_ref id="IPR019203"/>
<del_ref id="IPR019229"/>
<del_ref id="IPR019252"/>
<del_ref id="IPR019259"/>
<del_ref id="IPR019274"/>
<del_ref id="IPR019279"/>
<del_ref id="IPR019299"/>
<del_ref id="IPR019360"/>
<del_ref id="IPR019390"/>
<del_ref id="IPR019418"/>
<del_ref id="IPR019444"/>
<del_ref id="IPR019472"/>
<del_ref id="IPR019567"/>
<del_ref id="IPR019573"/>
<del_ref id="IPR019578"/>
<del_ref id="IPR019641"/>
<del_ref id="IPR019696"/>
<del_ref id="IPR019849"/>
<del_ref id="IPR019997"/>
<del_ref id="IPR020035"/>
<del_ref id="IPR020078"/>
<del_ref id="IPR020106"/>
<del_ref id="IPR020116"/>
<del_ref id="IPR020778"/>
<del_ref id="IPR020812"/>
<del_ref id="IPR022375"/>
<del_ref id="IPR022685"/>
</deleted_entries>
</interprodb>
|