1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interprodb SYSTEM "interpro.dtd">
<interprodb>
<release>
<dbinfo dbname="PANTHER" entry_count="30128" file_date="04-OCT-06" version="6.1"/>
<dbinfo dbname="PFAM" entry_count="11912" file_date="01-SEP-09" version="24.0"/>
<dbinfo dbname="PIRSF" entry_count="3222" file_date="18-MAR-10" version="2.72"/>
<dbinfo dbname="PRINTS" entry_count="2000" file_date="09-FEB-10" version="40.0"/>
<dbinfo dbname="PRODOM" entry_count="1894" file_date="23-APR-09" version="2006.1"/>
<dbinfo dbname="PROSITE" entry_count="1308" file_date="28-JUL-09" version="20.52"/>
<dbinfo dbname="PROFILE" entry_count="860" file_date="28-JUL-09" version="20.52"/>
<dbinfo dbname="SMART" entry_count="809" file_date="24-MAR-09" version="6.0"/>
<dbinfo dbname="TIGRFAMs" entry_count="3808" file_date="11-NOV-09" version="9.0"/>
<dbinfo dbname="GENE3D" entry_count="2147" file_date="11-SEP-06" version="3.0.0"/>
<dbinfo dbname="SSF" entry_count="1538" file_date="30-NOV-06" version="1.69"/>
<dbinfo dbname="SWISSPROT" entry_count="517100" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="TREMBL" entry_count="10867798" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="INTERPRO" entry_count="20329" file_date="24-MAR-10" version="26.0"/>
<dbinfo dbname="GO" entry_count="23937" file_date="27-MAR-07" version="N/A"/>
<dbinfo dbname="MEROPS" entry_count="3802" file_date="25-MAR-10" version="9.1"/>
<dbinfo dbname="UniProt" entry_count="11384898" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="HAMAP" entry_count="1633" file_date="28-MAY-09" version="280509"/>
<dbinfo dbname="PFAMB" entry_count="142303" file_date="02-DEC-09" version="24.0"/>
</release>
<interpro id="IPR000001" protein_count="655" short_name="Kringle" type="Domain">
<name>Kringle</name>
<abstract>
<p>Kringles are autonomous structural domains, found throughout the blood clotting and fibrinolytic proteins. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00002414"/>, <cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>].
Kringle domains [<cite idref="PUB00003400"/>, <cite idref="PUB00000803"/>, <cite idref="PUB00001620"/>] are characterised by a triple loop, 3-disulphide bridge structure, whose conformation is defined by a number of hydrogen bonds and small pieces of anti-parallel beta-sheet. They are found in a varying number of copies in some plasma proteins including prothrombin and urokinase-type plasminogen activator, which are serine proteases belonging to MEROPS peptidase family S1A.</p>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P00747"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P98119"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q08048"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q24488"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000803">
<author_list>Patthy L.</author_list>
<title>Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.</title>
<db_xref db="PUBMED" dbkey="3891096"/>
<journal>Cell</journal>
<location issue="3" pages="657-63" volume="41"/>
<year>1985</year>
</publication>
<publication id="PUB00001541">
<author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
<title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
<db_xref db="PUBMED" dbkey="6373375"/>
<journal>FEBS Lett.</journal>
<location issue="1" pages="131-6" volume="171"/>
<year>1984</year>
</publication>
<publication id="PUB00002414">
<author_list>McMullen BA, Fujikawa K.</author_list>
<title>Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor).</title>
<db_xref db="PUBMED" dbkey="3886654"/>
<journal>J. Biol. Chem.</journal>
<location issue="9" pages="5328-41" volume="260"/>
<year>1985</year>
</publication>
<publication id="PUB00001620">
<author_list>Ikeo K, Takahashi K, Gojobori T.</author_list>
<title>Evolutionary origin of numerous kringles in human and simian apolipoprotein(a).</title>
<db_xref db="PUBMED" dbkey="1879523"/>
<journal>FEBS Lett.</journal>
<location issue="1-2" pages="146-8" volume="287"/>
<year>1991</year>
</publication>
<publication id="PUB00006168">
<author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
<title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
<db_xref db="PUBMED" dbkey="8165128"/>
<journal>Nucleic Acids Res.</journal>
<location issue="7" pages="1161-6" volume="22"/>
<year>1994</year>
</publication>
<publication id="PUB00015853">
<author_list>Schwabe JW, Teichmann SA.</author_list>
<title>Nuclear receptors: the evolution of diversity.</title>
<db_xref db="PUBMED" dbkey="14747695"/>
<journal>Sci. STKE</journal>
<location issue="217" pages="pe4" volume="2004"/>
<year>2004</year>
</publication>
<publication id="PUB00003257">
<author_list>Atkinson RA, Williams RJ.</author_list>
<title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
<db_xref db="PUBMED" dbkey="2157850"/>
<journal>J. Mol. Biol.</journal>
<location issue="3" pages="541-52" volume="212"/>
<year>1990</year>
</publication>
<publication id="PUB00003400">
<author_list>Castellino FJ, Beals JM.</author_list>
<title>The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII.</title>
<db_xref db="PUBMED" dbkey="3131537"/>
<journal>J. Mol. Evol.</journal>
<location issue="4" pages="358-69" volume="26"/>
<year>1987</year>
</publication>
<publication id="PUB00004464">
<author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
<title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
<db_xref db="PUBMED" dbkey="7899080"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="606-11" volume="23"/>
<year>1995</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR013806"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018059"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR018056"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR001314"/>
<rel_ref ipr_ref="IPR011358"/>
<rel_ref ipr_ref="IPR012051"/>
<rel_ref ipr_ref="IPR014394"/>
<rel_ref ipr_ref="IPR016247"/>
<rel_ref ipr_ref="IPR017076"/>
<rel_ref ipr_ref="IPR020715"/>
</found_in>
<member_list>
<db_xref protein_count="630" db="PFAM" dbkey="PF00051" name="Kringle"/>
<db_xref protein_count="645" db="PROFILE" dbkey="PS50070" name="KRINGLE_2"/>
<db_xref protein_count="651" db="SMART" dbkey="SM00130" name="KR"/>
<db_xref protein_count="618" db="GENE3D" dbkey="G3DSA:2.40.20.10" name="Kringle"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00051"/>
<db_xref db="MSDsite" dbkey="PS00021"/>
<db_xref db="BLOCKS" dbkey="IPB000001"/>
<db_xref db="MEROPS" dbkey="S1"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00020"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a0h"/>
<db_xref db="PDB" dbkey="1a5h"/>
<db_xref db="PDB" dbkey="1b2i"/>
<db_xref db="PDB" dbkey="1bda"/>
<db_xref db="PDB" dbkey="1bht"/>
<db_xref db="PDB" dbkey="1bml"/>
<db_xref db="PDB" dbkey="1bui"/>
<db_xref db="PDB" dbkey="1cea"/>
<db_xref db="PDB" dbkey="1ceb"/>
<db_xref db="PDB" dbkey="1ddj"/>
<db_xref db="PDB" dbkey="1gmn"/>
<db_xref db="PDB" dbkey="1gmo"/>
<db_xref db="PDB" dbkey="1gp9"/>
<db_xref db="PDB" dbkey="1hpj"/>
<db_xref db="PDB" dbkey="1hpk"/>
<db_xref db="PDB" dbkey="1i5k"/>
<db_xref db="PDB" dbkey="1i71"/>
<db_xref db="PDB" dbkey="1jfn"/>
<db_xref db="PDB" dbkey="1kdu"/>
<db_xref db="PDB" dbkey="1ki0"/>
<db_xref db="PDB" dbkey="1kiv"/>
<db_xref db="PDB" dbkey="1krn"/>
<db_xref db="PDB" dbkey="1l4d"/>
<db_xref db="PDB" dbkey="1l4z"/>
<db_xref db="PDB" dbkey="1nk1"/>
<db_xref db="PDB" dbkey="1nl1"/>
<db_xref db="PDB" dbkey="1nl2"/>
<db_xref db="PDB" dbkey="1pk2"/>
<db_xref db="PDB" dbkey="1pk4"/>
<db_xref db="PDB" dbkey="1pkr"/>
<db_xref db="PDB" dbkey="1pmk"/>
<db_xref db="PDB" dbkey="1pml"/>
<db_xref db="PDB" dbkey="1qrz"/>
<db_xref db="PDB" dbkey="1rjx"/>
<db_xref db="PDB" dbkey="1rtf"/>
<db_xref db="PDB" dbkey="1tpg"/>
<db_xref db="PDB" dbkey="1tpk"/>
<db_xref db="PDB" dbkey="1urk"/>
<db_xref db="PDB" dbkey="2doh"/>
<db_xref db="PDB" dbkey="2doi"/>
<db_xref db="PDB" dbkey="2fd6"/>
<db_xref db="PDB" dbkey="2hgf"/>
<db_xref db="PDB" dbkey="2hpp"/>
<db_xref db="PDB" dbkey="2hpq"/>
<db_xref db="PDB" dbkey="2i9a"/>
<db_xref db="PDB" dbkey="2i9b"/>
<db_xref db="PDB" dbkey="2pf1"/>
<db_xref db="PDB" dbkey="2pf2"/>
<db_xref db="PDB" dbkey="2pk4"/>
<db_xref db="PDB" dbkey="2qj2"/>
<db_xref db="PDB" dbkey="2qj4"/>
<db_xref db="PDB" dbkey="2spt"/>
<db_xref db="PDB" dbkey="3bt1"/>
<db_xref db="PDB" dbkey="3bt2"/>
<db_xref db="PDB" dbkey="3e6p"/>
<db_xref db="PDB" dbkey="3kiv"/>
<db_xref db="PDB" dbkey="4kiv"/>
<db_xref db="PDB" dbkey="5hpg"/>
<db_xref db="CATH" dbkey="2.10.25.10"/>
<db_xref db="CATH" dbkey="2.40.20.10"/>
<db_xref db="CATH" dbkey="3.50.4.10"/>
<db_xref db="SCOP" dbkey="b.47.1.2"/>
<db_xref db="SCOP" dbkey="g.10.1.1"/>
<db_xref db="SCOP" dbkey="g.14.1.1"/>
<db_xref db="SCOP" dbkey="g.3.11.1"/>
<db_xref db="SCOP" dbkey="g.32.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="653"/>
<taxon_data name="Nematoda" proteins_count="5"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="5"/>
<taxon_data name="Arthropoda" proteins_count="34"/>
<taxon_data name="Fruit Fly" proteins_count="2"/>
<taxon_data name="Chordata" proteins_count="529"/>
<taxon_data name="Human" proteins_count="79"/>
<taxon_data name="Mouse" proteins_count="41"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Green Plants" proteins_count="14"/>
<taxon_data name="Metazoa" proteins_count="618"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018059"/>
</sec_list>
</interpro>
<interpro id="IPR000003" protein_count="452" short_name="RtnoidX_rcpt" type="Family">
<name>Retinoid X receptor</name>
<abstract>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
<p>The retinoic acid (retinoid X) receptor consists of 3 functional and
structural domains: an N-terminal (modulatory) domain; a DNA binding domain
that mediates specific binding to target DNA sequences (ligand-responsive
elements); and a hormone binding domain. The N-terminal domain differs
between retinoic acid isoforms; the small highly-conserved DNA-binding
domain (~65 residues) occupies the central portion of the protein; and
the ligand binding domain lies at the receptor C terminus.</p>
<p>Synonym(s): 2B nuclear receptor</p>
</abstract>
<class_list>
<classification id="GO:0003677" class_type="GO">
<category>Molecular Function</category>
<description>DNA binding</description>
</classification>
<classification id="GO:0004879" class_type="GO">
<category>Molecular Function</category>
<description>ligand-dependent nuclear receptor activity</description>
</classification>
<classification id="GO:0005496" class_type="GO">
<category>Molecular Function</category>
<description>steroid binding</description>
</classification>
<classification id="GO:0005634" class_type="GO">
<category>Cellular Component</category>
<description>nucleus</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
<classification id="GO:0008270" class_type="GO">
<category>Molecular Function</category>
<description>zinc ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O44960"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O95718"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22449"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P28700"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P49866"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004464">
<author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
<title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
<db_xref db="PUBMED" dbkey="7899080"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="606-11" volume="23"/>
<year>1995</year>
</publication>
<publication id="PUB00006168">
<author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
<title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
<db_xref db="PUBMED" dbkey="8165128"/>
<journal>Nucleic Acids Res.</journal>
<location issue="7" pages="1161-6" volume="22"/>
<year>1994</year>
</publication>
<publication id="PUB00015853">
<author_list>Schwabe JW, Teichmann SA.</author_list>
<title>Nuclear receptors: the evolution of diversity.</title>
<db_xref db="PUBMED" dbkey="14747695"/>
<journal>Sci. STKE</journal>
<location issue="217" pages="pe4" volume="2004"/>
<year>2004</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR001723"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR000536"/>
<rel_ref ipr_ref="IPR008946"/>
</contains>
<member_list>
<db_xref protein_count="452" db="PRINTS" dbkey="PR00545" name="RETINOIDXR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000003"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1by4"/>
<db_xref db="PDB" dbkey="1dkf"/>
<db_xref db="PDB" dbkey="1dsz"/>
<db_xref db="PDB" dbkey="1fby"/>
<db_xref db="PDB" dbkey="1fm6"/>
<db_xref db="PDB" dbkey="1fm9"/>
<db_xref db="PDB" dbkey="1g1u"/>
<db_xref db="PDB" dbkey="1g2n"/>
<db_xref db="PDB" dbkey="1g5y"/>
<db_xref db="PDB" dbkey="1h9u"/>
<db_xref db="PDB" dbkey="1k74"/>
<db_xref db="PDB" dbkey="1kv6"/>
<db_xref db="PDB" dbkey="1lbd"/>
<db_xref db="PDB" dbkey="1lo1"/>
<db_xref db="PDB" dbkey="1lv2"/>
<db_xref db="PDB" dbkey="1m7w"/>
<db_xref db="PDB" dbkey="1mv9"/>
<db_xref db="PDB" dbkey="1mvc"/>
<db_xref db="PDB" dbkey="1mzn"/>
<db_xref db="PDB" dbkey="1pzl"/>
<db_xref db="PDB" dbkey="1r0n"/>
<db_xref db="PDB" dbkey="1r1k"/>
<db_xref db="PDB" dbkey="1r20"/>
<db_xref db="PDB" dbkey="1rdt"/>
<db_xref db="PDB" dbkey="1rxr"/>
<db_xref db="PDB" dbkey="1s9p"/>
<db_xref db="PDB" dbkey="1s9q"/>
<db_xref db="PDB" dbkey="1tfc"/>
<db_xref db="PDB" dbkey="1uhl"/>
<db_xref db="PDB" dbkey="1vjb"/>
<db_xref db="PDB" dbkey="1xb7"/>
<db_xref db="PDB" dbkey="1xdk"/>
<db_xref db="PDB" dbkey="1xiu"/>
<db_xref db="PDB" dbkey="1xls"/>
<db_xref db="PDB" dbkey="1xv9"/>
<db_xref db="PDB" dbkey="1xvp"/>
<db_xref db="PDB" dbkey="1ynw"/>
<db_xref db="PDB" dbkey="2acl"/>
<db_xref db="PDB" dbkey="2e2r"/>
<db_xref db="PDB" dbkey="2ewp"/>
<db_xref db="PDB" dbkey="2gl8"/>
<db_xref db="PDB" dbkey="2gp7"/>
<db_xref db="PDB" dbkey="2gpo"/>
<db_xref db="PDB" dbkey="2gpp"/>
<db_xref db="PDB" dbkey="2gpu"/>
<db_xref db="PDB" dbkey="2gpv"/>
<db_xref db="PDB" dbkey="2nll"/>
<db_xref db="PDB" dbkey="2nxx"/>
<db_xref db="PDB" dbkey="2p1t"/>
<db_xref db="PDB" dbkey="2p1u"/>
<db_xref db="PDB" dbkey="2p1v"/>
<db_xref db="PDB" dbkey="2p7a"/>
<db_xref db="PDB" dbkey="2p7g"/>
<db_xref db="PDB" dbkey="2p7z"/>
<db_xref db="PDB" dbkey="2pjl"/>
<db_xref db="PDB" dbkey="2q60"/>
<db_xref db="PDB" dbkey="2r40"/>
<db_xref db="PDB" dbkey="2zas"/>
<db_xref db="PDB" dbkey="2zbs"/>
<db_xref db="PDB" dbkey="3cbb"/>
<db_xref db="PDB" dbkey="3d24"/>
<db_xref db="PDB" dbkey="3eyb"/>
<db_xref db="CATH" dbkey="1.10.565.10"/>
<db_xref db="CATH" dbkey="3.30.50.10"/>
<db_xref db="SCOP" dbkey="a.123.1.1"/>
<db_xref db="SCOP" dbkey="g.39.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="452"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="119"/>
<taxon_data name="Fruit Fly" proteins_count="7"/>
<taxon_data name="Chordata" proteins_count="305"/>
<taxon_data name="Human" proteins_count="45"/>
<taxon_data name="Mouse" proteins_count="30"/>
<taxon_data name="Metazoa" proteins_count="452"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000005" protein_count="22704" short_name="HTH_AraC-typ" type="Domain">
<name>Helix-turn-helix, AraC type</name>
<abstract>
<p>Many bacterial transcription regulation proteins bind DNA through a
'helix-turn-helix' (HTH) motif. One major subfamily of these proteins [<cite idref="PUB00004444"/>, <cite idref="PUB00003566"/>] is related to the arabinose
operon regulatory protein AraC [<cite idref="PUB00004444"/>], <cite idref="PUB00003566"/>. Except for celD [<cite idref="PUB00001933"/>], all of these proteins seem to be positive transcriptional factors.</p>
<p>Although the sequences belonging to this family differ somewhat in length, in nearly every case the HTH motif is situated towards the C terminus in the third quarter of most of the sequences. The minimal DNA binding domain spans roughly 100 residues and comprises two HTH subdomains; the classical HTH domain and another HTH subdomain with similarity to the classical HTH domain but with an insertion of one residue in the turn-region. The N-terminal and central regions of these proteins are presumed to interact with effector molecules and may be involved in dimerisation [<cite idref="PUB00004817"/>].</p>
<p>The known structure of MarA (<db_xref db="SWISSPROT" dbkey="P27246"/>) shows that the AraC domain is alpha helical and shows the two HTH subdomains both bind the major groove of the DNA. The two HTH subdomains are separated by only 27
angstroms, which causes the cognate DNA to bend.</p>
</abstract>
<class_list>
<classification id="GO:0003700" class_type="GO">
<category>Molecular Function</category>
<description>transcription factor activity</description>
</classification>
<classification id="GO:0005622" class_type="GO">
<category>Cellular Component</category>
<description>intracellular</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
<classification id="GO:0043565" class_type="GO">
<category>Molecular Function</category>
<description>sequence-specific DNA binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P06134"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001933">
<author_list>Parker LL, Hall BG.</author_list>
<title>Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.</title>
<db_xref db="PUBMED" dbkey="2179047"/>
<journal>Genetics</journal>
<location issue="3" pages="455-71" volume="124"/>
<year>1990</year>
</publication>
<publication id="PUB00003566">
<author_list>Henikoff S, Wallace JC, Brown JP.</author_list>
<title>Finding protein similarities with nucleotide sequence databases.</title>
<db_xref db="PUBMED" dbkey="2314271"/>
<journal>Meth. Enzymol.</journal>
<location pages="111-32" volume="183"/>
<year>1990</year>
</publication>
<publication id="PUB00004444">
<author_list>Gallegos MT, Michan C, Ramos JL.</author_list>
<title>The XylS/AraC family of regulators.</title>
<db_xref db="PUBMED" dbkey="8451183"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="807-10" volume="21"/>
<year>1993</year>
</publication>
<publication id="PUB00004817">
<author_list>Bustos SA, Schleif RF.</author_list>
<title>Functional domains of the AraC protein.</title>
<db_xref db="PUBMED" dbkey="8516313"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="12" pages="5638-42" volume="90"/>
<year>1993</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR012287"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018062"/>
<rel_ref ipr_ref="IPR020449"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR011983"/>
<rel_ref ipr_ref="IPR016220"/>
<rel_ref ipr_ref="IPR016221"/>
<rel_ref ipr_ref="IPR016981"/>
<rel_ref ipr_ref="IPR018060"/>
</found_in>
<member_list>
<db_xref protein_count="22704" db="PFAM" dbkey="PF00165" name="HTH_AraC"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00165"/>
<db_xref db="MSDsite" dbkey="PS00041"/>
<db_xref db="BLOCKS" dbkey="IPB000005"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00040"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1bl0"/>
<db_xref db="PDB" dbkey="1d5y"/>
<db_xref db="PDB" dbkey="1xs9"/>
<db_xref db="CATH" dbkey="1.10.10.60"/>
<db_xref db="SCOP" dbkey="a.4.1.8"/>
<db_xref db="SCOP" dbkey="i.11.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="22594"/>
<taxon_data name="Cyanobacteria" proteins_count="150"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="4"/>
<taxon_data name="Archaea" proteins_count="4"/>
<taxon_data name="Eukaryota" proteins_count="100"/>
<taxon_data name="Rice spp." proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="43"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Unclassified" proteins_count="3"/>
<taxon_data name="Plastid Group" proteins_count="54"/>
<taxon_data name="Green Plants" proteins_count="54"/>
<taxon_data name="Metazoa" proteins_count="45"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018062"/>
<sec_ac acc="IPR020449"/>
</sec_list>
</interpro>
<interpro id="IPR000006" protein_count="253" short_name="Metallothionein_vert" type="Family">
<name>Metallothionein, vertebrate</name>
<abstract>
<p>Metallothioneins (MT) are small proteins that bind heavy metals, such as zinc, copper, cadmium, nickel, etc. They have a high content of cysteine residues that bind the metal ions through clusters of thiolate bonds [<cite idref="PUB00003570"/>, <cite idref="PUB00001490"/>]. An empirical classification into three classes has been proposed by Fowler and coworkers [<cite idref="PUB00005944"/>] and Kojima [<cite idref="PUB00003571"/>]. Members of class I are defined to include polypeptides related in the positions of their cysteines to equine MT-1B, and include mammalian MTs as well as from crustaceans and molluscs. Class II groups MTs from a variety of species, including sea urchins,
fungi, insects and cyanobacteria. Class III MTs are atypical polypeptides composed of gamma-glutamylcysteinyl units [<cite idref="PUB00005944"/>].</p>
<p>This original classification system has been found to be limited, in the sense that it does not allow clear differentiation of patterns of structural similarities, either between or within classes. Consequently, all class I and class II MTs (the proteinaceous sequences) have now been grouped into families of phylogenetically-related and thus alignable sequences. This system subdivides the MT superfamily into families, subfamilies, subgroups, and isolated isoforms and alleles. </p>
<p>The metallothionein superfamily comprises all polypeptides that resemble equine renal metallothionein in several respects [<cite idref="PUB00005944"/>]: e.g., low molecular weight; high metal content; amino acid composition with high Cys and low aromatic residue content; unique sequence with characteristic distribution of cysteines, and spectroscopic manifestations indicative of metal thiolate clusters. A MT family subsumes MTs that share particular sequence-specific features and are thought to be evolutionarily related. The inclusion of a MT within a family presupposes that its amino acid sequence is alignable with that of all members. Fifteen MT families have been characterised, each family being identified by its number and its taxonomic range: e.g., Family 1: vertebrate MTs [see http://www.bioc.unizh.ch/mtpage/protali.html]. </p>
<p> The members of family 1 are recognised by the sequence pattern K-x(1,2)-C-C-x-C-C-P-x(2)-C located at the beginning of the third exon.
The taxonomic range of the members extends to vertebrates.
Known characteristics: 60 to 68 AAs; 20 Cys (21 in one case), 19 of them are totally conserved; the protein sequence is divided into two structural domains, containing 9 and 11 Cys all binding 3 and 4 bivalent metal ions, respectively. The gene is composed of 3 exons, 2 introns and the splicing sites are conserved. Family 1 includes subfamilies: m1, m2, m3, m4, m, a, a1, a2, b, ba, t, all of them hit the same InterPro entry.
</p>
</abstract>
<class_list>
<classification id="GO:0046872" class_type="GO">
<category>Molecular Function</category>
<description>metal ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P02795"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P02802"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P04355"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001490">
<author_list>Kagi JH, Kojima Y.</author_list>
<title>Chemistry and biochemistry of metallothionein.</title>
<db_xref db="PUBMED" dbkey="2959513"/>
<journal>Experientia Suppl.</journal>
<location pages="25-61" volume="52"/>
<year>1987</year>
</publication>
<publication id="PUB00003570">
<author_list>Kagi JH.</author_list>
<title>Overview of metallothionein.</title>
<db_xref db="PUBMED" dbkey="1779825"/>
<journal>Meth. Enzymol.</journal>
<location pages="613-26" volume="205"/>
<year>1991</year>
</publication>
<publication id="PUB00003571">
<author_list>Kojima Y.</author_list>
<title>Definitions and nomenclature of metallothioneins.</title>
<db_xref db="PUBMED" dbkey="1779826"/>
<journal>Meth. Enzymol.</journal>
<location pages="8-10" volume="205"/>
<year>1991</year>
</publication>
<publication id="PUB00005944">
<author_list>Fowler BA, Hildebrand CE, Kojima Y, Webb M.</author_list>
<title>Nomenclature of metallothionein.</title>
<db_xref db="PUBMED" dbkey="2959504"/>
<journal>Experientia Suppl.</journal>
<location pages="19-22" volume="52"/>
<year>1987</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR003019"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR017854"/>
<rel_ref ipr_ref="IPR018064"/>
</contains>
<member_list>
<db_xref protein_count="250" db="PANTHER" dbkey="PTHR23299" name="Metallothionein_vert"/>
<db_xref protein_count="220" db="PRINTS" dbkey="PR00860" name="MTVERTEBRATE"/>
<db_xref protein_count="238" db="GENE3D" dbkey="G3DSA:4.10.10.10" name="Metallothionein_vert"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS00203"/>
<db_xref db="COMe" dbkey="PRX001296"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00180"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1dfs"/>
<db_xref db="PDB" dbkey="1dft"/>
<db_xref db="PDB" dbkey="1ji9"/>
<db_xref db="PDB" dbkey="1m0g"/>
<db_xref db="PDB" dbkey="1m0j"/>
<db_xref db="PDB" dbkey="1mhu"/>
<db_xref db="PDB" dbkey="1mrb"/>
<db_xref db="PDB" dbkey="1mrt"/>
<db_xref db="PDB" dbkey="2mhu"/>
<db_xref db="PDB" dbkey="2mrb"/>
<db_xref db="PDB" dbkey="2mrt"/>
<db_xref db="PDB" dbkey="4mt2"/>
<db_xref db="CATH" dbkey="4.10.10.10"/>
<db_xref db="SCOP" dbkey="g.46.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="253"/>
<taxon_data name="Chordata" proteins_count="249"/>
<taxon_data name="Human" proteins_count="27"/>
<taxon_data name="Mouse" proteins_count="15"/>
<taxon_data name="Metazoa" proteins_count="251"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000007" protein_count="355" short_name="Tubby_C" type="Domain">
<name>Tubby, C-terminal</name>
<abstract>
<p> Tubby, an autosomal recessive mutation, mapping to mouse chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This mutation maps to the tub gene [<cite idref="PUB00000932"/>, <cite idref="PUB00004232"/>]. The mouse tubby mutation is the cause of maturity-onset obesity, insulin resistance and sensory deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [<cite idref="PUB00007281"/>], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [<cite idref="PUB00014197"/>].</p>
<p>Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (<db_xref db="INTERPRO" dbkey="IPR005398"/>) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed beta-barrel that surrounds a central alpha helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [<cite idref="PUB00007281"/>].</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00294"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O80699"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P50586"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q09306"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q10LG8"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000932">
<author_list>Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glucksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ.</author_list>
<title>Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family.</title>
<db_xref db="PUBMED" dbkey="8612280"/>
<journal>Cell</journal>
<location issue="2" pages="281-90" volume="85"/>
<year>1996</year>
</publication>
<publication id="PUB00004232">
<author_list>Noben-Trauth K, Naggert JK, North MA, Nishina PM.</author_list>
<title>A candidate gene for the mouse mutation tubby.</title>
<db_xref db="PUBMED" dbkey="8606774"/>
<journal>Nature</journal>
<location issue="6574" pages="534-8" volume="380"/>
<year>1996</year>
</publication>
<publication id="PUB00007281">
<author_list>Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L.</author_list>
<title>Implication of tubby proteins as transcription factors by structure-based functional analysis.</title>
<db_xref db="PUBMED" dbkey="10591637"/>
<journal>Science</journal>
<location issue="5447" pages="2119-25" volume="286"/>
<year>1999</year>
</publication>
<publication id="PUB00014197">
<author_list>Carroll K, Gomez C, Shapiro L.</author_list>
<title>Tubby proteins: the plot thickens.</title>
<db_xref db="PUBMED" dbkey="14708010"/>
<journal>Nat. Rev. Mol. Cell Biol.</journal>
<location issue="1" pages="55-63" volume="5"/>
<year>2004</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018066"/>
</contains>
<member_list>
<db_xref protein_count="345" db="PFAM" dbkey="PF01167" name="Tub"/>
<db_xref protein_count="284" db="PRINTS" dbkey="PR01573" name="SUPERTUBBY"/>
<db_xref protein_count="324" db="GENE3D" dbkey="G3DSA:3.20.90.10" name="Tubby_C"/>
<db_xref protein_count="345" db="SSF" dbkey="SSF54518" name="Tubby_C"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01167"/>
<db_xref db="MSDsite" dbkey="PS01200"/>
<db_xref db="MSDsite" dbkey="PS01201"/>
<db_xref db="BLOCKS" dbkey="IPB000007"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00923"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1c8z"/>
<db_xref db="PDB" dbkey="1i7e"/>
<db_xref db="PDB" dbkey="1s31"/>
<db_xref db="PDB" dbkey="2fim"/>
<db_xref db="PDB" dbkey="3c5n"/>
<db_xref db="CATH" dbkey="3.20.90.10"/>
<db_xref db="SCOP" dbkey="d.23.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="355"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="16"/>
<taxon_data name="Rice spp." proteins_count="48"/>
<taxon_data name="Fungi" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="16"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="2"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="2"/>
<taxon_data name="Arthropoda" proteins_count="40"/>
<taxon_data name="Fruit Fly" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="64"/>
<taxon_data name="Human" proteins_count="13"/>
<taxon_data name="Mouse" proteins_count="16"/>
<taxon_data name="Plastid Group" proteins_count="161"/>
<taxon_data name="Green Plants" proteins_count="161"/>
<taxon_data name="Metazoa" proteins_count="124"/>
<taxon_data name="Plastid Group" proteins_count="38"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000008" protein_count="5988" short_name="C2_Ca-dep" type="Domain">
<name>C2 calcium-dependent membrane targeting</name>
<abstract>
The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about 116 amino-acid residues and is located between the two copies of
the C1 domain in Protein Kinase C (that bind phorbol esters and diacylglycerol) (see <db_xref db="PROSITEDOC" dbkey="PDOC00379"/>)
and the protein kinase catalytic domain (see <db_xref db="PROSITEDOC" dbkey="PDOC00100"/>). Regions with
significant homology [<cite idref="PUB00002925"/>] to the C2-domain have been found in many proteins.
The C2 domain is thought to be involved in calcium-dependent phospholipid
binding [<cite idref="PUB00002815"/>] and in membrane targetting processes such as subcellular localisation. <p>The 3D structure of the
C2 domain of synaptotagmin has been reported
[<cite idref="PUB00000918"/>], the domain forms an eight-stranded beta sandwich constructed around a
conserved 4-stranded motif, designated a C2 key [<cite idref="PUB00000918"/>]. Calcium binds in
a cup-shaped depression formed by the N- and C-terminal loops of the
C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca<sup>2+</sup>-binding loops are located at the end of an 8 stranded antiparallel beta sandwich. </p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A0FGR8"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P11792"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P27715"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P28867"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9VVI3"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000918">
<author_list>Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR.</author_list>
<title>Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold.</title>
<db_xref db="PUBMED" dbkey="7697723"/>
<journal>Cell</journal>
<location issue="6" pages="929-38" volume="80"/>
<year>1995</year>
</publication>
<publication id="PUB00002815">
<author_list>Davletov BA, Sudhof TC.</author_list>
<title>A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding.</title>
<db_xref db="PUBMED" dbkey="8253763"/>
<journal>J. Biol. Chem.</journal>
<location issue="35" pages="26386-90" volume="268"/>
<year>1993</year>
</publication>
<publication id="PUB00002925">
<author_list>Brose N, Hofmann K, Hata Y, Sudhof TC.</author_list>
<title>Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins.</title>
<db_xref db="PUBMED" dbkey="7559667"/>
<journal>J. Biol. Chem.</journal>
<location issue="42" pages="25273-80" volume="270"/>
<year>1995</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR008973"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018029"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR001565"/>
<rel_ref ipr_ref="IPR020477"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR001192"/>
<rel_ref ipr_ref="IPR011402"/>
<rel_ref ipr_ref="IPR014375"/>
<rel_ref ipr_ref="IPR014376"/>
<rel_ref ipr_ref="IPR014638"/>
<rel_ref ipr_ref="IPR014705"/>
<rel_ref ipr_ref="IPR015427"/>
<rel_ref ipr_ref="IPR015428"/>
<rel_ref ipr_ref="IPR016279"/>
<rel_ref ipr_ref="IPR016280"/>
<rel_ref ipr_ref="IPR017147"/>
</found_in>
<member_list>
<db_xref protein_count="5145" db="PFAM" dbkey="PF00168" name="C2"/>
<db_xref protein_count="5888" db="SMART" dbkey="SM00239" name="C2"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00168"/>
<db_xref db="BLOCKS" dbkey="IPB000008"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00380"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a25"/>
<db_xref db="PDB" dbkey="1bci"/>
<db_xref db="PDB" dbkey="1bdy"/>
<db_xref db="PDB" dbkey="1byn"/>
<db_xref db="PDB" dbkey="1cjy"/>
<db_xref db="PDB" dbkey="1djg"/>
<db_xref db="PDB" dbkey="1djh"/>
<db_xref db="PDB" dbkey="1dji"/>
<db_xref db="PDB" dbkey="1djw"/>
<db_xref db="PDB" dbkey="1djx"/>
<db_xref db="PDB" dbkey="1djy"/>
<db_xref db="PDB" dbkey="1djz"/>
<db_xref db="PDB" dbkey="1dqv"/>
<db_xref db="PDB" dbkey="1dsy"/>
<db_xref db="PDB" dbkey="1gmi"/>
<db_xref db="PDB" dbkey="1k5w"/>
<db_xref db="PDB" dbkey="1qas"/>
<db_xref db="PDB" dbkey="1qat"/>
<db_xref db="PDB" dbkey="1rh8"/>
<db_xref db="PDB" dbkey="1rlw"/>
<db_xref db="PDB" dbkey="1rsy"/>
<db_xref db="PDB" dbkey="1tjm"/>
<db_xref db="PDB" dbkey="1tjx"/>
<db_xref db="PDB" dbkey="1ugk"/>
<db_xref db="PDB" dbkey="1uov"/>
<db_xref db="PDB" dbkey="1uow"/>
<db_xref db="PDB" dbkey="1v27"/>
<db_xref db="PDB" dbkey="1w15"/>
<db_xref db="PDB" dbkey="1w16"/>
<db_xref db="PDB" dbkey="1wfj"/>
<db_xref db="PDB" dbkey="1wfm"/>
<db_xref db="PDB" dbkey="1yrk"/>
<db_xref db="PDB" dbkey="2bwq"/>
<db_xref db="PDB" dbkey="2chd"/>
<db_xref db="PDB" dbkey="2cjs"/>
<db_xref db="PDB" dbkey="2cjt"/>
<db_xref db="PDB" dbkey="2cm5"/>
<db_xref db="PDB" dbkey="2cm6"/>
<db_xref db="PDB" dbkey="2d8k"/>
<db_xref db="PDB" dbkey="2enp"/>
<db_xref db="PDB" dbkey="2ep6"/>
<db_xref db="PDB" dbkey="2fju"/>
<db_xref db="PDB" dbkey="2fk9"/>
<db_xref db="PDB" dbkey="2isd"/>
<db_xref db="PDB" dbkey="2k3h"/>
<db_xref db="PDB" dbkey="2nq3"/>
<db_xref db="PDB" dbkey="2nsq"/>
<db_xref db="PDB" dbkey="2r83"/>
<db_xref db="PDB" dbkey="2rd0"/>
<db_xref db="PDB" dbkey="2uzp"/>
<db_xref db="PDB" dbkey="2yrb"/>
<db_xref db="PDB" dbkey="2zkm"/>
<db_xref db="PDB" dbkey="3bxj"/>
<db_xref db="PDB" dbkey="3fdw"/>
<db_xref db="PDB" dbkey="3rpb"/>
<db_xref db="CATH" dbkey="2.20.170.10"/>
<db_xref db="CATH" dbkey="2.60.40.150"/>
<db_xref db="SCOP" dbkey="b.7.1.1"/>
<db_xref db="SCOP" dbkey="b.7.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="3"/>
<taxon_data name="Cyanobacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="5994"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="161"/>
<taxon_data name="Rice spp." proteins_count="274"/>
<taxon_data name="Fungi" proteins_count="816"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="68"/>
<taxon_data name="Other Eukaryotes" proteins_count="57"/>
<taxon_data name="Other Eukaryotes" proteins_count="82"/>
<taxon_data name="Nematoda" proteins_count="76"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="76"/>
<taxon_data name="Arthropoda" proteins_count="839"/>
<taxon_data name="Fruit Fly" proteins_count="132"/>
<taxon_data name="Chordata" proteins_count="1924"/>
<taxon_data name="Human" proteins_count="436"/>
<taxon_data name="Mouse" proteins_count="371"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="54"/>
<taxon_data name="Plastid Group" proteins_count="1230"/>
<taxon_data name="Green Plants" proteins_count="1230"/>
<taxon_data name="Metazoa" proteins_count="4034"/>
<taxon_data name="Plastid Group" proteins_count="243"/>
<taxon_data name="Plastid Group" proteins_count="109"/>
<taxon_data name="Other Eukaryotes" proteins_count="84"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018029"/>
</sec_list>
</interpro>
<interpro id="IPR000009" protein_count="339" short_name="PP2A_PR55" type="Family">
<name>Protein phosphatase 2A, regulatory subunit PR55</name>
<abstract>
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase implicated
in many cellular processes, including the regulation of metabolic enzymes
and proteins involved in signal transduction [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PP2A is a trimer
composed of a 36 kDa catalytic subunit, a 65 kDa regulatory subunit
(subunit A) and a variable third subunit (subunit B) [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>].
<p>One form of the third subunit is a 55 kDa protein (PR55), which exists in
<taxon tax_id="7227">Drosophila melanogaster</taxon> and yeast, and has up to three forms in mammals [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PR55 may act
as a substrate recognition unit, or may help to target the enzyme to the
correct subcellular location [<cite idref="PUB00000344"/>].</p>
</abstract>
<class_list>
<classification id="GO:0000159" class_type="GO">
<category>Cellular Component</category>
<description>protein phosphatase type 2A complex</description>
</classification>
<classification id="GO:0007165" class_type="GO">
<category>Biological Process</category>
<description>signal transduction</description>
</classification>
<classification id="GO:0008601" class_type="GO">
<category>Molecular Function</category>
<description>protein phosphatase type 2A regulator activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P36872"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P63151"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q00362"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q38821"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q6P1F6"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000344">
<author_list>Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, Merlevede W, Hofsteenge J, Hemmings BA.</author_list>
<title>Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform.</title>
<db_xref db="PUBMED" dbkey="1849734"/>
<journal>Biochemistry</journal>
<location issue="15" pages="3589-97" volume="30"/>
<year>1991</year>
</publication>
<publication id="PUB00003499">
<author_list>Pallas DC, Weller W, Jaspers S, Miller TB, Lane WS, Roberts TM.</author_list>
<title>The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens.</title>
<db_xref db="PUBMED" dbkey="1370560"/>
<journal>J. Virol.</journal>
<location issue="2" pages="886-93" volume="66"/>
<year>1992</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR001680"/>
<rel_ref ipr_ref="IPR011046"/>
<rel_ref ipr_ref="IPR018067"/>
<rel_ref ipr_ref="IPR019775"/>
<rel_ref ipr_ref="IPR019781"/>
</contains>
<member_list>
<db_xref protein_count="326" db="PANTHER" dbkey="PTHR11871" name="Pp2A_PR55"/>
<db_xref protein_count="224" db="PIRSF" dbkey="PIRSF037309" name="PP2A_PR55"/>
<db_xref protein_count="332" db="PRINTS" dbkey="PR00600" name="PP2APR55"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS01024"/>
<db_xref db="MSDsite" dbkey="PS01025"/>
<db_xref db="BLOCKS" dbkey="IPB000009"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00785"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2"/>
<taxon_data name="Cyanobacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="337"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
<taxon_data name="Rice spp." proteins_count="15"/>
<taxon_data name="Fungi" proteins_count="73"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="77"/>
<taxon_data name="Fruit Fly" proteins_count="2"/>
<taxon_data name="Chordata" proteins_count="76"/>
<taxon_data name="Human" proteins_count="18"/>
<taxon_data name="Mouse" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="59"/>
<taxon_data name="Green Plants" proteins_count="59"/>
<taxon_data name="Metazoa" proteins_count="243"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000010" protein_count="956" short_name="Prot_inh_cystat" type="Domain">
<name>Proteinase inhibitor I25, cystatin</name>
<abstract>
<p>Peptide proteinase inhibitors can be found as single domain proteins or as single or multiple domains within proteins; these are referred to as either simple or compound inhibitors, respectively. In many cases they are synthesised as part of a larger precursor protein, either as a prepropeptide or as an N-terminal domain associated with an inactive peptidase or zymogen. This domain prevents access of the substrate to the active site. Removal of the N-terminal inhibitor domain either by interaction with a second peptidase or by autocatalytic cleavage activates the zymogen. Other inhibitors interact direct with proteinases using a simple noncovalent lock and key mechanism; while yet others use a conformational change-based trapping mechanism that depends on their structural and thermodynamic properties. </p>
<p>The cystatins are cysteine proteinase inhibitors belonging to MEROPS inhibitor family I25, clan IH [<cite idref="PUB00003412"/>, <cite idref="PUB00014312"/>, <cite idref="PUB00001614"/>]. They mainly inhibit peptidases belonging to peptidase families C1 (papain family) and C13 (legumain family). The cystatin family includes:</p>
<ul>
<li>
The Type 1 cystatins, which are intracellular cystatins that are present in the cytosol of many cell types, but can also appear in body fluids at significant concentrations. They are single-chain polypeptides of about 100 residues, which have neither disulphide bonds nor carbohydrate side chains. </li>
<li>The Type 2 cystatins, which are mainly extracellular secreted polypeptides synthesised with a 19-28 residue signal peptide. They are broadly distributed and found in most body fluids. </li>
<li>The Type 3 cystatins, which are multidomain proteins. The mammalian representatives of this group are the kininogens. There are three different kininogens in mammals: H- (high molecular mass, <db_xref db="INTERPRO" dbkey="IPR002395"/>) and L- (low molecular mass) kininogen which are found in a number of species, and T-kininogen that is found only in rat. </li>
<li>Unclassified cystatins. These are cystatin-like proteins found in a range of organisms: plant phytocystatins, fetuin in mammals, insect cystatins and a puff adder venom cystatin which inhibits metalloproteases of the MEROPS peptidase family M12 (astacin/adamalysin). Also a number of the cystatins-like proteins have been shown to be devoid of inhibitory activity. </li>
</ul>
<p>All true cystatins inhibit cysteine peptidases of the papain family (MEROPS peptidase family C1), and some also inhibit legumain family enzymes (MEROPS peptidase family C13). These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus in animals cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but in other organisms may also participate in defence against biotic and abiotic stress. </p>
</abstract>
<class_list>
<classification id="GO:0004869" class_type="GO">
<category>Molecular Function</category>
<description>cysteine-type endopeptidase inhibitor activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O08677"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O76096"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P09229"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P23779"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q41906"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001614">
<author_list>Turk V, Bode W.</author_list>
<title>The cystatins: protein inhibitors of cysteine proteinases.</title>
<db_xref db="PUBMED" dbkey="1855589"/>
<journal>FEBS Lett.</journal>
<location issue="2" pages="213-9" volume="285"/>
<year>1991</year>
</publication>
<publication id="PUB00003412">
<author_list>Rawlings ND, Barrett AJ.</author_list>
<title>Evolution of proteins of the cystatin superfamily.</title>
<db_xref db="PUBMED" dbkey="2107324"/>
<journal>J. Mol. Evol.</journal>
<location issue="1" pages="60-71" volume="30"/>
<year>1990</year>
</publication>
<publication id="PUB00014312">
<author_list>Abrahamson M, Alvarez-Fernandez M, Nathanson CM.</author_list>
<title>Cystatins.</title>
<db_xref db="PUBMED" dbkey="14587292"/>
<journal>Biochem. Soc. Symp.</journal>
<location issue="70" pages="179-99"/>
<year>2003</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR001713"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR001363"/>
<rel_ref ipr_ref="IPR018073"/>
<rel_ref ipr_ref="IPR020381"/>
</contains>
<member_list>
<db_xref protein_count="937" db="PFAM" dbkey="PF00031" name="Cystatin"/>
<db_xref protein_count="845" db="SMART" dbkey="SM00043" name="CY"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00031"/>
<db_xref db="MSDsite" dbkey="PS00287"/>
<db_xref db="BLOCKS" dbkey="IPB000010"/>
<db_xref db="MEROPS" dbkey="C1"/>
<db_xref db="MEROPS" dbkey="C13"/>
<db_xref db="MEROPS" dbkey="I25"/>
<db_xref db="MEROPS" dbkey="M10"/>
<db_xref db="MEROPS" dbkey="M12"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00259"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a67"/>
<db_xref db="PDB" dbkey="1a90"/>
<db_xref db="PDB" dbkey="1cew"/>
<db_xref db="PDB" dbkey="1cyu"/>
<db_xref db="PDB" dbkey="1cyv"/>
<db_xref db="PDB" dbkey="1dvc"/>
<db_xref db="PDB" dbkey="1dvd"/>
<db_xref db="PDB" dbkey="1eqk"/>
<db_xref db="PDB" dbkey="1g96"/>
<db_xref db="PDB" dbkey="1gd3"/>
<db_xref db="PDB" dbkey="1gd4"/>
<db_xref db="PDB" dbkey="1n9j"/>
<db_xref db="PDB" dbkey="1nb3"/>
<db_xref db="PDB" dbkey="1nb5"/>
<db_xref db="PDB" dbkey="1r4c"/>
<db_xref db="PDB" dbkey="1rn7"/>
<db_xref db="PDB" dbkey="1roa"/>
<db_xref db="PDB" dbkey="1stf"/>
<db_xref db="PDB" dbkey="1tij"/>
<db_xref db="PDB" dbkey="1yvb"/>
<db_xref db="CATH" dbkey="3.10.450.10"/>
<db_xref db="SCOP" dbkey="d.17.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="39"/>
<taxon_data name="Eukaryota" proteins_count="873"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
<taxon_data name="Rice spp." proteins_count="35"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="122"/>
<taxon_data name="Fruit Fly" proteins_count="6"/>
<taxon_data name="Chordata" proteins_count="376"/>
<taxon_data name="Human" proteins_count="40"/>
<taxon_data name="Mouse" proteins_count="69"/>
<taxon_data name="Virus" proteins_count="44"/>
<taxon_data name="Plastid Group" proteins_count="305"/>
<taxon_data name="Green Plants" proteins_count="305"/>
<taxon_data name="Metazoa" proteins_count="546"/>
<taxon_data name="Plastid Group" proteins_count="11"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR001713"/>
</sec_list>
</interpro>
<interpro id="IPR000011" protein_count="359" short_name="UBQ-activ_enz_E1-like" type="Region">
<name>Ubiquitin-activating enzyme, E1-like</name>
<abstract>
<p>The post-translational attachment of ubiquitin (<db_xref db="INTERPRO" dbkey="IPR000626"/>) to proteins (ubiquitinylation) alters the function, location or trafficking of a protein, or targets it to the 26S proteasome for degradation [<cite idref="PUB00015621"/>, <cite idref="PUB00015619"/>, <cite idref="PUB00015625"/>]. Ubiquitinylation is an ATP-dependent process that involves the action of at least three enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2, <db_xref db="INTERPRO" dbkey="IPR000608"/>), and a ubiquitin ligase (E3, <db_xref db="INTERPRO" dbkey="IPR000569"/>, <db_xref db="INTERPRO" dbkey="IPR003613"/>), which work sequentially in a cascade [<cite idref="PUB00015620"/>]. The E1 enzyme is responsible for activating ubiquitin, the first step in ubiquitinylation. The E1 enzyme hydrolyses ATP and adenylates the C-terminal glycine residue of ubiquitin, and then links this residue to the active site cysteine of E1, yielding a ubiquitin-thioester and free AMP. To be fully active, E1 must non-covalently bind to and adenylate a second ubiquitin molecule. The E1 enzyme can then transfer the thioester-linked ubiquitin molecule to a cysteine residue on the ubiquitin-conjugating enzyme, E2, in an ATP-dependent reaction.</p>
</abstract>
<class_list>
<classification id="GO:0006464" class_type="GO">
<category>Biological Process</category>
<description>protein modification process</description>
</classification>
<classification id="GO:0008641" class_type="GO">
<category>Molecular Function</category>
<description>small protein activating enzyme activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A2VE14"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O42939"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22515"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q02053"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9UBE0"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00015619">
<author_list>Burger AM, Seth AK.</author_list>
<title>The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications.</title>
<db_xref db="PUBMED" dbkey="15454246"/>
<journal>Eur. J. Cancer</journal>
<location issue="15" pages="2217-29" volume="40"/>
<year>2004</year>
</publication>
<publication id="PUB00015620">
<author_list>Passmore LA, Barford D.</author_list>
<title>Getting into position: the catalytic mechanisms of protein ubiquitylation.</title>
<db_xref db="PUBMED" dbkey="14998368"/>
<journal>Biochem. J.</journal>
<location issue="Pt 3" pages="513-25" volume="379"/>
<year>2004</year>
</publication>
<publication id="PUB00015621">
<author_list>Pickart CM, Fushman D.</author_list>
<title>Polyubiquitin chains: polymeric protein signals.</title>
<db_xref db="PUBMED" dbkey="15556404"/>
<location issue="6" pages="610-6" volume="8"/>
<year>2004</year>
</publication>
<publication id="PUB00015625">
<author_list>Sun L, Chen ZJ.</author_list>
<title>The novel functions of ubiquitination in signaling.</title>
<db_xref db="PUBMED" dbkey="15196553"/>
<journal>Curr. Opin. Cell Biol.</journal>
<location issue="2" pages="119-26" volume="16"/>
<year>2004</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR000594"/>
<rel_ref ipr_ref="IPR009036"/>
<rel_ref ipr_ref="IPR018074"/>
<rel_ref ipr_ref="IPR019572"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR018075"/>
</found_in>
<member_list>
<db_xref protein_count="359" db="PRINTS" dbkey="PR01849" name="UBIQUITINACT"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS00536"/>
<db_xref db="MSDsite" dbkey="PS00865"/>
<db_xref db="BLOCKS" dbkey="IPB000011"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00463"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1y8q"/>
<db_xref db="PDB" dbkey="1y8r"/>
<db_xref db="CATH" dbkey="3.40.50.720"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="359"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="6"/>
<taxon_data name="Rice spp." proteins_count="13"/>
<taxon_data name="Fungi" proteins_count="110"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="5"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="43"/>
<taxon_data name="Fruit Fly" proteins_count="9"/>
<taxon_data name="Chordata" proteins_count="55"/>
<taxon_data name="Human" proteins_count="10"/>
<taxon_data name="Mouse" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
<taxon_data name="Plastid Group" proteins_count="50"/>
<taxon_data name="Green Plants" proteins_count="50"/>
<taxon_data name="Metazoa" proteins_count="225"/>
<taxon_data name="Plastid Group" proteins_count="38"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000012" protein_count="3972" short_name="RetroV_VpR/X" type="Family">
<name>Retroviral VpR/VpX protein</name>
<abstract>
<taxon tax_id="12721">Human immunodeficiency virus</taxon> (HIV) is the human retrovirus associated with AIDS (acquired immune deficiency syndrome), and SIV its simian counterpart. Three main groups of primate lentivirus are known, designated <taxon tax_id="11676">Human immunodeficiency virus 1</taxon> (HIV-1), <taxon tax_id="11709">Human immunodeficiency virus 2</taxon> (HIV-2)/<taxon tax_id="11711">Simian immunodeficiency virus - mac</taxon> (SIVMAC)/<taxon tax_id="11712">Simian immunodeficiency virus - sm</taxon> (SIVSM) and <taxon tax_id="11726">Simian immunodeficiency virus - agm</taxon> (SIVAGM). <taxon tax_id="12830">Simian immunodeficiency virus - mnd</taxon> (SIVMND) has been suggested to represent a fourth distinct group [<cite idref="PUB00004048"/>]. These groups are believed to have diverged from a common ancestor long before the spread of AIDS in humans. Genetic variation in HIV-1 and HIV-2 has been studied extensively, and the nucleotide sequences reported for several strains [<cite idref="PUB00000018"/>].<p> ORF analysis has revealed two open reading frames, yielding the so-called R- and X-ORF proteins, whose functions are unknown, but which show a high degree of sequence similarity.</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P05954"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000018">
<author_list>Hasegawa A, Tsujimoto H, Maki N, Ishikawa K, Miura T, Fukasawa M, Miki K, Hayami M.</author_list>
<title>Genomic divergence of HIV-2 from Ghana.</title>
<db_xref db="PUBMED" dbkey="2611042"/>
<journal>AIDS Res. Hum. Retroviruses</journal>
<location issue="6" pages="593-604" volume="5"/>
<year>1989</year>
</publication>
<publication id="PUB00004048">
<author_list>Tsujimoto H, Hasegawa A, Maki N, Fukasawa M, Miura T, Speidel S, Cooper RW, Moriyama EN, Gojobori T, Hayami M.</author_list>
<title>Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill.</title>
<db_xref db="PUBMED" dbkey="2797181"/>
<journal>Nature</journal>
<location issue="6242" pages="539-41" volume="341"/>
<year>1989</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="3972" db="PFAM" dbkey="PF00522" name="VPR"/>
<db_xref protein_count="3833" db="PRINTS" dbkey="PR00444" name="HIVVPRVPX"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00522"/>
<db_xref db="BLOCKS" dbkey="IPB000012"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1bde"/>
<db_xref db="PDB" dbkey="1ceu"/>
<db_xref db="PDB" dbkey="1dsj"/>
<db_xref db="PDB" dbkey="1dsk"/>
<db_xref db="PDB" dbkey="1esx"/>
<db_xref db="PDB" dbkey="1fi0"/>
<db_xref db="PDB" dbkey="1kzs"/>
<db_xref db="PDB" dbkey="1kzt"/>
<db_xref db="PDB" dbkey="1kzv"/>
<db_xref db="PDB" dbkey="1m8l"/>
<db_xref db="PDB" dbkey="1vpc"/>
<db_xref db="PDB" dbkey="1x9v"/>
<db_xref db="CATH" dbkey="1.10.1690.10"/>
<db_xref db="CATH" dbkey="1.20.5.90"/>
<db_xref db="SCOP" dbkey="j.11.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Virus" proteins_count="3972"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000013" protein_count="41" short_name="Peptidase_M7" type="Family">
<name>Peptidase M7, snapalysin</name>
<abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
<li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. </p>
<p>Metalloproteases are the most diverse of the four main types of protease, with more than 50 families identified to date. In these enzymes, a divalent cation, usually zinc, activates the water molecule. The metal ion is held in place by amino acid ligands, usually three in number. The known metal ligands are His, Glu, Asp or Lys and at least one other residue is required for catalysis, which may play an electrophillic role.
Of the known metalloproteases, around half contain an HEXXH motif, which has been shown in crystallographic studies to form part of the metal-binding site [<cite idref="PUB00003579"/>]. The HEXXH motif is relatively common, but can be more stringently defined for metalloproteases as 'abXHEbbHbc', where 'a' is most often valine or threonine and forms part of the S1' subsite in thermolysin and neprilysin, 'b' is an uncharged residue, and 'c' a hydrophobic residue. Proline is never found in this site, possibly because it would break the helical structure adopted by this motif in metalloproteases [<cite idref="PUB00003579"/>].</p>
<p>This group of metallopeptidases belong to the MEROPS peptidase family M7 (snapalysin family, clan MA(M)). The protein fold of the peptidase domain for members of this family resembles that of thermolysin, the type example for clan MA.</p>
<p>With a molecular weight of around 16kDa, Streptomyces extracellular neutral protease is one of the smallest known proteases [<cite idref="PUB00003579"/>]; it is capable of hydrolysing milk proteins [<cite idref="PUB00003579"/>]. The enzyme is synthesised as a proenzyme with a signal peptide, a propeptide and an active domain that contains the conserved HEXXH motif characteristic of metalloproteases. Although family M7 shows active site sequence similarity to other members, it differs in one major respect: the third zinc ligand appears to be an aspartate residue rather than the usual histidine.</p>
</abstract>
<class_list>
<classification id="GO:0004222" class_type="GO">
<category>Molecular Function</category>
<description>metalloendopeptidase activity</description>
</classification>
<classification id="GO:0005576" class_type="GO">
<category>Cellular Component</category>
<description>extracellular region</description>
</classification>
<classification id="GO:0006508" class_type="GO">
<category>Biological Process</category>
<description>proteolysis</description>
</classification>
<classification id="GO:0008270" class_type="GO">
<category>Molecular Function</category>
<description>zinc ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P56406"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00003579">
<author_list>Rawlings ND, Barrett AJ.</author_list>
<title>Evolutionary families of metallopeptidases.</title>
<db_xref db="PUBMED" dbkey="7674922"/>
<journal>Meth. Enzymol.</journal>
<location pages="183-228" volume="248"/>
<year>1995</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="41" db="PFAM" dbkey="PF02031" name="Peptidase_M7"/>
<db_xref protein_count="34" db="PIRSF" dbkey="PIRSF016573" name="Peptidase_M7"/>
<db_xref protein_count="39" db="PRINTS" dbkey="PR00787" name="NEUTRALPTASE"/>
<db_xref protein_count="38" db="PRODOM" dbkey="PD016028" name="Peptidase_M7"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF02031"/>
<db_xref db="BLOCKS" dbkey="IPB000013"/>
<db_xref db="EC" dbkey="3.4.24.77"/>
<db_xref db="MEROPS" dbkey="M7"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1c7k"/>
<db_xref db="PDB" dbkey="1kuh"/>
<db_xref db="CATH" dbkey="3.40.390.10"/>
<db_xref db="SCOP" dbkey="d.92.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="41"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000014" protein_count="31843" short_name="PAS" type="Domain">
<name>PAS</name>
<abstract>
<p>PAS domains are involved in many signalling proteins where they
are used as a signal sensor domain. PAS domains appear in archaea,
bacteria and eukaryotes. Several PAS-domain proteins are known to
detect their signal by way of an associated cofactor. Haeme,
flavin, and a 4-hydroxycinnamyl chromophore are used in different
proteins. The PAS domain was named after three proteins that it
occurs in: </p>
<li>Per- period circadian protein</li>
<li>Arnt- Ah receptor nuclear translocator protein</li>
<li>Sim- single-minded protein.</li>
<p>PAS domains are often associated with
PAC domains <db_xref db="INTERPRO" dbkey="IPR001610"/>. It appears that these domains are directly linked, and that together they form the conserved 3D PAS fold. The division between the PAS and PAC domains is caused by major differences in sequences in the region connecting these two motifs [<cite idref="PUB00014500"/>]. In human PAS kinase, this region has been shown to be very flexible, and adopts different conformations depending on the bound ligand [<cite idref="PUB00014501"/>].
Probably the most surprising identification of a PAS domain was that in
EAG-like K<sup>+</sup>-channels [<cite idref="PUB00005472"/>].</p>
</abstract>
<class_list>
<classification id="GO:0004871" class_type="GO">
<category>Molecular Function</category>
<description>signal transducer activity</description>
</classification>
<classification id="GO:0007165" class_type="GO">
<category>Biological Process</category>
<description>signal transduction</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O44712"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O54943"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O60658"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P07663"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P19541"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00005472">
<author_list>Zhulin IB, Taylor BL, Dixon R.</author_list>
<title>PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.</title>
<db_xref db="PUBMED" dbkey="9301332"/>
<journal>Trends Biochem. Sci.</journal>
<location issue="9" pages="331-3" volume="22"/>
<year>1997</year>
</publication>
<publication id="PUB00014500">
<author_list>Hefti MH, Francoijs KJ, de Vries SC, Dixon R, Vervoort J.</author_list>
<title>The PAS fold. A redefinition of the PAS domain based upon structural prediction.</title>
<db_xref db="PUBMED" dbkey="15009198"/>
<journal>Eur. J. Biochem.</journal>
<location issue="6" pages="1198-208" volume="271"/>
<year>2004</year>
</publication>
<publication id="PUB00014501">
<author_list>Amezcua CA, Harper SM, Rutter J, Gardner KH.</author_list>
<title>Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation.</title>
<db_xref db="PUBMED" dbkey="12377121"/>
<journal>Structure</journal>
<location issue="10" pages="1349-61" volume="10"/>
<year>2002</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR013655"/>
<rel_ref ipr_ref="IPR013656"/>
<rel_ref ipr_ref="IPR013767"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR001294"/>
<rel_ref ipr_ref="IPR001321"/>
<rel_ref ipr_ref="IPR003949"/>
<rel_ref ipr_ref="IPR003950"/>
<rel_ref ipr_ref="IPR011785"/>
<rel_ref ipr_ref="IPR012129"/>
<rel_ref ipr_ref="IPR012130"/>
<rel_ref ipr_ref="IPR012226"/>
<rel_ref ipr_ref="IPR012704"/>
<rel_ref ipr_ref="IPR014285"/>
<rel_ref ipr_ref="IPR014310"/>
<rel_ref ipr_ref="IPR014409"/>
<rel_ref ipr_ref="IPR015524"/>
<rel_ref ipr_ref="IPR017181"/>
<rel_ref ipr_ref="IPR017232"/>
</found_in>
<member_list>
<db_xref protein_count="21263" db="PROFILE" dbkey="PS50112" name="PAS"/>
<db_xref protein_count="30445" db="SMART" dbkey="SM00091" name="PAS"/>
<db_xref protein_count="21449" db="TIGRFAMs" dbkey="TIGR00229" name="sensory_box"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000014"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50112"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1byw"/>
<db_xref db="PDB" dbkey="1d06"/>
<db_xref db="PDB" dbkey="1d7e"/>
<db_xref db="PDB" dbkey="1dp6"/>
<db_xref db="PDB" dbkey="1dp8"/>
<db_xref db="PDB" dbkey="1dp9"/>
<db_xref db="PDB" dbkey="1drm"/>
<db_xref db="PDB" dbkey="1ew0"/>
<db_xref db="PDB" dbkey="1f98"/>
<db_xref db="PDB" dbkey="1f9i"/>
<db_xref db="PDB" dbkey="1g28"/>
<db_xref db="PDB" dbkey="1gsv"/>
<db_xref db="PDB" dbkey="1gsw"/>
<db_xref db="PDB" dbkey="1gsx"/>
<db_xref db="PDB" dbkey="1jnu"/>
<db_xref db="PDB" dbkey="1kou"/>
<db_xref db="PDB" dbkey="1ll8"/>
<db_xref db="PDB" dbkey="1lsv"/>
<db_xref db="PDB" dbkey="1lsw"/>
<db_xref db="PDB" dbkey="1lsx"/>
<db_xref db="PDB" dbkey="1lt0"/>
<db_xref db="PDB" dbkey="1mzu"/>
<db_xref db="PDB" dbkey="1n9l"/>
<db_xref db="PDB" dbkey="1n9n"/>
<db_xref db="PDB" dbkey="1n9o"/>
<db_xref db="PDB" dbkey="1nwz"/>
<db_xref db="PDB" dbkey="1odv"/>
<db_xref db="PDB" dbkey="1ot6"/>
<db_xref db="PDB" dbkey="1ot9"/>
<db_xref db="PDB" dbkey="1ota"/>
<db_xref db="PDB" dbkey="1otb"/>
<db_xref db="PDB" dbkey="1otd"/>
<db_xref db="PDB" dbkey="1ote"/>
<db_xref db="PDB" dbkey="1oti"/>
<db_xref db="PDB" dbkey="1p97"/>
<db_xref db="PDB" dbkey="1s1y"/>
<db_xref db="PDB" dbkey="1s1z"/>
<db_xref db="PDB" dbkey="1s4r"/>
<db_xref db="PDB" dbkey="1s4s"/>
<db_xref db="PDB" dbkey="1s66"/>
<db_xref db="PDB" dbkey="1s67"/>
<db_xref db="PDB" dbkey="1t18"/>
<db_xref db="PDB" dbkey="1t19"/>
<db_xref db="PDB" dbkey="1t1a"/>
<db_xref db="PDB" dbkey="1t1b"/>
<db_xref db="PDB" dbkey="1t1c"/>
<db_xref db="PDB" dbkey="1ts0"/>
<db_xref db="PDB" dbkey="1ts6"/>
<db_xref db="PDB" dbkey="1ts7"/>
<db_xref db="PDB" dbkey="1ts8"/>
<db_xref db="PDB" dbkey="1ugu"/>
<db_xref db="PDB" dbkey="1uwn"/>
<db_xref db="PDB" dbkey="1uwp"/>
<db_xref db="PDB" dbkey="1v9y"/>
<db_xref db="PDB" dbkey="1v9z"/>
<db_xref db="PDB" dbkey="1vb6"/>
<db_xref db="PDB" dbkey="1wa9"/>
<db_xref db="PDB" dbkey="1xfn"/>
<db_xref db="PDB" dbkey="1xfq"/>
<db_xref db="PDB" dbkey="1xj2"/>
<db_xref db="PDB" dbkey="1xj3"/>
<db_xref db="PDB" dbkey="1xj4"/>
<db_xref db="PDB" dbkey="1xj6"/>
<db_xref db="PDB" dbkey="1y28"/>
<db_xref db="PDB" dbkey="1ztu"/>
<db_xref db="PDB" dbkey="2a24"/>
<db_xref db="PDB" dbkey="2cmn"/>
<db_xref db="PDB" dbkey="2d01"/>
<db_xref db="PDB" dbkey="2d02"/>
<db_xref db="PDB" dbkey="2i9v"/>
<db_xref db="PDB" dbkey="2o9b"/>
<db_xref db="PDB" dbkey="2o9c"/>
<db_xref db="PDB" dbkey="2ohh"/>
<db_xref db="PDB" dbkey="2ohi"/>
<db_xref db="PDB" dbkey="2ohj"/>
<db_xref db="PDB" dbkey="2owh"/>
<db_xref db="PDB" dbkey="2owj"/>
<db_xref db="PDB" dbkey="2phy"/>
<db_xref db="PDB" dbkey="2pyp"/>
<db_xref db="PDB" dbkey="2pyr"/>
<db_xref db="PDB" dbkey="2qj5"/>
<db_xref db="PDB" dbkey="2qj7"/>
<db_xref db="PDB" dbkey="2qws"/>
<db_xref db="PDB" dbkey="2r78"/>
<db_xref db="PDB" dbkey="2vea"/>
<db_xref db="PDB" dbkey="2vv6"/>
<db_xref db="PDB" dbkey="2vv7"/>
<db_xref db="PDB" dbkey="2vv8"/>
<db_xref db="PDB" dbkey="3b33"/>
<db_xref db="PDB" dbkey="3bwl"/>
<db_xref db="PDB" dbkey="3f1n"/>
<db_xref db="PDB" dbkey="3f1o"/>
<db_xref db="PDB" dbkey="3f1p"/>
<db_xref db="PDB" dbkey="3phy"/>
<db_xref db="PDB" dbkey="3pyp"/>
<db_xref db="CATH" dbkey="3.30.450.20"/>
<db_xref db="CATH" dbkey="3.60.15.10"/>
<db_xref db="SCOP" dbkey="d.110.3.1"/>
<db_xref db="SCOP" dbkey="d.110.3.2"/>
<db_xref db="SCOP" dbkey="d.110.3.5"/>
<db_xref db="SCOP" dbkey="d.110.3.6"/>
<db_xref db="SCOP" dbkey="d.110.3.7"/>
<db_xref db="SCOP" dbkey="d.110.3.9"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="27271"/>
<taxon_data name="Cyanobacteria" proteins_count="1122"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="33"/>
<taxon_data name="Archaea" proteins_count="997"/>
<taxon_data name="Eukaryota" proteins_count="3570"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="64"/>
<taxon_data name="Rice spp." proteins_count="44"/>
<taxon_data name="Fungi" proteins_count="548"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="23"/>
<taxon_data name="Other Eukaryotes" proteins_count="112"/>
<taxon_data name="Other Eukaryotes" proteins_count="82"/>
<taxon_data name="Nematoda" proteins_count="17"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="17"/>
<taxon_data name="Arthropoda" proteins_count="772"/>
<taxon_data name="Fruit Fly" proteins_count="39"/>
<taxon_data name="Chordata" proteins_count="848"/>
<taxon_data name="Human" proteins_count="110"/>
<taxon_data name="Mouse" proteins_count="109"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="3"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="892"/>
<taxon_data name="Green Plants" proteins_count="892"/>
<taxon_data name="Metazoa" proteins_count="2256"/>
<taxon_data name="Plastid Group" proteins_count="120"/>
<taxon_data name="Plastid Group" proteins_count="26"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="20"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR013655"/>
<sec_ac acc="IPR013656"/>
<sec_ac acc="IPR013767"/>
</sec_list>
</interpro>
<interpro id="IPR000015" protein_count="2173" short_name="Fimb_usher" type="Family">
<name>Fimbrial biogenesis outer membrane usher protein</name>
<abstract>
In Gram-negative bacteria the biogenesis of fimbriae (or pili) requires a two-
component assembly and transport system which is composed of a periplasmic
chaperone (see <db_xref db="PROSITEDOC" dbkey="PDOC00552"/>) and an outer membrane protein which has been
termed a molecular 'usher' [<cite idref="PUB00002841"/>, <cite idref="PUB00002237"/>, <cite idref="PUB00005083"/>]. <p>The usher protein is rather large (from 86 to
100 Kd) and seems to be mainly composed of membrane-spanning beta-sheets, a
structure reminiscent of porins.
Although the degree of sequence similarity of these proteins is not very high
they share a number of characteristics. One of these is the presence of two pairs
of cysteines, the first one located in the N-terminal part and the second
at the C-terminal extremity that are probably involved in disulphide bonds.
The best conserved region is located in the central part of these proteins.</p>
</abstract>
<class_list>
<classification id="GO:0005215" class_type="GO">
<category>Molecular Function</category>
<description>transporter activity</description>
</classification>
<classification id="GO:0006810" class_type="GO">
<category>Biological Process</category>
<description>transport</description>
</classification>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P07110"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002237">
<author_list>Schifferli DM, Alrutz MA.</author_list>
<title>Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli.</title>
<db_xref db="PUBMED" dbkey="7906265"/>
<journal>J. Bacteriol.</journal>
<location issue="4" pages="1099-110" volume="176"/>
<year>1994</year>
</publication>
<publication id="PUB00002841">
<author_list>Jacob-Dubuisson F, Striker R, Hultgren SJ.</author_list>
<title>Chaperone-assisted self-assembly of pili independent of cellular energy.</title>
<db_xref db="PUBMED" dbkey="7909802"/>
<journal>J. Biol. Chem.</journal>
<location issue="17" pages="12447-55" volume="269"/>
<year>1994</year>
</publication>
<publication id="PUB00005083">
<author_list>Van Rosmalen M, Saier MH Jr.</author_list>
<title>Structural and evolutionary relationships between two families of bacterial extracytoplasmic chaperone proteins which function cooperatively in fimbrial assembly.</title>
<db_xref db="PUBMED" dbkey="7906046"/>
<journal>Res. Microbiol.</journal>
<location issue="7" pages="507-27" volume="144"/>
<year>1993</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018030"/>
</contains>
<member_list>
<db_xref protein_count="2173" db="PFAM" dbkey="PF00577" name="Usher"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00577"/>
<db_xref db="MSDsite" dbkey="PS01151"/>
<db_xref db="BLOCKS" dbkey="IPB000015"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00886"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1zdv"/>
<db_xref db="PDB" dbkey="1zdx"/>
<db_xref db="PDB" dbkey="1ze3"/>
<db_xref db="PDB" dbkey="3bwu"/>
<db_xref db="SCOP" dbkey="b.167.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2168"/>
<taxon_data name="Cyanobacteria" proteins_count="2"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="5"/>
<taxon_data name="Rice spp." proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="5"/>
<taxon_data name="Green Plants" proteins_count="5"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000018" protein_count="25" short_name="P2Y4_purnocptor" type="Family">
<name>P2Y4 purinoceptor</name>
<abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>In addition to their role in energy metabolism, purines (especially
adenosine and adenine nucleotides) produce a wide range of pharmacological
effects mediated by activation of cell surface receptors [<cite idref="PUB00005868"/>]. ATP is a
co-transmitter in sympathetic nerves in the autonomic nervous system,
where it exerts an important physiological role in the regulation of
smooth muscle activity, stimulating relaxation of intestinal smooth muscle
and contraction of the bladder. Receptors for adenine nucleotides are
involved in a number of other physiological pathways, including stimulation
of platelet activation by ADP, which is released from the vascular
endothelium following injury. ATP has excitatory effects in the CNS [<cite idref="PUB00005868"/>].
Distinct receptors exist for adenosine. The main effects of adenosine in
the periphery include vasodilation, bronchoconstriction, immunosuppression,
inhibition of platelet aggregation, cardiac depression, stimulation of
nociceptive afferents, inhibition of neurotransmitter release, and
inhibition of the release of hormones. In the CNS, adenosine exerts a
pre- and post-synaptic depressant action, reducing motor activity,
depressing respiration, inducing sleep and relieving anxiety. The
physiological role of adenosine is believed to be to adjust energy demands
in line with oxygen supply [<cite idref="PUB00005868"/>].</p>
<p>Purinoceptors have been classified as P1 or P2, depending on their
preference for adenosine or adenine nucleotides respectively. Adenosine
receptors (P1 purinoceptors) are characterised by their affinity for
adenosine and by the ability of methylxanthines to act as antagonists [<cite idref="PUB00005868"/>].
Adenosine has very low affinity for P2 purinoceptors.</p>
<p>The P2Y receptor is found in smooth muscle (e.g., taeni caeci) and in
vascular tissue, where it induces vasodilation through endothelium-dependent
release of nitric oxide. The receptor activates phosphoinositide metabolism
through a pertussis-toxin-insensitive G-protein, probably belonging to
the Gi/Go class [<cite idref="PUB00005868"/>].</p>
<p>A new subtype of P2 purinoceptors has been isolated [<cite idref="PUB00002940"/>]. Its deduced amino acid sequence is consistent with a GPCR that is 51% identical to the human P2Y2 receptor and 35% identical to the chicken P2Y1 receptor [<cite idref="PUB00002940"/>]. P2Y4 is expressed in the placenta, with low levels in the lung and vascular smoothmuscle. In cells stably expressing the receptor, UTP and UDP have been shown to stimulate the formation of inositol phosphates with equivalent potency and maximal effect, while ATP behaves as a partial agonist, and ADP is almost inactive [<cite idref="PUB00002940"/>]. The receptor is thus a new member of the P2 purinergic receptor family that functionally behaves as a pyrimidinergic receptor [<cite idref="PUB00002940"/>]. P2Y4 can couple to both Gi and Gq proteins to activate phospholipase C [<cite idref="PUB00007771"/>].</p>
</abstract>
<class_list>
<classification id="GO:0007186" class_type="GO">
<category>Biological Process</category>
<description>G-protein coupled receptor protein signaling pathway</description>
</classification>
<classification id="GO:0016021" class_type="GO">
<category>Cellular Component</category>
<description>integral to membrane</description>
</classification>
<classification id="GO:0045028" class_type="GO">
<category>Molecular Function</category>
<description>purinergic nucleotide receptor activity, G-protein coupled</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O35811"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P51582"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9JJS7"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000131">
<author_list>Birnbaumer L.</author_list>
<title>G proteins in signal transduction.</title>
<db_xref db="PUBMED" dbkey="2111655"/>
<journal>Annu. Rev. Pharmacol. Toxicol.</journal>
<location pages="675-705" volume="30"/>
<year>1990</year>
</publication>
<publication id="PUB00002477">
<author_list>Casey PJ, Gilman AG.</author_list>
<title>G protein involvement in receptor-effector coupling.</title>
<db_xref db="PUBMED" dbkey="2830256"/>
<journal>J. Biol. Chem.</journal>
<location issue="6" pages="2577-80" volume="263"/>
<year>1988</year>
</publication>
<publication id="PUB00002940">
<author_list>Communi D, Pirotton S, Parmentier M, Boeynaems JM.</author_list>
<title>Cloning and functional expression of a human uridine nucleotide receptor.</title>
<db_xref db="PUBMED" dbkey="8537336"/>
<journal>J. Biol. Chem.</journal>
<location issue="52" pages="30849-52" volume="270"/>
<year>1995</year>
</publication>
<publication id="PUB00004960">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8386361"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="167-76" volume="6"/>
<year>1993</year>
</publication>
<publication id="PUB00007771">
<author_list>Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM.</author_list>
<title>Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors.</title>
<db_xref db="PUBMED" dbkey="10889463"/>
<journal>Cell. Signal.</journal>
<location issue="6" pages="351-60" volume="12"/>
<year>2000</year>
</publication>
<publication id="PUB00004961">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Fingerprinting G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8170923"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="195-203" volume="7"/>
<year>1994</year>
</publication>
<publication id="PUB00005868">
<author_list>Watson S, Arkinstall S.</author_list>
<title>Adenosine and adenine nucleotides.</title>
<book_title>ISBN:0127384405</book_title>
<location pages="19-31"/>
<year>1994</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR002286"/>
</parent_list>
<member_list>
<db_xref protein_count="24" db="PANTHER" dbkey="PTHR19264:SF154" name="P2Y4_purnocptor"/>
<db_xref protein_count="20" db="PRINTS" dbkey="PR01066" name="P2Y4PRNOCPTR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000018"/>
<db_xref db="IUPHAR" dbkey="2396"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="25"/>
<taxon_data name="Chordata" proteins_count="25"/>
<taxon_data name="Human" proteins_count="4"/>
<taxon_data name="Mouse" proteins_count="2"/>
<taxon_data name="Metazoa" proteins_count="25"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000020" protein_count="188" short_name="Anaphylatoxin/fibulin" type="Domain">
<name>Anaphylatoxin/fibulin</name>
<abstract>
<p>Complement components C3, C4 and C5 are large glycoproteins that have important functions in the immune response and host defence [<cite idref="PUB00003181"/>]. They have a wide variety of biological activities and are proteolytically activated by cleavage at a specific site, forming a- and b-fragments [<cite idref="PUB00002512"/>]. A-fragments form distinct structural domains of approximately 76 amino acids, coded for by a single exon within the complement protein gene. The C3a, C4a and C5a components are referred to as anaphylatoxins [<cite idref="PUB00002512"/>, <cite idref="PUB00001343"/>]: they cause smooth muscle contraction, histamine release from mast cells, and enhanced vascular permeability [<cite idref="PUB00001343"/>]. They also mediate chemotaxis, inflammation, and generation of cytotoxic oxygen radicals [<cite idref="PUB00001343"/>]. The proteins are highly hydrophilic, with a mainly alpha-helical structure held together by 3 disulphide bridges [<cite idref="PUB00001343"/>].</p>
<p> Fibulins are secreted glycoproteins that become incorporated into a fibrillar extracellular matrix when expressed by cultured cells or added exogenously to cell monolayers [<cite idref="PUB00003065"/>, <cite idref="PUB00011223"/>]. The five known members of the family share an elongated structure and many calcium-binding sites, owing to the presence of tandem arrays of epidermal growth factor-like domains. They have overlapping binding sites for several basement-membrane proteins, tropoelastin, fibrillin, fibronectin and proteoglycans, and they participate in diverse supramolecular structures. The amino-terminal domain I of fibulin consists of three anaphylatoxin-like (AT) modules, each approximately 40 residues long and containing four or six cysteines. The structure of an AT module was determined for the complement-derived anaphylatoxin C3a, and was found to be a compact alpha-helical fold that is stabilised by three disulphide bridges in the pattern Cys1-4, Cys2-5 and Cys3-6 (where Cys is cysteine). The bulk of the remaining portion of the fibulin molecule is a series of nine EGF-like repeats [<cite idref="PUB00003073"/>]. </p>
</abstract>
<class_list>
<classification id="GO:0005576" class_type="GO">
<category>Cellular Component</category>
<description>extracellular region</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O77469"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P01029"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P01031"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P01032"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001343">
<author_list>Gennaro R, Simonic T, Negri A, Mottola C, Secchi C, Ronchi S, Romeo D.</author_list>
<title>C5a fragment of bovine complement. Purification, bioassays, amino-acid sequence and other structural studies.</title>
<db_xref db="PUBMED" dbkey="3081348"/>
<journal>Eur. J. Biochem.</journal>
<location issue="1" pages="77-86" volume="155"/>
<year>1986</year>
</publication>
<publication id="PUB00002512">
<author_list>Ogata RT, Rosa PA, Zepf NE.</author_list>
<title>Sequence of the gene for murine complement component C4.</title>
<db_xref db="PUBMED" dbkey="2777798"/>
<journal>J. Biol. Chem.</journal>
<location issue="28" pages="16565-72" volume="264"/>
<year>1989</year>
</publication>
<publication id="PUB00003065">
<author_list>Argraves WS, Tran H, Burgess WH, Dickerson K.</author_list>
<title>Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure.</title>
<db_xref db="PUBMED" dbkey="2269669"/>
<journal>J. Cell Biol.</journal>
<location issue="6 Pt 2" pages="3155-64" volume="111"/>
<year>1990</year>
</publication>
<publication id="PUB00011223">
<author_list>Timpl R, Sasaki T, Kostka G, Chu ML.</author_list>
<title>Fibulins: a versatile family of extracellular matrix proteins.</title>
<db_xref db="PUBMED" dbkey="12778127"/>
<journal>Nat. Rev. Mol. Cell Biol.</journal>
<location issue="6" pages="479-89" volume="4"/>
<year>2003</year>
</publication>
<publication id="PUB00003073">
<author_list>Pan TC, Sasaki T, Zhang RZ, Fassler R, Timpl R, Chu ML.</author_list>
<title>Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding.</title>
<db_xref db="PUBMED" dbkey="8245130"/>
<journal>J. Cell Biol.</journal>
<location issue="5" pages="1269-77" volume="123"/>
<year>1993</year>
</publication>
<publication id="PUB00003181">
<author_list>Fritzinger DC, Petrella EC, Connelly MB, Bredehorst R, Vogel CW.</author_list>
<title>Primary structure of cobra complement component C3.</title>
<db_xref db="PUBMED" dbkey="1431125"/>
<journal>J. Immunol.</journal>
<location issue="11" pages="3554-62" volume="149"/>
<year>1992</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR018081"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR017048"/>
</found_in>
<member_list>
<db_xref protein_count="182" db="PFAM" dbkey="PF01821" name="ANATO"/>
<db_xref protein_count="143" db="PROSITE" dbkey="PS01177" name="ANAPHYLATOXIN_1"/>
<db_xref protein_count="178" db="PROFILE" dbkey="PS01178" name="ANAPHYLATOXIN_2"/>
<db_xref protein_count="155" db="SMART" dbkey="SM00104" name="ANATO"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01821"/>
<db_xref db="MSDsite" dbkey="PS01177"/>
<db_xref db="BLOCKS" dbkey="IPB000020"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00906"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1c5a"/>
<db_xref db="PDB" dbkey="1cfa"/>
<db_xref db="PDB" dbkey="1kjs"/>
<db_xref db="CATH" dbkey="1.20.91.20"/>
<db_xref db="SCOP" dbkey="a.50.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="188"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="178"/>
<taxon_data name="Human" proteins_count="46"/>
<taxon_data name="Mouse" proteins_count="19"/>
<taxon_data name="Metazoa" proteins_count="188"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018081"/>
</sec_list>
</interpro>
<interpro id="IPR000021" protein_count="435" short_name="Hok/gef_toxin" type="Family">
<name>Hok/gef cell toxic protein</name>
<abstract>
The hok/gef family of Gram-negative bacterial proteins are toxic to cells
when over-expressed, killing the cells from within by interfering with a
vital function in the cell membrane [<cite idref="PUB00003728"/>]. Some family members (flm) increase the stability of unstable RNA [<cite idref="PUB00003728"/>], some (pnd) induce the degradation of stable RNA at higher than optimum growth temperatures [<cite idref="PUB00000587"/>], while others affect the release of cellular magnesium by membrane alterations [<cite idref="PUB00000587"/>]. The
proteins are short (50-70 residues), consisting of an N-terminal hydrophobic (possibly membrane spanning) domain, and a C-terminal periplasmic region, which contains the toxic domain. The C-terminal region contains a conserved cysteine residue that mediates homo-dimerisation in the gef protein, although dimerisation is not necessary for the toxic effect [<cite idref="PUB00003810"/>].
</abstract>
<class_list>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P0ACG4"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000587">
<author_list>Sakikawa T, Akimoto S, Ohnishi Y.</author_list>
<title>The pnd gene in E. coli plasmid R16: nucleotide sequence and gene expression leading to cell Mg2+ release and stable RNA degradation.</title>
<db_xref db="PUBMED" dbkey="2465777"/>
<journal>Biochim. Biophys. Acta</journal>
<location issue="2" pages="158-66" volume="1007"/>
<year>1989</year>
</publication>
<publication id="PUB00003728">
<author_list>Golub EI, Panzer HA.</author_list>
<title>The F factor of Escherichia coli carries a locus of stable plasmid inheritance stm, similar to the parB locus of plasmid RI.</title>
<db_xref db="PUBMED" dbkey="3070354"/>
<journal>Mol. Gen. Genet.</journal>
<location issue="2" pages="353-7" volume="214"/>
<year>1988</year>
</publication>
<publication id="PUB00003810">
<author_list>Poulsen LK, Refn A, Molin S, Andersson P.</author_list>
<title>Topographic analysis of the toxic Gef protein from Escherichia coli.</title>
<db_xref db="PUBMED" dbkey="1943700"/>
<journal>Mol. Microbiol.</journal>
<location issue="7" pages="1627-37" volume="5"/>
<year>1991</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018084"/>
</contains>
<member_list>
<db_xref protein_count="435" db="PFAM" dbkey="PF01848" name="HOK_GEF"/>
<db_xref protein_count="385" db="PRINTS" dbkey="PR00281" name="HOKGEFTOXIC"/>
<db_xref protein_count="405" db="PRODOM" dbkey="PD005979" name="Hok/gef_toxin"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01848"/>
<db_xref db="MSDsite" dbkey="PS00556"/>
<db_xref db="BLOCKS" dbkey="IPB000021"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00481"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="424"/>
<taxon_data name="Virus" proteins_count="8"/>
<taxon_data name="Unclassified" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000022" protein_count="5636" short_name="Carboxyl_trans" type="Domain">
<name>Carboxyl transferase</name>
<abstract>
<p>Members in this domain include biotin dependent carboxylases
[<cite idref="PUB00001442"/>, <cite idref="PUB00002227"/>].
The carboxyl transferase domain carries out the following reaction;
transcarboxylation from biotin to an acceptor molecule. There are
two recognised types of carboxyl transferase. One of them uses acyl-CoA
and the other uses 2-oxo acid as the acceptor molecule of carbon dioxide.
All of the members in this family utilise acyl-CoA as the acceptor
molecule.</p>
</abstract>
<class_list>
<classification id="GO:0016874" class_type="GO">
<category>Molecular Function</category>
<description>ligase activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00763"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P34385"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q00955"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q3ULD5"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9V9A7"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001442">
<author_list>Toh H, Kondo H, Tanabe T.</author_list>
<title>Molecular evolution of biotin-dependent carboxylases.</title>
<db_xref db="PUBMED" dbkey="8102604"/>
<journal>Eur. J. Biochem.</journal>
<location issue="3" pages="687-96" volume="215"/>
<year>1993</year>
</publication>
<publication id="PUB00002227">
<author_list>Thornton CG, Kumar GK, Haase FC, Phillips NF, Woo SB, Park VM, Magner WJ, Shenoy BC, Wood HG, Samols D.</author_list>
<title>Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli.</title>
<db_xref db="PUBMED" dbkey="8366018"/>
<journal>J. Bacteriol.</journal>
<location issue="17" pages="5301-8" volume="175"/>
<year>1993</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR011762"/>
<rel_ref ipr_ref="IPR011763"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR000438"/>
<rel_ref ipr_ref="IPR005783"/>
<rel_ref ipr_ref="IPR017556"/>
</found_in>
<member_list>
<db_xref protein_count="5637" db="PFAM" dbkey="PF01039" name="Carboxyl_trans"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01039"/>
<db_xref db="BLOCKS" dbkey="IPB000022"/>
<db_xref db="EC" dbkey="6.4.1.2"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1od2"/>
<db_xref db="PDB" dbkey="1od4"/>
<db_xref db="PDB" dbkey="1on3"/>
<db_xref db="PDB" dbkey="1on9"/>
<db_xref db="PDB" dbkey="1pix"/>
<db_xref db="PDB" dbkey="1uyr"/>
<db_xref db="PDB" dbkey="1uys"/>
<db_xref db="PDB" dbkey="1uyt"/>
<db_xref db="PDB" dbkey="1uyv"/>
<db_xref db="PDB" dbkey="1vrg"/>
<db_xref db="PDB" dbkey="1w2x"/>
<db_xref db="PDB" dbkey="1x0u"/>
<db_xref db="PDB" dbkey="1xnv"/>
<db_xref db="PDB" dbkey="1xnw"/>
<db_xref db="PDB" dbkey="1xny"/>
<db_xref db="PDB" dbkey="1xo6"/>
<db_xref db="PDB" dbkey="2a7s"/>
<db_xref db="PDB" dbkey="2bzr"/>
<db_xref db="PDB" dbkey="2f9y"/>
<db_xref db="CATH" dbkey="3.90.226.10"/>
<db_xref db="SCOP" dbkey="c.14.1.4"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="3755"/>
<taxon_data name="Cyanobacteria" proteins_count="56"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="91"/>
<taxon_data name="Eukaryota" proteins_count="1789"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
<taxon_data name="Rice spp." proteins_count="14"/>
<taxon_data name="Fungi" proteins_count="150"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
<taxon_data name="Nematoda" proteins_count="6"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="6"/>
<taxon_data name="Arthropoda" proteins_count="41"/>
<taxon_data name="Fruit Fly" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="110"/>
<taxon_data name="Human" proteins_count="29"/>
<taxon_data name="Mouse" proteins_count="18"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="1366"/>
<taxon_data name="Green Plants" proteins_count="1366"/>
<taxon_data name="Metazoa" proteins_count="333"/>
<taxon_data name="Plastid Group" proteins_count="36"/>
<taxon_data name="Plastid Group" proteins_count="19"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000023" protein_count="2630" short_name="Phosphofructokinase" type="Domain">
<name>Phosphofructokinase</name>
<abstract>
The enzyme-catalysed transfer of a phosphoryl group from ATP is an
important reaction in a wide variety of biological processes [<cite idref="PUB00004002"/>]. One
enzyme that utilises this reaction is phosphofructokinase (PFK), which
catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-
bisphosphate, a key regulatory step in the glycolytic pathway [<cite idref="PUB00014238"/>, <cite idref="PUB00000020"/>].
PFK exists as a homotetramer in bacteria and mammals (where each monomer
possesses 2 similar domains), and as an octomer in yeast (where there are
4 alpha- (PFK1) and 4 beta-chains (PFK2), the latter, like the mammalian
monomers, possessing 2 similar domains [<cite idref="PUB00000020"/>]). <p>PFK is ~300 amino acids in length, and structural studies of the
bacterial enzyme have shown it comprises two similar (alpha/beta) lobes: one involved in
ATP binding and the other housing both the substrate-binding site and the allosteric site (a regulatory binding site distinct from the active site, but that affects enzyme
activity). The identical tetramer subunits adopt 2
different conformations: in a 'closed' state, the bound magnesium ion
bridges the phosphoryl groups of the enzyme products (ADP and fructose-1,6-
bisphosphate); and in an 'open' state, the magnesium ion binds only the ADP
[<cite idref="PUB00003237"/>], as the 2 products are now further apart. These conformations are
thought to be successive stages of a reaction pathway that requires subunit
closure to bring the 2 molecules sufficiently close to react [<cite idref="PUB00003237"/>].</p>
<p>Deficiency in PFK leads to glycogenosis type VII (Tauri's disease), an
autosomal recessive disorder characterised by severe nausea, vomiting,
muscle cramps and myoglobinuria in response to bursts of intense or
vigorous exercise [<cite idref="PUB00000020"/>]. Sufferers are usually able to lead a reasonably
ordinary life by learning to adjust activity levels [<cite idref="PUB00000020"/>].</p>
</abstract>
<class_list>
<classification id="GO:0003872" class_type="GO">
<category>Molecular Function</category>
<description>6-phosphofructokinase activity</description>
</classification>
<classification id="GO:0005945" class_type="GO">
<category>Cellular Component</category>
<description>6-phosphofructokinase complex</description>
</classification>
<classification id="GO:0006096" class_type="GO">
<category>Biological Process</category>
<description>glycolysis</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P08237"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P12382"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P16861"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P52034"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q27483"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000020">
<author_list>Raben N, Exelbert R, Spiegel R, Sherman JB, Nakajima H, Plotz P, Heinisch J.</author_list>
<title>Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency.</title>
<db_xref db="PUBMED" dbkey="7825568"/>
<journal>Am. J. Hum. Genet.</journal>
<location issue="1" pages="131-41" volume="56"/>
<year>1995</year>
</publication>
<publication id="PUB00003237">
<author_list>Shirakihara Y, Evans PR.</author_list>
<title>Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products.</title>
<db_xref db="PUBMED" dbkey="2975709"/>
<journal>J. Mol. Biol.</journal>
<location issue="4" pages="973-94" volume="204"/>
<year>1988</year>
</publication>
<publication id="PUB00004002">
<author_list>Hellinga HW, Evans PR.</author_list>
<title>Mutations in the active site of Escherichia coli phosphofructokinase.</title>
<db_xref db="PUBMED" dbkey="2953977"/>
<journal>Nature</journal>
<location issue="6121" pages="437-9" volume="327"/>
<year>1987</year>
</publication>
<publication id="PUB00014238">
<author_list>Wegener G, Krause U.</author_list>
<title>Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle.</title>
<db_xref db="PUBMED" dbkey="12023862"/>
<journal>Biochem. Soc. Trans.</journal>
<location issue="2" pages="264-70" volume="30"/>
<year>2002</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR011183"/>
<rel_ref ipr_ref="IPR011403"/>
<rel_ref ipr_ref="IPR011404"/>
<rel_ref ipr_ref="IPR011405"/>
<rel_ref ipr_ref="IPR012003"/>
<rel_ref ipr_ref="IPR012004"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR013981"/>
<rel_ref ipr_ref="IPR015912"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR009161"/>
</found_in>
<member_list>
<db_xref protein_count="2586" db="PFAM" dbkey="PF00365" name="PFK"/>
<db_xref protein_count="2522" db="PRINTS" dbkey="PR00476" name="PHFRCTKINASE"/>
<db_xref protein_count="2622" db="SSF" dbkey="SSF53784" name="Ppfruckinase"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00365"/>
<db_xref db="BLOCKS" dbkey="IPB000023"/>
<db_xref db="EC" dbkey="2.7.1.11"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1kzh"/>
<db_xref db="PDB" dbkey="1mto"/>
<db_xref db="PDB" dbkey="1pfk"/>
<db_xref db="PDB" dbkey="1zxx"/>
<db_xref db="PDB" dbkey="2f48"/>
<db_xref db="PDB" dbkey="2pfk"/>
<db_xref db="PDB" dbkey="3pfk"/>
<db_xref db="PDB" dbkey="4pfk"/>
<db_xref db="PDB" dbkey="6pfk"/>
<db_xref db="CATH" dbkey="1.10.10.480"/>
<db_xref db="CATH" dbkey="3.40.50.450"/>
<db_xref db="CATH" dbkey="3.40.50.460"/>
<db_xref db="SCOP" dbkey="c.89.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2023"/>
<taxon_data name="Cyanobacteria" proteins_count="43"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
<taxon_data name="Archaea" proteins_count="16"/>
<taxon_data name="Eukaryota" proteins_count="587"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="15"/>
<taxon_data name="Rice spp." proteins_count="50"/>
<taxon_data name="Fungi" proteins_count="102"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
<taxon_data name="Other Eukaryotes" proteins_count="13"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Nematoda" proteins_count="3"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="25"/>
<taxon_data name="Fruit Fly" proteins_count="3"/>
<taxon_data name="Chordata" proteins_count="92"/>
<taxon_data name="Human" proteins_count="27"/>
<taxon_data name="Mouse" proteins_count="11"/>
<taxon_data name="Virus" proteins_count="2"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="11"/>
<taxon_data name="Plastid Group" proteins_count="199"/>
<taxon_data name="Green Plants" proteins_count="199"/>
<taxon_data name="Metazoa" proteins_count="283"/>
<taxon_data name="Plastid Group" proteins_count="53"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="8"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR011183"/>
<sec_ac acc="IPR011403"/>
<sec_ac acc="IPR011404"/>
<sec_ac acc="IPR011405"/>
<sec_ac acc="IPR012003"/>
<sec_ac acc="IPR012004"/>
</sec_list>
</interpro>
<interpro id="IPR000024" protein_count="595" short_name="Frizzled_Cys-rich" type="Domain">
<name>Frizzled cysteine-rich domain</name>
<abstract>
The Frizzled CRD (cysteine rich domain) is conserved in diverse proteins including several receptor tyrosine kinases
[<cite idref="PUB00001039"/>, <cite idref="PUB00005055"/>, <cite idref="PUB00005486"/>].
In <taxon tax_id="7227">Drosophila melanogaster</taxon>, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have in their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. Sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development, include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2.
The structure of this domain is known and is composed mainly of alpha helices.
This domain contains ten conserved cysteines that form five disulphide bridges.
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00144"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O19116"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O77438"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P39061"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q24760"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001039">
<author_list>Xu YK, Nusse R.</author_list>
<title>The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases.</title>
<db_xref db="PUBMED" dbkey="9637908"/>
<journal>Curr. Biol.</journal>
<location issue="12" pages="R405-6" volume="8"/>
<year>1998</year>
</publication>
<publication id="PUB00005055">
<author_list>Saldanha J, Singh J, Mahadevan D.</author_list>
<title>Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases.</title>
<db_xref db="PUBMED" dbkey="9684897"/>
<journal>Protein Sci.</journal>
<location issue="7" pages="1632-5" volume="7"/>
<year>1998</year>
</publication>
<publication id="PUB00005486">
<author_list>Rehn M, Pihlajaniemi T, Hofmann K, Bucher P.</author_list>
<title>The frizzled motif: in how many different protein families does it occur?</title>
<db_xref db="PUBMED" dbkey="9852758"/>
<journal>Trends Biochem. Sci.</journal>
<location issue="11" pages="415-7" volume="23"/>
<year>1998</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR020067"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR020068"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR015526"/>
<rel_ref ipr_ref="IPR017052"/>
<rel_ref ipr_ref="IPR017343"/>
</found_in>
<member_list>
<db_xref protein_count="542" db="GENE3D" dbkey="G3DSA:1.10.2000.10" name="Frizzled_Cys-rich"/>
<db_xref protein_count="596" db="SSF" dbkey="SSF63501" name="Frizzled_Cys-rich"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01392"/>
<db_xref db="BLOCKS" dbkey="IPB000024"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50038"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ijx"/>
<db_xref db="PDB" dbkey="1ijy"/>
<db_xref db="CATH" dbkey="1.10.2000.10"/>
<db_xref db="SCOP" dbkey="a.141.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="596"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="8"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="8"/>
<taxon_data name="Arthropoda" proteins_count="147"/>
<taxon_data name="Fruit Fly" proteins_count="20"/>
<taxon_data name="Chordata" proteins_count="366"/>
<taxon_data name="Human" proteins_count="48"/>
<taxon_data name="Mouse" proteins_count="49"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
<taxon_data name="Green Plants" proteins_count="2"/>
<taxon_data name="Metazoa" proteins_count="584"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR020068"/>
</sec_list>
</interpro>
<interpro id="IPR000025" protein_count="125" short_name="Melatonin_rcpt" type="Family">
<name>Melatonin receptor</name>
<abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>Melatonin is secreted by the pineal gland during darkness [<cite idref="PUB00005892"/>]. It regulates
a variety of neuroendocrine functions and is thought to play an essential
role in circadian rhythms. Drugs that modify the action of melatonin,
and hence influence circadian cycles, are of clinical interest (for example,
in the treatment of jet-lag). Melatonin receptors are found in the
retina, in the pars tuberalis of the pituitary, and in discrete areas of
the brain. The receptor inhibits adenylyl cyclase via a pertussis-toxin-sensitive G-protein, probably of the Gi/Go class [<cite idref="PUB00005892"/>].</p>
</abstract>
<class_list>
<classification id="GO:0007186" class_type="GO">
<category>Biological Process</category>
<description>G-protein coupled receptor protein signaling pathway</description>
</classification>
<classification id="GO:0008502" class_type="GO">
<category>Molecular Function</category>
<description>melatonin receptor activity</description>
</classification>
<classification id="GO:0016021" class_type="GO">
<category>Cellular Component</category>
<description>integral to membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O88495"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P48039"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P48040"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000131">
<author_list>Birnbaumer L.</author_list>
<title>G proteins in signal transduction.</title>
<db_xref db="PUBMED" dbkey="2111655"/>
<journal>Annu. Rev. Pharmacol. Toxicol.</journal>
<location pages="675-705" volume="30"/>
<year>1990</year>
</publication>
<publication id="PUB00002477">
<author_list>Casey PJ, Gilman AG.</author_list>
<title>G protein involvement in receptor-effector coupling.</title>
<db_xref db="PUBMED" dbkey="2830256"/>
<journal>J. Biol. Chem.</journal>
<location issue="6" pages="2577-80" volume="263"/>
<year>1988</year>
</publication>
<publication id="PUB00004960">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8386361"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="167-76" volume="6"/>
<year>1993</year>
</publication>
<publication id="PUB00004961">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Fingerprinting G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8170923"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="195-203" volume="7"/>
<year>1994</year>
</publication>
<publication id="PUB00005892">
<author_list>Watson S, Arkinstall S.</author_list>
<title>Melatonin.</title>
<book_title>ISBN:0127384405</book_title>
<location pages="192-3"/>
<year>1994</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR000276"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR002278"/>
<rel_ref ipr_ref="IPR002279"/>
<rel_ref ipr_ref="IPR002280"/>
</child_list>
<member_list>
<db_xref protein_count="125" db="PRINTS" dbkey="PR00857" name="MELATONINR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000025"/>
<db_xref db="IUPHAR" dbkey="2361"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="125"/>
<taxon_data name="Chordata" proteins_count="125"/>
<taxon_data name="Human" proteins_count="7"/>
<taxon_data name="Mouse" proteins_count="7"/>
<taxon_data name="Metazoa" proteins_count="125"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR002278"/>
<sec_ac acc="IPR002279"/>
<sec_ac acc="IPR002280"/>
</sec_list>
</interpro>
<interpro id="IPR000026" protein_count="399" short_name="Gua-sp_ribonuclease_N1/T1" type="Family">
<name>Guanine-specific ribonuclease N1/T1</name>
<abstract>
<p>Ribonuclease N1 (RNase N1) is a guanine-specific ribonuclease from fungi. RNase T1 and other bacteria RNases are related.</p>
<p>The enzyme hydrolyses the phosphodiester bonds in RNA and oligoribonucleotides [<cite idref="PUB00000397"/>], resulting in 3'-nucleoside monophosphates via 2',3'-cyclophosphate intermediates.</p>
</abstract>
<class_list>
<classification id="GO:0003723" class_type="GO">
<category>Molecular Function</category>
<description>RNA binding</description>
</classification>
<classification id="GO:0004521" class_type="GO">
<category>Molecular Function</category>
<description>endoribonuclease activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P00648"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P00651"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000397">
<author_list>Buckle AM, Fersht AR.</author_list>
<title>Subsite binding in an RNase: structure of a barnase-tetranucleotide complex at 1.76-A resolution.</title>
<db_xref db="PUBMED" dbkey="8110767"/>
<journal>Biochemistry</journal>
<location issue="7" pages="1644-53" volume="33"/>
<year>1994</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR001887"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR016191"/>
</contains>
<member_list>
<db_xref protein_count="399" db="PFAM" dbkey="PF00545" name="Ribonuclease"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00545"/>
<db_xref db="BLOCKS" dbkey="IPB000026"/>
<db_xref db="EC" dbkey="3.1.27"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a2p"/>
<db_xref db="PDB" dbkey="1aqz"/>
<db_xref db="PDB" dbkey="1ay7"/>
<db_xref db="PDB" dbkey="1b20"/>
<db_xref db="PDB" dbkey="1b21"/>
<db_xref db="PDB" dbkey="1b27"/>
<db_xref db="PDB" dbkey="1b2m"/>
<db_xref db="PDB" dbkey="1b2s"/>
<db_xref db="PDB" dbkey="1b2u"/>
<db_xref db="PDB" dbkey="1b2x"/>
<db_xref db="PDB" dbkey="1b2z"/>
<db_xref db="PDB" dbkey="1b3s"/>
<db_xref db="PDB" dbkey="1ban"/>
<db_xref db="PDB" dbkey="1bao"/>
<db_xref db="PDB" dbkey="1bgs"/>
<db_xref db="PDB" dbkey="1bir"/>
<db_xref db="PDB" dbkey="1bne"/>
<db_xref db="PDB" dbkey="1bnf"/>
<db_xref db="PDB" dbkey="1bng"/>
<db_xref db="PDB" dbkey="1bni"/>
<db_xref db="PDB" dbkey="1bnj"/>
<db_xref db="PDB" dbkey="1bnr"/>
<db_xref db="PDB" dbkey="1bns"/>
<db_xref db="PDB" dbkey="1box"/>
<db_xref db="PDB" dbkey="1brg"/>
<db_xref db="PDB" dbkey="1brh"/>
<db_xref db="PDB" dbkey="1bri"/>
<db_xref db="PDB" dbkey="1brj"/>
<db_xref db="PDB" dbkey="1brk"/>
<db_xref db="PDB" dbkey="1brn"/>
<db_xref db="PDB" dbkey="1brs"/>
<db_xref db="PDB" dbkey="1bsa"/>
<db_xref db="PDB" dbkey="1bsb"/>
<db_xref db="PDB" dbkey="1bsc"/>
<db_xref db="PDB" dbkey="1bsd"/>
<db_xref db="PDB" dbkey="1bse"/>
<db_xref db="PDB" dbkey="1bu4"/>
<db_xref db="PDB" dbkey="1buj"/>
<db_xref db="PDB" dbkey="1bvi"/>
<db_xref db="PDB" dbkey="1c54"/>
<db_xref db="PDB" dbkey="1ch0"/>
<db_xref db="PDB" dbkey="1de3"/>
<db_xref db="PDB" dbkey="1det"/>
<db_xref db="PDB" dbkey="1fus"/>
<db_xref db="PDB" dbkey="1fut"/>
<db_xref db="PDB" dbkey="1fw7"/>
<db_xref db="PDB" dbkey="1fys"/>
<db_xref db="PDB" dbkey="1fzu"/>
<db_xref db="PDB" dbkey="1g02"/>
<db_xref db="PDB" dbkey="1gmp"/>
<db_xref db="PDB" dbkey="1gmq"/>
<db_xref db="PDB" dbkey="1gmr"/>
<db_xref db="PDB" dbkey="1gou"/>
<db_xref db="PDB" dbkey="1gov"/>
<db_xref db="PDB" dbkey="1goy"/>
<db_xref db="PDB" dbkey="1gsp"/>
<db_xref db="PDB" dbkey="1hyf"/>
<db_xref db="PDB" dbkey="1hz1"/>
<db_xref db="PDB" dbkey="1i0v"/>
<db_xref db="PDB" dbkey="1i0x"/>
<db_xref db="PDB" dbkey="1i2e"/>
<db_xref db="PDB" dbkey="1i2f"/>
<db_xref db="PDB" dbkey="1i2g"/>
<db_xref db="PDB" dbkey="1i3f"/>
<db_xref db="PDB" dbkey="1i3i"/>
<db_xref db="PDB" dbkey="1i70"/>
<db_xref db="PDB" dbkey="1i8v"/>
<db_xref db="PDB" dbkey="1iyy"/>
<db_xref db="PDB" dbkey="1jbr"/>
<db_xref db="PDB" dbkey="1jbs"/>
<db_xref db="PDB" dbkey="1jbt"/>
<db_xref db="PDB" dbkey="1lni"/>
<db_xref db="PDB" dbkey="1lov"/>
<db_xref db="PDB" dbkey="1low"/>
<db_xref db="PDB" dbkey="1loy"/>
<db_xref db="PDB" dbkey="1lra"/>
<db_xref db="PDB" dbkey="1mgr"/>
<db_xref db="PDB" dbkey="1mgw"/>
<db_xref db="PDB" dbkey="1py3"/>
<db_xref db="PDB" dbkey="1pyl"/>
<db_xref db="PDB" dbkey="1q9e"/>
<db_xref db="PDB" dbkey="1r4y"/>
<db_xref db="PDB" dbkey="1rck"/>
<db_xref db="PDB" dbkey="1rcl"/>
<db_xref db="PDB" dbkey="1rds"/>
<db_xref db="PDB" dbkey="1rga"/>
<db_xref db="PDB" dbkey="1rgc"/>
<db_xref db="PDB" dbkey="1rge"/>
<db_xref db="PDB" dbkey="1rgf"/>
<db_xref db="PDB" dbkey="1rgg"/>
<db_xref db="PDB" dbkey="1rgh"/>
<db_xref db="PDB" dbkey="1rgk"/>
<db_xref db="PDB" dbkey="1rgl"/>
<db_xref db="PDB" dbkey="1rhl"/>
<db_xref db="PDB" dbkey="1rls"/>
<db_xref db="PDB" dbkey="1rms"/>
<db_xref db="PDB" dbkey="1rn1"/>
<db_xref db="PDB" dbkey="1rn4"/>
<db_xref db="PDB" dbkey="1rnb"/>
<db_xref db="PDB" dbkey="1rnt"/>
<db_xref db="PDB" dbkey="1rsn"/>
<db_xref db="PDB" dbkey="1rtu"/>
<db_xref db="PDB" dbkey="1sar"/>
<db_xref db="PDB" dbkey="1t2h"/>
<db_xref db="PDB" dbkey="1t2i"/>
<db_xref db="PDB" dbkey="1trp"/>
<db_xref db="PDB" dbkey="1trq"/>
<db_xref db="PDB" dbkey="1tto"/>
<db_xref db="PDB" dbkey="1uci"/>
<db_xref db="PDB" dbkey="1ucj"/>
<db_xref db="PDB" dbkey="1uck"/>
<db_xref db="PDB" dbkey="1ucl"/>
<db_xref db="PDB" dbkey="1x1u"/>
<db_xref db="PDB" dbkey="1x1w"/>
<db_xref db="PDB" dbkey="1x1x"/>
<db_xref db="PDB" dbkey="1x1y"/>
<db_xref db="PDB" dbkey="1ygw"/>
<db_xref db="PDB" dbkey="1ynv"/>
<db_xref db="PDB" dbkey="1yvs"/>
<db_xref db="PDB" dbkey="2aad"/>
<db_xref db="PDB" dbkey="2aae"/>
<db_xref db="PDB" dbkey="2bir"/>
<db_xref db="PDB" dbkey="2bu4"/>
<db_xref db="PDB" dbkey="2c4b"/>
<db_xref db="PDB" dbkey="2f4y"/>
<db_xref db="PDB" dbkey="2f56"/>
<db_xref db="PDB" dbkey="2f5m"/>
<db_xref db="PDB" dbkey="2f5w"/>
<db_xref db="PDB" dbkey="2gsp"/>
<db_xref db="PDB" dbkey="2hoh"/>
<db_xref db="PDB" dbkey="2rbi"/>
<db_xref db="PDB" dbkey="2rnt"/>
<db_xref db="PDB" dbkey="2sar"/>
<db_xref db="PDB" dbkey="3bir"/>
<db_xref db="PDB" dbkey="3bu4"/>
<db_xref db="PDB" dbkey="3gsp"/>
<db_xref db="PDB" dbkey="3hoh"/>
<db_xref db="PDB" dbkey="3rnt"/>
<db_xref db="PDB" dbkey="4bir"/>
<db_xref db="PDB" dbkey="4bu4"/>
<db_xref db="PDB" dbkey="4gsp"/>
<db_xref db="PDB" dbkey="4hoh"/>
<db_xref db="PDB" dbkey="4rnt"/>
<db_xref db="PDB" dbkey="5bir"/>
<db_xref db="PDB" dbkey="5bu4"/>
<db_xref db="PDB" dbkey="5gsp"/>
<db_xref db="PDB" dbkey="5hoh"/>
<db_xref db="PDB" dbkey="5rnt"/>
<db_xref db="PDB" dbkey="6gsp"/>
<db_xref db="PDB" dbkey="6rnt"/>
<db_xref db="PDB" dbkey="7gsp"/>
<db_xref db="PDB" dbkey="7rnt"/>
<db_xref db="PDB" dbkey="8rnt"/>
<db_xref db="PDB" dbkey="9rnt"/>
<db_xref db="CATH" dbkey="3.10.450.30"/>
<db_xref db="SCOP" dbkey="d.1.1.2"/>
<db_xref db="SCOP" dbkey="d.1.1.3"/>
<db_xref db="SCOP" dbkey="d.1.1.4"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="288"/>
<taxon_data name="Cyanobacteria" proteins_count="2"/>
<taxon_data name="Archaea" proteins_count="2"/>
<taxon_data name="Eukaryota" proteins_count="109"/>
<taxon_data name="Fungi" proteins_count="109"/>
<taxon_data name="Metazoa" proteins_count="109"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR001887"/>
</sec_list>
</interpro>
<interpro id="IPR000028" protein_count="155" short_name="Chloroperoxidase" type="Family">
<name>Chloroperoxidase</name>
<abstract>
<p>Chloroperoxidase (CPO), also known as Heme haloperoxidase, is a ~250 residue heme-containing glycoprotein that is secreted by various fungi. Chloroperoxidase was first identified in <taxon tax_id="5474">Caldariomyces fumago</taxon> where it catalyzes the hydrogen
peroxide-dependent chlorination of cyclopentanedione during the biosynthesis
of the antibiotic caldarioymcin. Additionally, heme haloperoxidase catalyzes
the iodination and bromination of a wide range of substrates. Besides
performing H2O2-dependent halogenation reactions, the enzyme catalyzes
dehydrogenation reactions. Chloroperoxidase also functions as a catalase, facilitating the decomposition of hydrogen peroxide to oxygen and water. Furthermore, chloroperoxidase catalyzes P450-like oxygen insertion reactions. The capability of chloroperoxidase to perform these diverse reactions makes it one of the most versatile of all known heme proteins [<cite idref="PUB00052607"/>, <cite idref="PUB00052608"/>].</p>
<p>Despite functional similarities with other heme enzymes, chloroperoxidase
folds into a novel tertiary structure dominated by eight helical segments [<cite idref="PUB00005255"/>]. Structurally, chloroperoxidase is unique, but it shares
features with both peroxidases and P450 enzymes. As in cytochrome P450
enzymes, the proximal heme ligand is a cysteine,
but similar to peroxidases, the distal side of the heme is polar. However,
unlike other peroxidases, the normally conserved distal arginine is lacking
and the catalytic acid base is a glutamic acid and not a histidine [<cite idref="PUB00040032"/>].</p>
</abstract>
<class_list>
<classification id="GO:0004601" class_type="GO">
<category>Molecular Function</category>
<description>peroxidase activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P04963"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00005255">
<author_list>Sundaramoorthy M, Terner J, Poulos TL.</author_list>
<title>The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid.</title>
<db_xref db="PUBMED" dbkey="8747463"/>
<journal>Structure</journal>
<location issue="12" pages="1367-77" volume="3"/>
<year>1995</year>
</publication>
<publication id="PUB00040032">
<author_list>Kuhnel K, Blankenfeldt W, Terner J, Schlichting I.</author_list>
<title>Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate.</title>
<db_xref db="PUBMED" dbkey="16790441"/>
<journal>J. Biol. Chem.</journal>
<location issue="33" pages="23990-8" volume="281"/>
<year>2006</year>
</publication>
<publication id="PUB00052608">
<author_list>Manoj KM, Hager LP.</author_list>
<title>Chloroperoxidase, a janus enzyme.</title>
<db_xref db="PUBMED" dbkey="18220360"/>
<journal>Biochemistry</journal>
<location issue="9" pages="2997-3003" volume="47"/>
<year>2008</year>
</publication>
<publication id="PUB00052607">
<author_list>Hofrichter M, Ullrich R.</author_list>
<title>Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance.</title>
<db_xref db="PUBMED" dbkey="16628447"/>
<journal>Appl. Microbiol. Biotechnol.</journal>
<location issue="3" pages="276-88" volume="71"/>
<year>2006</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="148" db="PFAM" dbkey="PF01328" name="Peroxidase_2"/>
<db_xref protein_count="155" db="PROFILE" dbkey="PS51405" name="HEME_HALOPEROXIDASE"/>
<db_xref protein_count="148" db="GENE3D" dbkey="G3DSA:1.10.489.10" name="Chloroperoxidase"/>
<db_xref protein_count="145" db="SSF" dbkey="SSF47571" name="Chloroperoxidase"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01328"/>
<db_xref db="COMe" dbkey="PRX000234"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1cpo"/>
<db_xref db="PDB" dbkey="2civ"/>
<db_xref db="PDB" dbkey="2ciw"/>
<db_xref db="PDB" dbkey="2cix"/>
<db_xref db="PDB" dbkey="2ciy"/>
<db_xref db="PDB" dbkey="2ciz"/>
<db_xref db="PDB" dbkey="2cj0"/>
<db_xref db="PDB" dbkey="2cj1"/>
<db_xref db="PDB" dbkey="2cj2"/>
<db_xref db="PDB" dbkey="2cpo"/>
<db_xref db="PDB" dbkey="2j18"/>
<db_xref db="PDB" dbkey="2j19"/>
<db_xref db="PDB" dbkey="2j5m"/>
<db_xref db="CATH" dbkey="1.10.489.10"/>
<db_xref db="SCOP" dbkey="a.39.3.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="155"/>
<taxon_data name="Fungi" proteins_count="146"/>
<taxon_data name="Metazoa" proteins_count="146"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000030" protein_count="938" short_name="Uncharacterised_PPE" type="Family">
<name>Uncharacterised protein family, PPE protein</name>
<abstract>
This mycobacterial family is named after a conserved amino-terminal region of about 180
amino acids, the PPE motif. The carboxy termini of proteins belonging to the PPE family are variable, and on the basis of this region at least three groups can be distinguished. The MPTR subgroup is characterised by tandem copies of a motif NXGXGNXG. The second subgroup contains a conserved motif at about position 350.
The third group shares only similarity in the amino terminal region.
The function of these proteins is uncertain but it has been suggested that they may be related to antigenic variation of <taxon tax_id="1773">Mycobacterium tuberculosis</taxon> [<cite idref="PUB00004280"/>].
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O06246"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004280">
<author_list>Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG.</author_list>
<title>Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.</title>
<db_xref db="PUBMED" dbkey="9634230"/>
<journal>Nature</journal>
<location issue="6685" pages="537-44" volume="393"/>
<year>1998</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="938" db="PFAM" dbkey="PF00823" name="PPE"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00823"/>
<db_xref db="BLOCKS" dbkey="IPB000030"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="2g38"/>
<db_xref db="SCOP" dbkey="a.25.4.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="937"/>
<taxon_data name="Virus" proteins_count="1"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000031" protein_count="2381" short_name="AIR_COase_core" type="Domain">
<name>1-(5-Phosphoribosyl)-5-amino-4-imidazole-carboxylate (AIR) carboxylase</name>
<abstract>
<p>Phosphoribosylaminoimidazole carboxylase is a fusion protein in plants and fungi, but consists of two non-interacting proteins in bacteria, PurK and PurE.
PurK, N5-carboxyaminoimidazole ribonucleotide (N5_CAIR) synthetase, catalyzes the conversion of 5-aminoimidazole ribonucleotide (AIR), ATP, and bicarbonate to N5-CAIR, ADP, and Pi. PurE converts N5-CAIR to CAIR, the sixth step of de novo purine biosynthesis. In the presence of high concentrations of bicarbonate, PurE is reported able to convert AIR to CAIR directly and without ATP. Some members of this family contain two copies of this domain [<cite idref="PUB00016905"/>]. The crystal structure of PurE indicates a unique quaternary structure that confirms the octameric nature of the enzyme [<cite idref="PUB00016906"/>].</p>
</abstract>
<class_list>
<classification id="GO:0004638" class_type="GO">
<category>Molecular Function</category>
<description>phosphoribosylaminoimidazole carboxylase activity</description>
</classification>
<classification id="GO:0006189" class_type="GO">
<category>Biological Process</category>
<description>'de novo' IMP biosynthetic process</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P21264"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22234"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q10457"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9DCL9"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9I7S8"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00016905">
<author_list>Meyer E, Kappock TJ, Osuji C, Stubbe J.</author_list>
<title>Evidence for the direct transfer of the carboxylate of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to generate 4-carboxy-5-aminoimidazole ribonucleotide catalyzed by Escherichia coli PurE, an N5-CAIR mutase.</title>
<db_xref db="PUBMED" dbkey="10074353"/>
<journal>Biochemistry</journal>
<location issue="10" pages="3012-8" volume="38"/>
<year>1999</year>
</publication>
<publication id="PUB00016906">
<author_list>Mathews II, Kappock TJ, Stubbe J, Ealick SE.</author_list>
<title>Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway.</title>
<db_xref db="PUBMED" dbkey="10574791"/>
<journal>Structure</journal>
<location issue="11" pages="1395-406" volume="7"/>
<year>1999</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR016301"/>
</found_in>
<member_list>
<db_xref protein_count="1991" db="PANTHER" dbkey="PTHR23046" name="AIR_carboxyl"/>
<db_xref protein_count="2381" db="PFAM" dbkey="PF00731" name="AIRC"/>
<db_xref protein_count="1974" db="TIGRFAMs" dbkey="TIGR01162" name="purE"/>
<db_xref protein_count="2293" db="GENE3D" dbkey="G3DSA:3.40.50.7700" name="AIR_carboxyl"/>
<db_xref protein_count="2369" db="SSF" dbkey="SSF52255" name="AIR_carboxyl"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00731"/>
<db_xref db="BLOCKS" dbkey="IPB000031"/>
<db_xref db="EC" dbkey="4.1.1.21"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1d7a"/>
<db_xref db="PDB" dbkey="1o4v"/>
<db_xref db="PDB" dbkey="1qcz"/>
<db_xref db="PDB" dbkey="1u11"/>
<db_xref db="PDB" dbkey="1xmp"/>
<db_xref db="PDB" dbkey="2ate"/>
<db_xref db="PDB" dbkey="2fw1"/>
<db_xref db="PDB" dbkey="2fw6"/>
<db_xref db="PDB" dbkey="2fw7"/>
<db_xref db="PDB" dbkey="2fw8"/>
<db_xref db="PDB" dbkey="2fw9"/>
<db_xref db="PDB" dbkey="2fwa"/>
<db_xref db="PDB" dbkey="2fwb"/>
<db_xref db="PDB" dbkey="2fwi"/>
<db_xref db="PDB" dbkey="2fwj"/>
<db_xref db="PDB" dbkey="2fwp"/>
<db_xref db="PDB" dbkey="2nsh"/>
<db_xref db="PDB" dbkey="2nsj"/>
<db_xref db="PDB" dbkey="2nsl"/>
<db_xref db="PDB" dbkey="2ywx"/>
<db_xref db="CATH" dbkey="3.40.50.7700"/>
<db_xref db="SCOP" dbkey="c.23.8.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2074"/>
<taxon_data name="Cyanobacteria" proteins_count="109"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
<taxon_data name="Archaea" proteins_count="137"/>
<taxon_data name="Eukaryota" proteins_count="170"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="3"/>
<taxon_data name="Rice spp." proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="76"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="25"/>
<taxon_data name="Fruit Fly" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="22"/>
<taxon_data name="Human" proteins_count="2"/>
<taxon_data name="Mouse" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="26"/>
<taxon_data name="Green Plants" proteins_count="26"/>
<taxon_data name="Metazoa" proteins_count="133"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000032" protein_count="3118" short_name="PTS_HPr_prot-like" type="Domain">
<name>Phosphotransferase system, phosphocarrier HPr protein-like</name>
<abstract>
<p>This entry represents a structural domain found in both the histidine-containing phosphocarrier protein HPr, as well as its structural homologues, which includes the catabolite repression protein Crh found in <taxon tax_id="1423">Bacillus subtilis</taxon>. This domain has a alpha+beta structure found in two layers with an overall architecture of an open faced beta-sandwich in which a beta-sheet is packed against three alpha-helices. </p>
<p>The histidine-containing phosphocarrier protein (HPr) is a central component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), which transfers metabolic carbohydrates across the cell membrane in many bacterial species [<cite idref="PUB00003612"/>, <cite idref="PUB00000073"/>]. PTS catalyses the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. The general mechanism of the PTS is as follows: a phosphoryl group from phosphoenolpyruvate (PEP) is transferred to Enzyme I (EI) of the PTS, which in turn transfers it to the phosphoryl carrier protein (HPr) [<cite idref="PUB00003342"/>, <cite idref="PUB00005243"/>]. Phospho-HPr then transfers the phosphoryl group to a sugar-specific permease complex (enzymes EII/EIII). </p>
<p>HPr [<cite idref="PUB00004777"/>, <cite idref="PUB00005010"/>] is a small cytoplasmic protein of 70 to 90 amino acid residues. In some bacteria, HPr is a domain in a larger protein that includes a EIII(Fru) (IIA) domain and in some cases also the EI domain. A conserved histidine in the N-terminal section of HPr serves as an acceptor for the phosphoryl group of EI. In the central part of HPr, there is a conserved serine which (in Gram-positive bacteria only) is phosphorylated by an ATP-dependent protein kinase; a process which probably play a regulatory role in sugar transport. Regulatory phosphorylation at the conserved Ser residue does not appear to induce large structural changes to the HPr domain, in particular in the region of the active site [<cite idref="PUB00025027"/>, <cite idref="PUB00032584"/>].</p>
</abstract>
<class_list>
<classification id="GO:0005351" class_type="GO">
<category>Molecular Function</category>
<description>sugar:hydrogen symporter activity</description>
</classification>
<classification id="GO:0009401" class_type="GO">
<category>Biological Process</category>
<description>phosphoenolpyruvate-dependent sugar phosphotransferase system</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O06976"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000073">
<author_list>Meadow ND, Fox DK, Roseman S.</author_list>
<title>The bacterial phosphoenolpyruvate: glycose phosphotransferase system.</title>
<db_xref db="PUBMED" dbkey="2197982"/>
<journal>Annu. Rev. Biochem.</journal>
<location pages="497-542" volume="59"/>
<year>1990</year>
</publication>
<publication id="PUB00003342">
<author_list>van Nuland NA, Boelens R, Scheek RM, Robillard GT.</author_list>
<title>High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data.</title>
<db_xref db="PUBMED" dbkey="7853396"/>
<journal>J. Mol. Biol.</journal>
<location issue="1" pages="180-93" volume="246"/>
<year>1995</year>
</publication>
<publication id="PUB00003612">
<author_list>Postma PW, Lengeler JW, Jacobson GR.</author_list>
<title>Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.</title>
<db_xref db="PUBMED" dbkey="8246840"/>
<journal>Microbiol. Rev.</journal>
<location issue="3" pages="543-94" volume="57"/>
<year>1993</year>
</publication>
<publication id="PUB00004777">
<author_list>Herzberg O, Reddy P, Sutrina S, Saier MH Jr, Reizer J, Kapadia G.</author_list>
<title>Structure of the histidine-containing phosphocarrier protein HPr from Bacillus subtilis at 2.0-A resolution.</title>
<db_xref db="PUBMED" dbkey="1549615"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="6" pages="2499-503" volume="89"/>
<year>1992</year>
</publication>
<publication id="PUB00032584">
<author_list>Sridharan S, Razvi A, Scholtz JM, Sacchettini JC.</author_list>
<title>The HPr proteins from the thermophile Bacillus stearothermophilus can form domain-swapped dimers.</title>
<db_xref db="PUBMED" dbkey="15713472"/>
<journal>J. Mol. Biol.</journal>
<location issue="3" pages="919-31" volume="346"/>
<year>2005</year>
</publication>
<publication id="PUB00025027">
<author_list>Audette GF, Engelmann R, Hengstenberg W, Deutscher J, Hayakawa K, Quail JW, Delbaere LT.</author_list>
<title>The 1.9 A resolution structure of phospho-serine 46 HPr from Enterococcus faecalis.</title>
<db_xref db="PUBMED" dbkey="11054290"/>
<journal>J. Mol. Biol.</journal>
<location issue="4" pages="545-53" volume="303"/>
<year>2000</year>
</publication>
<publication id="PUB00005010">
<author_list>Reizer J, Hoischen C, Reizer A, Pham TN, Saier MH Jr.</author_list>
<title>Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.</title>
<db_xref db="PUBMED" dbkey="7686067"/>
<journal>Protein Sci.</journal>
<location issue="4" pages="506-21" volume="2"/>
<year>1993</year>
</publication>
<publication id="PUB00005243">
<author_list>Liao DI, Herzberg O.</author_list>
<title>Refined structures of the active Ser83-->Cys and impaired Ser46-->Asp histidine-containing phosphocarrier proteins.</title>
<db_xref db="PUBMED" dbkey="7704530"/>
<journal>Structure</journal>
<location issue="12" pages="1203-16" volume="2"/>
<year>1994</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR005698"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR001020"/>
<rel_ref ipr_ref="IPR002114"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR016258"/>
<rel_ref ipr_ref="IPR016910"/>
</found_in>
<member_list>
<db_xref protein_count="3109" db="PROFILE" dbkey="PS51350" name="PTS_HPR_DOM"/>
<db_xref protein_count="2835" db="GENE3D" dbkey="G3DSA:3.30.1340.10" name="PTS_HPr_protein"/>
<db_xref protein_count="3066" db="SSF" dbkey="SSF55594" name="HPr_protein"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00381"/>
<db_xref db="BLOCKS" dbkey="IPB000032"/>
<db_xref db="EC" dbkey="2.7.11"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1cm2"/>
<db_xref db="PDB" dbkey="1cm3"/>
<db_xref db="PDB" dbkey="1fu0"/>
<db_xref db="PDB" dbkey="1ggr"/>
<db_xref db="PDB" dbkey="1hdn"/>
<db_xref db="PDB" dbkey="1j6t"/>
<db_xref db="PDB" dbkey="1jem"/>
<db_xref db="PDB" dbkey="1k1c"/>
<db_xref db="PDB" dbkey="1ka5"/>
<db_xref db="PDB" dbkey="1kkl"/>
<db_xref db="PDB" dbkey="1kkm"/>
<db_xref db="PDB" dbkey="1mo1"/>
<db_xref db="PDB" dbkey="1mu4"/>
<db_xref db="PDB" dbkey="1opd"/>
<db_xref db="PDB" dbkey="1pch"/>
<db_xref db="PDB" dbkey="1pfh"/>
<db_xref db="PDB" dbkey="1poh"/>
<db_xref db="PDB" dbkey="1ptf"/>
<db_xref db="PDB" dbkey="1qfr"/>
<db_xref db="PDB" dbkey="1qr5"/>
<db_xref db="PDB" dbkey="1rzr"/>
<db_xref db="PDB" dbkey="1sph"/>
<db_xref db="PDB" dbkey="1txe"/>
<db_xref db="PDB" dbkey="1vrc"/>
<db_xref db="PDB" dbkey="1y51"/>
<db_xref db="PDB" dbkey="1zvv"/>
<db_xref db="PDB" dbkey="2ak7"/>
<db_xref db="PDB" dbkey="2hid"/>
<db_xref db="PDB" dbkey="2hpr"/>
<db_xref db="PDB" dbkey="2jel"/>
<db_xref db="PDB" dbkey="2nzu"/>
<db_xref db="PDB" dbkey="2nzv"/>
<db_xref db="PDB" dbkey="2oen"/>
<db_xref db="PDB" dbkey="2rlz"/>
<db_xref db="PDB" dbkey="3ccd"/>
<db_xref db="PDB" dbkey="3eza"/>
<db_xref db="PDB" dbkey="3ezb"/>
<db_xref db="PDB" dbkey="3eze"/>
<db_xref db="CATH" dbkey="3.30.1340.10"/>
<db_xref db="SCOP" dbkey="d.94.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="3109"/>
<taxon_data name="Cyanobacteria" proteins_count="5"/>
<taxon_data name="Archaea" proteins_count="5"/>
<taxon_data name="Eukaryota" proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
<taxon_data name="Green Plants" proteins_count="3"/>
<taxon_data name="Metazoa" proteins_count="1"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR005698"/>
</sec_list>
</interpro>
<interpro id="IPR000033" protein_count="721" short_name="LDL_rcpt_classB_YWTD_rpt" type="Repeat">
<name>Low-density lipoprotein receptor, class B (YWTD) repeat</name>
<abstract>
<p> The low-density lipoprotein receptor (LDLR) is the major cholesterol-carrying lipoprotein of plasma, acting to regulate cholesterol homeostasis in mammalian cells. The LDL receptor binds LDL and transports it into cells by acidic endocytosis. In order to be internalized, the receptor-ligand complex must first cluster into clathrin-coated pits. Once inside the cell, the LDLR separates from its ligand, which is degraded in the lysosomes, while the receptor returns to the cell surface [<cite idref="PUB00017008"/>]. The internal dissociation of the LDLR with its ligand is mediated by proton pumps within the walls of the endosome that lower the pH. The LDLR is a multi-domain protein, containing: </p>
<p>
<ul>
<li>The ligand-binding domain contains seven or eight 40-amino acid LDLR class A (cysteine-rich) repeats, each of which contains a coordinated calcium ion and six cysteine residues involved in disulphide bond formation [<cite idref="PUB00000798"/>]. Similar domains have been found in other extracellular and membrane proteins [<cite idref="PUB00004868"/>]. </li>
</ul>
</p>
<p>
<ul>
<li>The second conserved region contains two EGF repeats, followed by six LDLR class B (YWTD) repeats, and another EGF repeat. The LDLR class B repeats each contain a conserved YWTD motif, and is predicted to form a beta-propeller structure [<cite idref="PUB00003391"/>]. This region is critical for ligand release and recycling of the receptor [<cite idref="PUB00017009"/>].</li>
</ul>
</p>
<p>
<ul>
<li>The third domain is rich in serine and threonine residues and contains clustered O-linked carbohydrate chains.</li>
</ul>
</p>
<p>
<ul>
<li>The fourth domain is the hydrophobic transmembrane region.</li>
</ul>
</p>
<p>
<ul>
<li>The fifth domain is the cytoplasmic tail that directs the receptor to clathrin-coated pits.</li>
</ul>
</p>
<p>LDLR is closely related in structure to several other receptors, including LRP1, LRP1b, megalin/LRP2, VLDL receptor, lipoprotein receptor, MEGF7/LRP4, and LRP8/apolipoprotein E receptor2); these proteins participate in a wide range of physiological processes, including the regulation of lipid metabolism, protection against atherosclerosis, neurodevelopment, and transport of nutrients and vitamins [<cite idref="PUB00042617"/>].</p>
<p>This entry represents the LDLR classB (YWTD) repeat, the structure of which has been solved [<cite idref="PUB00017010"/>]. The six YWTD repeats together fold into a six-bladed beta-propeller. Each blade of the propeller consists of four antiparallel beta-strands; the innermost strand of each blade is labeled 1 and the outermost strand, 4. The sequence repeats are offset with respect to the blades of the propeller, such that any given 40-residue YWTD repeat spans strands 24 of one propeller blade and strand 1 of the subsequent blade. This offset ensures circularization of the propeller because the last strand of the final sequence repeat acts as an innermost strand 1 of the blade that harbors strands 24 from the first sequence repeat. The repeat is found in a variety of proteins that include, vitellogenin receptor from <taxon tax_id="7227">Drosophila melanogaster</taxon>, low-density lipoprotein (LDL) receptor [<cite idref="PUB00000798"/>], preproepidermal growth factor, and nidogen (entactin).</p>
</abstract>
<class_list>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P01130"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P01132"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P13368"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P98158"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q04833"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000798">
<author_list>Yamamoto T, Davis CG, Brown MS, Schneider WJ, Casey ML, Goldstein JL, Russell DW.</author_list>
<title>The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA.</title>
<db_xref db="PUBMED" dbkey="6091915"/>
<journal>Cell</journal>
<location issue="1" pages="27-38" volume="39"/>
<year>1984</year>
</publication>
<publication id="PUB00003391">
<author_list>Springer TA.</author_list>
<title>An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components.</title>
<db_xref db="PUBMED" dbkey="9790844"/>
<journal>J. Mol. Biol.</journal>
<location issue="4" pages="837-62" volume="283"/>
<year>1998</year>
</publication>
<publication id="PUB00004868">
<author_list>Daly NL, Scanlon MJ, Djordjevic JT, Kroon PA, Smith R.</author_list>
<title>Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor.</title>
<db_xref db="PUBMED" dbkey="7603991"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="14" pages="6334-8" volume="92"/>
<year>1995</year>
</publication>
<publication id="PUB00042617">
<author_list>May P, Woldt E, Matz RL, Boucher P.</author_list>
<title>The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions.</title>
<db_xref db="PUBMED" dbkey="17457719"/>
<journal>Ann. Med.</journal>
<location issue="3" pages="219-28" volume="39"/>
<year>2007</year>
</publication>
<publication id="PUB00017008">
<author_list>Brown MS, Goldstein JL.</author_list>
<title>A receptor-mediated pathway for cholesterol homeostasis.</title>
<db_xref db="PUBMED" dbkey="3513311"/>
<journal>Science</journal>
<location issue="4746" pages="34-47" volume="232"/>
<year>1986</year>
</publication>
<publication id="PUB00017009">
<author_list>Davis CG, Goldstein JL, Sudhof TC, Anderson RG, Russell DW, Brown MS.</author_list>
<title>Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region.</title>
<db_xref db="PUBMED" dbkey="3494949"/>
<journal>Nature</journal>
<location issue="6115" pages="760-5" volume="326"/>
<year>1987</year>
</publication>
<publication id="PUB00017010">
<author_list>Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC.</author_list>
<title>Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair.</title>
<db_xref db="PUBMED" dbkey="11373616"/>
<journal>Nat. Struct. Biol.</journal>
<location issue="6" pages="499-504" volume="8"/>
<year>2001</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR011042"/>
<rel_ref ipr_ref="IPR016317"/>
<rel_ref ipr_ref="IPR017049"/>
</found_in>
<member_list>
<db_xref protein_count="546" db="PFAM" dbkey="PF00058" name="Ldl_recept_b"/>
<db_xref protein_count="561" db="PROFILE" dbkey="PS51120" name="LDLRB"/>
<db_xref protein_count="709" db="SMART" dbkey="SM00135" name="LY"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00058"/>
<db_xref db="BLOCKS" dbkey="IPB000033"/>
<db_xref db="PROSITEDOC" dbkey="PDOC51120"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ijq"/>
<db_xref db="PDB" dbkey="1n7d"/>
<db_xref db="PDB" dbkey="1npe"/>
<db_xref db="CATH" dbkey="2.120.10.30"/>
<db_xref db="SCOP" dbkey="b.68.5.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="49"/>
<taxon_data name="Cyanobacteria" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="9"/>
<taxon_data name="Eukaryota" proteins_count="662"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="2"/>
<taxon_data name="Rice spp." proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="34"/>
<taxon_data name="Other Eukaryotes" proteins_count="10"/>
<taxon_data name="Nematoda" proteins_count="12"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="12"/>
<taxon_data name="Arthropoda" proteins_count="240"/>
<taxon_data name="Fruit Fly" proteins_count="31"/>
<taxon_data name="Chordata" proteins_count="310"/>
<taxon_data name="Human" proteins_count="56"/>
<taxon_data name="Mouse" proteins_count="51"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="9"/>
<taxon_data name="Green Plants" proteins_count="9"/>
<taxon_data name="Metazoa" proteins_count="642"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000034" protein_count="191" short_name="Laminin_B_type_IV" type="Domain">
<name>Laminin B type IV</name>
<abstract>
<p>Laminins represent a distinct family of extracellular matrix proteins present only in basement membranes in almost every animal tissue. They are heterotrimeric molecules composed of alpha, beta and gamma subunits (formerly A, B1, and B2, respectively [<cite idref="PUB00016907"/>]) and form a cruciform structure consisting of 3 short arms, each formed by a different chain, and a long arm composed of all 3 chains, [<cite idref="PUB00001500"/>, <cite idref="PUB00016908"/>]. Most of the globular domains of the short arms correspond to one of two different motifs, the 200-residue laminin N-terminal (domain VI) (LN) module and the 250-residue laminin domain IV (L4) module [<cite idref="PUB00016909"/>]. All alpha chains share a unique C-terminal G domain which consists of five laminin G modules. The laminins can self-assemble, bind to other matrix macromolecules, and have unique and shared cell interactions mediated by integrins, dystroglycan, and other receptors. There are at least 14 laminin isoforms that regulate a variety of cellular functions including cell adhesion, migration, proliferation, signalling and differentiation [<cite idref="PUB00016910"/>, <cite idref="PUB00016908"/>, <cite idref="PUB00016911"/>].</p>
<p>The laminin B domain (also known as domain IV) is an extracellular module of unknown function. It is found in a number of different proteins that include, heparan sulphate proteoglycan from basement membrane, a laminin-like protein from <taxon tax_id="6239">Caenorhabditis elegans</taxon> and laminin. Laminin IV domain is not found in short laminin chains (alpha4 or beta3). </p>
</abstract>
<class_list>
<classification id="GO:0007155" class_type="GO">
<category>Biological Process</category>
<description>cell adhesion</description>
</classification>
<classification id="GO:0031012" class_type="GO">
<category>Cellular Component</category>
<description>extracellular matrix</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A0JP86"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O15230"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P02468"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P15215"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q06561"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001500">
<author_list>Beck K, Hunter I, Engel J.</author_list>
<title>Structure and function of laminin: anatomy of a multidomain glycoprotein.</title>
<db_xref db="PUBMED" dbkey="2404817"/>
<journal>FASEB J.</journal>
<location issue="2" pages="148-60" volume="4"/>
<year>1990</year>
</publication>
<publication id="PUB00016907">
<author_list>Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman H, Martin GR, Meneguzzi G, Paulsson M, Sanes J.</author_list>
<title>A new nomenclature for the laminins.</title>
<db_xref db="PUBMED" dbkey="7921537"/>
<journal>Matrix Biol.</journal>
<location issue="3" pages="209-11" volume="14"/>
<year>1994</year>
</publication>
<publication id="PUB00016908">
<author_list>Timpl R, Brown JC.</author_list>
<title>The laminins.</title>
<db_xref db="PUBMED" dbkey="7827749"/>
<journal>Matrix Biol.</journal>
<location issue="4" pages="275-81" volume="14"/>
<year>1994</year>
</publication>
<publication id="PUB00016909">
<author_list>Schulze B, Mann K, Poschl E, Yamada Y, Timpl R.</author_list>
<title>Structural and functional analysis of the globular domain IVa of the laminin alpha 1 chain and its impact on an adjacent RGD site.</title>
<db_xref db="PUBMED" dbkey="8615779"/>
<journal>Biochem. J.</journal>
<location pages="847-51" volume="314 ( Pt 3)"/>
<year>1996</year>
</publication>
<publication id="PUB00016911">
<author_list>Tunggal P, Smyth N, Paulsson M, Ott MC.</author_list>
<title>Laminins: structure and genetic regulation.</title>
<db_xref db="PUBMED" dbkey="11054872"/>
<journal>Microsc. Res. Tech.</journal>
<location issue="3" pages="214-27" volume="51"/>
<year>2000</year>
</publication>
<publication id="PUB00016910">
<author_list>Aumailley M, Smyth N.</author_list>
<title>The role of laminins in basement membrane function.</title>
<db_xref db="PUBMED" dbkey="9758133"/>
<journal>J. Anat.</journal>
<location pages="1-21" volume="193 ( Pt 1)"/>
<year>1998</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR018031"/>
</child_list>
<member_list>
<db_xref protein_count="183" db="PFAM" dbkey="PF00052" name="Laminin_B"/>
<db_xref protein_count="190" db="PROFILE" dbkey="PS51115" name="LAMININ_IVA"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00052"/>
<db_xref db="BLOCKS" dbkey="IPB000034"/>
<db_xref db="PROSITEDOC" dbkey="PDOC51115"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="2"/>
<taxon_data name="Eukaryota" proteins_count="188"/>
<taxon_data name="Nematoda" proteins_count="8"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="8"/>
<taxon_data name="Arthropoda" proteins_count="78"/>
<taxon_data name="Fruit Fly" proteins_count="14"/>
<taxon_data name="Chordata" proteins_count="82"/>
<taxon_data name="Human" proteins_count="19"/>
<taxon_data name="Mouse" proteins_count="17"/>
<taxon_data name="Metazoa" proteins_count="187"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018031"/>
</sec_list>
</interpro>
<interpro id="IPR000035" protein_count="241" short_name="Alkylbase_DNA_glycsylse_CS" type="Conserved_site">
<name>Alkylbase DNA glycosidase, conserved site</name>
<abstract>
<p>Alkylbase DNA glycosidases [<cite idref="PUB00000053"/>] are DNA repair enzymes that hydrolyse the deoxyribose N-glycosidic bond to excise various alkylated bases from a damaged DNA polymer. In <taxon tax_id="562">Escherichia coli</taxon> there are two alkylbase DNA glycosidases: one (gene tag) which is constitutively expressed and which is specific for the removal of 3-methyladenine (<db_xref db="EC" dbkey="3.2.2.20"/>), and one (gene alkA) which is induced during adaptation to alkylation and which can remove a variety of alkylation products (<db_xref db="EC" dbkey="3.2.2.21"/>). Tag and alkA do not share any region of sequence similarity. In yeast there is an alkylbase DNA glycosidase (gene MAG1) [<cite idref="PUB00001200"/>, <cite idref="PUB00001201"/>], which can remove 3-methyladenine or 7-methyladenine and which is structurally related to alkA. MAG and alkA are both proteins of about 300 amino acid residues. While the C- and N-terminal ends appear to be unrelated, there is a central region of about 130 residues which is well conserved.</p>
</abstract>
<class_list>
<classification id="GO:0003905" class_type="GO">
<category>Molecular Function</category>
<description>alkylbase DNA N-glycosylase activity</description>
</classification>
<classification id="GO:0006281" class_type="GO">
<category>Biological Process</category>
<description>DNA repair</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O94468"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P04395"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22134"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000053">
<author_list>Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y.</author_list>
<title>Regulation and expression of the adaptive response to alkylating agents.</title>
<db_xref db="PUBMED" dbkey="3052269"/>
<journal>Annu. Rev. Biochem.</journal>
<location pages="133-57" volume="57"/>
<year>1988</year>
</publication>
<publication id="PUB00001200">
<author_list>Berdal KG, Bjoras M, Bjelland S, Seeberg E.</author_list>
<title>Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene.</title>
<db_xref db="PUBMED" dbkey="2265619"/>
<journal>EMBO J.</journal>
<location issue="13" pages="4563-8" volume="9"/>
<year>1990</year>
</publication>
<publication id="PUB00001201">
<author_list>Chen J, Derfler B, Samson L.</author_list>
<title>Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage.</title>
<db_xref db="PUBMED" dbkey="2265620"/>
<journal>EMBO J.</journal>
<location issue="13" pages="4569-75" volume="9"/>
<year>1990</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR003265"/>
<rel_ref ipr_ref="IPR011257"/>
</found_in>
<member_list>
<db_xref protein_count="241" db="PROSITE" dbkey="PS00516" name="ALKYLBASE_DNA_GLYCOS"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS00516"/>
<db_xref db="EC" dbkey="3.2.2.21"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00447"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1diz"/>
<db_xref db="PDB" dbkey="1mpg"/>
<db_xref db="PDB" dbkey="1pvs"/>
<db_xref db="PDB" dbkey="3cvs"/>
<db_xref db="PDB" dbkey="3cvt"/>
<db_xref db="PDB" dbkey="3cw7"/>
<db_xref db="PDB" dbkey="3cwa"/>
<db_xref db="PDB" dbkey="3cws"/>
<db_xref db="PDB" dbkey="3cwt"/>
<db_xref db="PDB" dbkey="3cwu"/>
<db_xref db="PDB" dbkey="3d4v"/>
<db_xref db="CATH" dbkey="1.10.1670.10"/>
<db_xref db="CATH" dbkey="1.10.340.30"/>
<db_xref db="SCOP" dbkey="a.96.1.3"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="214"/>
<taxon_data name="Archaea" proteins_count="3"/>
<taxon_data name="Eukaryota" proteins_count="23"/>
<taxon_data name="Fungi" proteins_count="23"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="7"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="23"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000036" protein_count="171" short_name="Peptidase_A26" type="Family">
<name>Peptidase A26, omptin</name>
<abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
<li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. </p>
<p>Aspartic endopeptidases <db_xref db="EC" dbkey="3.4.23."/> of vertebrate, fungal and retroviral origin have been characterised [<cite idref="PUB00006548"/>]. More recently, aspartic endopeptidases associated with the processing of bacterial type 4 prepilin [<cite idref="PUB00020023"/>] and archaean preflagellin have been described [<cite idref="PUB00035904"/>, <cite idref="PUB00014343"/>].</p>
<p>Structurally, aspartic endopeptidases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localised between the two lobes of the molecule. One lobe has probably evolved from the other through a gene duplication event in the distant past. In modern-day enzymes, although the three-dimensional structures are very similar, the amino acid sequences are more divergent, except for the catalytic site motif, which is very conserved. The presence and position of disulphide bridges are other conserved features of aspartic peptidases.
All or most aspartate peptidases are endopeptidases. These enzymes have been assigned into clans (proteins which are evolutionary related), and further sub-divided into families, largely on the basis of their tertiary structure.</p>
<p>This group of aspartic peptidases belongs to the MEROPS family A26 (clan AF). The omptin family, comprises a number of novel outer membrane-associated
serine proteases that are distinct from trypsin-like proteases in that
they cleave polypeptides between two basically-charged amino acids [<cite idref="PUB00002071"/>]. The enzyme is sensitive to the serine protease inhibitor diisopropylfluoro-phosphate, to divalent cations such as Cu<sup>2+</sup>, Zn<sup>2+</sup> and Fe<sup>2+</sup> [<cite idref="PUB00002071"/>], and is
temperature regulated, activity decreasing at lower temperatures [<cite idref="PUB00002071"/>, <cite idref="PUB00002246"/>]. Temperature regulation is most prominently shown in the <taxon tax_id="632">Yersinia pestis</taxon>
coagulase/fibrinolysin protein, where coagulase activity is prevalent
below 30 degrees Celsius, and fibrinolysin (protease) activity is prevalent
above this point, the optimum temperature being 37 degrees [<cite idref="PUB00003795"/>]. It is possible that this assists in 'flea blockage' and transmission of the bacteria to animals [<cite idref="PUB00003795"/>].</p>
<p>The <taxon tax_id="562">Escherichia coli</taxon> OmpT has previously been classified as a serine protease with Ser(99) and His(212) as active site residues. The X-ray structure of the enzyme is inconsistent with this classification, and the involvement of a nucleophilic water molecule that is activated by the Asp(210)/His(212) catalytic dyad classifies this as a aspartic endopeptidase where activity is also strongly dependent on Asp(83) and Asp(85). Both may function in binding of the water molecule and/or oxyanion stabilisation. The proposed mechanism implies a novel proteolytic catalytic site [<cite idref="PUB00011706"/>, <cite idref="PUB00011707"/>].</p>
</abstract>
<class_list>
<classification id="GO:0004175" class_type="GO">
<category>Molecular Function</category>
<description>endopeptidase activity</description>
</classification>
<classification id="GO:0006508" class_type="GO">
<category>Biological Process</category>
<description>proteolysis</description>
</classification>
<classification id="GO:0009279" class_type="GO">
<category>Cellular Component</category>
<description>cell outer membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P09169"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002071">
<author_list>Sugimura K, Nishihara T.</author_list>
<title>Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT.</title>
<db_xref db="PUBMED" dbkey="3056908"/>
<journal>J. Bacteriol.</journal>
<location issue="12" pages="5625-32" volume="170"/>
<year>1988</year>
</publication>
<publication id="PUB00002246">
<author_list>Kaufmann A, Stierhof YD, Henning U.</author_list>
<title>New outer membrane-associated protease of Escherichia coli K-12.</title>
<db_xref db="PUBMED" dbkey="8288530"/>
<journal>J. Bacteriol.</journal>
<location issue="2" pages="359-67" volume="176"/>
<year>1994</year>
</publication>
<publication id="PUB00003795">
<author_list>McDonough KA, Falkow S.</author_list>
<title>A Yersinia pestis-specific DNA fragment encodes temperature-dependent coagulase and fibrinolysin-associated phenotypes.</title>
<db_xref db="PUBMED" dbkey="2526282"/>
<journal>Mol. Microbiol.</journal>
<location issue="6" pages="767-75" volume="3"/>
<year>1989</year>
</publication>
<publication id="PUB00006548">
<author_list>Szecsi PB.</author_list>
<title>The aspartic proteases.</title>
<db_xref db="PUBMED" dbkey="1455179"/>
<journal>Scand. J. Clin. Lab. Invest. Suppl.</journal>
<location pages="5-22" volume="210"/>
<year>1992</year>
</publication>
<publication id="PUB00011706">
<author_list>Kramer RA, Vandeputte-Rutten L, de Roon GJ, Gros P, Dekker N, Egmond MR.</author_list>
<title>Identification of essential acidic residues of outer membrane protease OmpT supports a novel active site.</title>
<db_xref db="PUBMED" dbkey="11576541"/>
<journal>FEBS Lett.</journal>
<location issue="3" pages="426-30" volume="505"/>
<year>2001</year>
</publication>
<publication id="PUB00014343">
<author_list>Bardy SL, Jarrell KF.</author_list>
<title>Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae.</title>
<db_xref db="PUBMED" dbkey="14622420"/>
<journal>Mol. Microbiol.</journal>
<location issue="4" pages="1339-47" volume="50"/>
<year>2003</year>
</publication>
<publication id="PUB00011707">
<author_list>Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P.</author_list>
<title>Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site.</title>
<db_xref db="PUBMED" dbkey="11566868"/>
<journal>EMBO J.</journal>
<location issue="18" pages="5033-9" volume="20"/>
<year>2001</year>
</publication>
<publication id="PUB00035904">
<author_list>Ng SY, Chaban B, Jarrell KF.</author_list>
<title>Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications.</title>
<db_xref db="PUBMED" dbkey="16983194"/>
<journal>J. Mol. Microbiol. Biotechnol.</journal>
<location issue="3-5" pages="167-91" volume="11"/>
<year>2006</year>
</publication>
<publication id="PUB00020023">
<author_list>LaPointe CF, Taylor RK.</author_list>
<title>The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases.</title>
<db_xref db="PUBMED" dbkey="10625704"/>
<journal>J. Biol. Chem.</journal>
<location issue="2" pages="1502-10" volume="275"/>
<year>2000</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR020080"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR020079"/>
</contains>
<member_list>
<db_xref protein_count="170" db="PFAM" dbkey="PF01278" name="Omptin"/>
<db_xref protein_count="150" db="PIRSF" dbkey="PIRSF001522" name="Peptidase_A26"/>
<db_xref protein_count="161" db="PRINTS" dbkey="PR00482" name="OMPTIN"/>
<db_xref protein_count="162" db="GENE3D" dbkey="G3DSA:2.40.128.90" name="Peptidase_A26"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01278"/>
<db_xref db="MSDsite" dbkey="PS00834"/>
<db_xref db="MSDsite" dbkey="PS00835"/>
<db_xref db="BLOCKS" dbkey="IPB000036"/>
<db_xref db="EC" dbkey="3.4.23"/>
<db_xref db="MEROPS" dbkey="A26"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00657"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1i78"/>
<db_xref db="CATH" dbkey="2.40.128.90"/>
<db_xref db="SCOP" dbkey="f.4.4.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="171"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000037" protein_count="2049" short_name="SsrA-bd_prot" type="Family">
<name>SsrA-binding protein</name>
<abstract>
<p>This entry represents SsrA-binding protein (aka small protein B or SmpB), which is a unique RNA-binding protein that is conserved throughout the bacterial kingdom and is an essential component of the SsrA quality-control system. Tight recognition of codon-anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the 'tmRNA-SmpB' system (transfer messenger RNA-small protein B). SmpB binds specifically to the ssrA RNA (tmRNA) and is required for stable association of ssrA with ribosomes. SsrA RNA recognises ribosomes stalled on defective messages and acts to mediate the addition of a short peptide tag to the C terminus of the partially synthesised nascent polypeptide chain. Within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon-anticodon pairing occurs [<cite idref="PUB00045920"/>]. The SsrA-tagged protein is then degraded by C-terminal-specific proteases. Formation of an SmpB-SsrA complex appears to be critical in mediating SsrA activity after aminoacylation with alanine but prior to the transpeptidation reaction that couples this alanine to the nascent chain [<cite idref="PUB00006449"/>]. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon. </p>
</abstract>
<class_list>
<classification id="GO:0003723" class_type="GO">
<category>Molecular Function</category>
<description>RNA binding</description>
</classification>
<classification id="GO:0006412" class_type="GO">
<category>Biological Process</category>
<description>translation</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A2BTJ8"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O66640"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P74355"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00006449">
<author_list>Karzai AW, Susskind MM, Sauer RT.</author_list>
<title>SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA).</title>
<db_xref db="PUBMED" dbkey="10393194"/>
<journal>EMBO J.</journal>
<location issue="13" pages="3793-9" volume="18"/>
<year>1999</year>
</publication>
<publication id="PUB00045920">
<author_list>Nonin-Lecomte S, Germain-Amiot N, Gillet R, Hallier M, Ponchon L, Dardel F, Felden B.</author_list>
<title>Ribosome hijacking: a role for small protein B during trans-translation.</title>
<db_xref db="PUBMED" dbkey="19132006"/>
<journal>EMBO Rep.</journal>
<location issue="2" pages="160-5" volume="10"/>
<year>2009</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR020081"/>
</contains>
<member_list>
<db_xref protein_count="2032" db="PFAM" dbkey="PF01668" name="SmpB"/>
<db_xref protein_count="2014" db="PRODOM" dbkey="PD004488" name="SmpB"/>
<db_xref protein_count="2022" db="TIGRFAMs" dbkey="TIGR00086" name="smpB"/>
<db_xref protein_count="1941" db="GENE3D" dbkey="G3DSA:2.40.280.10" name="SmpB"/>
<db_xref protein_count="2040" db="SSF" dbkey="SSF74982" name="SmpB"/>
<db_xref protein_count="1894" db="HAMAP" dbkey="MF_00023" name="SmpB"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01668"/>
<db_xref db="MSDsite" dbkey="PS01317"/>
<db_xref db="BLOCKS" dbkey="IPB000037"/>
<db_xref db="PROSITEDOC" dbkey="PDOC01021"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1j1h"/>
<db_xref db="PDB" dbkey="1k8h"/>
<db_xref db="PDB" dbkey="1p6v"/>
<db_xref db="PDB" dbkey="1wjx"/>
<db_xref db="PDB" dbkey="2czj"/>
<db_xref db="CATH" dbkey="2.40.280.10"/>
<db_xref db="SCOP" dbkey="b.111.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2041"/>
<taxon_data name="Cyanobacteria" proteins_count="55"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="8"/>
<taxon_data name="Fungi" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="3"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000038" protein_count="1164" short_name="Cell_Div_GTP-bd" type="Family">
<name>Cell division/GTP binding protein</name>
<abstract>
<p>Septins constitute a eukaryotic family of guanine nucleotide-binding proteins, most of which polymerise to form filaments [<cite idref="PUB00021050"/>]. Members of the family were first identified by genetic screening for <taxon tax_id="4932">Saccharomyces cerevisiae</taxon> (Baker's yeast) mutants defective in cytokinesis [<cite idref="PUB00010278"/>]. Temperature-sensitive mutations in four genes, CDC3, CDC10, CDC11 and CDC12, were found to cause cell-cycle arrest and defects in bud growth and cytokinesis. The protein products of these genes localise at the division plane between mother and daughter cells, indicating a role in mother-daughter separation during cytokinesis [<cite idref="PUB00010277"/>]. Members of the family were therefore termed septins to reflect their role in septation and cell division. The identification of septin homologues in higher eukaryotes, which localise to the cleavage furrow in dividing cells, supports an orthologous function in cytokinesis. Septins have since been identified in most eukaryotes, except plants [<cite idref="PUB00010366"/>].</p>
<p>Septins are approximately 40-50 kDa in molecular mass, and typically comprise a conserved central core domain (more than 35% sequence identity between mammalian and yeast homologues) flanked by more divergent N- and C-termini. Most septins possess a P-loop motif in their N-terminal domain (which is characteristic of GTP-binding proteins), and a predicted C-terminal coiled-coil domain [<cite idref="PUB00010351"/>].</p>
<p>A number of septin interaction partners have been identified in yeast, many of which are components of the budding site selection machinery, kinase cascades or of the ubiquitination pathway. It has been proposed that septins may act as a scaffold that provides an interaction matrix for other proteins [<cite idref="PUB00010366"/>, <cite idref="PUB00010351"/>]. In mammals, septins have been shown to regulate vesicle dynamics [<cite idref="PUB00010422"/>]. Mammalian septins have also been implicated in a variety of other cellular processes, including apoptosis, carcinogenesis and neurodegeneration [<cite idref="PUB00010316"/>].</p>
<p>This entry represents a variety of septins and homologous sequences involved in the cell division process.</p>
</abstract>
<class_list>
<classification id="GO:0005525" class_type="GO">
<category>Molecular Function</category>
<description>GTP binding</description>
</classification>
<classification id="GO:0007049" class_type="GO">
<category>Biological Process</category>
<description>cell cycle</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A0LY86"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P25342"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P40797"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P42208"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q14141"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00010277">
<author_list>Haarer BK, Pringle JR.</author_list>
<title>Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck.</title>
<db_xref db="PUBMED" dbkey="3316985"/>
<journal>Mol. Cell. Biol.</journal>
<location issue="10" pages="3678-87" volume="7"/>
<year>1987</year>
</publication>
<publication id="PUB00010278">
<author_list>Hartwell LH.</author_list>
<title>Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis.</title>
<db_xref db="PUBMED" dbkey="4950437"/>
<journal>Exp. Cell Res.</journal>
<location issue="2" pages="265-76" volume="69"/>
<year>1971</year>
</publication>
<publication id="PUB00010316">
<author_list>Kinoshita M, Kumar S, Mizoguchi A, Ide C, Kinoshita A, Haraguchi T, Hiraoka Y, Noda M.</author_list>
<title>Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures.</title>
<db_xref db="PUBMED" dbkey="9203580"/>
<journal>Genes Dev.</journal>
<location issue="12" pages="1535-47" volume="11"/>
<year>1997</year>
</publication>
<publication id="PUB00010351">
<author_list>Field CM, Kellogg D.</author_list>
<title>Septins: cytoskeletal polymers or signalling GTPases?</title>
<db_xref db="PUBMED" dbkey="10481176"/>
<journal>Trends Cell Biol.</journal>
<location issue="10" pages="387-94" volume="9"/>
<year>1999</year>
</publication>
<publication id="PUB00021050">
<author_list>Kinoshita M.</author_list>
<title>The septins.</title>
<db_xref db="PUBMED" dbkey="14611653"/>
<journal>Genome Biol.</journal>
<location issue="11" pages="236" volume="4"/>
<year>2003</year>
</publication>
<publication id="PUB00010366">
<author_list>Longtine MS, Theesfeld CL, McMillan JN, Weaver E, Pringle JR, Lew DJ.</author_list>
<title>Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae.</title>
<db_xref db="PUBMED" dbkey="10805747"/>
<journal>Mol. Cell. Biol.</journal>
<location issue="11" pages="4049-61" volume="20"/>
<year>2000</year>
</publication>
<publication id="PUB00010422">
<author_list>Kinoshita M, Noda M.</author_list>
<title>Roles of septins in the mammalian cytokinesis machinery.</title>
<db_xref db="PUBMED" dbkey="11942624"/>
<journal>Cell Struct. Funct.</journal>
<location issue="6" pages="667-70" volume="26"/>
<year>2001</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR016491"/>
</child_list>
<member_list>
<db_xref protein_count="1131" db="PANTHER" dbkey="PTHR18884" name="Cell_Div_GTP_bd"/>
<db_xref protein_count="945" db="PFAM" dbkey="PF00735" name="Septin"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00735"/>
<db_xref db="BLOCKS" dbkey="IPB000038"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="114"/>
<taxon_data name="Cyanobacteria" proteins_count="7"/>
<taxon_data name="Eukaryota" proteins_count="1048"/>
<taxon_data name="Fungi" proteins_count="462"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="44"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Nematoda" proteins_count="4"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="4"/>
<taxon_data name="Arthropoda" proteins_count="96"/>
<taxon_data name="Fruit Fly" proteins_count="11"/>
<taxon_data name="Chordata" proteins_count="361"/>
<taxon_data name="Human" proteins_count="93"/>
<taxon_data name="Mouse" proteins_count="49"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="32"/>
<taxon_data name="Plastid Group" proteins_count="20"/>
<taxon_data name="Green Plants" proteins_count="20"/>
<taxon_data name="Metazoa" proteins_count="967"/>
<taxon_data name="Plastid Group" proteins_count="20"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR016491"/>
</sec_list>
</interpro>
<interpro id="IPR000039" protein_count="330" short_name="Ribosomal_L18e" type="Family">
<name>Ribosomal protein L18e</name>
<abstract>
<p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [<cite idref="PUB00007068"/>, <cite idref="PUB00007069"/>]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. </p>
<p>Many of ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [<cite idref="PUB00007069"/>, <cite idref="PUB00007070"/>].</p>
<p>Members of this family are large subunit ribosomal proteins which are found in the Eukaryota and Archaea. These proteins have 115 to 187 amino-acid residues. The family consists of:<ul>
<li>Vertebrate L18 (known as L14 in Xenopus) [<cite idref="PUB00000657"/>]</li>
<li>Plant L18</li>
<li>Yeast L18 (Rp28)</li>
<li>
<taxon tax_id="2238">Haloarcula marismortui</taxon> (Halobacterium marismortui) HL29</li>
<li>
<taxon tax_id="2285">Sulfolobus acidocaldarius</taxon> HL29e</li>
</ul>
</p>
</abstract>
<class_list>
<classification id="GO:0003735" class_type="GO">
<category>Molecular Function</category>
<description>structural constituent of ribosome</description>
</classification>
<classification id="GO:0005622" class_type="GO">
<category>Cellular Component</category>
<description>intracellular</description>
</classification>
<classification id="GO:0005840" class_type="GO">
<category>Cellular Component</category>
<description>ribosome</description>
</classification>
<classification id="GO:0006412" class_type="GO">
<category>Biological Process</category>
<description>translation</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O45946"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P07279"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P35980"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q07020"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9VS34"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000657">
<author_list>Puder M, Barnard GF, Staniunas RJ, Steele GD Jr, Chen LB.</author_list>
<title>Nucleotide and deduced amino acid sequence of human ribosomal protein L18.</title>
<db_xref db="PUBMED" dbkey="8218404"/>
<journal>Biochim. Biophys. Acta</journal>
<location issue="1" pages="134-6" volume="1216"/>
<year>1993</year>
</publication>
<publication id="PUB00007068">
<author_list>Ramakrishnan V, Moore PB.</author_list>
<title>Atomic structures at last: the ribosome in 2000.</title>
<db_xref db="PUBMED" dbkey="11297922"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="2" pages="144-54" volume="11"/>
<year>2001</year>
</publication>
<publication id="PUB00007069">
<author_list>Maguire BA, Zimmermann RA.</author_list>
<title>The ribosome in focus.</title>
<db_xref db="PUBMED" dbkey="11290319"/>
<journal>Cell</journal>
<location issue="6" pages="813-6" volume="104"/>
<year>2001</year>
</publication>
<publication id="PUB00007070">
<author_list>Chandra Sanyal S, Liljas A.</author_list>
<title>The end of the beginning: structural studies of ribosomal proteins.</title>
<db_xref db="PUBMED" dbkey="11114498"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="6" pages="633-6" volume="10"/>
<year>2000</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR021131"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR021132"/>
</contains>
<member_list>
<db_xref protein_count="330" db="PANTHER" dbkey="PTHR10934" name="Ribosomal_L18e"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00828"/>
<db_xref db="MSDsite" dbkey="PS01106"/>
<db_xref db="BLOCKS" dbkey="IPB000039"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00850"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Archaea" proteins_count="24"/>
<taxon_data name="Eukaryota" proteins_count="305"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="3"/>
<taxon_data name="Rice spp." proteins_count="6"/>
<taxon_data name="Fungi" proteins_count="66"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="4"/>
<taxon_data name="Other Eukaryotes" proteins_count="5"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="42"/>
<taxon_data name="Fruit Fly" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="70"/>
<taxon_data name="Human" proteins_count="4"/>
<taxon_data name="Mouse" proteins_count="4"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="54"/>
<taxon_data name="Green Plants" proteins_count="54"/>
<taxon_data name="Metazoa" proteins_count="202"/>
<taxon_data name="Plastid Group" proteins_count="23"/>
<taxon_data name="Plastid Group" proteins_count="9"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000040" protein_count="233" short_name="AML1_Runt" type="Family">
<name>Acute myeloid leukemia 1 protein (AML 1)/Runt</name>
<abstract>
The AML1 gene is rearranged by the t(8;21) translocation in acute myeloid
leukemia [<cite idref="PUB00004459"/>]. The gene is highly similar to the <taxon tax_id="7227">Drosophila melanogaster</taxon> segmentation
gene runt and to the mouse transcription factor PEBP2 alpha subunit gene [<cite idref="PUB00004459"/>].
The region of shared similarity, known as the Runt domain, is responsible
for DNA-binding and protein-protein interaction.
<p> In addition to the highly-conserved Runt domain, the AML-1 gene product
carries a putative ATP-binding site (GRSGRGKS), and has a C-terminal region
rich in proline and serine residues. The protein (known as acute myeloid
leukemia 1 protein, oncogene AML-1, core-binding factor (CBF), alpha-B
subunit, etc.) binds to the core site, 5'-pygpyggt-3', of a number of
enhancers and promoters. </p>
<p>The protein is a heterodimer of alpha- and beta-subunits. The alpha-subunit
binds DNA as a monomer, and appears to have a role in the development of
normal hematopoiesis. CBF is a nuclear protein expressed in numerous tissue
types, except brain and heart; highest levels have been found to occur in
thymus, bone marrow and peripheral blood.</p>
</abstract>
<class_list>
<classification id="GO:0003677" class_type="GO">
<category>Molecular Function</category>
<description>DNA binding</description>
</classification>
<classification id="GO:0005524" class_type="GO">
<category>Molecular Function</category>
<description>ATP binding</description>
</classification>
<classification id="GO:0005634" class_type="GO">
<category>Cellular Component</category>
<description>nucleus</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P22814"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q01196"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q03347"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q63046"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004459">
<author_list>Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E, Ohki M.</author_list>
<title>Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia.</title>
<db_xref db="PUBMED" dbkey="7651838"/>
<journal>Nucleic Acids Res.</journal>
<location issue="14" pages="2762-9" volume="23"/>
<year>1995</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR016554"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR013524"/>
<rel_ref ipr_ref="IPR013711"/>
</contains>
<member_list>
<db_xref protein_count="233" db="PANTHER" dbkey="PTHR11950" name="AML1_Runt"/>
<db_xref protein_count="207" db="PRINTS" dbkey="PR00967" name="ONCOGENEAML1"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000040"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1cmo"/>
<db_xref db="PDB" dbkey="1co1"/>
<db_xref db="PDB" dbkey="1e50"/>
<db_xref db="PDB" dbkey="1ean"/>
<db_xref db="PDB" dbkey="1eao"/>
<db_xref db="PDB" dbkey="1eaq"/>
<db_xref db="PDB" dbkey="1h9d"/>
<db_xref db="PDB" dbkey="1hjb"/>
<db_xref db="PDB" dbkey="1hjc"/>
<db_xref db="PDB" dbkey="1io4"/>
<db_xref db="PDB" dbkey="1ljm"/>
<db_xref db="PDB" dbkey="2j6w"/>
<db_xref db="CATH" dbkey="2.60.40.720"/>
<db_xref db="SCOP" dbkey="b.2.5.6"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="233"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="99"/>
<taxon_data name="Fruit Fly" proteins_count="8"/>
<taxon_data name="Chordata" proteins_count="122"/>
<taxon_data name="Human" proteins_count="22"/>
<taxon_data name="Mouse" proteins_count="12"/>
<taxon_data name="Metazoa" proteins_count="233"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR016554"/>
</sec_list>
</interpro>
<interpro id="IPR000043" protein_count="1367" short_name="S-Ado-L-homoCys_hydrolase" type="Family">
<name>S-adenosyl-L-homocysteine hydrolase</name>
<abstract>
<p>S-adenosyl-L-homocysteine hydrolase (<db_xref db="EC" dbkey="3.3.1.1"/>) (AdoHcyase) is an enzyme of the activated methyl cycle, responsible for the reversible hydration of S-adenosyl-L-homocysteine into adenosine and homocysteine. AdoHcyase is an ubiquitous enzyme which binds and requires NAD<sup>+</sup> as a cofactor. AdoHcyase is a highly conserved protein [<cite idref="PUB00004791"/>] of about 430 to 470 amino acids. The family contains a glycine-rich region in the central part of AdoHcyase, which is thought to be involved in NAD-binding.</p>
</abstract>
<class_list>
<classification id="GO:0004013" class_type="GO">
<category>Molecular Function</category>
<description>adenosylhomocysteinase activity</description>
</classification>
<classification id="GO:0006730" class_type="GO">
<category>Biological Process</category>
<description>one-carbon metabolic process</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P23526"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P27604"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P39954"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P50245"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P50247"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004791">
<author_list>Sganga MW, Aksamit RR, Cantoni GL, Bauer CE.</author_list>
<title>Mutational and nucleotide sequence analysis of S-adenosyl-L-homocysteine hydrolase from Rhodobacter capsulatus.</title>
<db_xref db="PUBMED" dbkey="1631127"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="14" pages="6328-32" volume="89"/>
<year>1992</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR015878"/>
<rel_ref ipr_ref="IPR016040"/>
<rel_ref ipr_ref="IPR020082"/>
</contains>
<member_list>
<db_xref protein_count="1355" db="PANTHER" dbkey="PTHR23420" name="Ad_hcy_hydrolase"/>
<db_xref protein_count="1333" db="PFAM" dbkey="PF05221" name="AdoHcyase"/>
<db_xref protein_count="1200" db="PIRSF" dbkey="PIRSF001109" name="Ad_hcy_hydrolase"/>
<db_xref protein_count="1188" db="TIGRFAMs" dbkey="TIGR00936" name="ahcY"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF05221"/>
<db_xref db="MSDsite" dbkey="PS00738"/>
<db_xref db="MSDsite" dbkey="PS00739"/>
<db_xref db="BLOCKS" dbkey="IPB000043"/>
<db_xref db="EC" dbkey="3.3.1.1"/>
<db_xref db="PRIAM" dbkey="PRI000861"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00603"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a7a"/>
<db_xref db="PDB" dbkey="1b3r"/>
<db_xref db="PDB" dbkey="1d4f"/>
<db_xref db="PDB" dbkey="1k0u"/>
<db_xref db="PDB" dbkey="1ky4"/>
<db_xref db="PDB" dbkey="1ky5"/>
<db_xref db="PDB" dbkey="1li4"/>
<db_xref db="PDB" dbkey="1v8b"/>
<db_xref db="PDB" dbkey="1xwf"/>
<db_xref db="PDB" dbkey="2h5l"/>
<db_xref db="PDB" dbkey="3d64"/>
<db_xref db="CATH" dbkey="3.40.50.1480"/>
<db_xref db="CATH" dbkey="3.40.50.720"/>
<db_xref db="SCOP" dbkey="c.2.1.4"/>
<db_xref db="SCOP" dbkey="c.23.12.3"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="872"/>
<taxon_data name="Cyanobacteria" proteins_count="55"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="94"/>
<taxon_data name="Eukaryota" proteins_count="401"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="14"/>
<taxon_data name="Rice spp." proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="70"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="7"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="57"/>
<taxon_data name="Fruit Fly" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="83"/>
<taxon_data name="Human" proteins_count="15"/>
<taxon_data name="Mouse" proteins_count="16"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="112"/>
<taxon_data name="Green Plants" proteins_count="112"/>
<taxon_data name="Metazoa" proteins_count="237"/>
<taxon_data name="Plastid Group" proteins_count="28"/>
<taxon_data name="Plastid Group" proteins_count="10"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000044" protein_count="25" short_name="Uncharacterised_lipoprot_MG045" type="Family">
<name>Uncharacterised lipoprotein MG045</name>
<abstract>
<p> Mycoplasma genitalium has the smallest known genome of any free-living organism. Its complete genome sequence has been determined by whole-genome random sequencing and assembly [<cite idref="PUB00005212"/>]. Only 470 putative coding regions were identified, including genes for DNA replication, transcription and translation, DNA repair, cellular transport and energy metabolism [<cite idref="PUB00005212"/>]. A hypothetical protein from the MG045 gene [<cite idref="PUB00002233"/>] has a homologue of similarly unknown function in M.pneumoniae; these, in turn, share regions of similarity with a family of putative lipoproteins from Ureaplasma parvum and Ureaplasma urealyticum. </p>
</abstract>
<class_list>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P47291"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002233">
<author_list>Peterson SN, Hu PC, Bott KF, Hutchison CA 3rd.</author_list>
<title>A survey of the Mycoplasma genitalium genome by using random sequencing.</title>
<db_xref db="PUBMED" dbkey="8253680"/>
<journal>J. Bacteriol.</journal>
<location issue="24" pages="7918-30" volume="175"/>
<year>1993</year>
</publication>
<publication id="PUB00005212">
<author_list>Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA 3rd, Venter JC.</author_list>
<title>The minimal gene complement of Mycoplasma genitalium.</title>
<db_xref db="PUBMED" dbkey="7569993"/>
<journal>Science</journal>
<location issue="5235" pages="397-403" volume="270"/>
<year>1995</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="25" db="PRINTS" dbkey="PR00905" name="MG045FAMILY"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF02030"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="25"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000045" protein_count="2278" short_name="Peptidase_A24A_prepilin_IV" type="Domain">
<name>Peptidase A24A, prepilin type IV</name>
<abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
<li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. </p>
<p>Aspartic endopeptidases <db_xref db="EC" dbkey="3.4.23."/> of vertebrate, fungal and retroviral origin have been characterised [<cite idref="PUB00006548"/>]. More recently, aspartic endopeptidases associated with the processing of bacterial type 4 prepilin [<cite idref="PUB00020023"/>] and archaean preflagellin have been described [<cite idref="PUB00035904"/>, <cite idref="PUB00014343"/>].</p>
<p>Structurally, aspartic endopeptidases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localised between the two lobes of the molecule. One lobe has probably evolved from the other through a gene duplication event in the distant past. In modern-day enzymes, although the three-dimensional structures are very similar, the amino acid sequences are more divergent, except for the catalytic site motif, which is very conserved. The presence and position of disulphide bridges are other conserved features of aspartic peptidases.
All or most aspartate peptidases are endopeptidases. These enzymes have been assigned into clans (proteins which are evolutionary related), and further sub-divided into families, largely on the basis of their tertiary structure.</p>
<p>This group of aspartic endopeptidases belong to MEROPS peptidase family A24 (type IV prepilin peptidase family, clan AD), subfamily A24A.</p>
<p>Bacteria produce a number of protein precursors that undergo post-translational methylation and proteolysis prior to secretion as active
proteins. Type IV prepilin leader peptidases are enzymes that mediate this type of post-translational modification. Type IV pilin is a protein found on the surface of <taxon tax_id="287">Pseudomonas aeruginosa</taxon>, <taxon tax_id="485">Neisseria gonorrhoeae</taxon> and other Gram-negative
pathogens. Pilin subunits attach the infecting organism to the surface of
host epithelial cells. They are synthesised as prepilin subunits, which
differ from mature pilin by virtue of containing a 6-8 residue leader
peptide consisting of charged amino acids. Mature type IV pilins also
contain a methylated N-terminal phenylalanine residue.</p>
<p> The bifunctional enzyme prepilin peptidase (PilD) from <taxon tax_id="287">Pseudomonas aeruginosa</taxon> is a key determinant in both type-IV pilus biogenesis and extracellular protein secretion, in its roles as a leader peptidase and methyl transferase (MTase). It is responsible for endopeptidic cleavage of the unique leader peptides that characterise type-IV pilin precursors, as well as proteins with homologous leader sequences that are essential components of the general secretion pathway found in a variety of Gram-negative pathogens. Following removal of the leader peptides, the same enzyme is responsible for the second posttranslational modification that characterises the type-IV pilins and their homologues, namely N-methylation of the newly exposed N-terminal amino acid residue [<cite idref="PUB00014532"/>]. </p>
</abstract>
<class_list>
<classification id="GO:0004190" class_type="GO">
<category>Molecular Function</category>
<description>aspartic-type endopeptidase activity</description>
</classification>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A2T195"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O26521"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P72640"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00006548">
<author_list>Szecsi PB.</author_list>
<title>The aspartic proteases.</title>
<db_xref db="PUBMED" dbkey="1455179"/>
<journal>Scand. J. Clin. Lab. Invest. Suppl.</journal>
<location pages="5-22" volume="210"/>
<year>1992</year>
</publication>
<publication id="PUB00014343">
<author_list>Bardy SL, Jarrell KF.</author_list>
<title>Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae.</title>
<db_xref db="PUBMED" dbkey="14622420"/>
<journal>Mol. Microbiol.</journal>
<location issue="4" pages="1339-47" volume="50"/>
<year>2003</year>
</publication>
<publication id="PUB00014532">
<author_list>Lory S, Strom MS.</author_list>
<title>Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa--a review.</title>
<db_xref db="PUBMED" dbkey="9224881"/>
<journal>Gene</journal>
<location issue="1" pages="117-21" volume="192"/>
<year>1997</year>
</publication>
<publication id="PUB00020023">
<author_list>LaPointe CF, Taylor RK.</author_list>
<title>The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases.</title>
<db_xref db="PUBMED" dbkey="10625704"/>
<journal>J. Biol. Chem.</journal>
<location issue="2" pages="1502-10" volume="275"/>
<year>2000</year>
</publication>
<publication id="PUB00035904">
<author_list>Ng SY, Chaban B, Jarrell KF.</author_list>
<title>Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications.</title>
<db_xref db="PUBMED" dbkey="16983194"/>
<journal>J. Mol. Microbiol. Biotechnol.</journal>
<location issue="3-5" pages="167-91" volume="11"/>
<year>2006</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR014032"/>
</found_in>
<member_list>
<db_xref protein_count="2278" db="PFAM" dbkey="PF01478" name="Peptidase_A24"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01478"/>
<db_xref db="BLOCKS" dbkey="IPB000045"/>
<db_xref db="MEROPS" dbkey="A24"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2185"/>
<taxon_data name="Cyanobacteria" proteins_count="47"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="87"/>
<taxon_data name="Eukaryota" proteins_count="3"/>
<taxon_data name="Chordata" proteins_count="1"/>
<taxon_data name="Mouse" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
<taxon_data name="Green Plants" proteins_count="2"/>
<taxon_data name="Metazoa" proteins_count="1"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000046" protein_count="25" short_name="NK1_rcpt" type="Family">
<name>Neurokinin NK1 receptor</name>
<abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>Neuropeptide receptors are present in very small quantities in the cell
and are embedded tightly in the plasma membrane. The neuropeptides exhibit
a high degree of functional diversity through both regulation of peptide
production and through peptide-receptor interaction [<cite idref="PUB00002518"/>]. The mammalian
tachykinin system consists of 3 distinct peptides: substance P, substance
K and neuromedin K. All possess a common spectrum of biological activities,
including sensory transmission in the nervous system and contraction/
relaxation of peripheral smooth muscles, and each interacts with a
specific receptor type.</p>
<p>In the brain, high concentrations of the NK1 receptor are found in striatum,
olfactory bulb, dendate gyrus, locus coeruleus and spinal chord [<cite idref="PUB00010571"/>]. In
peripheral tissues NK1 receptors are found in smooth muscle (e.g., ileum
and bladder), enteric neurons, secretory glands (e.g. parotid), cells of
the immune system and vascular endothelium. NK1 receptors activate the
phosphoinositide pathway through a pertussis-toxin-insensitive G-protein [<cite idref="PUB00010572"/>].</p>
</abstract>
<class_list>
<classification id="GO:0004995" class_type="GO">
<category>Molecular Function</category>
<description>tachykinin receptor activity</description>
</classification>
<classification id="GO:0005886" class_type="GO">
<category>Cellular Component</category>
<description>plasma membrane</description>
</classification>
<classification id="GO:0007186" class_type="GO">
<category>Biological Process</category>
<description>G-protein coupled receptor protein signaling pathway</description>
</classification>
<classification id="GO:0016021" class_type="GO">
<category>Cellular Component</category>
<description>integral to membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P14600"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P25103"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P30548"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000131">
<author_list>Birnbaumer L.</author_list>
<title>G proteins in signal transduction.</title>
<db_xref db="PUBMED" dbkey="2111655"/>
<journal>Annu. Rev. Pharmacol. Toxicol.</journal>
<location pages="675-705" volume="30"/>
<year>1990</year>
</publication>
<publication id="PUB00002477">
<author_list>Casey PJ, Gilman AG.</author_list>
<title>G protein involvement in receptor-effector coupling.</title>
<db_xref db="PUBMED" dbkey="2830256"/>
<journal>J. Biol. Chem.</journal>
<location issue="6" pages="2577-80" volume="263"/>
<year>1988</year>
</publication>
<publication id="PUB00002518">
<author_list>Yokota Y, Sasai Y, Tanaka K, Fujiwara T, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S.</author_list>
<title>Molecular characterization of a functional cDNA for rat substance P receptor.</title>
<db_xref db="PUBMED" dbkey="2478537"/>
<journal>J. Biol. Chem.</journal>
<location issue="30" pages="17649-52" volume="264"/>
<year>1989</year>
</publication>
<publication id="PUB00004960">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8386361"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="167-76" volume="6"/>
<year>1993</year>
</publication>
<publication id="PUB00004961">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Fingerprinting G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8170923"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="195-203" volume="7"/>
<year>1994</year>
</publication>
<publication id="PUB00010571">
<author_list>Yip J, Chahl LA.</author_list>
<title>Localization of tachykinin receptors and Fos-like immunoreactivity induced by substance P in guinea-pig brain.</title>
<db_xref db="PUBMED" dbkey="11071315"/>
<journal>Clin. Exp. Pharmacol. Physiol.</journal>
<location issue="11" pages="943-6" volume="27"/>
<year>2000</year>
</publication>
<publication id="PUB00010572">
<author_list>Gilbert R, Ryan JS, Horackova M, Smith FM, Kelly ME.</author_list>
<title>Actions of substance P on membrane potential and ionic currents in guinea pig stellate ganglion neurons.</title>
<db_xref db="PUBMED" dbkey="9575785"/>
<journal>Am. J. Physiol.</journal>
<location issue="4 Pt 1" pages="C892-903" volume="274"/>
<year>1998</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR001681"/>
</parent_list>
<member_list>
<db_xref protein_count="25" db="PRINTS" dbkey="PR01024" name="NEUROKININ1R"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000046"/>
<db_xref db="IUPHAR" dbkey="3029"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="25"/>
<taxon_data name="Chordata" proteins_count="25"/>
<taxon_data name="Human" proteins_count="4"/>
<taxon_data name="Mouse" proteins_count="3"/>
<taxon_data name="Metazoa" proteins_count="25"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000047" protein_count="1740" short_name="HTH_lambrepressr" type="Domain">
<name>Helix-turn-helix motif, lambda-like repressor</name>
<abstract>
Helix-turn-helix (HTH) motifs are found in all known DNA binding proteins
that regulate gene expression. The motif consists of approximately 20
residues and is characterised by 2 alpha-helices, which make intimate
contacts with the DNA and are joined by a short turn. The second helix of
the HTH motif binds to DNA via a number of hydrogen bonds and hydrophobic
interactions, which occur between specific side chains and the exposed
bases and thymine methyl groups within the major groove of the DNA [<cite idref="PUB00002521"/>]. The
first helix helps to stabilise the structure [<cite idref="PUB00003978"/>].
<p>The HTH motif is very similar in sequence and structure to the N-terminal
region of the lamda [<cite idref="PUB00000036"/>] and other repressor proteins, and has also been
identified in many other DNA-binding proteins on the basis of sequence and
structural similarity [<cite idref="PUB00002521"/>]. One of the principal differences between HTH
motifs in these different proteins arises from the stereochemical
requirement for glycine in the turn, which is needed to avoid steric
interference of the beta-carbon with the main chain: for cro and other
repressors the Gly appears to be mandatory, while for many of the homeotic
and other DNA-binding proteins the requirement is relaxed.</p>
</abstract>
<class_list>
<classification id="GO:0003700" class_type="GO">
<category>Molecular Function</category>
<description>transcription factor activity</description>
</classification>
<classification id="GO:0005634" class_type="GO">
<category>Cellular Component</category>
<description>nucleus</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O08686"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O23208"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P02836"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P20269"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P56178"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000036">
<author_list>Pabo CO, Sauer RT.</author_list>
<title>Protein-DNA recognition.</title>
<db_xref db="PUBMED" dbkey="6236744"/>
<journal>Annu. Rev. Biochem.</journal>
<location pages="293-321" volume="53"/>
<year>1984</year>
</publication>
<publication id="PUB00002521">
<author_list>Brennan RG, Matthews BW.</author_list>
<title>The helix-turn-helix DNA binding motif.</title>
<db_xref db="PUBMED" dbkey="2644244"/>
<journal>J. Biol. Chem.</journal>
<location issue="4" pages="1903-6" volume="264"/>
<year>1989</year>
</publication>
<publication id="PUB00003978">
<author_list>Sauer RT, Yocum RR, Doolittle RF, Lewis M, Pabo CO.</author_list>
<title>Homology among DNA-binding proteins suggests use of a conserved super-secondary structure.</title>
<db_xref db="PUBMED" dbkey="6896364"/>
<journal>Nature</journal>
<location issue="5873" pages="447-51" volume="298"/>
<year>1982</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR017970"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR000747"/>
<rel_ref ipr_ref="IPR001356"/>
<rel_ref ipr_ref="IPR009057"/>
<rel_ref ipr_ref="IPR012287"/>
<rel_ref ipr_ref="IPR015703"/>
<rel_ref ipr_ref="IPR015704"/>
<rel_ref ipr_ref="IPR015705"/>
<rel_ref ipr_ref="IPR020479"/>
</found_in>
<member_list>
<db_xref protein_count="1740" db="PRINTS" dbkey="PR00031" name="HTHREPRESSR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000047"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1du0"/>
<db_xref db="PDB" dbkey="1enh"/>
<db_xref db="PDB" dbkey="1hdd"/>
<db_xref db="PDB" dbkey="1p7i"/>
<db_xref db="PDB" dbkey="1p7j"/>
<db_xref db="PDB" dbkey="1ztr"/>
<db_xref db="PDB" dbkey="2hdd"/>
<db_xref db="PDB" dbkey="2jwt"/>
<db_xref db="PDB" dbkey="2p81"/>
<db_xref db="PDB" dbkey="3hdd"/>
<db_xref db="CATH" dbkey="1.10.10.60"/>
<db_xref db="SCOP" dbkey="a.4.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="1739"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="30"/>
<taxon_data name="Rice spp." proteins_count="61"/>
<taxon_data name="Fungi" proteins_count="7"/>
<taxon_data name="Nematoda" proteins_count="13"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="13"/>
<taxon_data name="Arthropoda" proteins_count="358"/>
<taxon_data name="Fruit Fly" proteins_count="31"/>
<taxon_data name="Chordata" proteins_count="658"/>
<taxon_data name="Human" proteins_count="59"/>
<taxon_data name="Mouse" proteins_count="54"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="338"/>
<taxon_data name="Green Plants" proteins_count="338"/>
<taxon_data name="Metazoa" proteins_count="1401"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000048" protein_count="4511" short_name="IQ_CaM-bd_region" type="Region">
<name>IQ calmodulin-binding region</name>
<abstract>
<p>Calmodulin (CaM) is recognised as a major calcium sensor and orchestrator of regulatory events through its interaction with a diverse group of cellular proteins. Three classes of recognition motifs exist for many of the known CaM binding proteins; the IQ motif as a consensus for Ca<sup>2+</sup>-independent binding and two related motifs for Ca<sup>2+</sup>-dependent binding, termed
18-14 and 1-5-10 based on the position of conserved hydrophobic residues [<cite idref="PUB00001532"/>].</p>
<p>The regulatory domain of scallop myosin is a three-chain protein complex that
switches on this motor in response to Ca<sup>2+</sup> binding. Side-chain interactions link the two light chains in tandem to adjacent segments of the heavy chain bearing the IQ-sequence motif. The Ca<sup>2+</sup>-binding site is a novel EF-hand motif on the essential light chain and is stabilised by linkages involving the heavy chain and both light chains, accounting for the requirement of all three chains for Ca<sup>2+</sup> binding and regulation in the intact myosin molecule [<cite idref="PUB00004175"/>].</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P05661"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P12844"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P12883"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P19524"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P27671"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001532">
<author_list>Rhoads AR, Friedberg F.</author_list>
<title>Sequence motifs for calmodulin recognition.</title>
<db_xref db="PUBMED" dbkey="9141499"/>
<journal>FASEB J.</journal>
<location issue="5" pages="331-40" volume="11"/>
<year>1997</year>
</publication>
<publication id="PUB00004175">
<author_list>Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Gyorgyi AG, Cohen C.</author_list>
<title>Structure of the regulatory domain of scallop myosin at 2.8 A resolution.</title>
<db_xref db="PUBMED" dbkey="8127365"/>
<journal>Nature</journal>
<location issue="6469" pages="306-12" volume="368"/>
<year>1994</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018243"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR001422"/>
<rel_ref ipr_ref="IPR001696"/>
<rel_ref ipr_ref="IPR008052"/>
<rel_ref ipr_ref="IPR008053"/>
<rel_ref ipr_ref="IPR008054"/>
<rel_ref ipr_ref="IPR012008"/>
<rel_ref ipr_ref="IPR012105"/>
<rel_ref ipr_ref="IPR015650"/>
</found_in>
<member_list>
<db_xref protein_count="2291" db="PFAM" dbkey="PF00612" name="IQ"/>
<db_xref protein_count="4216" db="PROFILE" dbkey="PS50096" name="IQ"/>
<db_xref protein_count="3768" db="SMART" dbkey="SM00015" name="IQ"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00612"/>
<db_xref db="BLOCKS" dbkey="IPB000048"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50096"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1b7t"/>
<db_xref db="PDB" dbkey="1br1"/>
<db_xref db="PDB" dbkey="1br2"/>
<db_xref db="PDB" dbkey="1br4"/>
<db_xref db="PDB" dbkey="1d0x"/>
<db_xref db="PDB" dbkey="1d0y"/>
<db_xref db="PDB" dbkey="1d0z"/>
<db_xref db="PDB" dbkey="1d1a"/>
<db_xref db="PDB" dbkey="1d1b"/>
<db_xref db="PDB" dbkey="1d1c"/>
<db_xref db="PDB" dbkey="1dfk"/>
<db_xref db="PDB" dbkey="1dfl"/>
<db_xref db="PDB" dbkey="1fmv"/>
<db_xref db="PDB" dbkey="1fmw"/>
<db_xref db="PDB" dbkey="1jwy"/>
<db_xref db="PDB" dbkey="1jx2"/>
<db_xref db="PDB" dbkey="1kk7"/>
<db_xref db="PDB" dbkey="1kk8"/>
<db_xref db="PDB" dbkey="1kqm"/>
<db_xref db="PDB" dbkey="1kwo"/>
<db_xref db="PDB" dbkey="1l2o"/>
<db_xref db="PDB" dbkey="1lvk"/>
<db_xref db="PDB" dbkey="1mma"/>
<db_xref db="PDB" dbkey="1mmd"/>
<db_xref db="PDB" dbkey="1mmg"/>
<db_xref db="PDB" dbkey="1mmn"/>
<db_xref db="PDB" dbkey="1mnd"/>
<db_xref db="PDB" dbkey="1mne"/>
<db_xref db="PDB" dbkey="1oe9"/>
<db_xref db="PDB" dbkey="1qvi"/>
<db_xref db="PDB" dbkey="1s5g"/>
<db_xref db="PDB" dbkey="1scm"/>
<db_xref db="PDB" dbkey="1sr6"/>
<db_xref db="PDB" dbkey="1vom"/>
<db_xref db="PDB" dbkey="1w7i"/>
<db_xref db="PDB" dbkey="1w7j"/>
<db_xref db="PDB" dbkey="1wdc"/>
<db_xref db="PDB" dbkey="2mys"/>
<db_xref db="CATH" dbkey="4.10.270.10"/>
<db_xref db="SCOP" dbkey="c.37.1.9"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="198"/>
<taxon_data name="Cyanobacteria" proteins_count="6"/>
<taxon_data name="Archaea" proteins_count="3"/>
<taxon_data name="Eukaryota" proteins_count="4305"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="118"/>
<taxon_data name="Rice spp." proteins_count="224"/>
<taxon_data name="Fungi" proteins_count="344"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="24"/>
<taxon_data name="Other Eukaryotes" proteins_count="31"/>
<taxon_data name="Other Eukaryotes" proteins_count="37"/>
<taxon_data name="Nematoda" proteins_count="30"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="30"/>
<taxon_data name="Arthropoda" proteins_count="585"/>
<taxon_data name="Fruit Fly" proteins_count="90"/>
<taxon_data name="Chordata" proteins_count="1326"/>
<taxon_data name="Human" proteins_count="235"/>
<taxon_data name="Mouse" proteins_count="210"/>
<taxon_data name="Virus" proteins_count="6"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="20"/>
<taxon_data name="Plastid Group" proteins_count="946"/>
<taxon_data name="Green Plants" proteins_count="946"/>
<taxon_data name="Metazoa" proteins_count="2519"/>
<taxon_data name="Plastid Group" proteins_count="314"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="180"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="52"/>
<taxon_data name="Other Eukaryotes" proteins_count="20"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000049" protein_count="1178" short_name="ET-Flavoprotein_bsu_CS" type="Conserved_site">
<name>Electron transfer flavoprotein, beta-subunit, conserved site</name>
<abstract>
The electron transfer flavoprotein (ETF) [<cite idref="PUB00004936"/>, <cite idref="PUB00005086"/>]
serves as a specific electron
acceptor for various mitochondrial dehydrogenases. ETF transfers electrons to
the main respiratory chain via ETF-ubiquinone oxidoreductase. ETF is an
heterodimer that consist of an alpha and a beta subunit and which bind one
molecule of FAD per dimer. A similar system also exists in some bacteria.
The beta subunit of ETF is a protein of about 28 Kd which is structurally
related to the bacterial nitrogen fixation protein fixA which could play a
role in a redox process and feed electrons to ferredoxin.
The beta subunit protein is distantly related to and forms a
heterodimer with the alpha subunit <db_xref db="INTERPRO" dbkey="IPR001308"/>.
</abstract>
<class_list>
<classification id="GO:0009055" class_type="GO">
<category>Molecular Function</category>
<description>electron carrier activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A2XQV4"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P38117"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P42940"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9DCW4"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9LSW8"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004936">
<author_list>Finocchiaro G, Ikeda Y, Ito M, Tanaka K.</author_list>
<title>Biosynthesis, molecular cloning and sequencing of electron transfer flavoprotein.</title>
<db_xref db="PUBMED" dbkey="2326318"/>
<journal>Prog. Clin. Biol. Res.</journal>
<location pages="637-52" volume="321"/>
<year>1990</year>
</publication>
<publication id="PUB00005086">
<author_list>Tsai MH, Saier MH Jr.</author_list>
<title>Phylogenetic characterization of the ubiquitous electron transfer flavoprotein families ETF-alpha and ETF-beta.</title>
<db_xref db="PUBMED" dbkey="8525056"/>
<journal>Res. Microbiol.</journal>
<location issue="5" pages="397-404" volume="146"/>
<year>1995</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR012255"/>
<rel_ref ipr_ref="IPR014729"/>
<rel_ref ipr_ref="IPR014730"/>
</found_in>
<member_list>
<db_xref protein_count="1178" db="PROSITE" dbkey="PS01065" name="ETF_BETA"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS01065"/>
<db_xref db="COMe" dbkey="PRX000051"/>
<db_xref db="BLOCKS" dbkey="IPB000049"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00816"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1efp"/>
<db_xref db="PDB" dbkey="1efv"/>
<db_xref db="PDB" dbkey="1o94"/>
<db_xref db="PDB" dbkey="1o95"/>
<db_xref db="PDB" dbkey="1o96"/>
<db_xref db="PDB" dbkey="1o97"/>
<db_xref db="PDB" dbkey="1t9g"/>
<db_xref db="PDB" dbkey="2a1t"/>
<db_xref db="PDB" dbkey="2a1u"/>
<db_xref db="PDB" dbkey="3clr"/>
<db_xref db="PDB" dbkey="3cls"/>
<db_xref db="PDB" dbkey="3clt"/>
<db_xref db="PDB" dbkey="3clu"/>
<db_xref db="CATH" dbkey="3.40.50.620"/>
<db_xref db="SCOP" dbkey="c.26.2.3"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1066"/>
<taxon_data name="Cyanobacteria" proteins_count="3"/>
<taxon_data name="Archaea" proteins_count="4"/>
<taxon_data name="Eukaryota" proteins_count="107"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="3"/>
<taxon_data name="Rice spp." proteins_count="3"/>
<taxon_data name="Fungi" proteins_count="41"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Arthropoda" proteins_count="23"/>
<taxon_data name="Fruit Fly" proteins_count="2"/>
<taxon_data name="Chordata" proteins_count="17"/>
<taxon_data name="Human" proteins_count="2"/>
<taxon_data name="Mouse" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="16"/>
<taxon_data name="Green Plants" proteins_count="16"/>
<taxon_data name="Metazoa" proteins_count="87"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000052" protein_count="996" short_name="Pltvir_coat" type="Domain">
<name>Potex/carlavirus coat protein</name>
<abstract>
<p>Potexviruses and Carlaviruses are plant-infecting viruses whose genome consist of a single-stranded RNA molecule encapsided in a coat protein. The genome of many Potexviruses is known and their coat protein sequence has been shown to be rather well conserved [<cite idref="PUB00003128"/>]. The same observation applies to the coat protein of a variety of Carlaviruses whose sequences are related to those of Potexviruses [<cite idref="PUB00003127"/>, <cite idref="PUB00003145"/>]. The coat proteins of Potexviruses and of Carlaviruses
contain from 190 to 300 amino acid residues. The best conserved region of these coat proteins is located in the central part.</p>
</abstract>
<class_list>
<classification id="GO:0005198" class_type="GO">
<category>Molecular Function</category>
<description>structural molecule activity</description>
</classification>
<classification id="GO:0019028" class_type="GO">
<category>Cellular Component</category>
<description>viral capsid</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P07699"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00003127">
<author_list>MacKenzie DJ, Tremaine JH, Stace-Smith R.</author_list>
<title>Organization and interviral homologies of the 3'-terminal portion of potato virus S RNA.</title>
<db_xref db="PUBMED" dbkey="2732711"/>
<journal>J. Gen. Virol.</journal>
<location pages="1053-63" volume="70 ( Pt 5)"/>
<year>1989</year>
</publication>
<publication id="PUB00003128">
<author_list>Abouhaidar MG, Lai R.</author_list>
<title>Nucleotide sequence of the 3'-terminal region of clover yellow mosaic virus RNA.</title>
<db_xref db="PUBMED" dbkey="2738582"/>
<journal>J. Gen. Virol.</journal>
<location pages="1871-5" volume="70 ( Pt 7)"/>
<year>1989</year>
</publication>
<publication id="PUB00003145">
<author_list>Henderson J, Gibbs MJ, Edwards ML, Clarke VA, Gardner KA, Cooper JI.</author_list>
<title>Partial nucleotide sequence of poplar mosaic virus RNA confirms its classification as a carlavirus.</title>
<db_xref db="PUBMED" dbkey="1629709"/>
<journal>J. Gen. Virol.</journal>
<location pages="1887-90" volume="73 ( Pt 7)"/>
<year>1992</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="996" db="PFAM" dbkey="PF00286" name="Flexi_CP"/>
<db_xref protein_count="955" db="PRINTS" dbkey="PR00232" name="POTXCARLCOAT"/>
<db_xref protein_count="838" db="PROSITE" dbkey="PS00418" name="POTEX_CARLAVIRUS_COAT"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00286"/>
<db_xref db="MSDsite" dbkey="PS00418"/>
<db_xref db="BLOCKS" dbkey="IPB000052"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00346"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Virus" proteins_count="996"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000053" protein_count="1187" short_name="Pyrmidine_PPase" type="Family">
<name>Pyrimidine-nucleoside phosphorylase</name>
<abstract>
<p>Two highly similar activities are represented in this group: thymidine phosphorylase (TP, gene deoA, <db_xref db="EC" dbkey="2.4.2.4"/>) and pyrimidine-nucleoside phosphorylase (PyNP, gene pdp, <db_xref db="EC" dbkey="2.4.2.2"/>). Both are dimeric enzymes that function in the salvage pathway to catalyse the reversible phosphorolysis of pyrimidine nucleosides to the free base and sugar moieties. In the case of thymidine phosphorylase, thymidine (and to a lesser extent, 2'-deoxyuridine) is lysed to produce thymine (or uracil) and 2'-deoxyribose-1-phosphate. Pyrimidine-nucleoside phosphorylase performs the analogous reaction on thymidine (to produce the same products) and uridine (to produce uracil and ribose-1-phosphate). PyNP is typically the only pyrimidine nucleoside phosphorylase encoded by Gram positive bacteria, while eukaryotes and proteobacteria encode two: TP, and the unrelated uridine phosphorylase. In humans, TP was originally characterised as platelet-derived endothelial cell growth factor and gliostatin [<cite idref="PUB00010722"/>]. Structurally, the enzymes are homodimers, each composed of a rigid all alpha-helix lobe and a mixed alpha-helix/beta-sheet lobe, which are connected by a flexible hinge [<cite idref="PUB00010723"/>, <cite idref="PUB00010724"/>]. Prior to substrate binding, the lobes are separated by a large cleft. A functional active site and subsequent catalysis occurs upon closing of the cleft. The active site, composed of a phosphate binding site and a (deoxy)ribonucleotide binding site within the cleft region, is highly conserved between the two enzymes of this group. Active site residues (Escherichia coli DeoA numbering) include the phosphate binding Lys84 and Ser86 (close to a glycine-rich loop), Ser113, and Thr123, and the pyrimidine nucleoside-binding Arg171, Ser186, and Lys190. Sequence comparison between the active site residues for both enzymes reveals only one difference [<cite idref="PUB00010724"/>], which has been proposed to partially mediate substrate specificity. In TP, position 111 is a methionine, while the analogous position in PyNP is lysine. It should be noted that the uncharacterised archaeal members of this family differ in a number of respects from either of the characterised activities. The residue at position 108 is lysine, indicating the activity might be PyNP-like (though the determinants of substrate specificity have not been fully elucidated). Position 171 is glutamate (negative charge side chain) rather than arginine (positive charge side chain). In addition, a large loop that may "lock in" the substrates within the active site is much smaller than in the characterised members. It is not clear what effect these and other differences have on activity and specificity.</p>
</abstract>
<class_list>
<classification id="GO:0006206" class_type="GO">
<category>Biological Process</category>
<description>pyrimidine base metabolic process</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A0B6C9"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P07650"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P19971"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q5FVR2"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q99N42"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00010722">
<author_list>Griffiths L, Stratford IJ.</author_list>
<title>Platelet-derived endothelial cell growth factor thymidine phosphorylase in tumour growth and response to therapy.</title>
<db_xref db="PUBMED" dbkey="9310231"/>
<journal>Br. J. Cancer</journal>
<location issue="6" pages="689-93" volume="76"/>
<year>1997</year>
</publication>
<publication id="PUB00010723">
<author_list>Pugmire MJ, Cook WJ, Jasanoff A, Walter MR, Ealick SE.</author_list>
<title>Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase.</title>
<db_xref db="PUBMED" dbkey="9698549"/>
<journal>J. Mol. Biol.</journal>
<location issue="2" pages="285-99" volume="281"/>
<year>1998</year>
</publication>
<publication id="PUB00010724">
<author_list>Pugmire MJ, Ealick SE.</author_list>
<title>The crystal structure of pyrimidine nucleoside phosphorylase in a closed conformation.</title>
<db_xref db="PUBMED" dbkey="9817849"/>
<journal>Structure</journal>
<location issue="11" pages="1467-79" volume="6"/>
<year>1998</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR013466"/>
<rel_ref ipr_ref="IPR018090"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR000312"/>
<rel_ref ipr_ref="IPR013102"/>
<rel_ref ipr_ref="IPR017459"/>
<rel_ref ipr_ref="IPR017872"/>
<rel_ref ipr_ref="IPR020072"/>
</contains>
<member_list>
<db_xref protein_count="1182" db="PANTHER" dbkey="PTHR10515" name="Pyrmidine_PPase"/>
<db_xref protein_count="1120" db="PIRSF" dbkey="PIRSF000478" name="TP_PyNP"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000053"/>
<db_xref db="EC" dbkey="2.4.2.4"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00557"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1azy"/>
<db_xref db="PDB" dbkey="1brw"/>
<db_xref db="PDB" dbkey="1otp"/>
<db_xref db="PDB" dbkey="1tpt"/>
<db_xref db="PDB" dbkey="1uou"/>
<db_xref db="PDB" dbkey="2dsj"/>
<db_xref db="PDB" dbkey="2j0f"/>
<db_xref db="PDB" dbkey="2tpt"/>
<db_xref db="CATH" dbkey="1.20.970.10"/>
<db_xref db="CATH" dbkey="3.40.1030.10"/>
<db_xref db="CATH" dbkey="3.90.1170.30"/>
<db_xref db="SCOP" dbkey="a.46.2.1"/>
<db_xref db="SCOP" dbkey="c.27.1.1"/>
<db_xref db="SCOP" dbkey="d.41.3.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1121"/>
<taxon_data name="Archaea" proteins_count="46"/>
<taxon_data name="Eukaryota" proteins_count="20"/>
<taxon_data name="Chordata" proteins_count="15"/>
<taxon_data name="Human" proteins_count="5"/>
<taxon_data name="Mouse" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="17"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR013466"/>
<sec_ac acc="IPR018090"/>
</sec_list>
</interpro>
<interpro id="IPR000054" protein_count="454" short_name="Ribosomal_L31e" type="Family">
<name>Ribosomal protein L31e</name>
<abstract>
<p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [<cite idref="PUB00007068"/>, <cite idref="PUB00007069"/>]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. </p>
<p>Many of ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [<cite idref="PUB00007069"/>, <cite idref="PUB00007070"/>].</p>
<p>A number of eukaryotic and archaebacterial large subunit ribosomal
proteins can be grouped on the basis of sequence similarities.
These proteins have 87 to 128 amino-acid residues. This family consists of:
<li>Yeast L34</li>
<li>Archaeal L31 [<cite idref="PUB00000605"/>]</li>
<li>Plants L31</li>
<li>Mammalian L31 [<cite idref="PUB00001348"/>]</li>
</p>
</abstract>
<class_list>
<classification id="GO:0003735" class_type="GO">
<category>Molecular Function</category>
<description>structural constituent of ribosome</description>
</classification>
<classification id="GO:0005622" class_type="GO">
<category>Cellular Component</category>
<description>intracellular</description>
</classification>
<classification id="GO:0005840" class_type="GO">
<category>Cellular Component</category>
<description>ribosome</description>
</classification>
<classification id="GO:0006412" class_type="GO">
<category>Biological Process</category>
<description>translation</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P0C2H8"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P62899"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P62900"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9U332"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9V597"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000605">
<author_list>Bergmann U, Arndt E.</author_list>
<title>Evidence for an additional archaebacterial gene cluster in Halobacterium marismortui encoding ribosomal proteins HL46e and HL30.</title>
<db_xref db="PUBMED" dbkey="2207169"/>
<journal>Biochim. Biophys. Acta</journal>
<location issue="1-3" pages="56-60" volume="1050"/>
<year>1990</year>
</publication>
<publication id="PUB00001348">
<author_list>Tanaka T, Kuwano Y, Kuzumaki T, Ishikawa K, Ogata K.</author_list>
<title>Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L31.</title>
<db_xref db="PUBMED" dbkey="3816785"/>
<journal>Eur. J. Biochem.</journal>
<location issue="1" pages="45-8" volume="162"/>
<year>1987</year>
</publication>
<publication id="PUB00007068">
<author_list>Ramakrishnan V, Moore PB.</author_list>
<title>Atomic structures at last: the ribosome in 2000.</title>
<db_xref db="PUBMED" dbkey="11297922"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="2" pages="144-54" volume="11"/>
<year>2001</year>
</publication>
<publication id="PUB00007069">
<author_list>Maguire BA, Zimmermann RA.</author_list>
<title>The ribosome in focus.</title>
<db_xref db="PUBMED" dbkey="11290319"/>
<journal>Cell</journal>
<location issue="6" pages="813-6" volume="104"/>
<year>2001</year>
</publication>
<publication id="PUB00007070">
<author_list>Chandra Sanyal S, Liljas A.</author_list>
<title>The end of the beginning: structural studies of ribosomal proteins.</title>
<db_xref db="PUBMED" dbkey="11114498"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="6" pages="633-6" volume="10"/>
<year>2000</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR020052"/>
</contains>
<member_list>
<db_xref protein_count="417" db="PANTHER" dbkey="PTHR10956" name="Ribosomal_L31e"/>
<db_xref protein_count="453" db="PFAM" dbkey="PF01198" name="Ribosomal_L31e"/>
<db_xref protein_count="427" db="PRODOM" dbkey="PD006030" name="Ribosomal_L31e"/>
<db_xref protein_count="430" db="GENE3D" dbkey="G3DSA:3.10.440.10" name="Ribosomal_L31e"/>
<db_xref protein_count="443" db="SSF" dbkey="SSF54575" name="Ribosomal_L31e"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01198"/>
<db_xref db="MSDsite" dbkey="PS01144"/>
<db_xref db="BLOCKS" dbkey="IPB000054"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00881"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ffk"/>
<db_xref db="PDB" dbkey="1jj2"/>
<db_xref db="PDB" dbkey="1k73"/>
<db_xref db="PDB" dbkey="1k8a"/>
<db_xref db="PDB" dbkey="1k9m"/>
<db_xref db="PDB" dbkey="1kc8"/>
<db_xref db="PDB" dbkey="1kd1"/>
<db_xref db="PDB" dbkey="1kqs"/>
<db_xref db="PDB" dbkey="1m1k"/>
<db_xref db="PDB" dbkey="1m90"/>
<db_xref db="PDB" dbkey="1n8r"/>
<db_xref db="PDB" dbkey="1nji"/>
<db_xref db="PDB" dbkey="1q7y"/>
<db_xref db="PDB" dbkey="1q81"/>
<db_xref db="PDB" dbkey="1q82"/>
<db_xref db="PDB" dbkey="1q86"/>
<db_xref db="PDB" dbkey="1qvf"/>
<db_xref db="PDB" dbkey="1qvg"/>
<db_xref db="PDB" dbkey="1s72"/>
<db_xref db="PDB" dbkey="1vq4"/>
<db_xref db="PDB" dbkey="1vq5"/>
<db_xref db="PDB" dbkey="1vq6"/>
<db_xref db="PDB" dbkey="1vq7"/>
<db_xref db="PDB" dbkey="1vq8"/>
<db_xref db="PDB" dbkey="1vq9"/>
<db_xref db="PDB" dbkey="1vqk"/>
<db_xref db="PDB" dbkey="1vql"/>
<db_xref db="PDB" dbkey="1vqm"/>
<db_xref db="PDB" dbkey="1vqn"/>
<db_xref db="PDB" dbkey="1vqo"/>
<db_xref db="PDB" dbkey="1vqp"/>
<db_xref db="PDB" dbkey="1w2b"/>
<db_xref db="PDB" dbkey="1yhq"/>
<db_xref db="PDB" dbkey="1yi2"/>
<db_xref db="PDB" dbkey="1yij"/>
<db_xref db="PDB" dbkey="1yit"/>
<db_xref db="PDB" dbkey="1yj9"/>
<db_xref db="PDB" dbkey="1yjn"/>
<db_xref db="PDB" dbkey="1yjw"/>
<db_xref db="PDB" dbkey="2otj"/>
<db_xref db="PDB" dbkey="2otl"/>
<db_xref db="PDB" dbkey="2qa4"/>
<db_xref db="PDB" dbkey="2qex"/>
<db_xref db="PDB" dbkey="3cc2"/>
<db_xref db="PDB" dbkey="3cc4"/>
<db_xref db="PDB" dbkey="3cc7"/>
<db_xref db="PDB" dbkey="3cce"/>
<db_xref db="PDB" dbkey="3ccj"/>
<db_xref db="PDB" dbkey="3ccl"/>
<db_xref db="PDB" dbkey="3ccm"/>
<db_xref db="PDB" dbkey="3ccq"/>
<db_xref db="PDB" dbkey="3ccr"/>
<db_xref db="PDB" dbkey="3ccs"/>
<db_xref db="PDB" dbkey="3ccu"/>
<db_xref db="PDB" dbkey="3ccv"/>
<db_xref db="PDB" dbkey="3cd6"/>
<db_xref db="PDB" dbkey="3cma"/>
<db_xref db="PDB" dbkey="3cme"/>
<db_xref db="PDB" dbkey="3cpw"/>
<db_xref db="CATH" dbkey="3.10.440.10"/>
<db_xref db="SCOP" dbkey="d.29.1.1"/>
<db_xref db="SCOP" dbkey="i.1.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Archaea" proteins_count="95"/>
<taxon_data name="Eukaryota" proteins_count="359"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
<taxon_data name="Rice spp." proteins_count="8"/>
<taxon_data name="Fungi" proteins_count="74"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="11"/>
<taxon_data name="Other Eukaryotes" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="42"/>
<taxon_data name="Fruit Fly" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="88"/>
<taxon_data name="Human" proteins_count="12"/>
<taxon_data name="Mouse" proteins_count="11"/>
<taxon_data name="Other Eukaryotes" proteins_count="5"/>
<taxon_data name="Plastid Group" proteins_count="59"/>
<taxon_data name="Green Plants" proteins_count="59"/>
<taxon_data name="Metazoa" proteins_count="241"/>
<taxon_data name="Plastid Group" proteins_count="28"/>
<taxon_data name="Plastid Group" proteins_count="8"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000055" protein_count="2980" short_name="Restrct_endonuc_I_S_EcoBI" type="Domain">
<name>Restriction endonuclease, type I, S subunit, EcoBI</name>
<abstract>
<p>There are four classes of restriction endonucleases: types I, II,III and IV. All types of enzymes recognise specific short DNA sequences and carry out the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. They differ in their recognition sequence, subunit composition, cleavage position, and cofactor requirements [<cite idref="PUB00035705"/>, <cite idref="PUB00035707"/>], as summarised below:</p>
<p>
<ul>
<li>Type I enzymes (<db_xref db="EC" dbkey="3.1.21.3"/>) cleave at sites remote from recognition site; require both ATP and S-adenosyl-L-methionine to function; multifunctional protein with both restriction and methylase (<db_xref db="EC" dbkey="2.1.1.72"/>) activities.</li>
<li>Type II enzymes (<db_xref db="EC" dbkey="3.1.21.4"/>) cleave within or at short specific distances from recognition site; most require magnesium; single function (restriction) enzymes independent of methylase.</li>
<li>Type III enzymes (<db_xref db="EC" dbkey="3.1.21.5"/>) cleave at sites a short distance from recognition site; require ATP (but doesn't hydrolyse it); S-adenosyl-L-methionine stimulates reaction but is not required; exists as part of a complex with a modification methylase methylase (<db_xref db="EC" dbkey="2.1.1.72"/>).</li>
<li>Type IV enzymes target methylated DNA.</li>
</ul>
</p>
<p>Type I restriction endonucleases are components of prokaryotic DNA restriction-modification mechanisms that protects the organism against invading foreign DNA. Type I enzymes have three different subunits subunits - M (modification), S (specificity) and R (restriction) - that form multifunctional enzymes with restriction (<db_xref db="EC" dbkey="3.1.21.3"/>), methylase (<db_xref db="EC" dbkey="2.1.1.72"/>) and ATPase activities [<cite idref="PUB00035705"/>, <cite idref="PUB00035706"/>]. The S subunit is required for both restriction and modification and is responsible for recognition of the DNA sequence specific for the system. The M subunit is necessary for modification, and the R subunit is required for restriction. These enzymes use S-Adenosyl-L-methionine (AdoMet) as the methyl group donor in the methylation reaction, and have a requirement for ATP. They recognise asymmetric DNA sequences split into two domains of specific sequence, one 3-4 bp long and another 4-5 bp long, separated by a nonspecific spacer 6-8 bp in length. Cleavage occurs a considerable distance from the recognition sites, rarely less than 400 bp away and up to 7000 bp away. Adenosyl residues are methylated, one on each strand of the recognition sequence. These enzymes are widespread in eubacteria and archaea. In enteric bacteria they have been subdivide into four families: types IA, IB, IC and ID.</p>
<p>This entry represents the S subunit of type I restriction endonucleases such as EcoBI and EcoKI (<db_xref db="EC" dbkey="3.1.21.3"/>), which recognise the DNA sequence 5' TGAN(8)TGCT and 5'-AACN(6)GTGC, respectively [<cite idref="PUB00035711"/>, <cite idref="PUB00035712"/>]. The M and S subunits together form a methyltransferase that methylates two adenine residues in complementary strands of a bipartite DNA recognition sequence. In the presence of the R subunit the complex can also act as an endonuclease, binding to the same target sequence but cutting the DNA some distance from this site. Whether the DNA is cut or modified depends on the methylation state of the target sequence: when the target site is unmodified, the DNA is cut; when the target site is hemi-methylated, the complex acts as a maintenance methyltransferase to modify the DNA, methylating both strands [<cite idref="PUB00003392"/>]. Most of the proteins in this family have two copies of the domain.</p>
</abstract>
<class_list>
<classification id="GO:0003677" class_type="GO">
<category>Molecular Function</category>
<description>DNA binding</description>
</classification>
<classification id="GO:0006304" class_type="GO">
<category>Biological Process</category>
<description>DNA modification</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="Q49434"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q57594"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00003392">
<author_list>Janscak P, Bickle TA.</author_list>
<title>The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain.</title>
<db_xref db="PUBMED" dbkey="9837717"/>
<journal>J. Mol. Biol.</journal>
<location issue="4" pages="937-48" volume="284"/>
<year>1998</year>
</publication>
<publication id="PUB00035705">
<author_list>Sistla S, Rao DN.</author_list>
<title>S-Adenosyl-L-methionine-dependent restriction enzymes.</title>
<db_xref db="PUBMED" dbkey="15121719"/>
<journal>Crit. Rev. Biochem. Mol. Biol.</journal>
<location issue="1" pages="1-19" volume="39"/>
<year>2004</year>
</publication>
<publication id="PUB00035706">
<author_list>Bourniquel AA, Bickle TA.</author_list>
<title>Complex restriction enzymes: NTP-driven molecular motors.</title>
<db_xref db="PUBMED" dbkey="12595133"/>
<journal>Biochimie</journal>
<location issue="11" pages="1047-59" volume="84"/>
<year>2002</year>
</publication>
<publication id="PUB00035707">
<author_list>Williams RJ.</author_list>
<title>Restriction endonucleases: classification, properties, and applications.</title>
<db_xref db="PUBMED" dbkey="12665693"/>
<journal>Mol. Biotechnol.</journal>
<location issue="3" pages="225-43" volume="23"/>
<year>2003</year>
</publication>
<publication id="PUB00035711">
<author_list>Kasarjian JK, Kodama Y, Iida M, Matsuda K, Ryu J.</author_list>
<title>Four new type I restriction enzymes identified in Escherichia coli clinical isolates.</title>
<db_xref db="PUBMED" dbkey="16040596"/>
<journal>Nucleic Acids Res.</journal>
<location issue="13" pages="e114" volume="33"/>
<year>2005</year>
</publication>
<publication id="PUB00035712">
<author_list>Cajthamlova K, Sisakova E, Weiser J, Weiserova M.</author_list>
<title>Phosphorylation of Type IA restriction-modification complex enzyme EcoKI on the HsdR subunit.</title>
<db_xref db="PUBMED" dbkey="17439637"/>
<journal>FEMS Microbiol. Lett.</journal>
<location issue="1" pages="171-7" volume="270"/>
<year>2007</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR017043"/>
</found_in>
<member_list>
<db_xref protein_count="2980" db="PFAM" dbkey="PF01420" name="Methylase_S"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01420"/>
<db_xref db="BLOCKS" dbkey="IPB000055"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ydx"/>
<db_xref db="PDB" dbkey="1yf2"/>
<db_xref db="SCOP" dbkey="d.287.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2895"/>
<taxon_data name="Cyanobacteria" proteins_count="92"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
<taxon_data name="Archaea" proteins_count="81"/>
<taxon_data name="Eukaryota" proteins_count="1"/>
<taxon_data name="Fungi" proteins_count="1"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="1"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000056" protein_count="2590" short_name="Ribul_P_3_epim" type="Family">
<name>Ribulose-phosphate 3-epimerase</name>
<abstract>
Ribulose-phosphate 3-epimerase (<db_xref db="EC" dbkey="5.1.3.1"/>) (also known as pentose-5-phosphate 3-epimerase or PPE) is the enzyme that converts D-ribulose 5-phosphate into D-xylulose 5-phosphate in Calvin's reductive pentose phosphate cycle. In <taxon tax_id="106590">Ralstonia eutropha</taxon> (Alcaligenes eutrophus) two copies of the gene coding for PPE are known [<cite idref="PUB00002204"/>], one is chromosomally encoded <db_xref db="SWISSPROT" dbkey="P40117"/>, the other one is on a plasmid <db_xref db="SWISSPROT" dbkey="Q04539"/>. PPE has been found in a wide range of bacteria, archaebacteria, fungi and plants. All the proteins have from 209 to 241 amino acid residues. The enzyme has a TIM barrel structure.
</abstract>
<class_list>
<classification id="GO:0004750" class_type="GO">
<category>Molecular Function</category>
<description>ribulose-phosphate 3-epimerase activity</description>
</classification>
<classification id="GO:0005975" class_type="GO">
<category>Biological Process</category>
<description>carbohydrate metabolic process</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P46969"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P74061"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q8VEE0"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q96AT9"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9SE42"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002204">
<author_list>Kusian B, Yoo JG, Bednarski R, Bowien B.</author_list>
<title>The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus.</title>
<db_xref db="PUBMED" dbkey="1429456"/>
<journal>J. Bacteriol.</journal>
<location issue="22" pages="7337-44" volume="174"/>
<year>1992</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR011060"/>
</parent_list>
<member_list>
<db_xref protein_count="2560" db="PANTHER" dbkey="PTHR11749" name="Ribul_P_3_epim"/>
<db_xref protein_count="2544" db="PFAM" dbkey="PF00834" name="Ribul_P_3_epim"/>
<db_xref protein_count="2075" db="PROSITE" dbkey="PS01085" name="RIBUL_P_3_EPIMER_1"/>
<db_xref protein_count="2031" db="PROSITE" dbkey="PS01086" name="RIBUL_P_3_EPIMER_2"/>
<db_xref protein_count="2075" db="TIGRFAMs" dbkey="TIGR01163" name="rpe"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00834"/>
<db_xref db="MSDsite" dbkey="PS01085"/>
<db_xref db="MSDsite" dbkey="PS01086"/>
<db_xref db="BLOCKS" dbkey="IPB000056"/>
<db_xref db="EC" dbkey="5.1.3"/>
<db_xref db="PRIAM" dbkey="PRI000772"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00833"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1h1y"/>
<db_xref db="PDB" dbkey="1h1z"/>
<db_xref db="PDB" dbkey="1rpx"/>
<db_xref db="PDB" dbkey="1tqj"/>
<db_xref db="PDB" dbkey="1tqx"/>
<db_xref db="PDB" dbkey="2fli"/>
<db_xref db="PDB" dbkey="3ct7"/>
<db_xref db="PDB" dbkey="3ctl"/>
<db_xref db="PDB" dbkey="3cu2"/>
<db_xref db="CATH" dbkey="3.20.20.70"/>
<db_xref db="SCOP" dbkey="c.1.2.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2300"/>
<taxon_data name="Cyanobacteria" proteins_count="58"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="38"/>
<taxon_data name="Eukaryota" proteins_count="252"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
<taxon_data name="Rice spp." proteins_count="7"/>
<taxon_data name="Fungi" proteins_count="69"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="5"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="23"/>
<taxon_data name="Fruit Fly" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="44"/>
<taxon_data name="Human" proteins_count="12"/>
<taxon_data name="Mouse" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="59"/>
<taxon_data name="Green Plants" proteins_count="59"/>
<taxon_data name="Metazoa" proteins_count="145"/>
<taxon_data name="Plastid Group" proteins_count="13"/>
<taxon_data name="Plastid Group" proteins_count="15"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000057" protein_count="22" short_name="IL8B_rcpt" type="Family">
<name>Interleukin 8B receptor</name>
<abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>Interleukin-8 (IL8) is a pro-inflammatory cytokine involved in the cellular
response to inflammation, being a powerful chemoattractant for neutrophils
[<cite idref="PUB00005143"/>]. There are 2 similar cell surface receptors for IL8: type 1 (IL-8RA) is
a high affinity receptor for IL8 alone; while type 2 (IL-8RB) is a high
affinity receptor for IL8, growth related gene (GRO) and neutrophil-activating protein-2 (NAP-2). The affinity of type 1 receptors for IL8 is
higher than that of type 2 receptors [<cite idref="PUB00005143"/>, <cite idref="PUB00001953"/>]. The receptors are coupled to
<taxon tax_id="520">Bordetella pertussis</taxon> toxin-sensitive GTP-binding proteins [<cite idref="PUB00001646"/>]. Signal
transduction depends on the activation of a phospholipase C specific for
phosphatidylinositol-4,5-bisphosphate, producing 2 second messengers:
inositol triphosphate and diacylglycerol [<cite idref="PUB00001646"/>]. Inositol triphosphate induces
a rise in the levels of cytosolic free calcium, while diacylglycerol
activates protein kinase C, leading to activation of neutrophils [<cite idref="PUB00001646"/>].</p>
<p>IL8RB receptors are found in high density in neutrophils, monocytes,
basophils, and melanoma cells, and in lower density in T-cells. IL8
has been reported to stimulate the phosphoinositide pathway through an
uncharacterised G-protein; pertussis toxin also inhibits several of its
actions [<cite idref="PUB00005876"/>]. The IL8RB receptor shares around 80% similarity with the
IL8RA receptor.</p>
</abstract>
<class_list>
<classification id="GO:0004918" class_type="GO">
<category>Molecular Function</category>
<description>interleukin-8 receptor activity</description>
</classification>
<classification id="GO:0006935" class_type="GO">
<category>Biological Process</category>
<description>chemotaxis</description>
</classification>
<classification id="GO:0016021" class_type="GO">
<category>Cellular Component</category>
<description>integral to membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O97571"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P25025"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P35343"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000131">
<author_list>Birnbaumer L.</author_list>
<title>G proteins in signal transduction.</title>
<db_xref db="PUBMED" dbkey="2111655"/>
<journal>Annu. Rev. Pharmacol. Toxicol.</journal>
<location pages="675-705" volume="30"/>
<year>1990</year>
</publication>
<publication id="PUB00001646">
<author_list>Baggiolini M, Clark-Lewis I.</author_list>
<title>Interleukin-8, a chemotactic and inflammatory cytokine.</title>
<db_xref db="PUBMED" dbkey="1639201"/>
<journal>FEBS Lett.</journal>
<location issue="1" pages="97-101" volume="307"/>
<year>1992</year>
</publication>
<publication id="PUB00001953">
<author_list>Mollereau C, Muscatelli F, Mattei MG, Vassart G, Parmentier M.</author_list>
<title>The high-affinity interleukin 8 receptor gene (IL8RA) maps to the 2q33-q36 region of the human genome: cloning of a pseudogene (IL8RBP) for the low-affinity receptor.</title>
<db_xref db="PUBMED" dbkey="8486366"/>
<journal>Genomics</journal>
<location issue="1" pages="248-51" volume="16"/>
<year>1993</year>
</publication>
<publication id="PUB00002477">
<author_list>Casey PJ, Gilman AG.</author_list>
<title>G protein involvement in receptor-effector coupling.</title>
<db_xref db="PUBMED" dbkey="2830256"/>
<journal>J. Biol. Chem.</journal>
<location issue="6" pages="2577-80" volume="263"/>
<year>1988</year>
</publication>
<publication id="PUB00004960">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8386361"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="167-76" volume="6"/>
<year>1993</year>
</publication>
<publication id="PUB00004961">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Fingerprinting G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8170923"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="195-203" volume="7"/>
<year>1994</year>
</publication>
<publication id="PUB00005143">
<author_list>Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI.</author_list>
<title>Structure and functional expression of a human interleukin-8 receptor.</title>
<db_xref db="PUBMED" dbkey="1840701"/>
<journal>Science</journal>
<location issue="5025" pages="1278-80" volume="253"/>
<year>1991</year>
</publication>
<publication id="PUB00005876">
<author_list>Watson S, Arkinstall S.</author_list>
<title>Chemokines.</title>
<book_title>ISBN:0127384405</book_title>
<location pages="83-8"/>
<year>1994</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR000174"/>
</parent_list>
<member_list>
<db_xref protein_count="22" db="PRINTS" dbkey="PR00573" name="INTRLEUKN8BR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000057"/>
<db_xref db="IUPHAR" dbkey="2212"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="22"/>
<taxon_data name="Chordata" proteins_count="22"/>
<taxon_data name="Human" proteins_count="6"/>
<taxon_data name="Mouse" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="22"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000058" protein_count="711" short_name="Znf_AN1" type="Domain">
<name>Zinc finger, AN1-type</name>
<abstract>
<p>Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from <taxon tax_id="8355">Xenopus laevis</taxon> (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [<cite idref="PUB00035807"/>, <cite idref="PUB00035805"/>, <cite idref="PUB00035806"/>, <cite idref="PUB00035804"/>, <cite idref="PUB00014077"/>]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [<cite idref="PUB00035812"/>]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target. </p>
<p>This entry represents the AN1-type zinc finger domain, which has a dimetal (zinc)-bound alpha/beta fold. This domain was first identified as a zinc finger at the C terminus of AN1 <db_xref db="SWISSPROT" dbkey="Q91889"/>, a ubiquitin-like
protein in <taxon tax_id="8355">Xenopus laevis</taxon> [<cite idref="PUB00001828"/>]. The AN1-type zinc finger contains six conserved cysteines and two histidines that could potentially coordinate 2 zinc atoms.</p>
<p>Certain stress-associated proteins (SAP) contain AN1 domain, often in combination with A20 zinc finger domains (SAP8) or C2H2 domains (SAP16) [<cite idref="PUB00042925"/>]. For example, the human protein Znf216 has an A20 zinc-finger at the N terminus and an AN1 zinc-finger at the C terminus, acting to negatively regulate the NFkappaB activation pathway and to interact with components of the immune response like RIP, IKKgamma and TRAF6. The interact of Znf216 with IKK-gamma and RIP is mediated by the A20 zinc-finger domain, while its interaction with TRAF6 is mediated by the AN1 zinc-finger domain; therefore, both zinc-finger domains are involved in regulating the immune response [<cite idref="PUB00042926"/>]. The AN1 zinc finger domain is also found in proteins containing a ubiquitin-like domain, which are involved in the ubiquitination pathway [<cite idref="PUB00001828"/>]. Proteins containing an AN1-type zinc finger include:</p>
<p>
<ul>
<li>Ascidian posterior end mark 6 (pem-6) protein [<cite idref="PUB00018493"/>].</li>
<li>Human AWP1 protein (associated with PRK1), which is expressed during early embryogenesis [<cite idref="PUB00018494"/>].</li>
<li>Human immunoglobulin mu binding protein 2 (SMUBP-2), mutations in which cause muscular atrophy with respiratory distress type 1 [<cite idref="PUB00018517"/>].</li>
</ul>
</p>
<p>More information about these proteins can be found at Protein of the Month: Zinc Fingers [<cite idref="PUB00035813"/>].</p>
</abstract>
<class_list>
<classification id="GO:0008270" class_type="GO">
<category>Molecular Function</category>
<description>zinc ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A2YEZ6"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O88878"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P38935"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P53899"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q6NNI8"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001828">
<author_list>Linnen JM, Bailey CP, Weeks DL.</author_list>
<title>Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins.</title>
<db_xref db="PUBMED" dbkey="8390387"/>
<journal>Gene</journal>
<location issue="2" pages="181-8" volume="128"/>
<year>1993</year>
</publication>
<publication id="PUB00014077">
<author_list>Matthews JM, Sunde M.</author_list>
<title>Zinc fingers--folds for many occasions.</title>
<db_xref db="PUBMED" dbkey="12665246"/>
<journal>IUBMB Life</journal>
<location issue="6" pages="351-5" volume="54"/>
<year>2002</year>
</publication>
<publication id="PUB00018493">
<author_list>Satou Y, Satoh N.</author_list>
<title>Posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6: maternal genes with localized mRNA in the ascidian embryo.</title>
<db_xref db="PUBMED" dbkey="9441682"/>
<journal>Dev. Biol.</journal>
<location issue="2" pages="467-81" volume="192"/>
<year>1997</year>
</publication>
<publication id="PUB00018494">
<author_list>Duan W, Sun B, Li TW, Tan BJ, Lee MK, Teo TS.</author_list>
<title>Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo.</title>
<db_xref db="PUBMED" dbkey="11054541"/>
<journal>Gene</journal>
<location issue="1-2" pages="113-21" volume="256"/>
<year>2000</year>
</publication>
<publication id="PUB00018517">
<author_list>Liepinsh E, Leonchiks A, Sharipo A, Guignard L, Otting G.</author_list>
<title>Solution structure of the R3H domain from human Smubp-2.</title>
<db_xref db="PUBMED" dbkey="12547203"/>
<journal>J. Mol. Biol.</journal>
<location issue="1" pages="217-23" volume="326"/>
<year>2003</year>
</publication>
<publication id="PUB00035804">
<author_list>Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP.</author_list>
<title>Sticky fingers: zinc-fingers as protein-recognition motifs.</title>
<db_xref db="PUBMED" dbkey="17210253"/>
<journal>Trends Biochem. Sci.</journal>
<location issue="2" pages="63-70" volume="32"/>
<year>2007</year>
</publication>
<publication id="PUB00035805">
<author_list>Hall TM.</author_list>
<title>Multiple modes of RNA recognition by zinc finger proteins.</title>
<db_xref db="PUBMED" dbkey="15963892"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="3" pages="367-73" volume="15"/>
<year>2005</year>
</publication>
<publication id="PUB00035806">
<author_list>Brown RS.</author_list>
<title>Zinc finger proteins: getting a grip on RNA.</title>
<db_xref db="PUBMED" dbkey="15718139"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="1" pages="94-8" volume="15"/>
<year>2005</year>
</publication>
<publication id="PUB00035807">
<author_list>Klug A.</author_list>
<title>Zinc finger peptides for the regulation of gene expression.</title>
<db_xref db="PUBMED" dbkey="10529348"/>
<journal>J. Mol. Biol.</journal>
<location issue="2" pages="215-8" volume="293"/>
<year>1999</year>
</publication>
<publication id="PUB00035812">
<author_list>Laity JH, Lee BM, Wright PE.</author_list>
<title>Zinc finger proteins: new insights into structural and functional diversity.</title>
<db_xref db="PUBMED" dbkey="11179890"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="1" pages="39-46" volume="11"/>
<year>2001</year>
</publication>
<publication id="PUB00035813">
<author_list>McDowall J.</author_list>
<title>Protein of the Month: Zinc Fingers.</title>
<url>http://www.ebi.ac.uk/interpro/potm/2007_3/Page1.htm</url>
<year>2007</year>
</publication>
<publication id="PUB00042926">
<author_list>Huang J, Teng L, Li L, Liu T, Li L, Chen D, Xu LG, Zhai Z, Shu HB.</author_list>
<title>ZNF216 Is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation.</title>
<db_xref db="PUBMED" dbkey="14754897"/>
<journal>J. Biol. Chem.</journal>
<location issue="16" pages="16847-53" volume="279"/>
<year>2004</year>
</publication>
<publication id="PUB00042925">
<author_list>Vij S, Tyagi AK.</author_list>
<title>Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis.</title>
<db_xref db="PUBMED" dbkey="17033811"/>
<journal>Mol. Genet. Genomics</journal>
<location issue="6" pages="565-75" volume="276"/>
<year>2006</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="702" db="PFAM" dbkey="PF01428" name="zf-AN1"/>
<db_xref protein_count="631" db="PROFILE" dbkey="PS51039" name="ZF_AN1"/>
<db_xref protein_count="505" db="SMART" dbkey="SM00154" name="ZnF_AN1"/>
<db_xref protein_count="607" db="GENE3D" dbkey="G3DSA:4.10.1110.10" name="Znf_AN1"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01428"/>
<db_xref db="BLOCKS" dbkey="IPB000058"/>
<db_xref db="PROSITEDOC" dbkey="PDOC51039"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1wfe"/>
<db_xref db="PDB" dbkey="1wfh"/>
<db_xref db="PDB" dbkey="1wfl"/>
<db_xref db="PDB" dbkey="1wfp"/>
<db_xref db="PDB" dbkey="1wg2"/>
<db_xref db="CATH" dbkey="4.10.1110.10"/>
<db_xref db="SCOP" dbkey="g.80.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Archaea" proteins_count="35"/>
<taxon_data name="Eukaryota" proteins_count="671"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="15"/>
<taxon_data name="Rice spp." proteins_count="55"/>
<taxon_data name="Fungi" proteins_count="122"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Nematoda" proteins_count="4"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="4"/>
<taxon_data name="Arthropoda" proteins_count="88"/>
<taxon_data name="Fruit Fly" proteins_count="13"/>
<taxon_data name="Chordata" proteins_count="129"/>
<taxon_data name="Human" proteins_count="22"/>
<taxon_data name="Mouse" proteins_count="12"/>
<taxon_data name="Virus" proteins_count="5"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="217"/>
<taxon_data name="Green Plants" proteins_count="217"/>
<taxon_data name="Metazoa" proteins_count="377"/>
<taxon_data name="Plastid Group" proteins_count="44"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Other Eukaryotes" proteins_count="11"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000059" protein_count="242" short_name="NUDIX_hydrolase_NudL_CS" type="Conserved_site">
<name>NUDIX hydrolase, NudL, conserved site</name>
<abstract>
<p>Nudix hydrolases, which are commonly found in all kingdoms of life, are pyrophosphohydrolases predominantly acting on substrates that contain a nucleotide diphosphate linked to another moiety X [<cite idref="PUB00006662"/>, <cite idref="PUB00034750"/>]. These substrates include nucleoside triphosphates, nucleotide sugars, dinucleoside polyphosphates, dinucleotide coenzymes and capped RNAs. In some cases, phosphohydrolase activity has been observed with nucleoside diphopshates and some non-nucletoide substrates. These enzymes posses an almost universally conserved, charateristic twenty-three-amino acid motif, Gx(5)Ex(5)[UA]xREx(2)EExGU (where U is an aliphatic, hydrophobic amino acid residue), necessary for catalytic activity. Some members of this family protect cells by degrading potentially mutagenic oxidised nucleotides, while others control the levels of metabolic intermediates and signalling compounds.</p>
<p>This entry represents a number of proteins which contain the characteristic Nudix domain. One of the characterised protein in this entry, PCD1, is a peroxisomal coenzyme A (CoA) diphosphatase catalysing the cleavage of coenzyme A into ADP and phosphopantetheine, with a strong preference for oxidised CoA disulphide as its substrate [<cite idref="PUB00034751"/>]. PCD1 may function, therefore, to maintain the capacity for beta-oxidation of fatty acids. It has also been shown to degrade oxo-dGTP and so may also be involved in protecting the cell from mutagenic oxidised nucleotides [<cite idref="PUB00034752"/>].</p>
</abstract>
<class_list>
<classification id="GO:0000287" class_type="GO">
<category>Molecular Function</category>
<description>magnesium ion binding</description>
</classification>
<classification id="GO:0009132" class_type="GO">
<category>Biological Process</category>
<description>nucleoside diphosphate metabolic process</description>
</classification>
<classification id="GO:0016818" class_type="GO">
<category>Molecular Function</category>
<description>hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides</description>
</classification>
<classification id="GO:0030145" class_type="GO">
<category>Molecular Function</category>
<description>manganese ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A1ABY1"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P0C024"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q12524"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q23236"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q99P30"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00006662">
<author_list>Bessman MJ, Frick DN, O'Handley SF.</author_list>
<title>The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes.</title>
<db_xref db="PUBMED" dbkey="8810257"/>
<journal>J. Biol. Chem.</journal>
<location issue="41" pages="25059-62" volume="271"/>
<year>1996</year>
</publication>
<publication id="PUB00034750">
<author_list>McLennan AG.</author_list>
<title>The Nudix hydrolase superfamily.</title>
<db_xref db="PUBMED" dbkey="16378245"/>
<journal>Cell. Mol. Life Sci.</journal>
<location issue="2" pages="123-43" volume="63"/>
<year>2006</year>
</publication>
<publication id="PUB00034752">
<author_list>Nunoshiba T, Ishida R, Sasaki M, Iwai S, Nakabeppu Y, Yamamoto K.</author_list>
<title>A novel Nudix hydrolase for oxidized purine nucleoside triphosphates encoded by ORFYLR151c (PCD1 gene) in Saccharomyces cerevisiae.</title>
<db_xref db="PUBMED" dbkey="15475388"/>
<journal>Nucleic Acids Res.</journal>
<location issue="18" pages="5339-48" volume="32"/>
<year>2004</year>
</publication>
<publication id="PUB00034751">
<author_list>Cartwright JL, Gasmi L, Spiller DG, McLennan AG.</author_list>
<title>The Saccharomyces cerevisiae PCD1 gene encodes a peroxisomal nudix hydrolase active toward coenzyme A and its derivatives.</title>
<db_xref db="PUBMED" dbkey="10922370"/>
<journal>J. Biol. Chem.</journal>
<location issue="42" pages="32925-30" volume="275"/>
<year>2000</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR000086"/>
<rel_ref ipr_ref="IPR015797"/>
</found_in>
<member_list>
<db_xref protein_count="242" db="PROSITE" dbkey="PS01293" name="UPF0035"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS01293"/>
<db_xref db="BLOCKS" dbkey="IPB000059"/>
<db_xref db="EC" dbkey="3.6.1"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00995"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="221"/>
<taxon_data name="Eukaryota" proteins_count="21"/>
<taxon_data name="Rice spp." proteins_count="1"/>
<taxon_data name="Fungi" proteins_count="9"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="8"/>
<taxon_data name="Human" proteins_count="1"/>
<taxon_data name="Mouse" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Green Plants" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="20"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000060" protein_count="2160" short_name="BCCT_transporter" type="Family">
<name>BCCT transporter</name>
<abstract>
<p>These prokaryotic transport proteins belong to a family known as BCCT (for Betaine /
Carnitine / Choline Transporters) and are specific for compounds containing
a quaternary nitrogen atom. The BCCT proteins contain 12 transmembrane regions
and are energized by proton symport. They contain a conserved region with four
tryptophans in their central region [<cite idref="PUB00002302"/>].</p>
</abstract>
<class_list>
<classification id="GO:0005215" class_type="GO">
<category>Molecular Function</category>
<description>transporter activity</description>
</classification>
<classification id="GO:0006810" class_type="GO">
<category>Biological Process</category>
<description>transport</description>
</classification>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P54582"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002302">
<author_list>Kappes RM, Kempf B, Bremer E.</author_list>
<title>Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.</title>
<db_xref db="PUBMED" dbkey="8752321"/>
<journal>J. Bacteriol.</journal>
<location issue="17" pages="5071-9" volume="178"/>
<year>1996</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018093"/>
</contains>
<member_list>
<db_xref protein_count="2160" db="PFAM" dbkey="PF02028" name="BCCT"/>
<db_xref protein_count="1568" db="TIGRFAMs" dbkey="TIGR00842" name="bcct"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF02028"/>
<db_xref db="MSDsite" dbkey="PS01303"/>
<db_xref db="BLOCKS" dbkey="IPB000060"/>
<db_xref db="PROSITEDOC" dbkey="PDOC01007"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2123"/>
<taxon_data name="Cyanobacteria" proteins_count="14"/>
<taxon_data name="Archaea" proteins_count="20"/>
<taxon_data name="Eukaryota" proteins_count="17"/>
<taxon_data name="Fungi" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="7"/>
<taxon_data name="Green Plants" proteins_count="7"/>
<taxon_data name="Metazoa" proteins_count="8"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000061" protein_count="495" short_name="Surp" type="Domain">
<name>SWAP/Surp</name>
<abstract>
SWAP is derived from the Suppressor-of-White-APricot splicing
regulator from <taxon tax_id="7227">Drosophila melanogaster</taxon>. The domain is found in regulators responsible for pervasive, nonsex-specific alternative pre-mRNA
splicing characteristics and has been found in splicing regulatory proteins [<cite idref="PUB00002852"/>]. These ancient, conserved
SWAP proteins share a colinearly arrayed series of novel
sequence motifs [<cite idref="PUB00006690"/>].
</abstract>
<class_list>
<classification id="GO:0003723" class_type="GO">
<category>Molecular Function</category>
<description>RNA binding</description>
</classification>
<classification id="GO:0006396" class_type="GO">
<category>Biological Process</category>
<description>RNA processing</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P12297"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P32524"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q10580"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q15459"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q8CH02"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002852">
<author_list>Denhez F, Lafyatis R.</author_list>
<title>Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot.</title>
<db_xref db="PUBMED" dbkey="8206918"/>
<journal>J. Biol. Chem.</journal>
<location issue="23" pages="16170-9" volume="269"/>
<year>1994</year>
</publication>
<publication id="PUB00006690">
<author_list>Spikes DA, Kramer J, Bingham PM, Van Doren K.</author_list>
<title>SWAP pre-mRNA splicing regulators are a novel, ancient protein family sharing a highly conserved sequence motif with the prp21 family of constitutive splicing proteins.</title>
<db_xref db="PUBMED" dbkey="7971282"/>
<journal>Nucleic Acids Res.</journal>
<location issue="21" pages="4510-9" volume="22"/>
<year>1994</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="447" db="PFAM" dbkey="PF01805" name="Surp"/>
<db_xref protein_count="475" db="PROFILE" dbkey="PS50128" name="SURP"/>
<db_xref protein_count="482" db="SMART" dbkey="SM00648" name="SWAP"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01805"/>
<db_xref db="BLOCKS" dbkey="IPB000061"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50128"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ug0"/>
<db_xref db="PDB" dbkey="1x4o"/>
<db_xref db="PDB" dbkey="1x4p"/>
<db_xref db="PDB" dbkey="2dt6"/>
<db_xref db="PDB" dbkey="2dt7"/>
<db_xref db="SCOP" dbkey="a.217.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="495"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="26"/>
<taxon_data name="Rice spp." proteins_count="18"/>
<taxon_data name="Fungi" proteins_count="83"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="4"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="4"/>
<taxon_data name="Arthropoda" proteins_count="72"/>
<taxon_data name="Fruit Fly" proteins_count="8"/>
<taxon_data name="Chordata" proteins_count="90"/>
<taxon_data name="Human" proteins_count="17"/>
<taxon_data name="Mouse" proteins_count="11"/>
<taxon_data name="Other Eukaryotes" proteins_count="5"/>
<taxon_data name="Plastid Group" proteins_count="113"/>
<taxon_data name="Green Plants" proteins_count="113"/>
<taxon_data name="Metazoa" proteins_count="274"/>
<taxon_data name="Plastid Group" proteins_count="56"/>
<taxon_data name="Plastid Group" proteins_count="29"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="8"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000062" protein_count="2350" short_name="Thymidylate_kin-like" type="Family">
<name>Thymidylate kinase-like</name>
<abstract>
<p>Thymidylate kinase (<db_xref db="EC" dbkey="2.7.4.9"/>; dTMP kinase) catalyzes the phosphorylation of thymidine 5'-monophosphate (dTMP) to form thymidine 5'-diphosphate (dTDP) in the presence of ATP and magnesium: </p>
<reaction>
ATP + thymidine 5'-phosphate = ADP + thymidine 5'-diphosphate
</reaction>
<p>Thymidylate kinase is an ubiquitous enzyme of about 25 Kd and is important in the dTTP synthesis pathway for DNA synthesis. The function of dTMP kinase in eukaryotes comes from the study of a cell cycle mutant, cdc8, in <taxon tax_id="4932">Saccharomyces cerevisiae</taxon>. Structural and functional analyses suggest that the cDNA codes for authentic human dTMP kinase. The mRNA levels and enzyme activities corresponded to cell cycle progression and cell growth stages[<cite idref="PUB00016913"/>]. </p>
<p>This entry reprsents known and predicted kinases, and related enzymes such as UMP-CMP kinase.</p>
</abstract>
<class_list>
<classification id="GO:0005524" class_type="GO">
<category>Molecular Function</category>
<description>ATP binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P00572"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P23919"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P97930"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q22018"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q55593"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00016913">
<author_list>Huang SH, Tang A, Drisco B, Zhang SQ, Seeger R, Li C, Jong A.</author_list>
<title>Human dTMP kinase: gene expression and enzymatic activity coinciding with cell cycle progression and cell growth.</title>
<db_xref db="PUBMED" dbkey="8024690"/>
<journal>DNA Cell Biol.</journal>
<location issue="5" pages="461-71" volume="13"/>
<year>1994</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR014505"/>
<rel_ref ipr_ref="IPR018094"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR018095"/>
</contains>
<member_list>
<db_xref protein_count="2350" db="PFAM" dbkey="PF02223" name="Thymidylate_kin"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF02223"/>
<db_xref db="MSDsite" dbkey="PS01331"/>
<db_xref db="BLOCKS" dbkey="IPB000062"/>
<db_xref db="EC" dbkey="2.7.4.9"/>
<db_xref db="PROSITEDOC" dbkey="PDOC01034"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1e2d"/>
<db_xref db="PDB" dbkey="1e2e"/>
<db_xref db="PDB" dbkey="1e2f"/>
<db_xref db="PDB" dbkey="1e2g"/>
<db_xref db="PDB" dbkey="1e2q"/>
<db_xref db="PDB" dbkey="1e98"/>
<db_xref db="PDB" dbkey="1e99"/>
<db_xref db="PDB" dbkey="1e9a"/>
<db_xref db="PDB" dbkey="1e9b"/>
<db_xref db="PDB" dbkey="1e9c"/>
<db_xref db="PDB" dbkey="1e9d"/>
<db_xref db="PDB" dbkey="1e9e"/>
<db_xref db="PDB" dbkey="1e9f"/>
<db_xref db="PDB" dbkey="1g3u"/>
<db_xref db="PDB" dbkey="1gsi"/>
<db_xref db="PDB" dbkey="1gtv"/>
<db_xref db="PDB" dbkey="1mrn"/>
<db_xref db="PDB" dbkey="1mrs"/>
<db_xref db="PDB" dbkey="1n5i"/>
<db_xref db="PDB" dbkey="1n5j"/>
<db_xref db="PDB" dbkey="1n5k"/>
<db_xref db="PDB" dbkey="1n5l"/>
<db_xref db="PDB" dbkey="1nmx"/>
<db_xref db="PDB" dbkey="1nmy"/>
<db_xref db="PDB" dbkey="1nmz"/>
<db_xref db="PDB" dbkey="1nn0"/>
<db_xref db="PDB" dbkey="1nn1"/>
<db_xref db="PDB" dbkey="1nn3"/>
<db_xref db="PDB" dbkey="1nn5"/>
<db_xref db="PDB" dbkey="1tmk"/>
<db_xref db="PDB" dbkey="1w2g"/>
<db_xref db="PDB" dbkey="1w2h"/>
<db_xref db="PDB" dbkey="2axp"/>
<db_xref db="PDB" dbkey="2tmk"/>
<db_xref db="PDB" dbkey="2v54"/>
<db_xref db="PDB" dbkey="2w0s"/>
<db_xref db="PDB" dbkey="3tmk"/>
<db_xref db="PDB" dbkey="4tmk"/>
<db_xref db="PDB" dbkey="5tmp"/>
<db_xref db="CATH" dbkey="3.40.50.300"/>
<db_xref db="SCOP" dbkey="c.37.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1953"/>
<taxon_data name="Cyanobacteria" proteins_count="55"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="127"/>
<taxon_data name="Eukaryota" proteins_count="215"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
<taxon_data name="Rice spp." proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="68"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="28"/>
<taxon_data name="Fruit Fly" proteins_count="7"/>
<taxon_data name="Chordata" proteins_count="30"/>
<taxon_data name="Human" proteins_count="5"/>
<taxon_data name="Mouse" proteins_count="5"/>
<taxon_data name="Virus" proteins_count="54"/>
<taxon_data name="Unclassified" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="29"/>
<taxon_data name="Green Plants" proteins_count="29"/>
<taxon_data name="Metazoa" proteins_count="139"/>
<taxon_data name="Plastid Group" proteins_count="21"/>
<taxon_data name="Plastid Group" proteins_count="13"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR014505"/>
<sec_ac acc="IPR018094"/>
</sec_list>
</interpro>
<interpro id="IPR000064" protein_count="4879" short_name="NLP_P60" type="Domain">
<name>NLP/P60</name>
<abstract>
<p>The <taxon tax_id="562">Escherichia coli</taxon> NLPC/Listeria P60 domain occurs at the C terminus of a number of different bacterial and viral proteins. The viral proteins are either described as tail assembly proteins or Gp19. In bacteria, the proteins are variously described as being putative tail component of prophage, invasin, invasion associated protein, putative lipoprotein, cell wall hydrolase, or putative endopeptidase. </p>
<p>The E. coli NLPC/Listeria P60 domain is contained within the boundaries of the cysteine peptidase domain that defines the MEROPS peptidase family C40 (clan C-). A type example being dipeptidyl-peptidase VI from <taxon tax_id="1421">Bacillus sphaericus</taxon> and gamma-glutamyl-diamino acid-endopeptidase precursor from <taxon tax_id="1358">Lactococcus lactis</taxon> <db_xref db="EC" dbkey="3.4.19.11"/>. This group also contains proteins classified as non-peptidase homologues in that they either have been found experimentally to be without peptidase activity, or lack amino acid residues that are believed to be essential for the catalytic activity of peptidases in the C40 family.
</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P03729"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P0AFV4"/>
</example>
</example_list>
<pub_list/>
<found_in>
<rel_ref ipr_ref="IPR011929"/>
</found_in>
<member_list>
<db_xref protein_count="4879" db="PFAM" dbkey="PF00877" name="NLPC_P60"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00877"/>
<db_xref db="BLOCKS" dbkey="IPB000064"/>
<db_xref db="MEROPS" dbkey="C40"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="2hbw"/>
<db_xref db="CATH" dbkey="3.90.1720.10"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="4787"/>
<taxon_data name="Cyanobacteria" proteins_count="52"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="3"/>
<taxon_data name="Eukaryota" proteins_count="37"/>
<taxon_data name="Rice spp." proteins_count="1"/>
<taxon_data name="Fungi" proteins_count="16"/>
<taxon_data name="Other Eukaryotes" proteins_count="9"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Arthropoda" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="1"/>
<taxon_data name="Mouse" proteins_count="1"/>
<taxon_data name="Virus" proteins_count="52"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
<taxon_data name="Green Plants" proteins_count="4"/>
<taxon_data name="Metazoa" proteins_count="18"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000065" protein_count="150" short_name="Leptin" type="Family">
<name>Obesity factor</name>
<abstract>
Leptin, a metabolic monitor of food intake and energy need, is expressed
by the ob obesity gene. The protein may function as part of a signalling
pathway from adipose tissue that acts to regulate the size of the body
fat depot [<cite idref="PUB00004193"/>], the hormone effectively turning the brain's appetite
message off when it senses that the body is satiated. Obese humans have
high levels of the protein, suggesting a similarity to type II (adult
onset) diabetes, in which sufferers over-produce insulin, but can't respond
to it metabolically - they have become insulin resistant. Similarly, it is
thought that obese individuals may be leptin resistant.
</abstract>
<class_list>
<classification id="GO:0005179" class_type="GO">
<category>Molecular Function</category>
<description>hormone activity</description>
</classification>
<classification id="GO:0005576" class_type="GO">
<category>Cellular Component</category>
<description>extracellular region</description>
</classification>
<classification id="GO:0007165" class_type="GO">
<category>Biological Process</category>
<description>signal transduction</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O02720"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P41159"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P41160"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004193">
<author_list>Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM.</author_list>
<title>Positional cloning of the mouse obese gene and its human homologue.</title>
<db_xref db="PUBMED" dbkey="7984236"/>
<journal>Nature</journal>
<location issue="6505" pages="425-32" volume="372"/>
<year>1994</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR009079"/>
</parent_list>
<member_list>
<db_xref protein_count="135" db="PANTHER" dbkey="PTHR11724" name="Leptin"/>
<db_xref protein_count="145" db="PFAM" dbkey="PF02024" name="Leptin"/>
<db_xref protein_count="84" db="PIRSF" dbkey="PIRSF001837" name="Leptin"/>
<db_xref protein_count="132" db="PRINTS" dbkey="PR00495" name="LEPTIN"/>
<db_xref protein_count="145" db="PRODOM" dbkey="PD005698" name="Leptin"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF02024"/>
<db_xref db="BLOCKS" dbkey="IPB000065"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ax8"/>
<db_xref db="CATH" dbkey="1.20.1250.10"/>
<db_xref db="SCOP" dbkey="a.26.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="150"/>
<taxon_data name="Chordata" proteins_count="150"/>
<taxon_data name="Human" proteins_count="6"/>
<taxon_data name="Mouse" proteins_count="2"/>
<taxon_data name="Metazoa" proteins_count="150"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000066" protein_count="374" short_name="Antenna_a/b" type="Family">
<name>Antenna complex, alpha/beta subunit</name>
<abstract>
In photosynthetic bacteria the antenna complexes function as light-harvesting
systems that absorb light radiation and transfer the excitation energy to the
reaction centres. The antenna complexes are generally composed of two
polypeptides (alpha and beta chains); two or three bacteriochlorophyll (BChl)
molecules and some carotenoids [<cite idref="PUB00001417"/>, <cite idref="PUB00003468"/>].
Both the alpha and the beta chains of antenna complexes are small proteins of
42 to 68 residues which share a three-domain organisation. They are composed
of a N-terminal hydrophilic cytoplasmic domain followed by a transmembrane
region and a C-terminal hydrophilic periplasmic domain. In the transmembrane
region of both chains there is a conserved histidine which is most probably
involved in the binding of the magnesium atom of a bacteriochlorophyll group.
The beta chains contain an additional conserved histidine which is located at
the C-terminal extremity of the cytoplasmic domain and which is also thought
to be involved in bacteriochlorophyll-binding.
</abstract>
<class_list>
<classification id="GO:0016021" class_type="GO">
<category>Cellular Component</category>
<description>integral to membrane</description>
</classification>
<classification id="GO:0019684" class_type="GO">
<category>Biological Process</category>
<description>photosynthesis, light reaction</description>
</classification>
<classification id="GO:0030077" class_type="GO">
<category>Cellular Component</category>
<description>plasma membrane light-harvesting complex</description>
</classification>
<classification id="GO:0045156" class_type="GO">
<category>Molecular Function</category>
<description>electron transporter, transferring electrons within the cyclic electron transport pathway of photosynthesis activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P02947"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001417">
<author_list>Wagner-Huber R, Brunisholz RA, Bissig I, Frank G, Suter F, Zuber H.</author_list>
<title>The primary structure of the antenna polypeptides of Ectothiorhodospira halochloris and Ectothiorhodospira halophila. Four core-type antenna polypeptides in E. halochloris and E. halophila.</title>
<db_xref db="PUBMED" dbkey="1577009"/>
<journal>Eur. J. Biochem.</journal>
<location issue="3" pages="917-25" volume="205"/>
<year>1992</year>
</publication>
<publication id="PUB00003468">
<author_list>Brunisholz RA, Zuber H.</author_list>
<title>Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae.</title>
<db_xref db="PUBMED" dbkey="1460542"/>
<journal>J. Photochem. Photobiol. B, Biol.</journal>
<location issue="1-2" pages="113-40" volume="15"/>
<year>1992</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR002362"/>
<rel_ref ipr_ref="IPR018332"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR002361"/>
</contains>
<member_list>
<db_xref protein_count="368" db="PFAM" dbkey="PF00556" name="LHC"/>
<db_xref protein_count="367" db="SSF" dbkey="SSF56918" name="Antenna_a/b"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00556"/>
<db_xref db="COMe" dbkey="PRX000801"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1dx7"/>
<db_xref db="PDB" dbkey="1ijd"/>
<db_xref db="PDB" dbkey="1jo5"/>
<db_xref db="PDB" dbkey="1kzu"/>
<db_xref db="PDB" dbkey="1lgh"/>
<db_xref db="PDB" dbkey="1nkz"/>
<db_xref db="PDB" dbkey="1wrg"/>
<db_xref db="PDB" dbkey="1xrd"/>
<db_xref db="PDB" dbkey="2fkw"/>
<db_xref db="CATH" dbkey="1.20.5.250"/>
<db_xref db="CATH" dbkey="4.10.220.20"/>
<db_xref db="SCOP" dbkey="f.3.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="374"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR002362"/>
<sec_ac acc="IPR018332"/>
</sec_list>
</interpro>
<interpro id="IPR000067" protein_count="1067" short_name="FlgMring_FLIF" type="Family">
<name>Flagellar FliF M-ring protein</name>
<abstract>
This family corresponds to the FliF protein. FliF is the major protein
of the M-ring in bacterial flagellar basal body [<cite idref="PUB00002086"/>].
The basal body consists of four rings (L,P,S and M) surrounding the
flagellar rod, which is believed to transmit motor rotation to the filament
[<cite idref="PUB00003254"/>].
The M ring is integral to the inner membrane of the cell, and may be
connected to the rod via the S (supramembrane) ring, which lies just distal
to it. The L and P rings reside in the outer membrane and periplasmic space,
respectively.
FliF lacks a signal peptide and is predicted to have considerable
alpha-helical structure, including an N-terminal sequence that is likely
to be membrane-spanning [<cite idref="PUB00002086"/>]. Overall, however, FliF has a relatively
hydrophilic sequence, with a high charge density, especially towards its
C terminus [<cite idref="PUB00002086"/>].
</abstract>
<class_list>
<classification id="GO:0001539" class_type="GO">
<category>Biological Process</category>
<description>ciliary or flagellar motility</description>
</classification>
<classification id="GO:0003774" class_type="GO">
<category>Molecular Function</category>
<description>motor activity</description>
</classification>
<classification id="GO:0009431" class_type="GO">
<category>Cellular Component</category>
<description>bacterial-type flagellum basal body, MS ring</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O52069"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002086">
<author_list>Jones CJ, Homma M, Macnab RM.</author_list>
<title>L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium: gene sequences and deduced protein sequences.</title>
<db_xref db="PUBMED" dbkey="2544561"/>
<journal>J. Bacteriol.</journal>
<location issue="7" pages="3890-900" volume="171"/>
<year>1989</year>
</publication>
<publication id="PUB00003254">
<author_list>Homma M, Kutsukake K, Hasebe M, Iino T, Macnab RM.</author_list>
<title>FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium.</title>
<db_xref db="PUBMED" dbkey="2129540"/>
<journal>J. Mol. Biol.</journal>
<location issue="2" pages="465-77" volume="211"/>
<year>1990</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR006182"/>
<rel_ref ipr_ref="IPR013556"/>
</contains>
<member_list>
<db_xref protein_count="1054" db="PRINTS" dbkey="PR01009" name="FLGMRINGFLIF"/>
<db_xref protein_count="1042" db="TIGRFAMs" dbkey="TIGR00206" name="fliF"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000067"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1062"/>
<taxon_data name="Eukaryota" proteins_count="3"/>
<taxon_data name="Rice spp." proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
<taxon_data name="Green Plants" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000068" protein_count="101" short_name="GPCR_3_Ca_sens_rcpt-rel" type="Family">
<name>GPCR, family 3, extracellular calcium-sensing receptor-related</name>
<abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The metabotropic glutamate receptors are functionally and pharmacologically distinct from the ionotropic glutamate receptors. They are coupled to G-proteins and stimulate the inositol phosphate/Ca<sup>2+</sup> intracellular signalling pathway [<cite idref="PUB00004090"/>, <cite idref="PUB00005138"/>, <cite idref="PUB00002720"/>, <cite idref="PUB00004309"/>]. At least eight sub-types of metabotropic receptor (MGR1-8) have been identified in cloning studies. The sub-types differ in their agonist pharmacology and signal transduction pathways [<cite idref="PUB00005885"/>].</p>
<p>The calcium-sensing receptor (CaSR) is an integral membrane protein that
senses changes in the extracellular concentration of calcium ions. The
activity of the receptor is mediated by a G-protein that activates a
phosphatidyl-inositol-calcium second messenger system. The sequences of the
receptors show a high degree of similarity to the TM signature that
characterises the metabotropic glutamate receptors. In addition, the
sequences contain a large extracellular domain that includes clusters of
acidic amino acid residues, which may be involved in calcium binding [<cite idref="PUB00004161"/>].
Defects in CaSR that result in reduced activity of the receptor cause
familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT), inherited conditions characterised by altered calcium
homeostasis [<cite idref="PUB00002009"/>, <cite idref="PUB00003100"/>]. FHH-affected individuals exhibit mild or modest hypercalcemia, relative hypocalciuria and inappropriately normal PTH levels. By
contrast, NSHPT is a rare autosomal recessive life-threatening disorder
characterised by high serum calcium concentrations, skeletal demineralisation and parathyroid hyperplasia. In addition, defects resulting from
receptor activation at subnormal Ca<sup>2+</sup> levels cause autosomal dominant
hypocalcemia [<cite idref="PUB00003896"/>].</p>
<p>This entry represents the extracellular calcium-sensing receptors and related proteins in GPCR family 3, such as the taste receptors.</p>
</abstract>
<class_list>
<classification id="GO:0004930" class_type="GO">
<category>Molecular Function</category>
<description>G-protein coupled receptor activity</description>
</classification>
<classification id="GO:0007186" class_type="GO">
<category>Biological Process</category>
<description>G-protein coupled receptor protein signaling pathway</description>
</classification>
<classification id="GO:0016021" class_type="GO">
<category>Cellular Component</category>
<description>integral to membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A3QP01"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O70410"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P41180"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002009">
<author_list>Ward BK, Stuckey BG, Gutteridge DH, Laing NG, Pullan PT, Ratajczak T.</author_list>
<title>A novel mutation (L174R) in the Ca2+-sensing receptor gene associated with familial hypocalciuric hypercalcemia.</title>
<db_xref db="PUBMED" dbkey="9298824"/>
<journal>Hum. Mutat.</journal>
<location issue="3" pages="233-5" volume="10"/>
<year>1997</year>
</publication>
<publication id="PUB00002720">
<author_list>Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S.</author_list>
<title>Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction.</title>
<db_xref db="PUBMED" dbkey="1320017"/>
<journal>J. Biol. Chem.</journal>
<location issue="19" pages="13361-8" volume="267"/>
<year>1992</year>
</publication>
<publication id="PUB00003100">
<author_list>Pearce SH, Trump D, Wooding C, Besser GM, Chew SL, Grant DB, Heath DA, Hughes IA, Paterson CR, Whyte MP.</author_list>
<title>Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism.</title>
<db_xref db="PUBMED" dbkey="8675635"/>
<journal>J. Clin. Invest.</journal>
<location issue="6" pages="2683-92" volume="96"/>
<year>1995</year>
</publication>
<publication id="PUB00003896">
<author_list>Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG.</author_list>
<title>Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation.</title>
<db_xref db="PUBMED" dbkey="7874174"/>
<journal>Nat. Genet.</journal>
<location issue="3" pages="303-7" volume="8"/>
<year>1994</year>
</publication>
<publication id="PUB00004161">
<author_list>Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC.</author_list>
<title>Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid.</title>
<db_xref db="PUBMED" dbkey="8255296"/>
<journal>Nature</journal>
<location issue="6455" pages="575-80" volume="366"/>
<year>1993</year>
</publication>
<publication id="PUB00004961">
<author_list>Attwood TK, Findlay JB.</author_list>
<title>Fingerprinting G-protein-coupled receptors.</title>
<db_xref db="PUBMED" dbkey="8170923"/>
<journal>Protein Eng.</journal>
<location issue="2" pages="195-203" volume="7"/>
<year>1994</year>
</publication>
<publication id="PUB00005885">
<author_list>Watson S, Arkinstall S.</author_list>
<title>Glutamate.</title>
<book_title>ISBN:0127384405</book_title>
<location pages="130-41"/>
<year>1994</year>
</publication>
<publication id="PUB00005138">
<author_list>Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O'Hara PJ, Mulvihill ER, Almers W, Hagen FS.</author_list>
<title>Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain.</title>
<db_xref db="PUBMED" dbkey="1656524"/>
<journal>Science</journal>
<location issue="5010" pages="1318-21" volume="252"/>
<year>1991</year>
</publication>
<publication id="PUB00004090">
<author_list>Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S.</author_list>
<title>Sequence and expression of a metabotropic glutamate receptor.</title>
<db_xref db="PUBMED" dbkey="1847995"/>
<journal>Nature</journal>
<location issue="6312" pages="760-5" volume="349"/>
<year>1991</year>
</publication>
<publication id="PUB00004309">
<author_list>Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S.</author_list>
<title>A family of metabotropic glutamate receptors.</title>
<db_xref db="PUBMED" dbkey="1309649"/>
<journal>Neuron</journal>
<location issue="1" pages="169-79" volume="8"/>
<year>1992</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR000337"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR015531"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR001828"/>
</contains>
<member_list>
<db_xref protein_count="101" db="PRINTS" dbkey="PR00592" name="CASENSINGR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000068"/>
<db_xref db="IUPHAR" dbkey="2926"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="101"/>
<taxon_data name="Chordata" proteins_count="93"/>
<taxon_data name="Human" proteins_count="13"/>
<taxon_data name="Mouse" proteins_count="10"/>
<taxon_data name="Metazoa" proteins_count="101"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR015531"/>
</sec_list>
</interpro>
<interpro id="IPR000069" protein_count="3797" short_name="Env_glycoprot_M_flavivir" type="Domain">
<name>Envelope glycoprotein M, flavivirus</name>
<abstract>
<p>Flaviviruses are small enveloped viruses with virions comprised of
three proteins called C, M and E [<cite idref="PUB00003522"/>, <cite idref="PUB00000171"/>, <cite idref="PUB00003500"/>]. The envelope glycoprotein M is made as a precursor, called prM. The precursor portion of the protein is the signal peptide for the proteins entry into the membrane. prM is cleaved to form M in a late-stage cleavage event. Associated with this cleavage is a change in the infectivity and fusion activity of the virus.</p>
</abstract>
<class_list>
<classification id="GO:0019028" class_type="GO">
<category>Cellular Component</category>
<description>viral capsid</description>
</classification>
<classification id="GO:0019058" class_type="GO">
<category>Biological Process</category>
<description>viral infectious cycle</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P03314"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000171">
<author_list>Heinz FX, Auer G, Stiasny K, Holzmann H, Mandl C, Guirakhoo F, Kunz C.</author_list>
<title>The interactions of the flavivirus envelope proteins: implications for virus entry and release.</title>
<db_xref db="PUBMED" dbkey="7913359"/>
<journal>Arch. Virol. Suppl.</journal>
<location pages="339-48" volume="9"/>
<year>1994</year>
</publication>
<publication id="PUB00003500">
<author_list>Konishi E, Mason PW.</author_list>
<title>Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein.</title>
<db_xref db="PUBMED" dbkey="8437237"/>
<journal>J. Virol.</journal>
<location issue="3" pages="1672-5" volume="67"/>
<year>1993</year>
</publication>
<publication id="PUB00003522">
<author_list>Schalich J, Allison SL, Stiasny K, Mandl CW, Kunz C, Heinz FX.</author_list>
<title>Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions.</title>
<db_xref db="PUBMED" dbkey="8676481"/>
<journal>J. Virol.</journal>
<location issue="7" pages="4549-57" volume="70"/>
<year>1996</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR014412"/>
</found_in>
<member_list>
<db_xref protein_count="3797" db="PFAM" dbkey="PF01004" name="Flavi_M"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01004"/>
<db_xref db="EC" dbkey="2.1.1.56"/>
<db_xref db="EC" dbkey="2.1.1.57"/>
<db_xref db="EC" dbkey="2.7.7.48"/>
<db_xref db="EC" dbkey="3.4.21.91"/>
<db_xref db="EC" dbkey="3.6.1.15"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Virus" proteins_count="3797"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000070" protein_count="1139" short_name="Pectinesterase_cat" type="Domain">
<name>Pectinesterase, catalytic</name>
<abstract>
<p>Pectinesterase <db_xref db="EC" dbkey="3.1.1.11"/> (pectin methylesterase) catalyses the de-esterification of pectin into pectate and methanol. Pectin is one of the main components of the plant cell wall. In plants, pectinesterase plays an important role in cell wall metabolism during fruit ripening. In plant bacterial pathogens such as <taxon tax_id="554">Erwinia carotovora</taxon> and in fungal pathogens such as <taxon tax_id="5061">Aspergillus niger</taxon>, pectinesterase is involved in maceration and soft-rotting of plant tissue. Plant pectinesterases are regulated by pectinesterase inhibitors, which are ineffective against microbial enzymes [<cite idref="PUB00016279"/>].</p>
<p>Prokaryotic and eukaryotic pectinesterases share a few regions of sequence similarity. The crystal structure of pectinesterase from <taxon tax_id="556">Erwinia chrysanthemi</taxon> revealed a beta-helix structure similar to that found in pectinolytic enzymes, though it is different from most structures of esterases [<cite idref="PUB00016280"/>]. The putative catalytic residues are in a similar location to those of the active site and substrate-binding cleft of pectate lyase.</p>
</abstract>
<class_list>
<classification id="GO:0005618" class_type="GO">
<category>Cellular Component</category>
<description>cell wall</description>
</classification>
<classification id="GO:0030599" class_type="GO">
<category>Molecular Function</category>
<description>pectinesterase activity</description>
</classification>
<classification id="GO:0042545" class_type="GO">
<category>Biological Process</category>
<description>cell wall modification</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A1DBT4"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O04953"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P0C1A8"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P14280"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00016279">
<author_list>Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D.</author_list>
<title>Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein.</title>
<db_xref db="PUBMED" dbkey="15722470"/>
<journal>Plant Cell</journal>
<location issue="3" pages="849-58" volume="17"/>
<year>2005</year>
</publication>
<publication id="PUB00016280">
<author_list>Jenkins J, Mayans O, Smith D, Worboys K, Pickersgill RW.</author_list>
<title>Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site.</title>
<db_xref db="PUBMED" dbkey="11162105"/>
<journal>J. Mol. Biol.</journal>
<location issue="4" pages="951-60" volume="305"/>
<year>2001</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR012334"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR018040"/>
</contains>
<member_list>
<db_xref protein_count="1141" db="PFAM" dbkey="PF01095" name="Pectinesterase"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01095"/>
<db_xref db="MSDsite" dbkey="PS00503"/>
<db_xref db="MSDsite" dbkey="PS00800"/>
<db_xref db="BLOCKS" dbkey="IPB000070"/>
<db_xref db="EC" dbkey="3.1.1.11"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00413"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1gq8"/>
<db_xref db="PDB" dbkey="1qjv"/>
<db_xref db="PDB" dbkey="1xg2"/>
<db_xref db="PDB" dbkey="2nsp"/>
<db_xref db="PDB" dbkey="2nst"/>
<db_xref db="PDB" dbkey="2nt6"/>
<db_xref db="PDB" dbkey="2nt9"/>
<db_xref db="PDB" dbkey="2ntb"/>
<db_xref db="PDB" dbkey="2ntp"/>
<db_xref db="PDB" dbkey="2ntq"/>
<db_xref db="CATH" dbkey="2.160.20.10"/>
<db_xref db="SCOP" dbkey="b.80.1.5"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="353"/>
<taxon_data name="Cyanobacteria" proteins_count="3"/>
<taxon_data name="Archaea" proteins_count="2"/>
<taxon_data name="Eukaryota" proteins_count="786"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="79"/>
<taxon_data name="Rice spp." proteins_count="142"/>
<taxon_data name="Fungi" proteins_count="84"/>
<taxon_data name="Arthropoda" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="690"/>
<taxon_data name="Green Plants" proteins_count="690"/>
<taxon_data name="Metazoa" proteins_count="85"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000071" protein_count="24951" short_name="Lentvrl_matrix_N" type="Domain">
<name>Immunodeficiency lentiviral matrix, N-terminal</name>
<abstract>
<p>Retroviral matrix proteins (or major core proteins) are components of envelope-associated capsids, which line the inner surface of virus envelopes and are associated with viral membranes [<cite idref="PUB00014063"/>]. Matrix proteins are produced as part of Gag precursor polyproteins. During viral maturation, the Gag polyprotein is cleaved into major structural proteins by the viral protease, yielding the matrix (MA), capsid (CA), nucleocapsid (NC), and some smaller peptides. Gag-derived proteins govern the entire assembly and release of the virus particles, with matrix proteins playing key roles in Gag stability, capsid assembly, transport and budding. Although matrix proteins from different retroviruses appear to perform similar functions and can have similar structural folds, their primary sequences can be very different.</p>
<p>This entry represents matrix proteins from immunodeficiency lentiviruses, such as <taxon tax_id="12721">Human immunodeficiency virus</taxon> (HIV) and <taxon tax_id="11723">Simian immunodeficiency virus</taxon> (SIV-cpz) [<cite idref="PUB00016321"/>]. The structure of the HIV protein consists of 5 alpha helices, a short 3.10 helix and a 3-stranded mixed beta-sheet [<cite idref="PUB00003338"/>].</p>
</abstract>
<class_list>
<classification id="GO:0005198" class_type="GO">
<category>Molecular Function</category>
<description>structural molecule activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O12158"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00003338">
<author_list>Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist WI.</author_list>
<title>Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.</title>
<db_xref db="PUBMED" dbkey="7966331"/>
<journal>J. Mol. Biol.</journal>
<location issue="2" pages="198-223" volume="244"/>
<year>1994</year>
</publication>
<publication id="PUB00014063">
<author_list>Conte MR, Matthews S.</author_list>
<title>Retroviral matrix proteins: a structural perspective.</title>
<db_xref db="PUBMED" dbkey="9657938"/>
<journal>Virology</journal>
<location issue="2" pages="191-8" volume="246"/>
<year>1998</year>
</publication>
<publication id="PUB00016321">
<author_list>Freed EO.</author_list>
<title>HIV-1 replication.</title>
<db_xref db="PUBMED" dbkey="12465460"/>
<journal>Somat. Cell Mol. Genet.</journal>
<location issue="1-6" pages="13-33" volume="26"/>
<year>2001</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR012344"/>
</parent_list>
<member_list>
<db_xref protein_count="24951" db="PFAM" dbkey="PF00540" name="Gag_p17"/>
<db_xref protein_count="24741" db="PRINTS" dbkey="PR00234" name="HIV1MATRIX"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00540"/>
<db_xref db="BLOCKS" dbkey="IPB000071"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ecw"/>
<db_xref db="PDB" dbkey="1ed1"/>
<db_xref db="PDB" dbkey="1hiw"/>
<db_xref db="PDB" dbkey="1l6n"/>
<db_xref db="PDB" dbkey="1m9c"/>
<db_xref db="PDB" dbkey="1m9d"/>
<db_xref db="PDB" dbkey="1m9e"/>
<db_xref db="PDB" dbkey="1m9f"/>
<db_xref db="PDB" dbkey="1m9x"/>
<db_xref db="PDB" dbkey="1m9y"/>
<db_xref db="PDB" dbkey="1tam"/>
<db_xref db="PDB" dbkey="1uph"/>
<db_xref db="PDB" dbkey="2gol"/>
<db_xref db="PDB" dbkey="2h3f"/>
<db_xref db="PDB" dbkey="2h3i"/>
<db_xref db="PDB" dbkey="2h3q"/>
<db_xref db="PDB" dbkey="2h3v"/>
<db_xref db="PDB" dbkey="2h3z"/>
<db_xref db="PDB" dbkey="2hmx"/>
<db_xref db="PDB" dbkey="2jmg"/>
<db_xref db="CATH" dbkey="1.10.150.90"/>
<db_xref db="SCOP" dbkey="a.61.1.1"/>
<db_xref db="SCOP" dbkey="a.73.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Virus" proteins_count="24951"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000072" protein_count="349" short_name="PD_growth_factor" type="Domain">
<name>Platelet-derived growth factor (PDGF)</name>
<abstract>
Platelet-derived growth factor (PDGF) [<cite idref="PUB00000590"/>, <cite idref="PUB00001228"/>] is a potent mitogen for cells of
mesenchymal origin, including smooth muscle cells and glial cells. In both mouse and human, the PDGF signalling network consists of four ligands, PDGFA-D, and two receptors, PDGFRalpha and PDGFRbeta. All PDGFs function as secreted, disulphide-linked
homodimers, but only PDGFA and B can form functional heterodimers. PDGFRs also function as homo- and heterodimers. All known PDGFs have characteristic `PDGF domains',
which include eight conserved cysteines that are involved in inter- and intramolecular bonds.
Alternate splicing of the A chain transcript can give rise to two different
forms that differ only in their C-terminal extremity. The transforming protein
of <taxon tax_id="11970">Woolly monkey sarcoma virus</taxon> (WMSV) (Simian sarcoma virus), encoded by the v-sis oncogene, is derived from the B chain of PDGF.
<p>PDGFs are mitogenic during early developmental stages, driving the proliferation of undifferentiated mesenchyme and some progenitor populations. During later maturation stages, PDGF signalling has been implicated in tissue remodelling and cellular differentiation, and in inductive events involved in patterning and morphogenesis. In addition to driving
mesenchymal proliferation, PDGFs have been shown to direct the migration, differentiation and function of a variety of specialised mesenchymal and migratory cell types, both during development and in the
adult animal [<cite idref="PUB00014075"/>]. Other growth factors in this family include vascular endothelial growth factors B and C (VEGF-B, VEGF-C) [<cite idref="PUB00004886"/>, <cite idref="PUB00001288"/>] which are active in angiogenesis and endothelial cell growth, and placenta growth factor (PlGF) which is also active in angiogenesis [<cite idref="PUB00004494"/>]. </p>
<p>PDGF is structurally related to a number of other growth factors which also form disulphide-linked homo- or heterodimers.</p>
</abstract>
<class_list>
<classification id="GO:0008083" class_type="GO">
<category>Molecular Function</category>
<description>growth factor activity</description>
</classification>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P01127"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P20033"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P52584"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P67861"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q72TD6"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000590">
<author_list>Hannink M, Donoghue DJ.</author_list>
<title>Structure and function of platelet-derived growth factor (PDGF) and related proteins.</title>
<db_xref db="PUBMED" dbkey="2546599"/>
<journal>Biochim. Biophys. Acta</journal>
<location issue="1" pages="1-10" volume="989"/>
<year>1989</year>
</publication>
<publication id="PUB00001228">
<author_list>Heldin CH.</author_list>
<title>Structural and functional studies on platelet-derived growth factor.</title>
<db_xref db="PUBMED" dbkey="1425569"/>
<journal>EMBO J.</journal>
<location issue="12" pages="4251-9" volume="11"/>
<year>1992</year>
</publication>
<publication id="PUB00001288">
<author_list>Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K.</author_list>
<title>A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases.</title>
<db_xref db="PUBMED" dbkey="8617204"/>
<journal>EMBO J.</journal>
<location issue="2" pages="290-98" volume="15"/>
<year>1996</year>
</publication>
<publication id="PUB00004494">
<author_list>Maglione D, Guerriero V, Viglietto G, Ferraro MG, Aprelikova O, Alitalo K, Del Vecchio S, Lei KJ, Chou JY, Persico MG.</author_list>
<title>Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14.</title>
<db_xref db="PUBMED" dbkey="7681160"/>
<journal>Oncogene</journal>
<location issue="4" pages="925-31" volume="8"/>
<year>1993</year>
</publication>
<publication id="PUB00004886">
<author_list>Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U.</author_list>
<title>Vascular endothelial growth factor B, a novel growth factor for endothelial cells.</title>
<db_xref db="PUBMED" dbkey="8637916"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="6" pages="2576-81" volume="93"/>
<year>1996</year>
</publication>
<publication id="PUB00014075">
<author_list>Hoch RV, Soriano P.</author_list>
<title>Roles of PDGF in animal development.</title>
<db_xref db="PUBMED" dbkey="12952899"/>
<journal>Development</journal>
<location issue="20" pages="4769-84" volume="130"/>
<year>2003</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR015583"/>
</found_in>
<member_list>
<db_xref protein_count="298" db="PFAM" dbkey="PF00341" name="PDGF"/>
<db_xref protein_count="232" db="PROSITE" dbkey="PS00249" name="PDGF_1"/>
<db_xref protein_count="333" db="PROFILE" dbkey="PS50278" name="PDGF_2"/>
<db_xref protein_count="342" db="SMART" dbkey="SM00141" name="PDGF"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00341"/>
<db_xref db="MSDsite" dbkey="PS00249"/>
<db_xref db="BLOCKS" dbkey="IPB000072"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00222"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1bj1"/>
<db_xref db="PDB" dbkey="1cz8"/>
<db_xref db="PDB" dbkey="1flt"/>
<db_xref db="PDB" dbkey="1fzv"/>
<db_xref db="PDB" dbkey="1kat"/>
<db_xref db="PDB" dbkey="1mjv"/>
<db_xref db="PDB" dbkey="1mkg"/>
<db_xref db="PDB" dbkey="1mkk"/>
<db_xref db="PDB" dbkey="1pdg"/>
<db_xref db="PDB" dbkey="1qty"/>
<db_xref db="PDB" dbkey="1rv6"/>
<db_xref db="PDB" dbkey="1tzh"/>
<db_xref db="PDB" dbkey="1tzi"/>
<db_xref db="PDB" dbkey="1vpf"/>
<db_xref db="PDB" dbkey="1vpp"/>
<db_xref db="PDB" dbkey="1wq8"/>
<db_xref db="PDB" dbkey="1wq9"/>
<db_xref db="PDB" dbkey="2c7w"/>
<db_xref db="PDB" dbkey="2fjg"/>
<db_xref db="PDB" dbkey="2fjh"/>
<db_xref db="PDB" dbkey="2gnn"/>
<db_xref db="PDB" dbkey="2qr0"/>
<db_xref db="PDB" dbkey="2vpf"/>
<db_xref db="PDB" dbkey="2vwe"/>
<db_xref db="PDB" dbkey="3bdy"/>
<db_xref db="CATH" dbkey="2.10.90.10"/>
<db_xref db="SCOP" dbkey="g.17.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="2"/>
<taxon_data name="Eukaryota" proteins_count="321"/>
<taxon_data name="Rice spp." proteins_count="1"/>
<taxon_data name="Fungi" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="60"/>
<taxon_data name="Fruit Fly" proteins_count="8"/>
<taxon_data name="Chordata" proteins_count="246"/>
<taxon_data name="Human" proteins_count="28"/>
<taxon_data name="Mouse" proteins_count="20"/>
<taxon_data name="Virus" proteins_count="25"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Green Plants" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="320"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000073" protein_count="23474" short_name="AB_hydrolase_1" type="Domain">
<name>Alpha/beta hydrolase fold-1</name>
<abstract>
<p>The alpha/beta hydrolase fold [<cite idref="PUB00004958"/>] is common to a number of hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is an alpha/beta-sheet (rather than a barrel), containing 8 strands connected by helices [<cite idref="PUB00004958"/>]. The enzymes are believed to have diverged from a common ancestor, preserving the arrangement of the catalytic residues. All have a catalytic triad, the elements of which are borne on loops, which are the best conserved structural features of the fold. Esterase (EST) from <taxon tax_id="303">Pseudomonas putida</taxon> is a member of the alpha/beta hydrolase fold superfamily of enzymes [<cite idref="PUB00038968"/>].</p>
<p>In most of the family members the beta-strands are parallels, but some have an inversion of the first strands, which gives it an antiparallel orientation. The catalytic triad residues are presented on loops. One of these is the nucleophile elbow and is the most conserved feature of the fold. Some other members lack one or all of the catalytic residues. Some members are therefore inactive but others are involved in surface recognition. The ESTHER database [<cite idref="PUB00043470"/>] gathers and annotates all the published information related to gene and protein sequences of this superfamily [<cite idref="PUB00043472"/>].</p>
<p>This entry represents fold-1 of alpha/beta hydrolase.</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A6ZRW8"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O18391"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P07098"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P34914"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P41879"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004958">
<author_list>Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J.</author_list>
<title>The alpha/beta hydrolase fold.</title>
<db_xref db="PUBMED" dbkey="1409539"/>
<journal>Protein Eng.</journal>
<location issue="3" pages="197-211" volume="5"/>
<year>1992</year>
</publication>
<publication id="PUB00038968">
<author_list>Elmi F, Lee HT, Huang JY, Hsieh YC, Wang YL, Chen YJ, Shaw SY, Chen CJ.</author_list>
<title>Stereoselective esterase from Pseudomonas putida IFO12996 reveals alpha/beta hydrolase folds for D-beta-acetylthioisobutyric acid synthesis.</title>
<db_xref db="PUBMED" dbkey="16321951"/>
<journal>J. Bacteriol.</journal>
<location issue="24" pages="8470-6" volume="187"/>
<year>2005</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR000639"/>
<rel_ref ipr_ref="IPR019913"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR000952"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR005945"/>
<rel_ref ipr_ref="IPR006296"/>
<rel_ref ipr_ref="IPR008220"/>
<rel_ref ipr_ref="IPR010076"/>
<rel_ref ipr_ref="IPR010125"/>
<rel_ref ipr_ref="IPR010963"/>
<rel_ref ipr_ref="IPR011287"/>
<rel_ref ipr_ref="IPR012020"/>
<rel_ref ipr_ref="IPR016292"/>
<rel_ref ipr_ref="IPR016812"/>
<rel_ref ipr_ref="IPR017209"/>
<rel_ref ipr_ref="IPR017727"/>
<rel_ref ipr_ref="IPR022485"/>
</found_in>
<member_list>
<db_xref protein_count="23475" db="PFAM" dbkey="PF00561" name="Abhydrolase_1"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00561"/>
<db_xref db="BLOCKS" dbkey="IPB000073"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a7u"/>
<db_xref db="PDB" dbkey="1a88"/>
<db_xref db="PDB" dbkey="1a8q"/>
<db_xref db="PDB" dbkey="1a8s"/>
<db_xref db="PDB" dbkey="1a8u"/>
<db_xref db="PDB" dbkey="1azw"/>
<db_xref db="PDB" dbkey="1b6g"/>
<db_xref db="PDB" dbkey="1be0"/>
<db_xref db="PDB" dbkey="1bee"/>
<db_xref db="PDB" dbkey="1bez"/>
<db_xref db="PDB" dbkey="1bn6"/>
<db_xref db="PDB" dbkey="1bn7"/>
<db_xref db="PDB" dbkey="1bro"/>
<db_xref db="PDB" dbkey="1brt"/>
<db_xref db="PDB" dbkey="1c4x"/>
<db_xref db="PDB" dbkey="1cij"/>
<db_xref db="PDB" dbkey="1cqw"/>
<db_xref db="PDB" dbkey="1cqz"/>
<db_xref db="PDB" dbkey="1cr6"/>
<db_xref db="PDB" dbkey="1cv2"/>
<db_xref db="PDB" dbkey="1cvl"/>
<db_xref db="PDB" dbkey="1d07"/>
<db_xref db="PDB" dbkey="1dwo"/>
<db_xref db="PDB" dbkey="1dwp"/>
<db_xref db="PDB" dbkey="1dwq"/>
<db_xref db="PDB" dbkey="1e89"/>
<db_xref db="PDB" dbkey="1e8d"/>
<db_xref db="PDB" dbkey="1eb8"/>
<db_xref db="PDB" dbkey="1eb9"/>
<db_xref db="PDB" dbkey="1edb"/>
<db_xref db="PDB" dbkey="1edd"/>
<db_xref db="PDB" dbkey="1ede"/>
<db_xref db="PDB" dbkey="1ek1"/>
<db_xref db="PDB" dbkey="1ek2"/>
<db_xref db="PDB" dbkey="1ex9"/>
<db_xref db="PDB" dbkey="1g42"/>
<db_xref db="PDB" dbkey="1g4h"/>
<db_xref db="PDB" dbkey="1g5f"/>
<db_xref db="PDB" dbkey="1hde"/>
<db_xref db="PDB" dbkey="1hkh"/>
<db_xref db="PDB" dbkey="1hl7"/>
<db_xref db="PDB" dbkey="1hlg"/>
<db_xref db="PDB" dbkey="1hqd"/>
<db_xref db="PDB" dbkey="1iun"/>
<db_xref db="PDB" dbkey="1iuo"/>
<db_xref db="PDB" dbkey="1iup"/>
<db_xref db="PDB" dbkey="1iz7"/>
<db_xref db="PDB" dbkey="1iz8"/>
<db_xref db="PDB" dbkey="1j1i"/>
<db_xref db="PDB" dbkey="1k5p"/>
<db_xref db="PDB" dbkey="1k63"/>
<db_xref db="PDB" dbkey="1k6e"/>
<db_xref db="PDB" dbkey="1k8q"/>
<db_xref db="PDB" dbkey="1m33"/>
<db_xref db="PDB" dbkey="1mj5"/>
<db_xref db="PDB" dbkey="1mt3"/>
<db_xref db="PDB" dbkey="1mtz"/>
<db_xref db="PDB" dbkey="1mu0"/>
<db_xref db="PDB" dbkey="1oil"/>
<db_xref db="PDB" dbkey="1q0r"/>
<db_xref db="PDB" dbkey="1q0z"/>
<db_xref db="PDB" dbkey="1qge"/>
<db_xref db="PDB" dbkey="1qj4"/>
<db_xref db="PDB" dbkey="1qo7"/>
<db_xref db="PDB" dbkey="1qtr"/>
<db_xref db="PDB" dbkey="1r3d"/>
<db_xref db="PDB" dbkey="1s8o"/>
<db_xref db="PDB" dbkey="1sc9"/>
<db_xref db="PDB" dbkey="1sci"/>
<db_xref db="PDB" dbkey="1sck"/>
<db_xref db="PDB" dbkey="1scq"/>
<db_xref db="PDB" dbkey="1tah"/>
<db_xref db="PDB" dbkey="1uk6"/>
<db_xref db="PDB" dbkey="1uk7"/>
<db_xref db="PDB" dbkey="1uk8"/>
<db_xref db="PDB" dbkey="1uk9"/>
<db_xref db="PDB" dbkey="1uka"/>
<db_xref db="PDB" dbkey="1ukb"/>
<db_xref db="PDB" dbkey="1va4"/>
<db_xref db="PDB" dbkey="1vj5"/>
<db_xref db="PDB" dbkey="1wm1"/>
<db_xref db="PDB" dbkey="1x2b"/>
<db_xref db="PDB" dbkey="1x2e"/>
<db_xref db="PDB" dbkey="1xkl"/>
<db_xref db="PDB" dbkey="1xqv"/>
<db_xref db="PDB" dbkey="1xqw"/>
<db_xref db="PDB" dbkey="1xqx"/>
<db_xref db="PDB" dbkey="1xqy"/>
<db_xref db="PDB" dbkey="1xrl"/>
<db_xref db="PDB" dbkey="1xrm"/>
<db_xref db="PDB" dbkey="1xrn"/>
<db_xref db="PDB" dbkey="1xro"/>
<db_xref db="PDB" dbkey="1xrp"/>
<db_xref db="PDB" dbkey="1xrq"/>
<db_xref db="PDB" dbkey="1xrr"/>
<db_xref db="PDB" dbkey="1y7h"/>
<db_xref db="PDB" dbkey="1y7i"/>
<db_xref db="PDB" dbkey="1yas"/>
<db_xref db="PDB" dbkey="1yb6"/>
<db_xref db="PDB" dbkey="1yb7"/>
<db_xref db="PDB" dbkey="1ys1"/>
<db_xref db="PDB" dbkey="1ys2"/>
<db_xref db="PDB" dbkey="1zd2"/>
<db_xref db="PDB" dbkey="1zd3"/>
<db_xref db="PDB" dbkey="1zd4"/>
<db_xref db="PDB" dbkey="1zd5"/>
<db_xref db="PDB" dbkey="1zoi"/>
<db_xref db="PDB" dbkey="2b61"/>
<db_xref db="PDB" dbkey="2bfn"/>
<db_xref db="PDB" dbkey="2d0d"/>
<db_xref db="PDB" dbkey="2dhc"/>
<db_xref db="PDB" dbkey="2dhd"/>
<db_xref db="PDB" dbkey="2dhe"/>
<db_xref db="PDB" dbkey="2eda"/>
<db_xref db="PDB" dbkey="2edc"/>
<db_xref db="PDB" dbkey="2es4"/>
<db_xref db="PDB" dbkey="2g4l"/>
<db_xref db="PDB" dbkey="2had"/>
<db_xref db="PDB" dbkey="2lip"/>
<db_xref db="PDB" dbkey="2nw6"/>
<db_xref db="PDB" dbkey="2o2h"/>
<db_xref db="PDB" dbkey="2o2i"/>
<db_xref db="PDB" dbkey="2pky"/>
<db_xref db="PDB" dbkey="2pl5"/>
<db_xref db="PDB" dbkey="2psd"/>
<db_xref db="PDB" dbkey="2pse"/>
<db_xref db="PDB" dbkey="2psf"/>
<db_xref db="PDB" dbkey="2psh"/>
<db_xref db="PDB" dbkey="2psj"/>
<db_xref db="PDB" dbkey="2puh"/>
<db_xref db="PDB" dbkey="2qvb"/>
<db_xref db="PDB" dbkey="2r11"/>
<db_xref db="PDB" dbkey="2rht"/>
<db_xref db="PDB" dbkey="2rhw"/>
<db_xref db="PDB" dbkey="2ri6"/>
<db_xref db="PDB" dbkey="2v9z"/>
<db_xref db="PDB" dbkey="2vat"/>
<db_xref db="PDB" dbkey="2vav"/>
<db_xref db="PDB" dbkey="2vax"/>
<db_xref db="PDB" dbkey="2yas"/>
<db_xref db="PDB" dbkey="2yxp"/>
<db_xref db="PDB" dbkey="3bdi"/>
<db_xref db="PDB" dbkey="3bwx"/>
<db_xref db="PDB" dbkey="3c6x"/>
<db_xref db="PDB" dbkey="3c6y"/>
<db_xref db="PDB" dbkey="3c6z"/>
<db_xref db="PDB" dbkey="3c70"/>
<db_xref db="PDB" dbkey="3fob"/>
<db_xref db="PDB" dbkey="3lip"/>
<db_xref db="PDB" dbkey="3yas"/>
<db_xref db="PDB" dbkey="4lip"/>
<db_xref db="PDB" dbkey="4yas"/>
<db_xref db="PDB" dbkey="5lip"/>
<db_xref db="PDB" dbkey="5yas"/>
<db_xref db="PDB" dbkey="6yas"/>
<db_xref db="PDB" dbkey="7yas"/>
<db_xref db="CATH" dbkey="3.40.50.1820"/>
<db_xref db="SCOP" dbkey="c.69.1.10"/>
<db_xref db="SCOP" dbkey="c.69.1.11"/>
<db_xref db="SCOP" dbkey="c.69.1.12"/>
<db_xref db="SCOP" dbkey="c.69.1.18"/>
<db_xref db="SCOP" dbkey="c.69.1.20"/>
<db_xref db="SCOP" dbkey="c.69.1.26"/>
<db_xref db="SCOP" dbkey="c.69.1.28"/>
<db_xref db="SCOP" dbkey="c.69.1.35"/>
<db_xref db="SCOP" dbkey="c.69.1.40"/>
<db_xref db="SCOP" dbkey="c.69.1.6"/>
<db_xref db="SCOP" dbkey="c.69.1.7"/>
<db_xref db="SCOP" dbkey="c.69.1.8"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="18902"/>
<taxon_data name="Cyanobacteria" proteins_count="655"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="15"/>
<taxon_data name="Archaea" proteins_count="226"/>
<taxon_data name="Eukaryota" proteins_count="4316"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="154"/>
<taxon_data name="Rice spp." proteins_count="259"/>
<taxon_data name="Fungi" proteins_count="1519"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="93"/>
<taxon_data name="Other Eukaryotes" proteins_count="21"/>
<taxon_data name="Other Eukaryotes" proteins_count="25"/>
<taxon_data name="Nematoda" proteins_count="28"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="28"/>
<taxon_data name="Arthropoda" proteins_count="776"/>
<taxon_data name="Fruit Fly" proteins_count="88"/>
<taxon_data name="Chordata" proteins_count="398"/>
<taxon_data name="Human" proteins_count="83"/>
<taxon_data name="Mouse" proteins_count="59"/>
<taxon_data name="Virus" proteins_count="11"/>
<taxon_data name="Unclassified" proteins_count="18"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Plastid Group" proteins_count="1119"/>
<taxon_data name="Green Plants" proteins_count="1119"/>
<taxon_data name="Metazoa" proteins_count="2853"/>
<taxon_data name="Plastid Group" proteins_count="118"/>
<taxon_data name="Plastid Group" proteins_count="49"/>
<taxon_data name="Other Eukaryotes" proteins_count="48"/>
<taxon_data name="Other Eukaryotes" proteins_count="7"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR000639"/>
<sec_ac acc="IPR019913"/>
</sec_list>
</interpro>
<interpro id="IPR000074" protein_count="272" short_name="ApoA1_A4_E" type="Family">
<name>Apolipoprotein A1/A4/E</name>
<abstract>
<p> Exchangeable apolipoproteins (apoA, apoC and apoE) have the same genomic structure and are members of a multi-gene family that probably evolved from a common ancestral gene. This entry includes the ApoA1, ApoA4 and ApoE proteins. ApoA1 and ApoA4 are part of the APOA1/C3/A4/A5 gene cluster on chromosome 11 [<cite idref="PUB00015448"/>]. Apolipoproteins function in lipid transport as structural components of lipoprotein particles, cofactors for enzymes and ligands for cell-surface receptors. In particular, apoA1 is the major protein component of high-density lipoproteins; apoA4 is thought to act primarily in intestinal lipid absorption; and apoE is a blood plasma protein that mediates the transport and uptake of cholesterol and lipid by way of its high affinity interaction with different cellular receptors, including the low-density lipoprotein (LDL) receptor. Recent findings with apoA1 and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related [<cite idref="PUB00015449"/>]. The three-dimensional structure of the LDL receptor-binding domain of apoE indicates that the protein forms an unusually elongated four-helix bundle that may be stabilised by a tightly packed hydrophobic core that includes leucine zipper-type interactions and by numerous salt bridges on the mostly charged surface. Basic amino acids important for LDL receptor binding are clustered into a surface patch on one long helix [<cite idref="PUB00005140"/>].</p>
</abstract>
<class_list>
<classification id="GO:0005576" class_type="GO">
<category>Cellular Component</category>
<description>extracellular region</description>
</classification>
<classification id="GO:0006869" class_type="GO">
<category>Biological Process</category>
<description>lipid transport</description>
</classification>
<classification id="GO:0008289" class_type="GO">
<category>Molecular Function</category>
<description>lipid binding</description>
</classification>
<classification id="GO:0042157" class_type="GO">
<category>Biological Process</category>
<description>lipoprotein metabolic process</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O18759"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P02647"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P08226"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00005140">
<author_list>Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA.</author_list>
<title>Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E.</title>
<db_xref db="PUBMED" dbkey="2063194"/>
<journal>Science</journal>
<location issue="5014" pages="1817-22" volume="252"/>
<year>1991</year>
</publication>
<publication id="PUB00015448">
<author_list>Fullerton SM, Buchanan AV, Sonpar VA, Taylor SL, Smith JD, Carlson CS, Salomaa V, Stengard JH, Boerwinkle E, Clark AG, Nickerson DA, Weiss KM.</author_list>
<title>The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster.</title>
<db_xref db="PUBMED" dbkey="15108119"/>
<journal>Hum. Genet.</journal>
<location issue="1" pages="36-56" volume="115"/>
<year>2004</year>
</publication>
<publication id="PUB00015449">
<author_list>Saito H, Lund-Katz S, Phillips MC.</author_list>
<title>Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins.</title>
<db_xref db="PUBMED" dbkey="15234552"/>
<journal>Prog. Lipid Res.</journal>
<location issue="4" pages="350-80" volume="43"/>
<year>2004</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR013326"/>
</contains>
<member_list>
<db_xref protein_count="272" db="PFAM" dbkey="PF01442" name="Apolipoprotein"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01442"/>
<db_xref db="BLOCKS" dbkey="IPB000074"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1av1"/>
<db_xref db="PDB" dbkey="1b68"/>
<db_xref db="PDB" dbkey="1bz4"/>
<db_xref db="PDB" dbkey="1ea8"/>
<db_xref db="PDB" dbkey="1gs9"/>
<db_xref db="PDB" dbkey="1gw3"/>
<db_xref db="PDB" dbkey="1gw4"/>
<db_xref db="PDB" dbkey="1h7i"/>
<db_xref db="PDB" dbkey="1le2"/>
<db_xref db="PDB" dbkey="1le4"/>
<db_xref db="PDB" dbkey="1lpe"/>
<db_xref db="PDB" dbkey="1nfn"/>
<db_xref db="PDB" dbkey="1nfo"/>
<db_xref db="PDB" dbkey="1odp"/>
<db_xref db="PDB" dbkey="1odq"/>
<db_xref db="PDB" dbkey="1odr"/>
<db_xref db="PDB" dbkey="1oef"/>
<db_xref db="PDB" dbkey="1oeg"/>
<db_xref db="PDB" dbkey="1or2"/>
<db_xref db="PDB" dbkey="1or3"/>
<db_xref db="CATH" dbkey="1.20.120.20"/>
<db_xref db="CATH" dbkey="1.20.5.20"/>
<db_xref db="SCOP" dbkey="a.24.1.1"/>
<db_xref db="SCOP" dbkey="h.5.1.1"/>
<db_xref db="SCOP" dbkey="j.39.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="79"/>
<taxon_data name="Archaea" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="192"/>
<taxon_data name="Chordata" proteins_count="188"/>
<taxon_data name="Human" proteins_count="9"/>
<taxon_data name="Mouse" proteins_count="19"/>
<taxon_data name="Metazoa" proteins_count="188"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000076" protein_count="95" short_name="KCL_cotranspt" type="Family">
<name>K-Cl co-transporter</name>
<abstract>
<p>The K-Cl co-transporter (KCC) mediates the coupled movement of K<sup>+</sup> and Cl<sup>-</sup>
ions across the plasma membrane of many animal cells. This transport is
involved in the regulatory volume decrease in response to cell swelling in
red blood cells, and has been proposed to play a role in the vectorial
movement of Cl<sup>-</sup> across kidney epithelia. The transport process involves one
for one electroneutral movement of K<sup>+</sup> together with Cl<sup>-</sup>, and, in all
known mammalian cells, the net movement is outward [<cite idref="PUB00002955"/>].</p>
<p>In neurones, it appears to play a unique role in maintaining low
intracellular Cl<sup>-</sup>concentration, which is required for the functioning of Cl<sup>-</sup>
dependent fast synaptic inhibition, mediated by certain neurotransmitters,
such as gamma-aminobutyric acid (GABA) and glycine.</p>
<p>Two isoforms of the K-Cl co-transporter have been described, termed KCC1 and
KCC2, containing 1085 and 1116 amino acids, respectively. They are both
predicted to have 12 transmembrane (TM) regions in a central hydrophobic
domain, together with hydrophilic N- and C-termini that are likely
cytoplasmic. Comparison of their sequences with those of other
ion-transporting membrane proteins reveals that they are part of a new
superfamily of cation-chloride co-transporters, which includes the Na-Cl and
Na-K-2Cl co-transporters. KCC1 is widely expressed in human tissues, while
KCC2 is expressed only in brain neurones, making it likely that this is the
isoform responsible for maintaining low Cl<sup>-</sup> concentration in neurones [<cite idref="PUB00002956"/>, <cite idref="PUB00004291"/>].</p>
</abstract>
<class_list>
<classification id="GO:0005215" class_type="GO">
<category>Molecular Function</category>
<description>transporter activity</description>
</classification>
<classification id="GO:0006811" class_type="GO">
<category>Biological Process</category>
<description>ion transport</description>
</classification>
<classification id="GO:0016020" class_type="GO">
<category>Cellular Component</category>
<description>membrane</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="Q28677"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q91V14"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9H2X9"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002955">
<author_list>Gillen CM, Brill S, Payne JA, Forbush B 3rd.</author_list>
<title>Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family.</title>
<db_xref db="PUBMED" dbkey="8663127"/>
<journal>J. Biol. Chem.</journal>
<location issue="27" pages="16237-44" volume="271"/>
<year>1996</year>
</publication>
<publication id="PUB00002956">
<author_list>Payne JA, Stevenson TJ, Donaldson LF.</author_list>
<title>Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform.</title>
<db_xref db="PUBMED" dbkey="8663311"/>
<journal>J. Biol. Chem.</journal>
<location issue="27" pages="16245-52" volume="271"/>
<year>1996</year>
</publication>
<publication id="PUB00004291">
<author_list>Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K.</author_list>
<title>The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation.</title>
<db_xref db="PUBMED" dbkey="9930699"/>
<journal>Nature</journal>
<location issue="6716" pages="251-5" volume="397"/>
<year>1999</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR004842"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR000622"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR004841"/>
<rel_ref ipr_ref="IPR018491"/>
</contains>
<member_list>
<db_xref protein_count="95" db="PRINTS" dbkey="PR01081" name="KCLTRNSPORT"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000076"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="95"/>
<taxon_data name="Arthropoda" proteins_count="19"/>
<taxon_data name="Fruit Fly" proteins_count="4"/>
<taxon_data name="Chordata" proteins_count="76"/>
<taxon_data name="Human" proteins_count="23"/>
<taxon_data name="Mouse" proteins_count="23"/>
<taxon_data name="Metazoa" proteins_count="95"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR000622"/>
</sec_list>
</interpro>
<interpro id="IPR000077" protein_count="319" short_name="Ribosomal_L39" type="Family">
<name>Ribosomal protein L39e</name>
<abstract>
<p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [<cite idref="PUB00007068"/>, <cite idref="PUB00007069"/>]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. </p>
<p>Many of ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [<cite idref="PUB00007069"/>, <cite idref="PUB00007070"/>].</p>
<p>A number of eukaryotic and archaebacterial large subunit ribosomal proteins can be grouped on the basis of sequence similarities.
These proteins are very basic. About 50 residues long, they are the smallest
proteins of eukaryotic-type ribosomes.</p>
</abstract>
<class_list>
<classification id="GO:0003735" class_type="GO">
<category>Molecular Function</category>
<description>structural constituent of ribosome</description>
</classification>
<classification id="GO:0005622" class_type="GO">
<category>Cellular Component</category>
<description>intracellular</description>
</classification>
<classification id="GO:0005840" class_type="GO">
<category>Cellular Component</category>
<description>ribosome</description>
</classification>
<classification id="GO:0006412" class_type="GO">
<category>Biological Process</category>
<description>translation</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O16130"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P04650"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P52814"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P62891"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P62892"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00007068">
<author_list>Ramakrishnan V, Moore PB.</author_list>
<title>Atomic structures at last: the ribosome in 2000.</title>
<db_xref db="PUBMED" dbkey="11297922"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="2" pages="144-54" volume="11"/>
<year>2001</year>
</publication>
<publication id="PUB00007069">
<author_list>Maguire BA, Zimmermann RA.</author_list>
<title>The ribosome in focus.</title>
<db_xref db="PUBMED" dbkey="11290319"/>
<journal>Cell</journal>
<location issue="6" pages="813-6" volume="104"/>
<year>2001</year>
</publication>
<publication id="PUB00007070">
<author_list>Chandra Sanyal S, Liljas A.</author_list>
<title>The end of the beginning: structural studies of ribosomal proteins.</title>
<db_xref db="PUBMED" dbkey="11114498"/>
<journal>Curr. Opin. Struct. Biol.</journal>
<location issue="6" pages="633-6" volume="10"/>
<year>2000</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR020083"/>
</contains>
<member_list>
<db_xref protein_count="311" db="PANTHER" dbkey="PTHR19970" name="Ribosomal_L39"/>
<db_xref protein_count="319" db="PFAM" dbkey="PF00832" name="Ribosomal_L39"/>
<db_xref protein_count="296" db="GENE3D" dbkey="G3DSA:1.10.1620.10" name="Ribosomal_L39"/>
<db_xref protein_count="316" db="SSF" dbkey="SSF48662" name="Ribosomal_L39"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00832"/>
<db_xref db="MSDsite" dbkey="PS00051"/>
<db_xref db="BLOCKS" dbkey="IPB000077"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00050"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ffk"/>
<db_xref db="PDB" dbkey="1jj2"/>
<db_xref db="PDB" dbkey="1k73"/>
<db_xref db="PDB" dbkey="1k8a"/>
<db_xref db="PDB" dbkey="1k9m"/>
<db_xref db="PDB" dbkey="1kc8"/>
<db_xref db="PDB" dbkey="1kd1"/>
<db_xref db="PDB" dbkey="1kqs"/>
<db_xref db="PDB" dbkey="1m1k"/>
<db_xref db="PDB" dbkey="1m90"/>
<db_xref db="PDB" dbkey="1n8r"/>
<db_xref db="PDB" dbkey="1nji"/>
<db_xref db="PDB" dbkey="1q7y"/>
<db_xref db="PDB" dbkey="1q81"/>
<db_xref db="PDB" dbkey="1q82"/>
<db_xref db="PDB" dbkey="1q86"/>
<db_xref db="PDB" dbkey="1qvf"/>
<db_xref db="PDB" dbkey="1qvg"/>
<db_xref db="PDB" dbkey="1s72"/>
<db_xref db="PDB" dbkey="1vq4"/>
<db_xref db="PDB" dbkey="1vq5"/>
<db_xref db="PDB" dbkey="1vq6"/>
<db_xref db="PDB" dbkey="1vq7"/>
<db_xref db="PDB" dbkey="1vq8"/>
<db_xref db="PDB" dbkey="1vq9"/>
<db_xref db="PDB" dbkey="1vqk"/>
<db_xref db="PDB" dbkey="1vql"/>
<db_xref db="PDB" dbkey="1vqm"/>
<db_xref db="PDB" dbkey="1vqn"/>
<db_xref db="PDB" dbkey="1vqo"/>
<db_xref db="PDB" dbkey="1vqp"/>
<db_xref db="PDB" dbkey="1w2b"/>
<db_xref db="PDB" dbkey="1yhq"/>
<db_xref db="PDB" dbkey="1yi2"/>
<db_xref db="PDB" dbkey="1yij"/>
<db_xref db="PDB" dbkey="1yit"/>
<db_xref db="PDB" dbkey="1yj9"/>
<db_xref db="PDB" dbkey="1yjn"/>
<db_xref db="PDB" dbkey="1yjw"/>
<db_xref db="PDB" dbkey="2otj"/>
<db_xref db="PDB" dbkey="2otl"/>
<db_xref db="PDB" dbkey="2qa4"/>
<db_xref db="PDB" dbkey="2qex"/>
<db_xref db="PDB" dbkey="3cc2"/>
<db_xref db="PDB" dbkey="3cc4"/>
<db_xref db="PDB" dbkey="3cc7"/>
<db_xref db="PDB" dbkey="3cce"/>
<db_xref db="PDB" dbkey="3ccj"/>
<db_xref db="PDB" dbkey="3ccl"/>
<db_xref db="PDB" dbkey="3ccm"/>
<db_xref db="PDB" dbkey="3ccq"/>
<db_xref db="PDB" dbkey="3ccr"/>
<db_xref db="PDB" dbkey="3ccs"/>
<db_xref db="PDB" dbkey="3ccu"/>
<db_xref db="PDB" dbkey="3ccv"/>
<db_xref db="PDB" dbkey="3cd6"/>
<db_xref db="PDB" dbkey="3cma"/>
<db_xref db="PDB" dbkey="3cme"/>
<db_xref db="PDB" dbkey="3cpw"/>
<db_xref db="CATH" dbkey="1.10.1620.10"/>
<db_xref db="SCOP" dbkey="a.137.1.1"/>
<db_xref db="SCOP" dbkey="i.1.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Archaea" proteins_count="86"/>
<taxon_data name="Eukaryota" proteins_count="233"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="4"/>
<taxon_data name="Rice spp." proteins_count="7"/>
<taxon_data name="Fungi" proteins_count="52"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="5"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="39"/>
<taxon_data name="Fruit Fly" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="43"/>
<taxon_data name="Human" proteins_count="3"/>
<taxon_data name="Mouse" proteins_count="3"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
<taxon_data name="Plastid Group" proteins_count="29"/>
<taxon_data name="Green Plants" proteins_count="29"/>
<taxon_data name="Metazoa" proteins_count="170"/>
<taxon_data name="Plastid Group" proteins_count="17"/>
<taxon_data name="Plastid Group" proteins_count="8"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000079" protein_count="174" short_name="HMG14/HMG17" type="Family">
<name>High mobility group protein HMG14/HMG17</name>
<abstract>
<p>High mobility group (HMG) proteins constitute a family of relatively low molecular weight non-histone components in chromatin. HMG14 and HMG17 are highly-similar proteins of about 100 amino acid residues; the sequence of chicken HMG14 is almost as similar to chicken HMG17 as it is to mammalian HMG14 polypeptides [<cite idref="PUB00001764"/>]. The proteins bind to the inner side of the nucleosomal DNA, altering the interaction between the DNA and the histone octamer. It is thought that they may be involved in the process that confers specific chromatin conformations to transcribable regions in the genome [<cite idref="PUB00002433"/>].</p>
<p>The SMART signature describes a nucleosomal binding domain, which facilitates binding of proteins to nucleosomes in chromatin. The domain is most commonly found in the high mobility group (HMG) proteins, HMG14 and HMG17, however, it is also found in other proteins which bind to nucleosomes, e.g. NBP-45. NBP-45 is a nucleosomal binding protein, first identified in mice [<cite idref="PUB00009423"/>], which is related to HMG14 and HMG17. NBP-45 binds specifically to nucleosome core particles, and can function as a transcriptional activator. These findings led to the suggestion that this domain, common to NBP-45, HMG14 and HMG17 is responsible for binding of the proteins to nucleosomes in chromatin.</p>
</abstract>
<class_list>
<classification id="GO:0000785" class_type="GO">
<category>Cellular Component</category>
<description>chromatin</description>
</classification>
<classification id="GO:0003677" class_type="GO">
<category>Molecular Function</category>
<description>DNA binding</description>
</classification>
<classification id="GO:0005634" class_type="GO">
<category>Cellular Component</category>
<description>nucleus</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A6NN55"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="B4F777"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P09602"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001764">
<author_list>Dodgson JB, Browne DL, Black AJ.</author_list>
<title>Chicken chromosomal protein HMG-14 and HMG-17 cDNA clones: isolation, characterization and sequence comparison.</title>
<db_xref db="PUBMED" dbkey="3384337"/>
<journal>Gene</journal>
<location issue="2" pages="287-95" volume="63"/>
<year>1988</year>
</publication>
<publication id="PUB00002433">
<author_list>Landsman D, Soares N, Gonzalez FJ, Bustin M.</author_list>
<title>Chromosomal protein HMG-17. Complete human cDNA sequence and evidence for a multigene family.</title>
<db_xref db="PUBMED" dbkey="3754870"/>
<journal>J. Biol. Chem.</journal>
<location issue="16" pages="7479-84" volume="261"/>
<year>1986</year>
</publication>
<publication id="PUB00009423">
<author_list>Shirakawa H, Landsman D, Postnikov YV, Bustin M.</author_list>
<title>NBP-45, a novel nucleosomal binding protein with a tissue-specific and developmentally regulated expression.</title>
<db_xref db="PUBMED" dbkey="10692437"/>
<journal>J. Biol. Chem.</journal>
<location issue="9" pages="6368-74" volume="275"/>
<year>2000</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="158" db="PANTHER" dbkey="PTHR23087" name="HMG_14_17"/>
<db_xref protein_count="172" db="PFAM" dbkey="PF01101" name="HMG14_17"/>
<db_xref protein_count="166" db="PRINTS" dbkey="PR00925" name="NONHISHMG17"/>
<db_xref protein_count="138" db="PROSITE" dbkey="PS00355" name="HMG14_17"/>
<db_xref protein_count="166" db="SMART" dbkey="SM00527" name="HMG17"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01101"/>
<db_xref db="MSDsite" dbkey="PS00355"/>
<db_xref db="BLOCKS" dbkey="IPB000079"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00307"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="173"/>
<taxon_data name="Fungi" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="1"/>
<taxon_data name="Chordata" proteins_count="169"/>
<taxon_data name="Human" proteins_count="18"/>
<taxon_data name="Mouse" proteins_count="14"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Green Plants" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="172"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000081" protein_count="2038" short_name="Peptidase_C3" type="Domain">
<name>Peptidase C3, picornavirus core protein 2A</name>
<abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
<li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. </p>
<p>Cysteine peptidases have characteristic molecular topologies, which can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. These are peptidases in which the nucleophile is the sulphydryl group of a cysteine residue. Cysteine proteases are divided into clans (proteins which are evolutionary related), and further sub-divided into families, on the basis of the architecture of their catalytic dyad or triad [<cite idref="PUB00011704"/>]. </p>
<p>This domain defines cysteine peptidases belong to MEROPS peptidase family C3 (picornain, clan PA(C)), subfamilies 3CA and 3CB. The protein fold of this peptidase domain for members of this family resembles that of the serine peptidase, chymotrypsin [<cite idref="PUB00004181"/>], the type example for clan PA.</p>
<p>Picornaviral proteins are expressed as a single polyprotein
which is cleaved by the viral 3C cysteine protease [<cite idref="PUB00003174"/>]. The poliovirus polyprotein is selectively cleaved between the Gln-|-Gly bond. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
</p>
</abstract>
<class_list>
<classification id="GO:0006508" class_type="GO">
<category>Biological Process</category>
<description>proteolysis</description>
</classification>
<classification id="GO:0008233" class_type="GO">
<category>Molecular Function</category>
<description>peptidase activity</description>
</classification>
<classification id="GO:0016032" class_type="GO">
<category>Biological Process</category>
<description>viral reproduction</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O91734"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00003174">
<author_list>Zoll J, van Kuppeveld FJ, Galama JM, Melchers WJ.</author_list>
<title>Genetic analysis of mengovirus protein 2A: its function in polyprotein processing and virus reproduction.</title>
<db_xref db="PUBMED" dbkey="9460917"/>
<journal>J. Gen. Virol.</journal>
<location pages="17-25" volume="79 ( Pt 1)"/>
<year>1998</year>
</publication>
<publication id="PUB00004181">
<author_list>Allaire M, Chernaia MM, Malcolm BA, James MN.</author_list>
<title>Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases.</title>
<db_xref db="PUBMED" dbkey="8164744"/>
<journal>Nature</journal>
<location issue="6475" pages="72-6" volume="369"/>
<year>1994</year>
</publication>
<publication id="PUB00011704">
<author_list>Barrett AJ, Rawlings ND.</author_list>
<title>Evolutionary lines of cysteine peptidases.</title>
<db_xref db="PUBMED" dbkey="11517925"/>
<journal>Biol. Chem.</journal>
<location issue="5" pages="727-33" volume="382"/>
<year>2001</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="1286" db="PFAM" dbkey="PF00947" name="Pico_P2A"/>
<db_xref protein_count="2030" db="PRODOM" dbkey="PD001306" name="Peptidase_C3"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00947"/>
<db_xref db="EC" dbkey="2.7.7.48"/>
<db_xref db="EC" dbkey="3.4.22.28"/>
<db_xref db="EC" dbkey="3.4.22.29"/>
<db_xref db="EC" dbkey="3.6.1.15"/>
<db_xref db="MEROPS" dbkey="C3"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1al2"/>
<db_xref db="PDB" dbkey="1ar6"/>
<db_xref db="PDB" dbkey="1ar7"/>
<db_xref db="PDB" dbkey="1ar8"/>
<db_xref db="PDB" dbkey="1ar9"/>
<db_xref db="PDB" dbkey="1asj"/>
<db_xref db="PDB" dbkey="1bev"/>
<db_xref db="PDB" dbkey="1cqq"/>
<db_xref db="PDB" dbkey="1d4m"/>
<db_xref db="PDB" dbkey="1eah"/>
<db_xref db="PDB" dbkey="1ev1"/>
<db_xref db="PDB" dbkey="1hri"/>
<db_xref db="PDB" dbkey="1hrv"/>
<db_xref db="PDB" dbkey="1hxs"/>
<db_xref db="PDB" dbkey="1k5m"/>
<db_xref db="PDB" dbkey="1na1"/>
<db_xref db="PDB" dbkey="1ncq"/>
<db_xref db="PDB" dbkey="1oop"/>
<db_xref db="PDB" dbkey="1piv"/>
<db_xref db="PDB" dbkey="1po1"/>
<db_xref db="PDB" dbkey="1po2"/>
<db_xref db="PDB" dbkey="1pov"/>
<db_xref db="PDB" dbkey="1pvc"/>
<db_xref db="PDB" dbkey="1r08"/>
<db_xref db="PDB" dbkey="1r09"/>
<db_xref db="PDB" dbkey="1rmu"/>
<db_xref db="PDB" dbkey="1ruc"/>
<db_xref db="PDB" dbkey="1rud"/>
<db_xref db="PDB" dbkey="1rue"/>
<db_xref db="PDB" dbkey="1ruf"/>
<db_xref db="PDB" dbkey="1rug"/>
<db_xref db="PDB" dbkey="1ruh"/>
<db_xref db="PDB" dbkey="1rui"/>
<db_xref db="PDB" dbkey="1ruj"/>
<db_xref db="PDB" dbkey="1rvf"/>
<db_xref db="PDB" dbkey="1vba"/>
<db_xref db="PDB" dbkey="1vbb"/>
<db_xref db="PDB" dbkey="1vbc"/>
<db_xref db="PDB" dbkey="1vbd"/>
<db_xref db="PDB" dbkey="1vbe"/>
<db_xref db="PDB" dbkey="1vrh"/>
<db_xref db="PDB" dbkey="2hrv"/>
<db_xref db="PDB" dbkey="2hwb"/>
<db_xref db="PDB" dbkey="2hwc"/>
<db_xref db="PDB" dbkey="2plv"/>
<db_xref db="PDB" dbkey="2r04"/>
<db_xref db="PDB" dbkey="2r06"/>
<db_xref db="PDB" dbkey="2r07"/>
<db_xref db="PDB" dbkey="2rm2"/>
<db_xref db="PDB" dbkey="2rmu"/>
<db_xref db="PDB" dbkey="2rr1"/>
<db_xref db="PDB" dbkey="2rs1"/>
<db_xref db="PDB" dbkey="2rs3"/>
<db_xref db="PDB" dbkey="2rs5"/>
<db_xref db="PDB" dbkey="4rhv"/>
<db_xref db="CATH" dbkey="2.40.10.10"/>
<db_xref db="CATH" dbkey="2.60.120.20"/>
<db_xref db="SCOP" dbkey="b.121.4.1"/>
<db_xref db="SCOP" dbkey="b.47.1.4"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Virus" proteins_count="2038"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000082" protein_count="409" short_name="SEA" type="Domain">
<name>SEA</name>
<abstract>
SEA is an extracellular domain associated with
O-glycosylation [<cite idref="PUB00005026"/>].
Proteins found to contain SEA-modules include, agrin, enterokinase, 63 kDa <taxon tax_id="7668">Strongylocentrotus purpuratus</taxon> (Purple sea urchin)
sperm protein, perlecan (heparan sulphate proteoglycan core, mucin 1 and the cell surface antigen, 114/A10, and two functionally uncharacterised,
probably extracellular, <taxon tax_id="6239">Caenorhabditis elegans</taxon> proteins. Despite the functional
diversity of these adhesive proteins, a common denominator seems to be their
existence in heavily glycosylated environments. In addition, the better characterised
proteins all contain O-glycosidic-linked carbohydrates such as
heparan sulphate that contribute considerably to their molecular masses. The common
module might regulate or assist binding to neighbouring carbohydrate moieties.
<p>Enterokinase, the initiator of intestinal digestion, is a
mosaic protease composed of a distinctive assortment of
domains [<cite idref="PUB00004849"/>]. </p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P15941"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P31696"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P34576"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q05793"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q07929"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004849">
<author_list>Kitamoto Y, Yuan X, Wu Q, McCourt DW, Sadler JE.</author_list>
<title>Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains.</title>
<db_xref db="PUBMED" dbkey="8052624"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="16" pages="7588-92" volume="91"/>
<year>1994</year>
</publication>
<publication id="PUB00005026">
<author_list>Bork P, Patthy L.</author_list>
<title>The SEA module: a new extracellular domain associated with O-glycosylation.</title>
<db_xref db="PUBMED" dbkey="7670383"/>
<journal>Protein Sci.</journal>
<location issue="7" pages="1421-5" volume="4"/>
<year>1995</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR011163"/>
<rel_ref ipr_ref="IPR017051"/>
<rel_ref ipr_ref="IPR017118"/>
<rel_ref ipr_ref="IPR017329"/>
<rel_ref ipr_ref="IPR017343"/>
</found_in>
<member_list>
<db_xref protein_count="358" db="PFAM" dbkey="PF01390" name="SEA"/>
<db_xref protein_count="262" db="PROFILE" dbkey="PS50024" name="SEA"/>
<db_xref protein_count="185" db="SMART" dbkey="SM00200" name="SEA"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01390"/>
<db_xref db="BLOCKS" dbkey="IPB000082"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50024"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1ivz"/>
<db_xref db="CATH" dbkey="3.30.70.960"/>
<db_xref db="SCOP" dbkey="d.58.41.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="13"/>
<taxon_data name="Archaea" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="395"/>
<taxon_data name="Fungi" proteins_count="2"/>
<taxon_data name="Nematoda" proteins_count="7"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="7"/>
<taxon_data name="Arthropoda" proteins_count="58"/>
<taxon_data name="Fruit Fly" proteins_count="8"/>
<taxon_data name="Chordata" proteins_count="289"/>
<taxon_data name="Human" proteins_count="96"/>
<taxon_data name="Mouse" proteins_count="38"/>
<taxon_data name="Metazoa" proteins_count="392"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000083" protein_count="125" short_name="Fibrnctn1" type="Domain">
<name>Fibronectin, type I</name>
<abstract>
<p>Fibronectin type I repeats are one of the three repeats found in the fibronectin protein.
Fibronectin is a plasma protein that binds cell surfaces and various compounds
including collagen, fibrin, heparin, DNA, and actin. Type I domain (FN1) is approximately
40 residues in length. Four conserved cysteines are involved in disulphide bonds. The 3D
structure of the FN1 domain has been determined [<cite idref="PUB00004065"/>, <cite idref="PUB00003289"/>, <cite idref="PUB00005265"/>]. It consists of two antiparallel
beta-sheets, first a double-stranded one, that is linked by a disulphide bond to a
triple-stranded beta-sheet. The second conserved disulphide bridge links the C-terminal
adjacent strands of the domain.</p>
<p> In human tissue plasminogen activator chain A the FN1 domain together with the
following epidermal growth factor (EGF)-like domain are involved in
fibrin-binding [<cite idref="PUB00002685"/>]. It has been suggested that these two modules form a single structural
and functional unit [<cite idref="PUB00005265"/>]. The two domains keep their specific tertiary structure, but interact
intimately to bury a hydrophobic core; the inter-module linker makes up the third strand of
the EGF-module's major beta-sheet.</p>
</abstract>
<class_list>
<classification id="GO:0005576" class_type="GO">
<category>Cellular Component</category>
<description>extracellular region</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P00750"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P11276"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P98119"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002685">
<author_list>Bennett WF, Paoni NF, Keyt BA, Botstein D, Jones AJ, Presta L, Wurm FM, Zoller MJ.</author_list>
<title>High resolution analysis of functional determinants on human tissue-type plasminogen activator.</title>
<db_xref db="PUBMED" dbkey="1900516"/>
<journal>J. Biol. Chem.</journal>
<location issue="8" pages="5191-201" volume="266"/>
<year>1991</year>
</publication>
<publication id="PUB00003289">
<author_list>Downing AK, Driscoll PC, Harvey TS, Dudgeon TJ, Smith BO, Baron M, Campbell ID.</author_list>
<title>Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance.</title>
<db_xref db="PUBMED" dbkey="1602484"/>
<journal>J. Mol. Biol.</journal>
<location issue="3" pages="821-33" volume="225"/>
<year>1992</year>
</publication>
<publication id="PUB00004065">
<author_list>Baron M, Norman D, Willis A, Campbell ID.</author_list>
<title>Structure of the fibronectin type 1 module.</title>
<db_xref db="PUBMED" dbkey="2112232"/>
<journal>Nature</journal>
<location issue="6276" pages="642-6" volume="345"/>
<year>1990</year>
</publication>
<publication id="PUB00005265">
<author_list>Smith BO, Downing AK, Driscoll PC, Dudgeon TJ, Campbell ID.</author_list>
<title>The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator.</title>
<db_xref db="PUBMED" dbkey="7582899"/>
<journal>Structure</journal>
<location issue="8" pages="823-33" volume="3"/>
<year>1995</year>
</publication>
</pub_list>
<found_in>
<rel_ref ipr_ref="IPR001314"/>
<rel_ref ipr_ref="IPR014394"/>
</found_in>
<member_list>
<db_xref protein_count="119" db="PFAM" dbkey="PF00039" name="fn1"/>
<db_xref protein_count="117" db="PROSITE" dbkey="PS01253" name="FN1_1"/>
<db_xref protein_count="122" db="PROFILE" dbkey="PS51091" name="FN1_2"/>
<db_xref protein_count="110" db="SMART" dbkey="SM00058" name="FN1"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00039"/>
<db_xref db="MSDsite" dbkey="PS01253"/>
<db_xref db="BLOCKS" dbkey="IPB000083"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00965"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1e88"/>
<db_xref db="PDB" dbkey="1e8b"/>
<db_xref db="PDB" dbkey="1fbr"/>
<db_xref db="PDB" dbkey="1o9a"/>
<db_xref db="PDB" dbkey="1qgb"/>
<db_xref db="PDB" dbkey="1qo6"/>
<db_xref db="PDB" dbkey="1tpg"/>
<db_xref db="PDB" dbkey="1tpm"/>
<db_xref db="PDB" dbkey="1tpn"/>
<db_xref db="PDB" dbkey="2cg6"/>
<db_xref db="PDB" dbkey="2cg7"/>
<db_xref db="PDB" dbkey="2cku"/>
<db_xref db="PDB" dbkey="2fn2"/>
<db_xref db="PDB" dbkey="2rky"/>
<db_xref db="PDB" dbkey="2rkz"/>
<db_xref db="PDB" dbkey="2rl0"/>
<db_xref db="PDB" dbkey="3cal"/>
<db_xref db="CATH" dbkey="2.10.10.10"/>
<db_xref db="CATH" dbkey="2.10.25.10"/>
<db_xref db="CATH" dbkey="2.10.70.10"/>
<db_xref db="SCOP" dbkey="g.14.1.2"/>
<db_xref db="SCOP" dbkey="g.27.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="125"/>
<taxon_data name="Chordata" proteins_count="125"/>
<taxon_data name="Human" proteins_count="28"/>
<taxon_data name="Mouse" proteins_count="22"/>
<taxon_data name="Metazoa" proteins_count="125"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000084" protein_count="1081" short_name="PE_region_N" type="Domain">
<name>PE N-terminal</name>
<abstract>
This family is named after a PE motif near to the amino
terminus. The carboxyl terminus of this family
are variable and fall into several classes. The
largest class of PE proteins is the highly repetitive
PGRS class which have a high glycine content.
The function of these proteins is uncertain but it
has been suggested that they may be related to
antigenic variation of <taxon tax_id="1773">Mycobacterium tuberculosis</taxon> [<cite idref="PUB00004280"/>].
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O53416"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004280">
<author_list>Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG.</author_list>
<title>Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.</title>
<db_xref db="PUBMED" dbkey="9634230"/>
<journal>Nature</journal>
<location issue="6685" pages="537-44" volume="393"/>
<year>1998</year>
</publication>
</pub_list>
<member_list>
<db_xref protein_count="1082" db="PFAM" dbkey="PF00934" name="PE"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00934"/>
<db_xref db="BLOCKS" dbkey="IPB000084"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="2g38"/>
<db_xref db="SCOP" dbkey="a.25.4.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1082"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000085" protein_count="1825" short_name="RuvA" type="Family">
<name>Bacterial DNA recombination protein RuvA</name>
<abstract>
<p>In prokaryotes, RuvA, RuvB, and RuvC process the universal DNA intermediate of homologous recombination, termed Holliday junction. The tetrameric DNA helicase RuvA specifically binds to the Holliday junction and facilitates the isomerization of the junction from the stacked folded configuration to the square-planar structure [<cite idref="PUB00013198"/>]. In the RuvA tetramer, each subunit consists of three domains, I, II and III, where I and II form the major core that is responsible for Holliday junction binding and base pair rearrangements of Holliday junction executed at the crossover point, whereas domain III regulates branch migration through direct contact with RuvB.</p>
</abstract>
<class_list>
<classification id="GO:0003678" class_type="GO">
<category>Molecular Function</category>
<description>DNA helicase activity</description>
</classification>
<classification id="GO:0006281" class_type="GO">
<category>Biological Process</category>
<description>DNA repair</description>
</classification>
<classification id="GO:0006310" class_type="GO">
<category>Biological Process</category>
<description>DNA recombination</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A2BQZ1"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P0A809"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P73554"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00013198">
<author_list>Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, Iwasaki H, Shinagawa H, Ariyoshi M, Mayanagi K, Morikawa K.</author_list>
<title>Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery.</title>
<db_xref db="PUBMED" dbkey="12408833"/>
<journal>Mol. Cell</journal>
<location issue="3" pages="671-81" volume="10"/>
<year>2002</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR003583"/>
<rel_ref ipr_ref="IPR010994"/>
<rel_ref ipr_ref="IPR011114"/>
<rel_ref ipr_ref="IPR013849"/>
</contains>
<member_list>
<db_xref protein_count="1766" db="TIGRFAMs" dbkey="TIGR00084" name="ruvA"/>
<db_xref protein_count="1822" db="HAMAP" dbkey="MF_00031" name="DNA_helic_RuvA"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000085"/>
<db_xref db="EC" dbkey="3.6.1"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1bdx"/>
<db_xref db="PDB" dbkey="1bvs"/>
<db_xref db="PDB" dbkey="1c7y"/>
<db_xref db="PDB" dbkey="1cuk"/>
<db_xref db="PDB" dbkey="1d8l"/>
<db_xref db="PDB" dbkey="1hjp"/>
<db_xref db="PDB" dbkey="1ixr"/>
<db_xref db="PDB" dbkey="1ixs"/>
<db_xref db="PDB" dbkey="2h5x"/>
<db_xref db="CATH" dbkey="1.10.150.20"/>
<db_xref db="CATH" dbkey="1.10.8.10"/>
<db_xref db="CATH" dbkey="2.40.50.140"/>
<db_xref db="SCOP" dbkey="a.5.1.1"/>
<db_xref db="SCOP" dbkey="a.60.2.1"/>
<db_xref db="SCOP" dbkey="b.40.4.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1820"/>
<taxon_data name="Cyanobacteria" proteins_count="56"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
<taxon_data name="Archaea" proteins_count="4"/>
<taxon_data name="Eukaryota" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000086" protein_count="21099" short_name="NUDIX_hydrolase_dom" type="Domain">
<name>NUDIX hydrolase domain</name>
<abstract>
MutT is a small bacterial protein (~12-15Kd) involved in the GO system [<cite idref="PUB00002202"/>]
responsible for removing an oxidatively damaged form of guanine (8-hydroxy-
guanine or 7,8-dihydro-8-oxoguanine) from DNA and the nucleotide pool.
8-oxo-dGTP is inserted opposite dA and dC residues of template DNA with near equal efficiency, leading to A.T to G.C transversions. MutT
specifically degrades 8-oxo-dGTP to the monophosphate, with the concomitant
release of pyrophosphate. A short conserved N-terminal region of mutT
(designated the MutT domain) is also found in a variety of other
prokaryotic, viral and eukaryotic proteins [<cite idref="PUB00004433"/>, <cite idref="PUB00003856"/>, <cite idref="PUB00002808"/>, <cite idref="PUB00006677"/>].
<p>The generic name `NUDIX hydrolases' (NUcleoside DIphosphate linked
to some other moiety X) has been coined for this domain family [<cite idref="PUB00006662"/>]. The
family can be divided into a number of subgroups, of which MutT anti-
mutagenic activity represents only one type; most of the rest hydrolyse
diverse nucleoside diphosphate derivatives (including ADP-ribose, GDP-
mannose, TDP-glucose, NADH, UDP-sugars, dNTP and NTP).</p>
</abstract>
<class_list>
<classification id="GO:0016787" class_type="GO">
<category>Molecular Function</category>
<description>hydrolase activity</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O22951"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O95989"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P53550"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q8R2U6"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9U2M7"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00002202">
<author_list>Michaels ML, Miller JH.</author_list>
<title>The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine).</title>
<db_xref db="PUBMED" dbkey="1328155"/>
<journal>J. Bacteriol.</journal>
<location issue="20" pages="6321-5" volume="174"/>
<year>1992</year>
</publication>
<publication id="PUB00002808">
<author_list>Sakumi K, Furuichi M, Tsuzuki T, Kakuma T, Kawabata S, Maki H, Sekiguchi M.</author_list>
<title>Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis.</title>
<db_xref db="PUBMED" dbkey="8226881"/>
<journal>J. Biol. Chem.</journal>
<location issue="31" pages="23524-30" volume="268"/>
<year>1993</year>
</publication>
<publication id="PUB00003856">
<author_list>Mejean V, Salles C, Bullions LC, Bessman MJ, Claverys JP.</author_list>
<title>Characterization of the mutX gene of Streptococcus pneumoniae as a homologue of Escherichia coli mutT, and tentative definition of a catalytic domain of the dGTP pyrophosphohydrolases.</title>
<db_xref db="PUBMED" dbkey="8170394"/>
<journal>Mol. Microbiol.</journal>
<location issue="2" pages="323-30" volume="11"/>
<year>1994</year>
</publication>
<publication id="PUB00004433">
<author_list>Koonin EV.</author_list>
<title>A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses.</title>
<db_xref db="PUBMED" dbkey="8233837"/>
<journal>Nucleic Acids Res.</journal>
<location issue="20" pages="4847" volume="21"/>
<year>1993</year>
</publication>
<publication id="PUB00006662">
<author_list>Bessman MJ, Frick DN, O'Handley SF.</author_list>
<title>The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes.</title>
<db_xref db="PUBMED" dbkey="8810257"/>
<journal>J. Biol. Chem.</journal>
<location issue="41" pages="25059-62" volume="271"/>
<year>1996</year>
</publication>
<publication id="PUB00006677">
<author_list>McLennan AG.</author_list>
<title>The MutT motif family of nucleotide phosphohydrolases in man and human pathogens (review).</title>
<db_xref db="PUBMED" dbkey="10373642"/>
<journal>Int. J. Mol. Med.</journal>
<location issue="1" pages="79-89" volume="4"/>
<year>1999</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR015797"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR003293"/>
<rel_ref ipr_ref="IPR003561"/>
<rel_ref ipr_ref="IPR003562"/>
<rel_ref ipr_ref="IPR003563"/>
<rel_ref ipr_ref="IPR003564"/>
<rel_ref ipr_ref="IPR003565"/>
<rel_ref ipr_ref="IPR004385"/>
<rel_ref ipr_ref="IPR011876"/>
<rel_ref ipr_ref="IPR014078"/>
<rel_ref ipr_ref="IPR017397"/>
<rel_ref ipr_ref="IPR021161"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR000059"/>
<rel_ref ipr_ref="IPR020084"/>
<rel_ref ipr_ref="IPR020476"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR003300"/>
<rel_ref ipr_ref="IPR003301"/>
</found_in>
<member_list>
<db_xref protein_count="19640" db="PFAM" dbkey="PF00293" name="NUDIX"/>
<db_xref protein_count="20025" db="GENE3D" dbkey="G3DSA:3.90.79.10" name="NUDIX_hydrolase"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00293"/>
<db_xref db="MSDsite" dbkey="PS00893"/>
<db_xref db="BLOCKS" dbkey="IPB000086"/>
<db_xref db="EC" dbkey="3.6.1"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00695"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1f3y"/>
<db_xref db="PDB" dbkey="1g0s"/>
<db_xref db="PDB" dbkey="1g9q"/>
<db_xref db="PDB" dbkey="1ga7"/>
<db_xref db="PDB" dbkey="1hx3"/>
<db_xref db="PDB" dbkey="1hzt"/>
<db_xref db="PDB" dbkey="1i9a"/>
<db_xref db="PDB" dbkey="1iry"/>
<db_xref db="PDB" dbkey="1jkn"/>
<db_xref db="PDB" dbkey="1jrk"/>
<db_xref db="PDB" dbkey="1k26"/>
<db_xref db="PDB" dbkey="1k2e"/>
<db_xref db="PDB" dbkey="1khz"/>
<db_xref db="PDB" dbkey="1kt9"/>
<db_xref db="PDB" dbkey="1ktg"/>
<db_xref db="PDB" dbkey="1mk1"/>
<db_xref db="PDB" dbkey="1mp2"/>
<db_xref db="PDB" dbkey="1mqe"/>
<db_xref db="PDB" dbkey="1mqw"/>
<db_xref db="PDB" dbkey="1mr2"/>
<db_xref db="PDB" dbkey="1mut"/>
<db_xref db="PDB" dbkey="1nfs"/>
<db_xref db="PDB" dbkey="1nfz"/>
<db_xref db="PDB" dbkey="1nqy"/>
<db_xref db="PDB" dbkey="1nqz"/>
<db_xref db="PDB" dbkey="1ow2"/>
<db_xref db="PDB" dbkey="1ppv"/>
<db_xref db="PDB" dbkey="1ppw"/>
<db_xref db="PDB" dbkey="1ppx"/>
<db_xref db="PDB" dbkey="1pun"/>
<db_xref db="PDB" dbkey="1puq"/>
<db_xref db="PDB" dbkey="1pus"/>
<db_xref db="PDB" dbkey="1pvf"/>
<db_xref db="PDB" dbkey="1q27"/>
<db_xref db="PDB" dbkey="1q33"/>
<db_xref db="PDB" dbkey="1q54"/>
<db_xref db="PDB" dbkey="1qvj"/>
<db_xref db="PDB" dbkey="1r67"/>
<db_xref db="PDB" dbkey="1rrq"/>
<db_xref db="PDB" dbkey="1rrs"/>
<db_xref db="PDB" dbkey="1rya"/>
<db_xref db="PDB" dbkey="1sjy"/>
<db_xref db="PDB" dbkey="1soi"/>
<db_xref db="PDB" dbkey="1su2"/>
<db_xref db="PDB" dbkey="1sz3"/>
<db_xref db="PDB" dbkey="1tum"/>
<db_xref db="PDB" dbkey="1u20"/>
<db_xref db="PDB" dbkey="1v8i"/>
<db_xref db="PDB" dbkey="1v8l"/>
<db_xref db="PDB" dbkey="1v8m"/>
<db_xref db="PDB" dbkey="1v8n"/>
<db_xref db="PDB" dbkey="1v8r"/>
<db_xref db="PDB" dbkey="1v8s"/>
<db_xref db="PDB" dbkey="1v8t"/>
<db_xref db="PDB" dbkey="1v8u"/>
<db_xref db="PDB" dbkey="1v8v"/>
<db_xref db="PDB" dbkey="1v8w"/>
<db_xref db="PDB" dbkey="1v8y"/>
<db_xref db="PDB" dbkey="1vc8"/>
<db_xref db="PDB" dbkey="1vc9"/>
<db_xref db="PDB" dbkey="1vcd"/>
<db_xref db="PDB" dbkey="1vhg"/>
<db_xref db="PDB" dbkey="1vhz"/>
<db_xref db="PDB" dbkey="1viq"/>
<db_xref db="PDB" dbkey="1viu"/>
<db_xref db="PDB" dbkey="1vk6"/>
<db_xref db="PDB" dbkey="1vrl"/>
<db_xref db="PDB" dbkey="1x51"/>
<db_xref db="PDB" dbkey="1x83"/>
<db_xref db="PDB" dbkey="1x84"/>
<db_xref db="PDB" dbkey="1xsb"/>
<db_xref db="PDB" dbkey="1xsc"/>
<db_xref db="PDB" dbkey="2a6t"/>
<db_xref db="PDB" dbkey="2a8p"/>
<db_xref db="PDB" dbkey="2a8q"/>
<db_xref db="PDB" dbkey="2a8r"/>
<db_xref db="PDB" dbkey="2a8s"/>
<db_xref db="PDB" dbkey="2a8t"/>
<db_xref db="PDB" dbkey="2azw"/>
<db_xref db="PDB" dbkey="2b06"/>
<db_xref db="PDB" dbkey="2b0v"/>
<db_xref db="PDB" dbkey="2b2k"/>
<db_xref db="PDB" dbkey="2fb1"/>
<db_xref db="PDB" dbkey="2fkb"/>
<db_xref db="PDB" dbkey="2fml"/>
<db_xref db="PDB" dbkey="2fvv"/>
<db_xref db="PDB" dbkey="2g73"/>
<db_xref db="PDB" dbkey="2g74"/>
<db_xref db="PDB" dbkey="2gt2"/>
<db_xref db="PDB" dbkey="2gt4"/>
<db_xref db="PDB" dbkey="2o5f"/>
<db_xref db="PDB" dbkey="2pqv"/>
<db_xref db="PDB" dbkey="2q9p"/>
<db_xref db="PDB" dbkey="2qkl"/>
<db_xref db="PDB" dbkey="2vnp"/>
<db_xref db="PDB" dbkey="2vnq"/>
<db_xref db="PDB" dbkey="3cng"/>
<db_xref db="CATH" dbkey="3.90.79.10"/>
<db_xref db="SCOP" dbkey="a.242.1.1"/>
<db_xref db="SCOP" dbkey="d.113.1.1"/>
<db_xref db="SCOP" dbkey="d.113.1.2"/>
<db_xref db="SCOP" dbkey="d.113.1.3"/>
<db_xref db="SCOP" dbkey="d.113.1.4"/>
<db_xref db="SCOP" dbkey="d.113.1.5"/>
<db_xref db="SCOP" dbkey="d.113.1.6"/>
<db_xref db="SCOP" dbkey="d.113.1.7"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="18277"/>
<taxon_data name="Cyanobacteria" proteins_count="293"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="8"/>
<taxon_data name="Archaea" proteins_count="343"/>
<taxon_data name="Eukaryota" proteins_count="2300"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="36"/>
<taxon_data name="Rice spp." proteins_count="76"/>
<taxon_data name="Fungi" proteins_count="764"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="37"/>
<taxon_data name="Other Eukaryotes" proteins_count="15"/>
<taxon_data name="Other Eukaryotes" proteins_count="24"/>
<taxon_data name="Nematoda" proteins_count="13"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="13"/>
<taxon_data name="Arthropoda" proteins_count="291"/>
<taxon_data name="Fruit Fly" proteins_count="32"/>
<taxon_data name="Chordata" proteins_count="324"/>
<taxon_data name="Human" proteins_count="49"/>
<taxon_data name="Mouse" proteins_count="54"/>
<taxon_data name="Virus" proteins_count="170"/>
<taxon_data name="Unclassified" proteins_count="9"/>
<taxon_data name="Other Eukaryotes" proteins_count="10"/>
<taxon_data name="Plastid Group" proteins_count="501"/>
<taxon_data name="Green Plants" proteins_count="501"/>
<taxon_data name="Metazoa" proteins_count="1479"/>
<taxon_data name="Plastid Group" proteins_count="108"/>
<taxon_data name="Plastid Group" proteins_count="52"/>
<taxon_data name="Other Eukaryotes" proteins_count="35"/>
<taxon_data name="Other Eukaryotes" proteins_count="11"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR003293"/>
<sec_ac acc="IPR003561"/>
<sec_ac acc="IPR003562"/>
<sec_ac acc="IPR003563"/>
<sec_ac acc="IPR003564"/>
<sec_ac acc="IPR003565"/>
<sec_ac acc="IPR004385"/>
<sec_ac acc="IPR011876"/>
<sec_ac acc="IPR014078"/>
<sec_ac acc="IPR017397"/>
<sec_ac acc="IPR021161"/>
</sec_list>
</interpro>
<interpro id="IPR000089" protein_count="10637" short_name="Biotin_lipoyl" type="Domain">
<name>Biotin/lipoyl attachment</name>
<abstract>
The biotin / lipoyl attachment domain has a conserved lysine residue that binds biotin or lipoic acid. Biotin plays a catalytic role in some carboxyl transfer reactions and is covalently attached, via an amide bond, to a lysine residue in enzymes requiring this coenzyme [<cite idref="PUB00002740"/>]. E2 acyltransferases have an essential cofactor, lipoic acid, which is covalently bound via an amide linkage to a lysine group [<cite idref="PUB00000614"/>]. The lipoic acid cofactor is found in a variety of proteins that include, H-protein of the glycine cleavage system (GCS), mammalian and yeast pyruvate dehydrogenases and fast migrating protein (FMP) (gene acoC) from <taxon tax_id="106590">Ralstonia eutropha</taxon> (Alcaligenes eutrophus).
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00330"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O17732"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P53395"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q00955"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q0WQF7"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000614">
<author_list>Russell GC, Guest JR.</author_list>
<title>Sequence similarities within the family of dihydrolipoamide acyltransferases and discovery of a previously unidentified fungal enzyme.</title>
<db_xref db="PUBMED" dbkey="1825611"/>
<journal>Biochim. Biophys. Acta</journal>
<location issue="2" pages="225-32" volume="1076"/>
<year>1991</year>
</publication>
<publication id="PUB00002740">
<author_list>Shenoy BC, Xie Y, Park VL, Kumar GK, Beegen H, Wood HG, Samols D.</author_list>
<title>The importance of methionine residues for the catalysis of the biotin enzyme, transcarboxylase. Analysis by site-directed mutagenesis.</title>
<db_xref db="PUBMED" dbkey="1526981"/>
<journal>J. Biol. Chem.</journal>
<location issue="26" pages="18407-12" volume="267"/>
<year>1992</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR001882"/>
<rel_ref ipr_ref="IPR003016"/>
<rel_ref ipr_ref="IPR011053"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR005930"/>
<rel_ref ipr_ref="IPR006255"/>
<rel_ref ipr_ref="IPR006256"/>
<rel_ref ipr_ref="IPR006257"/>
<rel_ref ipr_ref="IPR014084"/>
<rel_ref ipr_ref="IPR014276"/>
<rel_ref ipr_ref="IPR015761"/>
<rel_ref ipr_ref="IPR017695"/>
</found_in>
<member_list>
<db_xref protein_count="10487" db="PFAM" dbkey="PF00364" name="Biotin_lipoyl"/>
<db_xref protein_count="10472" db="PROFILE" dbkey="PS50968" name="BIOTINYL_LIPOYL"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00364"/>
<db_xref db="COMe" dbkey="PRX001138"/>
<db_xref db="BLOCKS" dbkey="IPB000089"/>
<db_xref db="PROSITEDOC" dbkey="PDOC50968"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a6x"/>
<db_xref db="PDB" dbkey="1bdo"/>
<db_xref db="PDB" dbkey="1dcz"/>
<db_xref db="PDB" dbkey="1dd2"/>
<db_xref db="PDB" dbkey="1fyc"/>
<db_xref db="PDB" dbkey="1ghj"/>
<db_xref db="PDB" dbkey="1ghk"/>
<db_xref db="PDB" dbkey="1gjx"/>
<db_xref db="PDB" dbkey="1iyu"/>
<db_xref db="PDB" dbkey="1iyv"/>
<db_xref db="PDB" dbkey="1k8m"/>
<db_xref db="PDB" dbkey="1k8o"/>
<db_xref db="PDB" dbkey="1lab"/>
<db_xref db="PDB" dbkey="1lac"/>
<db_xref db="PDB" dbkey="1o78"/>
<db_xref db="PDB" dbkey="1pmr"/>
<db_xref db="PDB" dbkey="1qjo"/>
<db_xref db="PDB" dbkey="1y8n"/>
<db_xref db="PDB" dbkey="1y8o"/>
<db_xref db="PDB" dbkey="1y8p"/>
<db_xref db="PDB" dbkey="1z6h"/>
<db_xref db="PDB" dbkey="1z7t"/>
<db_xref db="PDB" dbkey="2b8f"/>
<db_xref db="PDB" dbkey="2b8g"/>
<db_xref db="PDB" dbkey="2bdo"/>
<db_xref db="PDB" dbkey="2d5d"/>
<db_xref db="PDB" dbkey="2evb"/>
<db_xref db="PDB" dbkey="2pnr"/>
<db_xref db="PDB" dbkey="2q8i"/>
<db_xref db="PDB" dbkey="3bdo"/>
<db_xref db="CATH" dbkey="2.40.50.100"/>
<db_xref db="SCOP" dbkey="b.84.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="9150"/>
<taxon_data name="Cyanobacteria" proteins_count="122"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="3"/>
<taxon_data name="Archaea" proteins_count="160"/>
<taxon_data name="Eukaryota" proteins_count="1323"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="37"/>
<taxon_data name="Rice spp." proteins_count="35"/>
<taxon_data name="Fungi" proteins_count="487"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="46"/>
<taxon_data name="Other Eukaryotes" proteins_count="16"/>
<taxon_data name="Nematoda" proteins_count="10"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="10"/>
<taxon_data name="Arthropoda" proteins_count="123"/>
<taxon_data name="Fruit Fly" proteins_count="13"/>
<taxon_data name="Chordata" proteins_count="162"/>
<taxon_data name="Human" proteins_count="35"/>
<taxon_data name="Mouse" proteins_count="21"/>
<taxon_data name="Unclassified" proteins_count="6"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
<taxon_data name="Plastid Group" proteins_count="282"/>
<taxon_data name="Green Plants" proteins_count="282"/>
<taxon_data name="Metazoa" proteins_count="832"/>
<taxon_data name="Plastid Group" proteins_count="85"/>
<taxon_data name="Plastid Group" proteins_count="42"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
<taxon_data name="Other Eukaryotes" proteins_count="12"/>
<taxon_data name="Other Eukaryotes" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000090" protein_count="1144" short_name="Flg_Motor_Flig" type="Family">
<name>Flagellar motor switch protein FliG</name>
<abstract>
<p>The flagellar motor switch in <taxon tax_id="562">Escherichia coli</taxon> and <taxon tax_id="602">Salmonella typhimurium</taxon> regulates the
direction of flagellar rotation and hence controls swimming behaviour [<cite idref="PUB00001834"/>].
The switch is a complex apparatus that responds to signals transduced by the
chemotaxis sensory signalling system during chemotactic behaviour [<cite idref="PUB00001834"/>]. CheY,
the chemotaxis response regulator, is believed to act directly on the switch
to induce tumbles in the swimming pattern, but no physical interactions of
CheY and switch proteins have yet been demonstrated. </p>
<p>The switch complex comprises at least three proteins - FliG, FliM and FliN.
It has been shown that FliG interacts with FliM, FliM interacts with itself,
and FliM interacts with FliN [<cite idref="PUB00002290"/>]. Several residues within the middle third
of FliG appear to be strongly involved in the FliG-FliM interaction, with
residues near the N- or C-termini being less important [<cite idref="PUB00002290"/>]. Such clustering
suggests that FliG-FliM interaction plays a central role in switching.</p>
<p>Analysis of the FliG, FliM and FliN sequences shows that none are especially
hydrophobic or appear to be integral membrane proteins [<cite idref="PUB00002083"/>]. This result is
consistent with other evidence suggesting that the proteins may be
peripheral to the membrane, possibly mounted on the basal body M ring [<cite idref="PUB00002083"/>, <cite idref="PUB00004790"/>]. FliG is present in about 25 copies per flagellum. This structure of the
C-terminal domain is known, this domain functions
specifically in motor rotation [<cite idref="PUB00004294"/>].</p>
</abstract>
<class_list>
<classification id="GO:0001539" class_type="GO">
<category>Biological Process</category>
<description>ciliary or flagellar motility</description>
</classification>
<classification id="GO:0003774" class_type="GO">
<category>Molecular Function</category>
<description>motor activity</description>
</classification>
<classification id="GO:0006935" class_type="GO">
<category>Biological Process</category>
<description>chemotaxis</description>
</classification>
<classification id="GO:0009288" class_type="GO">
<category>Cellular Component</category>
<description>bacterial-type flagellum</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="Q9WY63"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001834">
<author_list>Roman SJ, Frantz BB, Matsumura P.</author_list>
<title>Gene sequence, overproduction, purification and determination of the wild-type level of the Escherichia coli flagellar switch protein FliG.</title>
<db_xref db="PUBMED" dbkey="8224881"/>
<journal>Gene</journal>
<location issue="1" pages="103-8" volume="133"/>
<year>1993</year>
</publication>
<publication id="PUB00002083">
<author_list>Kihara M, Homma M, Kutsukake K, Macnab RM.</author_list>
<title>Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences.</title>
<db_xref db="PUBMED" dbkey="2656645"/>
<journal>J. Bacteriol.</journal>
<location issue="6" pages="3247-57" volume="171"/>
<year>1989</year>
</publication>
<publication id="PUB00002290">
<author_list>Marykwas DL, Berg HC.</author_list>
<title>A mutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli.</title>
<db_xref db="PUBMED" dbkey="8631704"/>
<journal>J. Bacteriol.</journal>
<location issue="5" pages="1289-94" volume="178"/>
<year>1996</year>
</publication>
<publication id="PUB00004790">
<author_list>Francis NR, Irikura VM, Yamaguchi S, DeRosier DJ, Macnab RM.</author_list>
<title>Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body.</title>
<db_xref db="PUBMED" dbkey="1631122"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="14" pages="6304-8" volume="89"/>
<year>1992</year>
</publication>
<publication id="PUB00004294">
<author_list>Lloyd SA, Whitby FG, Blair DF, Hill CP.</author_list>
<title>Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.</title>
<db_xref db="PUBMED" dbkey="10440379"/>
<journal>Nature</journal>
<location issue="6743" pages="472-5" volume="400"/>
<year>1999</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR011002"/>
</contains>
<member_list>
<db_xref protein_count="1131" db="PFAM" dbkey="PF01706" name="FliG_C"/>
<db_xref protein_count="1123" db="PRINTS" dbkey="PR00954" name="FLGMOTORFLIG"/>
<db_xref protein_count="853" db="TIGRFAMs" dbkey="TIGR00207" name="fliG"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01706"/>
<db_xref db="BLOCKS" dbkey="IPB000090"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1lkv"/>
<db_xref db="PDB" dbkey="1qc7"/>
<db_xref db="CATH" dbkey="1.10.220.30"/>
<db_xref db="SCOP" dbkey="a.118.14.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1143"/>
<taxon_data name="Eukaryota" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="1"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000091" protein_count="139" short_name="Huntingtin" type="Family">
<name>Huntingtin</name>
<abstract>
Huntington's disease (HD) is a mid-life onset, inherited, neurodegenerative
disorder characterised by motor impairment, involuntary movements (chorea),
psychiatric disorders and dementia [<cite idref="PUB00003898"/>]. The disease results from the
expansion of a polyglutamine-encoding CAG repeat in a gene of unknown
function. Moderate expansion of glutamine-coding CAG repeats has been
found in other neurological diseases (e.g. spinobulbar muscular atrophy
and Machado-Joseph disease), in all of which the pathological mechanism
linked to the expansion of the polyglutamine tract in the protein remains
a mystery.
<p>The HD transcript is highly conserved, significant differences, as already
noted, occurring in the N-terminal Gln-repeat region. Huntingtin normally
contains 10-35 repeats, but shows 36-120 repeats in the disease form.
Migration differences between normal and mutated huntingtin in a denaturing
polyacrylamide gel suggest that the poly-Gln stretch disrupts the protein
conformation. This finding is consistent with the observation that
Gln repeats may form tightly-linked beta-sheets that could act as polar
zippers [<cite idref="PUB00004844"/>].</p>
</abstract>
<class_list>
<classification id="GO:0005634" class_type="GO">
<category>Cellular Component</category>
<description>nucleus</description>
</classification>
<classification id="GO:0005737" class_type="GO">
<category>Cellular Component</category>
<description>cytoplasm</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P42858"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P42859"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P51111"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q76P24"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00003898">
<author_list>Baxendale S, Abdulla S, Elgar G, Buck D, Berks M, Micklem G, Durbin R, Bates G, Brenner S, Beck S.</author_list>
<title>Comparative sequence analysis of the human and pufferfish Huntington's disease genes.</title>
<db_xref db="PUBMED" dbkey="7647794"/>
<journal>Nat. Genet.</journal>
<location issue="1" pages="67-76" volume="10"/>
<year>1995</year>
</publication>
<publication id="PUB00004844">
<author_list>Perutz MF, Johnson T, Suzuki M, Finch JT.</author_list>
<title>Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases.</title>
<db_xref db="PUBMED" dbkey="8202492"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="12" pages="5355-8" volume="91"/>
<year>1994</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR000357"/>
<rel_ref ipr_ref="IPR016024"/>
</contains>
<member_list>
<db_xref protein_count="138" db="PANTHER" dbkey="PTHR10170" name="Huntingtin"/>
<db_xref protein_count="52" db="PRINTS" dbkey="PR00375" name="HUNTINGTIN"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000091"/>
</external_doc_list>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="139"/>
<taxon_data name="Arthropoda" proteins_count="25"/>
<taxon_data name="Fruit Fly" proteins_count="3"/>
<taxon_data name="Chordata" proteins_count="25"/>
<taxon_data name="Human" proteins_count="4"/>
<taxon_data name="Mouse" proteins_count="1"/>
<taxon_data name="Metazoa" proteins_count="137"/>
<taxon_data name="Other Eukaryotes" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
</interprodb>
|