File: interpro_relationship.xml

package info (click to toggle)
bioperl 1.7.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,964 kB
  • sloc: perl: 94,019; xml: 14,811; makefile: 15
file content (8887 lines) | stat: -rw-r--r-- 462,281 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interprodb SYSTEM "interpro.dtd">
<interprodb>
<release>
  <dbinfo dbname="PANTHER" entry_count="30128" file_date="04-OCT-06" version="6.1"/>
  <dbinfo dbname="PFAM" entry_count="11912" file_date="01-SEP-09" version="24.0"/>
  <dbinfo dbname="PIRSF" entry_count="3222" file_date="18-MAR-10" version="2.72"/>
  <dbinfo dbname="PRINTS" entry_count="2000" file_date="09-FEB-10" version="40.0"/>
  <dbinfo dbname="PRODOM" entry_count="1894" file_date="23-APR-09" version="2006.1"/>
  <dbinfo dbname="PROSITE" entry_count="1308" file_date="28-JUL-09" version="20.52"/>
  <dbinfo dbname="PROFILE" entry_count="860" file_date="28-JUL-09" version="20.52"/>
  <dbinfo dbname="SMART" entry_count="809" file_date="24-MAR-09" version="6.0"/>
  <dbinfo dbname="TIGRFAMs" entry_count="3808" file_date="11-NOV-09" version="9.0"/>
  <dbinfo dbname="GENE3D" entry_count="2147" file_date="11-SEP-06" version="3.0.0"/>
  <dbinfo dbname="SSF" entry_count="1538" file_date="30-NOV-06" version="1.69"/>
  <dbinfo dbname="SWISSPROT" entry_count="517100" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="TREMBL" entry_count="10867798" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="INTERPRO" entry_count="20329" file_date="24-MAR-10" version="26.0"/>
  <dbinfo dbname="GO" entry_count="23937" file_date="27-MAR-07" version="N/A"/>
  <dbinfo dbname="MEROPS" entry_count="3802" file_date="25-MAR-10" version="9.1"/>
  <dbinfo dbname="UniProt" entry_count="11384898" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="HAMAP" entry_count="1633" file_date="28-MAY-09" version="280509"/>
  <dbinfo dbname="PFAMB" entry_count="142303" file_date="02-DEC-09" version="24.0"/>
</release>
<interpro id="IPR000001" protein_count="655" short_name="Kringle" type="Domain">
  <name>Kringle</name>
  <abstract>
<p>Kringles are autonomous structural domains, found throughout the blood clotting and fibrinolytic proteins. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00002414"/>, <cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>]. 
Kringle domains [<cite idref="PUB00003400"/>, <cite idref="PUB00000803"/>, <cite idref="PUB00001620"/>] are characterised by a triple loop, 3-disulphide bridge structure, whose  conformation is defined by a number of hydrogen bonds and small pieces of  anti-parallel beta-sheet. They are found in a varying number  of  copies  in some plasma proteins including prothrombin and urokinase-type plasminogen activator, which are serine proteases belonging to MEROPS peptidase family S1A.</p>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00747"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P98119"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q08048"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q24488"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000803">
      <author_list>Patthy L.</author_list>
      <title>Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.</title>
      <db_xref db="PUBMED" dbkey="3891096"/>
      <journal>Cell</journal>
      <location issue="3" pages="657-63" volume="41"/>
      <year>1985</year>
    </publication>
    <publication id="PUB00001541">
      <author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
      <title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
      <db_xref db="PUBMED" dbkey="6373375"/>
      <journal>FEBS Lett.</journal>
      <location issue="1" pages="131-6" volume="171"/>
      <year>1984</year>
    </publication>
    <publication id="PUB00002414">
      <author_list>McMullen BA, Fujikawa K.</author_list>
      <title>Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor).</title>
      <db_xref db="PUBMED" dbkey="3886654"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="9" pages="5328-41" volume="260"/>
      <year>1985</year>
    </publication>
    <publication id="PUB00001620">
      <author_list>Ikeo K, Takahashi K, Gojobori T.</author_list>
      <title>Evolutionary origin of numerous kringles in human and simian apolipoprotein(a).</title>
      <db_xref db="PUBMED" dbkey="1879523"/>
      <journal>FEBS Lett.</journal>
      <location issue="1-2" pages="146-8" volume="287"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00006168">
      <author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
      <title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
      <db_xref db="PUBMED" dbkey="8165128"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="7" pages="1161-6" volume="22"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00015853">
      <author_list>Schwabe JW, Teichmann SA.</author_list>
      <title>Nuclear receptors: the evolution of diversity.</title>
      <db_xref db="PUBMED" dbkey="14747695"/>
      <journal>Sci. STKE</journal>
      <location issue="217" pages="pe4" volume="2004"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00003257">
      <author_list>Atkinson RA, Williams RJ.</author_list>
      <title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
      <db_xref db="PUBMED" dbkey="2157850"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="3" pages="541-52" volume="212"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00003400">
      <author_list>Castellino FJ, Beals JM.</author_list>
      <title>The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII.</title>
      <db_xref db="PUBMED" dbkey="3131537"/>
      <journal>J. Mol. Evol.</journal>
      <location issue="4" pages="358-69" volume="26"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00004464">
      <author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
      <title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
      <db_xref db="PUBMED" dbkey="7899080"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="606-11" volume="23"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR013806"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018059"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR018056"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR001314"/>
    <rel_ref ipr_ref="IPR011358"/>
    <rel_ref ipr_ref="IPR012051"/>
    <rel_ref ipr_ref="IPR014394"/>
    <rel_ref ipr_ref="IPR016247"/>
    <rel_ref ipr_ref="IPR017076"/>
    <rel_ref ipr_ref="IPR020715"/>
  </found_in>
  <member_list>
    <db_xref protein_count="630" db="PFAM" dbkey="PF00051" name="Kringle"/>
    <db_xref protein_count="645" db="PROFILE" dbkey="PS50070" name="KRINGLE_2"/>
    <db_xref protein_count="651" db="SMART" dbkey="SM00130" name="KR"/>
    <db_xref protein_count="618" db="GENE3D" dbkey="G3DSA:2.40.20.10" name="Kringle"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00051"/>
    <db_xref db="MSDsite" dbkey="PS00021"/>
    <db_xref db="BLOCKS" dbkey="IPB000001"/>
    <db_xref db="MEROPS" dbkey="S1"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00020"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a0h"/>
    <db_xref db="PDB" dbkey="1a5h"/>
    <db_xref db="PDB" dbkey="1b2i"/>
    <db_xref db="PDB" dbkey="1bda"/>
    <db_xref db="PDB" dbkey="1bht"/>
    <db_xref db="PDB" dbkey="1bml"/>
    <db_xref db="PDB" dbkey="1bui"/>
    <db_xref db="PDB" dbkey="1cea"/>
    <db_xref db="PDB" dbkey="1ceb"/>
    <db_xref db="PDB" dbkey="1ddj"/>
    <db_xref db="PDB" dbkey="1gmn"/>
    <db_xref db="PDB" dbkey="1gmo"/>
    <db_xref db="PDB" dbkey="1gp9"/>
    <db_xref db="PDB" dbkey="1hpj"/>
    <db_xref db="PDB" dbkey="1hpk"/>
    <db_xref db="PDB" dbkey="1i5k"/>
    <db_xref db="PDB" dbkey="1i71"/>
    <db_xref db="PDB" dbkey="1jfn"/>
    <db_xref db="PDB" dbkey="1kdu"/>
    <db_xref db="PDB" dbkey="1ki0"/>
    <db_xref db="PDB" dbkey="1kiv"/>
    <db_xref db="PDB" dbkey="1krn"/>
    <db_xref db="PDB" dbkey="1l4d"/>
    <db_xref db="PDB" dbkey="1l4z"/>
    <db_xref db="PDB" dbkey="1nk1"/>
    <db_xref db="PDB" dbkey="1nl1"/>
    <db_xref db="PDB" dbkey="1nl2"/>
    <db_xref db="PDB" dbkey="1pk2"/>
    <db_xref db="PDB" dbkey="1pk4"/>
    <db_xref db="PDB" dbkey="1pkr"/>
    <db_xref db="PDB" dbkey="1pmk"/>
    <db_xref db="PDB" dbkey="1pml"/>
    <db_xref db="PDB" dbkey="1qrz"/>
    <db_xref db="PDB" dbkey="1rjx"/>
    <db_xref db="PDB" dbkey="1rtf"/>
    <db_xref db="PDB" dbkey="1tpg"/>
    <db_xref db="PDB" dbkey="1tpk"/>
    <db_xref db="PDB" dbkey="1urk"/>
    <db_xref db="PDB" dbkey="2doh"/>
    <db_xref db="PDB" dbkey="2doi"/>
    <db_xref db="PDB" dbkey="2fd6"/>
    <db_xref db="PDB" dbkey="2hgf"/>
    <db_xref db="PDB" dbkey="2hpp"/>
    <db_xref db="PDB" dbkey="2hpq"/>
    <db_xref db="PDB" dbkey="2i9a"/>
    <db_xref db="PDB" dbkey="2i9b"/>
    <db_xref db="PDB" dbkey="2pf1"/>
    <db_xref db="PDB" dbkey="2pf2"/>
    <db_xref db="PDB" dbkey="2pk4"/>
    <db_xref db="PDB" dbkey="2qj2"/>
    <db_xref db="PDB" dbkey="2qj4"/>
    <db_xref db="PDB" dbkey="2spt"/>
    <db_xref db="PDB" dbkey="3bt1"/>
    <db_xref db="PDB" dbkey="3bt2"/>
    <db_xref db="PDB" dbkey="3e6p"/>
    <db_xref db="PDB" dbkey="3kiv"/>
    <db_xref db="PDB" dbkey="4kiv"/>
    <db_xref db="PDB" dbkey="5hpg"/>
    <db_xref db="CATH" dbkey="2.10.25.10"/>
    <db_xref db="CATH" dbkey="2.40.20.10"/>
    <db_xref db="CATH" dbkey="3.50.4.10"/>
    <db_xref db="SCOP" dbkey="b.47.1.2"/>
    <db_xref db="SCOP" dbkey="g.10.1.1"/>
    <db_xref db="SCOP" dbkey="g.14.1.1"/>
    <db_xref db="SCOP" dbkey="g.3.11.1"/>
    <db_xref db="SCOP" dbkey="g.32.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="653"/>
    <taxon_data name="Nematoda" proteins_count="5"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="5"/>
    <taxon_data name="Arthropoda" proteins_count="34"/>
    <taxon_data name="Fruit Fly" proteins_count="2"/>
    <taxon_data name="Chordata" proteins_count="529"/>
    <taxon_data name="Human" proteins_count="79"/>
    <taxon_data name="Mouse" proteins_count="41"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Green Plants" proteins_count="14"/>
    <taxon_data name="Metazoa" proteins_count="618"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018059"/>
  </sec_list>
</interpro>
<interpro id="IPR000003" protein_count="452" short_name="RtnoidX_rcpt" type="Family">
  <name>Retinoid X receptor</name>
  <abstract>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
<p>The retinoic acid (retinoid X) receptor consists of 3 functional and 
               structural domains: an N-terminal (modulatory) domain; a DNA binding domain
               that mediates specific binding to target DNA sequences (ligand-responsive
               elements); and a hormone binding domain. The N-terminal domain differs 
               between retinoic acid isoforms; the small highly-conserved DNA-binding
               domain (~65 residues) occupies the central portion of the protein; and 
               the ligand binding domain lies at the receptor C terminus.</p>
<p>Synonym(s): 2B nuclear receptor</p>
</abstract>
  <class_list>
    <classification id="GO:0003677" class_type="GO">
      <category>Molecular Function</category>
      <description>DNA binding</description>
    </classification>
    <classification id="GO:0004879" class_type="GO">
      <category>Molecular Function</category>
      <description>ligand-dependent nuclear receptor activity</description>
    </classification>
    <classification id="GO:0005496" class_type="GO">
      <category>Molecular Function</category>
      <description>steroid binding</description>
    </classification>
    <classification id="GO:0005634" class_type="GO">
      <category>Cellular Component</category>
      <description>nucleus</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
    <classification id="GO:0008270" class_type="GO">
      <category>Molecular Function</category>
      <description>zinc ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O44960"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O95718"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22449"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P28700"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P49866"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004464">
      <author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
      <title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
      <db_xref db="PUBMED" dbkey="7899080"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="606-11" volume="23"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00006168">
      <author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
      <title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
      <db_xref db="PUBMED" dbkey="8165128"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="7" pages="1161-6" volume="22"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00015853">
      <author_list>Schwabe JW, Teichmann SA.</author_list>
      <title>Nuclear receptors: the evolution of diversity.</title>
      <db_xref db="PUBMED" dbkey="14747695"/>
      <journal>Sci. STKE</journal>
      <location issue="217" pages="pe4" volume="2004"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR001723"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR000536"/>
    <rel_ref ipr_ref="IPR008946"/>
  </contains>
  <member_list>
    <db_xref protein_count="452" db="PRINTS" dbkey="PR00545" name="RETINOIDXR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000003"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1by4"/>
    <db_xref db="PDB" dbkey="1dkf"/>
    <db_xref db="PDB" dbkey="1dsz"/>
    <db_xref db="PDB" dbkey="1fby"/>
    <db_xref db="PDB" dbkey="1fm6"/>
    <db_xref db="PDB" dbkey="1fm9"/>
    <db_xref db="PDB" dbkey="1g1u"/>
    <db_xref db="PDB" dbkey="1g2n"/>
    <db_xref db="PDB" dbkey="1g5y"/>
    <db_xref db="PDB" dbkey="1h9u"/>
    <db_xref db="PDB" dbkey="1k74"/>
    <db_xref db="PDB" dbkey="1kv6"/>
    <db_xref db="PDB" dbkey="1lbd"/>
    <db_xref db="PDB" dbkey="1lo1"/>
    <db_xref db="PDB" dbkey="1lv2"/>
    <db_xref db="PDB" dbkey="1m7w"/>
    <db_xref db="PDB" dbkey="1mv9"/>
    <db_xref db="PDB" dbkey="1mvc"/>
    <db_xref db="PDB" dbkey="1mzn"/>
    <db_xref db="PDB" dbkey="1pzl"/>
    <db_xref db="PDB" dbkey="1r0n"/>
    <db_xref db="PDB" dbkey="1r1k"/>
    <db_xref db="PDB" dbkey="1r20"/>
    <db_xref db="PDB" dbkey="1rdt"/>
    <db_xref db="PDB" dbkey="1rxr"/>
    <db_xref db="PDB" dbkey="1s9p"/>
    <db_xref db="PDB" dbkey="1s9q"/>
    <db_xref db="PDB" dbkey="1tfc"/>
    <db_xref db="PDB" dbkey="1uhl"/>
    <db_xref db="PDB" dbkey="1vjb"/>
    <db_xref db="PDB" dbkey="1xb7"/>
    <db_xref db="PDB" dbkey="1xdk"/>
    <db_xref db="PDB" dbkey="1xiu"/>
    <db_xref db="PDB" dbkey="1xls"/>
    <db_xref db="PDB" dbkey="1xv9"/>
    <db_xref db="PDB" dbkey="1xvp"/>
    <db_xref db="PDB" dbkey="1ynw"/>
    <db_xref db="PDB" dbkey="2acl"/>
    <db_xref db="PDB" dbkey="2e2r"/>
    <db_xref db="PDB" dbkey="2ewp"/>
    <db_xref db="PDB" dbkey="2gl8"/>
    <db_xref db="PDB" dbkey="2gp7"/>
    <db_xref db="PDB" dbkey="2gpo"/>
    <db_xref db="PDB" dbkey="2gpp"/>
    <db_xref db="PDB" dbkey="2gpu"/>
    <db_xref db="PDB" dbkey="2gpv"/>
    <db_xref db="PDB" dbkey="2nll"/>
    <db_xref db="PDB" dbkey="2nxx"/>
    <db_xref db="PDB" dbkey="2p1t"/>
    <db_xref db="PDB" dbkey="2p1u"/>
    <db_xref db="PDB" dbkey="2p1v"/>
    <db_xref db="PDB" dbkey="2p7a"/>
    <db_xref db="PDB" dbkey="2p7g"/>
    <db_xref db="PDB" dbkey="2p7z"/>
    <db_xref db="PDB" dbkey="2pjl"/>
    <db_xref db="PDB" dbkey="2q60"/>
    <db_xref db="PDB" dbkey="2r40"/>
    <db_xref db="PDB" dbkey="2zas"/>
    <db_xref db="PDB" dbkey="2zbs"/>
    <db_xref db="PDB" dbkey="3cbb"/>
    <db_xref db="PDB" dbkey="3d24"/>
    <db_xref db="PDB" dbkey="3eyb"/>
    <db_xref db="CATH" dbkey="1.10.565.10"/>
    <db_xref db="CATH" dbkey="3.30.50.10"/>
    <db_xref db="SCOP" dbkey="a.123.1.1"/>
    <db_xref db="SCOP" dbkey="g.39.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="452"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="119"/>
    <taxon_data name="Fruit Fly" proteins_count="7"/>
    <taxon_data name="Chordata" proteins_count="305"/>
    <taxon_data name="Human" proteins_count="45"/>
    <taxon_data name="Mouse" proteins_count="30"/>
    <taxon_data name="Metazoa" proteins_count="452"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000005" protein_count="22704" short_name="HTH_AraC-typ" type="Domain">
  <name>Helix-turn-helix, AraC type</name>
  <abstract>
<p>Many bacterial transcription regulation proteins bind DNA through a
'helix-turn-helix' (HTH) motif. One major subfamily of these proteins [<cite idref="PUB00004444"/>, <cite idref="PUB00003566"/>] is related to the arabinose 
operon regulatory protein AraC [<cite idref="PUB00004444"/>], <cite idref="PUB00003566"/>. Except for celD [<cite idref="PUB00001933"/>], all of these proteins seem to be positive transcriptional factors.</p>
<p>Although the sequences belonging to this family differ somewhat in length, in nearly every case the HTH motif is situated towards the C terminus in the third quarter of most of the sequences. The minimal DNA binding domain spans roughly 100 residues and comprises two HTH subdomains; the classical HTH domain and another HTH subdomain with similarity to the classical HTH domain but with an insertion of one residue in the turn-region. The  N-terminal and  central regions of these proteins are presumed to interact with effector molecules and may be involved in dimerisation [<cite idref="PUB00004817"/>].</p>
<p>The known structure of MarA (<db_xref db="SWISSPROT" dbkey="P27246"/>) shows that the AraC domain is alpha helical and shows the two HTH subdomains both bind the major groove of the DNA. The two HTH subdomains are separated by only 27
angstroms, which causes the cognate DNA to bend.</p>
</abstract>
  <class_list>
    <classification id="GO:0003700" class_type="GO">
      <category>Molecular Function</category>
      <description>transcription factor activity</description>
    </classification>
    <classification id="GO:0005622" class_type="GO">
      <category>Cellular Component</category>
      <description>intracellular</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
    <classification id="GO:0043565" class_type="GO">
      <category>Molecular Function</category>
      <description>sequence-specific DNA binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P06134"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001933">
      <author_list>Parker LL, Hall BG.</author_list>
      <title>Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.</title>
      <db_xref db="PUBMED" dbkey="2179047"/>
      <journal>Genetics</journal>
      <location issue="3" pages="455-71" volume="124"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00003566">
      <author_list>Henikoff S, Wallace JC, Brown JP.</author_list>
      <title>Finding protein similarities with nucleotide sequence databases.</title>
      <db_xref db="PUBMED" dbkey="2314271"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="111-32" volume="183"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00004444">
      <author_list>Gallegos MT, Michan C, Ramos JL.</author_list>
      <title>The XylS/AraC family of regulators.</title>
      <db_xref db="PUBMED" dbkey="8451183"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="807-10" volume="21"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004817">
      <author_list>Bustos SA, Schleif RF.</author_list>
      <title>Functional domains of the AraC protein.</title>
      <db_xref db="PUBMED" dbkey="8516313"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="12" pages="5638-42" volume="90"/>
      <year>1993</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR012287"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018062"/>
    <rel_ref ipr_ref="IPR020449"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR011983"/>
    <rel_ref ipr_ref="IPR016220"/>
    <rel_ref ipr_ref="IPR016221"/>
    <rel_ref ipr_ref="IPR016981"/>
    <rel_ref ipr_ref="IPR018060"/>
  </found_in>
  <member_list>
    <db_xref protein_count="22704" db="PFAM" dbkey="PF00165" name="HTH_AraC"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00165"/>
    <db_xref db="MSDsite" dbkey="PS00041"/>
    <db_xref db="BLOCKS" dbkey="IPB000005"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00040"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1bl0"/>
    <db_xref db="PDB" dbkey="1d5y"/>
    <db_xref db="PDB" dbkey="1xs9"/>
    <db_xref db="CATH" dbkey="1.10.10.60"/>
    <db_xref db="SCOP" dbkey="a.4.1.8"/>
    <db_xref db="SCOP" dbkey="i.11.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="22594"/>
    <taxon_data name="Cyanobacteria" proteins_count="150"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="4"/>
    <taxon_data name="Archaea" proteins_count="4"/>
    <taxon_data name="Eukaryota" proteins_count="100"/>
    <taxon_data name="Rice spp." proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="43"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Unclassified" proteins_count="3"/>
    <taxon_data name="Plastid Group" proteins_count="54"/>
    <taxon_data name="Green Plants" proteins_count="54"/>
    <taxon_data name="Metazoa" proteins_count="45"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018062"/>
    <sec_ac acc="IPR020449"/>
  </sec_list>
</interpro>
<interpro id="IPR000006" protein_count="253" short_name="Metallothionein_vert" type="Family">
  <name>Metallothionein, vertebrate</name>
  <abstract>
<p>Metallothioneins (MT) are small proteins that bind heavy metals, such as zinc, copper, cadmium, nickel, etc. They have a high content of cysteine residues that bind the metal ions through clusters of thiolate bonds [<cite idref="PUB00003570"/>, <cite idref="PUB00001490"/>]. An empirical classification into three classes has been proposed by Fowler and coworkers [<cite idref="PUB00005944"/>] and Kojima [<cite idref="PUB00003571"/>]. Members of class I are defined to include polypeptides related in the positions of their cysteines to equine MT-1B, and include mammalian MTs as well as from crustaceans and molluscs. Class II groups MTs from a variety of species, including sea urchins,
fungi, insects and cyanobacteria. Class III MTs are atypical polypeptides composed of gamma-glutamylcysteinyl units [<cite idref="PUB00005944"/>].</p>
<p>This original classification system has been found to be limited, in the sense that it does not allow clear differentiation of patterns of structural similarities, either between or within classes. Consequently, all class I and class II MTs (the proteinaceous sequences) have now been grouped into families of phylogenetically-related and thus alignable sequences. This system subdivides the MT superfamily into families, subfamilies, subgroups, and isolated isoforms and alleles. </p>
<p>The metallothionein superfamily comprises all polypeptides that resemble equine renal metallothionein in several respects [<cite idref="PUB00005944"/>]: e.g., low molecular weight; high metal content; amino acid composition with high Cys and low aromatic residue content; unique sequence with characteristic distribution of cysteines, and spectroscopic manifestations indicative of metal thiolate clusters. A MT family subsumes MTs that share particular sequence-specific features and are thought to be evolutionarily related. The inclusion of a MT within a family presupposes that its amino acid sequence is alignable with that of all members. Fifteen MT families have been characterised, each family being identified by its number and its taxonomic range: e.g., Family 1: vertebrate MTs [see http://www.bioc.unizh.ch/mtpage/protali.html]. </p>
<p> The members of family 1 are recognised by the sequence pattern K-x(1,2)-C-C-x-C-C-P-x(2)-C located at the beginning of the third exon. 
The taxonomic range of the members extends to vertebrates. 
Known characteristics: 60 to 68 AAs; 20 Cys (21 in one case), 19 of them are totally conserved; the protein sequence is divided into two structural domains, containing 9 and 11 Cys all binding 3 and 4 bivalent metal ions, respectively. The gene is composed of 3 exons, 2 introns and the splicing sites are conserved. Family 1 includes subfamilies: m1, m2, m3, m4, m, a, a1, a2, b, ba, t, all of them hit the same InterPro entry. 
</p>
</abstract>
  <class_list>
    <classification id="GO:0046872" class_type="GO">
      <category>Molecular Function</category>
      <description>metal ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02795"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02802"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P04355"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001490">
      <author_list>Kagi JH, Kojima Y.</author_list>
      <title>Chemistry and biochemistry of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="2959513"/>
      <journal>Experientia Suppl.</journal>
      <location pages="25-61" volume="52"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00003570">
      <author_list>Kagi JH.</author_list>
      <title>Overview of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="1779825"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="613-26" volume="205"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003571">
      <author_list>Kojima Y.</author_list>
      <title>Definitions and nomenclature of metallothioneins.</title>
      <db_xref db="PUBMED" dbkey="1779826"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="8-10" volume="205"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00005944">
      <author_list>Fowler BA, Hildebrand CE, Kojima Y, Webb M.</author_list>
      <title>Nomenclature of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="2959504"/>
      <journal>Experientia Suppl.</journal>
      <location pages="19-22" volume="52"/>
      <year>1987</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR003019"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR017854"/>
    <rel_ref ipr_ref="IPR018064"/>
  </contains>
  <member_list>
    <db_xref protein_count="250" db="PANTHER" dbkey="PTHR23299" name="Metallothionein_vert"/>
    <db_xref protein_count="220" db="PRINTS" dbkey="PR00860" name="MTVERTEBRATE"/>
    <db_xref protein_count="238" db="GENE3D" dbkey="G3DSA:4.10.10.10" name="Metallothionein_vert"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS00203"/>
    <db_xref db="COMe" dbkey="PRX001296"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00180"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1dfs"/>
    <db_xref db="PDB" dbkey="1dft"/>
    <db_xref db="PDB" dbkey="1ji9"/>
    <db_xref db="PDB" dbkey="1m0g"/>
    <db_xref db="PDB" dbkey="1m0j"/>
    <db_xref db="PDB" dbkey="1mhu"/>
    <db_xref db="PDB" dbkey="1mrb"/>
    <db_xref db="PDB" dbkey="1mrt"/>
    <db_xref db="PDB" dbkey="2mhu"/>
    <db_xref db="PDB" dbkey="2mrb"/>
    <db_xref db="PDB" dbkey="2mrt"/>
    <db_xref db="PDB" dbkey="4mt2"/>
    <db_xref db="CATH" dbkey="4.10.10.10"/>
    <db_xref db="SCOP" dbkey="g.46.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="253"/>
    <taxon_data name="Chordata" proteins_count="249"/>
    <taxon_data name="Human" proteins_count="27"/>
    <taxon_data name="Mouse" proteins_count="15"/>
    <taxon_data name="Metazoa" proteins_count="251"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000007" protein_count="355" short_name="Tubby_C" type="Domain">
  <name>Tubby, C-terminal</name>
  <abstract>
<p> Tubby, an autosomal recessive mutation, mapping to mouse  chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This  mutation  maps to the tub gene [<cite idref="PUB00000932"/>, <cite idref="PUB00004232"/>]. The mouse  tubby mutation is  the  cause  of  maturity-onset  obesity, insulin resistance and  sensory  deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue  culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [<cite idref="PUB00007281"/>], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [<cite idref="PUB00014197"/>].</p>
<p>Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (<db_xref db="INTERPRO" dbkey="IPR005398"/>) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed beta-barrel that surrounds a central alpha helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [<cite idref="PUB00007281"/>].</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00294"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O80699"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P50586"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q09306"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q10LG8"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000932">
      <author_list>Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glucksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ.</author_list>
      <title>Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family.</title>
      <db_xref db="PUBMED" dbkey="8612280"/>
      <journal>Cell</journal>
      <location issue="2" pages="281-90" volume="85"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00004232">
      <author_list>Noben-Trauth K, Naggert JK, North MA, Nishina PM.</author_list>
      <title>A candidate gene for the mouse mutation tubby.</title>
      <db_xref db="PUBMED" dbkey="8606774"/>
      <journal>Nature</journal>
      <location issue="6574" pages="534-8" volume="380"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00007281">
      <author_list>Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L.</author_list>
      <title>Implication of tubby proteins as transcription factors by structure-based functional analysis.</title>
      <db_xref db="PUBMED" dbkey="10591637"/>
      <journal>Science</journal>
      <location issue="5447" pages="2119-25" volume="286"/>
      <year>1999</year>
    </publication>
    <publication id="PUB00014197">
      <author_list>Carroll K, Gomez C, Shapiro L.</author_list>
      <title>Tubby proteins: the plot thickens.</title>
      <db_xref db="PUBMED" dbkey="14708010"/>
      <journal>Nat. Rev. Mol. Cell Biol.</journal>
      <location issue="1" pages="55-63" volume="5"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018066"/>
  </contains>
  <member_list>
    <db_xref protein_count="345" db="PFAM" dbkey="PF01167" name="Tub"/>
    <db_xref protein_count="284" db="PRINTS" dbkey="PR01573" name="SUPERTUBBY"/>
    <db_xref protein_count="324" db="GENE3D" dbkey="G3DSA:3.20.90.10" name="Tubby_C"/>
    <db_xref protein_count="345" db="SSF" dbkey="SSF54518" name="Tubby_C"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01167"/>
    <db_xref db="MSDsite" dbkey="PS01200"/>
    <db_xref db="MSDsite" dbkey="PS01201"/>
    <db_xref db="BLOCKS" dbkey="IPB000007"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00923"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1c8z"/>
    <db_xref db="PDB" dbkey="1i7e"/>
    <db_xref db="PDB" dbkey="1s31"/>
    <db_xref db="PDB" dbkey="2fim"/>
    <db_xref db="PDB" dbkey="3c5n"/>
    <db_xref db="CATH" dbkey="3.20.90.10"/>
    <db_xref db="SCOP" dbkey="d.23.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="355"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="16"/>
    <taxon_data name="Rice spp." proteins_count="48"/>
    <taxon_data name="Fungi" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="16"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="2"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="2"/>
    <taxon_data name="Arthropoda" proteins_count="40"/>
    <taxon_data name="Fruit Fly" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="64"/>
    <taxon_data name="Human" proteins_count="13"/>
    <taxon_data name="Mouse" proteins_count="16"/>
    <taxon_data name="Plastid Group" proteins_count="161"/>
    <taxon_data name="Green Plants" proteins_count="161"/>
    <taxon_data name="Metazoa" proteins_count="124"/>
    <taxon_data name="Plastid Group" proteins_count="38"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000008" protein_count="5988" short_name="C2_Ca-dep" type="Domain">
  <name>C2 calcium-dependent membrane targeting</name>
  <abstract>
The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about  116  amino-acid  residues and is located between the two copies of
the C1 domain in Protein Kinase C (that bind phorbol esters and diacylglycerol) (see <db_xref db="PROSITEDOC" dbkey="PDOC00379"/>)
and the  protein  kinase  catalytic  domain  (see <db_xref db="PROSITEDOC" dbkey="PDOC00100"/>).  Regions with
significant homology [<cite idref="PUB00002925"/>] to  the C2-domain have been found in many proteins.
The C2  domain  is  thought  to  be involved in calcium-dependent phospholipid
binding [<cite idref="PUB00002815"/>] and in membrane targetting processes such as subcellular localisation. <p>The 3D  structure  of  the
C2 domain of synaptotagmin has been reported
[<cite idref="PUB00000918"/>], the domain forms an eight-stranded beta sandwich constructed around a 
conserved 4-stranded motif, designated a C2 key [<cite idref="PUB00000918"/>]. Calcium binds in
a cup-shaped depression formed by the N- and C-terminal loops of the
C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca<sup>2+</sup>-binding loops are located at the end of an 8 stranded antiparallel beta sandwich. </p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A0FGR8"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P11792"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P27715"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P28867"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9VVI3"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000918">
      <author_list>Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR.</author_list>
      <title>Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold.</title>
      <db_xref db="PUBMED" dbkey="7697723"/>
      <journal>Cell</journal>
      <location issue="6" pages="929-38" volume="80"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00002815">
      <author_list>Davletov BA, Sudhof TC.</author_list>
      <title>A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding.</title>
      <db_xref db="PUBMED" dbkey="8253763"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="35" pages="26386-90" volume="268"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00002925">
      <author_list>Brose N, Hofmann K, Hata Y, Sudhof TC.</author_list>
      <title>Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins.</title>
      <db_xref db="PUBMED" dbkey="7559667"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="42" pages="25273-80" volume="270"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR008973"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018029"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR001565"/>
    <rel_ref ipr_ref="IPR020477"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR001192"/>
    <rel_ref ipr_ref="IPR011402"/>
    <rel_ref ipr_ref="IPR014375"/>
    <rel_ref ipr_ref="IPR014376"/>
    <rel_ref ipr_ref="IPR014638"/>
    <rel_ref ipr_ref="IPR014705"/>
    <rel_ref ipr_ref="IPR015427"/>
    <rel_ref ipr_ref="IPR015428"/>
    <rel_ref ipr_ref="IPR016279"/>
    <rel_ref ipr_ref="IPR016280"/>
    <rel_ref ipr_ref="IPR017147"/>
  </found_in>
  <member_list>
    <db_xref protein_count="5145" db="PFAM" dbkey="PF00168" name="C2"/>
    <db_xref protein_count="5888" db="SMART" dbkey="SM00239" name="C2"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00168"/>
    <db_xref db="BLOCKS" dbkey="IPB000008"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00380"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a25"/>
    <db_xref db="PDB" dbkey="1bci"/>
    <db_xref db="PDB" dbkey="1bdy"/>
    <db_xref db="PDB" dbkey="1byn"/>
    <db_xref db="PDB" dbkey="1cjy"/>
    <db_xref db="PDB" dbkey="1djg"/>
    <db_xref db="PDB" dbkey="1djh"/>
    <db_xref db="PDB" dbkey="1dji"/>
    <db_xref db="PDB" dbkey="1djw"/>
    <db_xref db="PDB" dbkey="1djx"/>
    <db_xref db="PDB" dbkey="1djy"/>
    <db_xref db="PDB" dbkey="1djz"/>
    <db_xref db="PDB" dbkey="1dqv"/>
    <db_xref db="PDB" dbkey="1dsy"/>
    <db_xref db="PDB" dbkey="1gmi"/>
    <db_xref db="PDB" dbkey="1k5w"/>
    <db_xref db="PDB" dbkey="1qas"/>
    <db_xref db="PDB" dbkey="1qat"/>
    <db_xref db="PDB" dbkey="1rh8"/>
    <db_xref db="PDB" dbkey="1rlw"/>
    <db_xref db="PDB" dbkey="1rsy"/>
    <db_xref db="PDB" dbkey="1tjm"/>
    <db_xref db="PDB" dbkey="1tjx"/>
    <db_xref db="PDB" dbkey="1ugk"/>
    <db_xref db="PDB" dbkey="1uov"/>
    <db_xref db="PDB" dbkey="1uow"/>
    <db_xref db="PDB" dbkey="1v27"/>
    <db_xref db="PDB" dbkey="1w15"/>
    <db_xref db="PDB" dbkey="1w16"/>
    <db_xref db="PDB" dbkey="1wfj"/>
    <db_xref db="PDB" dbkey="1wfm"/>
    <db_xref db="PDB" dbkey="1yrk"/>
    <db_xref db="PDB" dbkey="2bwq"/>
    <db_xref db="PDB" dbkey="2chd"/>
    <db_xref db="PDB" dbkey="2cjs"/>
    <db_xref db="PDB" dbkey="2cjt"/>
    <db_xref db="PDB" dbkey="2cm5"/>
    <db_xref db="PDB" dbkey="2cm6"/>
    <db_xref db="PDB" dbkey="2d8k"/>
    <db_xref db="PDB" dbkey="2enp"/>
    <db_xref db="PDB" dbkey="2ep6"/>
    <db_xref db="PDB" dbkey="2fju"/>
    <db_xref db="PDB" dbkey="2fk9"/>
    <db_xref db="PDB" dbkey="2isd"/>
    <db_xref db="PDB" dbkey="2k3h"/>
    <db_xref db="PDB" dbkey="2nq3"/>
    <db_xref db="PDB" dbkey="2nsq"/>
    <db_xref db="PDB" dbkey="2r83"/>
    <db_xref db="PDB" dbkey="2rd0"/>
    <db_xref db="PDB" dbkey="2uzp"/>
    <db_xref db="PDB" dbkey="2yrb"/>
    <db_xref db="PDB" dbkey="2zkm"/>
    <db_xref db="PDB" dbkey="3bxj"/>
    <db_xref db="PDB" dbkey="3fdw"/>
    <db_xref db="PDB" dbkey="3rpb"/>
    <db_xref db="CATH" dbkey="2.20.170.10"/>
    <db_xref db="CATH" dbkey="2.60.40.150"/>
    <db_xref db="SCOP" dbkey="b.7.1.1"/>
    <db_xref db="SCOP" dbkey="b.7.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="3"/>
    <taxon_data name="Cyanobacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="5994"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="161"/>
    <taxon_data name="Rice spp." proteins_count="274"/>
    <taxon_data name="Fungi" proteins_count="816"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="68"/>
    <taxon_data name="Other Eukaryotes" proteins_count="57"/>
    <taxon_data name="Other Eukaryotes" proteins_count="82"/>
    <taxon_data name="Nematoda" proteins_count="76"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="76"/>
    <taxon_data name="Arthropoda" proteins_count="839"/>
    <taxon_data name="Fruit Fly" proteins_count="132"/>
    <taxon_data name="Chordata" proteins_count="1924"/>
    <taxon_data name="Human" proteins_count="436"/>
    <taxon_data name="Mouse" proteins_count="371"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="54"/>
    <taxon_data name="Plastid Group" proteins_count="1230"/>
    <taxon_data name="Green Plants" proteins_count="1230"/>
    <taxon_data name="Metazoa" proteins_count="4034"/>
    <taxon_data name="Plastid Group" proteins_count="243"/>
    <taxon_data name="Plastid Group" proteins_count="109"/>
    <taxon_data name="Other Eukaryotes" proteins_count="84"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018029"/>
  </sec_list>
</interpro>
<interpro id="IPR000009" protein_count="339" short_name="PP2A_PR55" type="Family">
  <name>Protein phosphatase 2A, regulatory subunit PR55</name>
  <abstract>
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase implicated 
in many cellular processes, including the regulation of metabolic enzymes 
and proteins involved in signal transduction [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PP2A is a trimer
composed of a 36 kDa catalytic subunit, a 65 kDa regulatory subunit 
(subunit A) and a variable third subunit (subunit B) [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. 
<p>One form of the third subunit is a 55 kDa protein (PR55), which exists in
<taxon tax_id="7227">Drosophila melanogaster</taxon> and yeast, and has up to three forms in mammals [<cite idref="PUB00000344"/>, <cite idref="PUB00003499"/>]. PR55 may act
as a substrate recognition unit, or may help to target the enzyme to the
correct subcellular location [<cite idref="PUB00000344"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0000159" class_type="GO">
      <category>Cellular Component</category>
      <description>protein phosphatase type 2A complex</description>
    </classification>
    <classification id="GO:0007165" class_type="GO">
      <category>Biological Process</category>
      <description>signal transduction</description>
    </classification>
    <classification id="GO:0008601" class_type="GO">
      <category>Molecular Function</category>
      <description>protein phosphatase type 2A regulator activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P36872"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P63151"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q00362"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q38821"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q6P1F6"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000344">
      <author_list>Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, Merlevede W, Hofsteenge J, Hemmings BA.</author_list>
      <title>Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform.</title>
      <db_xref db="PUBMED" dbkey="1849734"/>
      <journal>Biochemistry</journal>
      <location issue="15" pages="3589-97" volume="30"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003499">
      <author_list>Pallas DC, Weller W, Jaspers S, Miller TB, Lane WS, Roberts TM.</author_list>
      <title>The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens.</title>
      <db_xref db="PUBMED" dbkey="1370560"/>
      <journal>J. Virol.</journal>
      <location issue="2" pages="886-93" volume="66"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR001680"/>
    <rel_ref ipr_ref="IPR011046"/>
    <rel_ref ipr_ref="IPR018067"/>
    <rel_ref ipr_ref="IPR019775"/>
    <rel_ref ipr_ref="IPR019781"/>
  </contains>
  <member_list>
    <db_xref protein_count="326" db="PANTHER" dbkey="PTHR11871" name="Pp2A_PR55"/>
    <db_xref protein_count="224" db="PIRSF" dbkey="PIRSF037309" name="PP2A_PR55"/>
    <db_xref protein_count="332" db="PRINTS" dbkey="PR00600" name="PP2APR55"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS01024"/>
    <db_xref db="MSDsite" dbkey="PS01025"/>
    <db_xref db="BLOCKS" dbkey="IPB000009"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00785"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2"/>
    <taxon_data name="Cyanobacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="337"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
    <taxon_data name="Rice spp." proteins_count="15"/>
    <taxon_data name="Fungi" proteins_count="73"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="77"/>
    <taxon_data name="Fruit Fly" proteins_count="2"/>
    <taxon_data name="Chordata" proteins_count="76"/>
    <taxon_data name="Human" proteins_count="18"/>
    <taxon_data name="Mouse" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="59"/>
    <taxon_data name="Green Plants" proteins_count="59"/>
    <taxon_data name="Metazoa" proteins_count="243"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000010" protein_count="956" short_name="Prot_inh_cystat" type="Domain">
  <name>Proteinase inhibitor I25, cystatin</name>
  <abstract>
<p>Peptide proteinase inhibitors can be found as single domain proteins or as single or multiple domains within proteins; these are referred to as either simple or compound inhibitors, respectively. In many cases they are synthesised as part of a larger precursor protein, either as a prepropeptide or as an N-terminal domain associated with an inactive peptidase or zymogen. This domain prevents access of the substrate to the active site.  Removal of the N-terminal inhibitor domain either by interaction with a second peptidase or by autocatalytic cleavage activates the zymogen. Other inhibitors interact direct with proteinases using a simple noncovalent lock and key mechanism; while yet others use a conformational change-based trapping mechanism that depends on their structural and thermodynamic properties. </p>
<p>The cystatins are cysteine proteinase inhibitors belonging to MEROPS inhibitor family I25, clan IH [<cite idref="PUB00003412"/>, <cite idref="PUB00014312"/>, <cite idref="PUB00001614"/>]. They mainly inhibit peptidases belonging to peptidase families C1 (papain family) and  C13 (legumain family).  The cystatin family includes:</p>
<ul>
<li>
The Type 1 cystatins, which are intracellular cystatins that are present in the cytosol of many cell types, but can also appear in body fluids at significant concentrations. They are single-chain polypeptides of about 100 residues, which have neither disulphide bonds nor carbohydrate side chains. </li>
<li>The Type 2 cystatins, which are mainly extracellular secreted polypeptides synthesised with a 19-28 residue signal peptide. They are broadly distributed  and found in most body fluids. </li>
<li>The Type 3 cystatins, which are multidomain proteins. The mammalian representatives of this group are the kininogens. There are three different kininogens in mammals: H- (high molecular mass, <db_xref db="INTERPRO" dbkey="IPR002395"/>) and L- (low molecular mass) kininogen which are found in a number of species, and T-kininogen that is found only in rat. </li>
<li>Unclassified cystatins. These are cystatin-like proteins found in a range of organisms: plant phytocystatins, fetuin in mammals, insect cystatins and a puff adder venom cystatin which inhibits metalloproteases  of the MEROPS peptidase family M12 (astacin/adamalysin). Also a number of the cystatins-like proteins have been shown to be devoid of inhibitory activity. </li>
    </ul>
<p>All true cystatins inhibit cysteine peptidases of the papain family (MEROPS peptidase family C1), and some also inhibit legumain family enzymes (MEROPS peptidase family C13). These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus in animals cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but in other organisms may also participate in defence against biotic and abiotic stress. </p>
</abstract>
  <class_list>
    <classification id="GO:0004869" class_type="GO">
      <category>Molecular Function</category>
      <description>cysteine-type endopeptidase inhibitor activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O08677"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O76096"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P09229"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P23779"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q41906"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001614">
      <author_list>Turk V, Bode W.</author_list>
      <title>The cystatins: protein inhibitors of cysteine proteinases.</title>
      <db_xref db="PUBMED" dbkey="1855589"/>
      <journal>FEBS Lett.</journal>
      <location issue="2" pages="213-9" volume="285"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003412">
      <author_list>Rawlings ND, Barrett AJ.</author_list>
      <title>Evolution of proteins of the cystatin superfamily.</title>
      <db_xref db="PUBMED" dbkey="2107324"/>
      <journal>J. Mol. Evol.</journal>
      <location issue="1" pages="60-71" volume="30"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00014312">
      <author_list>Abrahamson M, Alvarez-Fernandez M, Nathanson CM.</author_list>
      <title>Cystatins.</title>
      <db_xref db="PUBMED" dbkey="14587292"/>
      <journal>Biochem. Soc. Symp.</journal>
      <location issue="70" pages="179-99"/>
      <year>2003</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR001713"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR001363"/>
    <rel_ref ipr_ref="IPR018073"/>
    <rel_ref ipr_ref="IPR020381"/>
  </contains>
  <member_list>
    <db_xref protein_count="937" db="PFAM" dbkey="PF00031" name="Cystatin"/>
    <db_xref protein_count="845" db="SMART" dbkey="SM00043" name="CY"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00031"/>
    <db_xref db="MSDsite" dbkey="PS00287"/>
    <db_xref db="BLOCKS" dbkey="IPB000010"/>
    <db_xref db="MEROPS" dbkey="C1"/>
    <db_xref db="MEROPS" dbkey="C13"/>
    <db_xref db="MEROPS" dbkey="I25"/>
    <db_xref db="MEROPS" dbkey="M10"/>
    <db_xref db="MEROPS" dbkey="M12"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00259"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a67"/>
    <db_xref db="PDB" dbkey="1a90"/>
    <db_xref db="PDB" dbkey="1cew"/>
    <db_xref db="PDB" dbkey="1cyu"/>
    <db_xref db="PDB" dbkey="1cyv"/>
    <db_xref db="PDB" dbkey="1dvc"/>
    <db_xref db="PDB" dbkey="1dvd"/>
    <db_xref db="PDB" dbkey="1eqk"/>
    <db_xref db="PDB" dbkey="1g96"/>
    <db_xref db="PDB" dbkey="1gd3"/>
    <db_xref db="PDB" dbkey="1gd4"/>
    <db_xref db="PDB" dbkey="1n9j"/>
    <db_xref db="PDB" dbkey="1nb3"/>
    <db_xref db="PDB" dbkey="1nb5"/>
    <db_xref db="PDB" dbkey="1r4c"/>
    <db_xref db="PDB" dbkey="1rn7"/>
    <db_xref db="PDB" dbkey="1roa"/>
    <db_xref db="PDB" dbkey="1stf"/>
    <db_xref db="PDB" dbkey="1tij"/>
    <db_xref db="PDB" dbkey="1yvb"/>
    <db_xref db="CATH" dbkey="3.10.450.10"/>
    <db_xref db="SCOP" dbkey="d.17.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="39"/>
    <taxon_data name="Eukaryota" proteins_count="873"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
    <taxon_data name="Rice spp." proteins_count="35"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="122"/>
    <taxon_data name="Fruit Fly" proteins_count="6"/>
    <taxon_data name="Chordata" proteins_count="376"/>
    <taxon_data name="Human" proteins_count="40"/>
    <taxon_data name="Mouse" proteins_count="69"/>
    <taxon_data name="Virus" proteins_count="44"/>
    <taxon_data name="Plastid Group" proteins_count="305"/>
    <taxon_data name="Green Plants" proteins_count="305"/>
    <taxon_data name="Metazoa" proteins_count="546"/>
    <taxon_data name="Plastid Group" proteins_count="11"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR001713"/>
  </sec_list>
</interpro>
<interpro id="IPR000011" protein_count="359" short_name="UBQ-activ_enz_E1-like" type="Region">
  <name>Ubiquitin-activating enzyme, E1-like</name>
  <abstract>
<p>The post-translational attachment of ubiquitin (<db_xref db="INTERPRO" dbkey="IPR000626"/>) to proteins (ubiquitinylation) alters the function, location or trafficking of a protein, or targets it to the 26S proteasome for degradation [<cite idref="PUB00015621"/>, <cite idref="PUB00015619"/>, <cite idref="PUB00015625"/>]. Ubiquitinylation is an ATP-dependent process that involves the action of at least three enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2, <db_xref db="INTERPRO" dbkey="IPR000608"/>), and a ubiquitin ligase (E3, <db_xref db="INTERPRO" dbkey="IPR000569"/>, <db_xref db="INTERPRO" dbkey="IPR003613"/>), which work sequentially in a cascade [<cite idref="PUB00015620"/>]. The E1 enzyme is responsible for activating ubiquitin, the first step in ubiquitinylation. The E1 enzyme hydrolyses ATP and adenylates the C-terminal glycine residue of ubiquitin, and then links this residue to the active site cysteine of E1, yielding a ubiquitin-thioester and free AMP. To be fully active, E1 must non-covalently bind to and adenylate a second ubiquitin molecule. The E1 enzyme can then transfer the thioester-linked ubiquitin molecule to a cysteine residue on the ubiquitin-conjugating enzyme, E2, in an ATP-dependent reaction.</p>
</abstract>
  <class_list>
    <classification id="GO:0006464" class_type="GO">
      <category>Biological Process</category>
      <description>protein modification process</description>
    </classification>
    <classification id="GO:0008641" class_type="GO">
      <category>Molecular Function</category>
      <description>small protein activating enzyme activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A2VE14"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O42939"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22515"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q02053"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9UBE0"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00015619">
      <author_list>Burger AM, Seth AK.</author_list>
      <title>The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications.</title>
      <db_xref db="PUBMED" dbkey="15454246"/>
      <journal>Eur. J. Cancer</journal>
      <location issue="15" pages="2217-29" volume="40"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00015620">
      <author_list>Passmore LA, Barford D.</author_list>
      <title>Getting into position: the catalytic mechanisms of protein ubiquitylation.</title>
      <db_xref db="PUBMED" dbkey="14998368"/>
      <journal>Biochem. J.</journal>
      <location issue="Pt 3" pages="513-25" volume="379"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00015621">
      <author_list>Pickart CM, Fushman D.</author_list>
      <title>Polyubiquitin chains: polymeric protein signals.</title>
      <db_xref db="PUBMED" dbkey="15556404"/>
      <location issue="6" pages="610-6" volume="8"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00015625">
      <author_list>Sun L, Chen ZJ.</author_list>
      <title>The novel functions of ubiquitination in signaling.</title>
      <db_xref db="PUBMED" dbkey="15196553"/>
      <journal>Curr. Opin. Cell Biol.</journal>
      <location issue="2" pages="119-26" volume="16"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR000594"/>
    <rel_ref ipr_ref="IPR009036"/>
    <rel_ref ipr_ref="IPR018074"/>
    <rel_ref ipr_ref="IPR019572"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR018075"/>
  </found_in>
  <member_list>
    <db_xref protein_count="359" db="PRINTS" dbkey="PR01849" name="UBIQUITINACT"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS00536"/>
    <db_xref db="MSDsite" dbkey="PS00865"/>
    <db_xref db="BLOCKS" dbkey="IPB000011"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00463"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1y8q"/>
    <db_xref db="PDB" dbkey="1y8r"/>
    <db_xref db="CATH" dbkey="3.40.50.720"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="359"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="6"/>
    <taxon_data name="Rice spp." proteins_count="13"/>
    <taxon_data name="Fungi" proteins_count="110"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="5"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="43"/>
    <taxon_data name="Fruit Fly" proteins_count="9"/>
    <taxon_data name="Chordata" proteins_count="55"/>
    <taxon_data name="Human" proteins_count="10"/>
    <taxon_data name="Mouse" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
    <taxon_data name="Plastid Group" proteins_count="50"/>
    <taxon_data name="Green Plants" proteins_count="50"/>
    <taxon_data name="Metazoa" proteins_count="225"/>
    <taxon_data name="Plastid Group" proteins_count="38"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000012" protein_count="3972" short_name="RetroV_VpR/X" type="Family">
  <name>Retroviral VpR/VpX protein</name>
  <abstract>
<taxon tax_id="12721">Human immunodeficiency virus</taxon> (HIV) is the human retrovirus associated with AIDS (acquired immune deficiency syndrome), and SIV its simian counterpart. Three main groups of primate lentivirus are known, designated <taxon tax_id="11676">Human immunodeficiency virus 1</taxon> (HIV-1), <taxon tax_id="11709">Human immunodeficiency virus 2</taxon> (HIV-2)/<taxon tax_id="11711">Simian immunodeficiency virus - mac</taxon> (SIVMAC)/<taxon tax_id="11712">Simian immunodeficiency virus - sm</taxon> (SIVSM) and <taxon tax_id="11726">Simian immunodeficiency virus - agm</taxon> (SIVAGM). <taxon tax_id="12830">Simian immunodeficiency virus - mnd</taxon> (SIVMND) has been suggested to represent a fourth distinct group [<cite idref="PUB00004048"/>]. These groups are believed to have diverged from a common ancestor long before the spread of AIDS in humans. Genetic variation in HIV-1 and HIV-2 has been studied extensively, and the nucleotide sequences reported for several strains [<cite idref="PUB00000018"/>].<p> ORF analysis has revealed two open reading frames, yielding the so-called R- and X-ORF proteins, whose functions are unknown, but which show a high degree of              sequence similarity.</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P05954"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000018">
      <author_list>Hasegawa A, Tsujimoto H, Maki N, Ishikawa K, Miura T, Fukasawa M, Miki K, Hayami M.</author_list>
      <title>Genomic divergence of HIV-2 from Ghana.</title>
      <db_xref db="PUBMED" dbkey="2611042"/>
      <journal>AIDS Res. Hum. Retroviruses</journal>
      <location issue="6" pages="593-604" volume="5"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00004048">
      <author_list>Tsujimoto H, Hasegawa A, Maki N, Fukasawa M, Miura T, Speidel S, Cooper RW, Moriyama EN, Gojobori T, Hayami M.</author_list>
      <title>Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill.</title>
      <db_xref db="PUBMED" dbkey="2797181"/>
      <journal>Nature</journal>
      <location issue="6242" pages="539-41" volume="341"/>
      <year>1989</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="3972" db="PFAM" dbkey="PF00522" name="VPR"/>
    <db_xref protein_count="3833" db="PRINTS" dbkey="PR00444" name="HIVVPRVPX"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00522"/>
    <db_xref db="BLOCKS" dbkey="IPB000012"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1bde"/>
    <db_xref db="PDB" dbkey="1ceu"/>
    <db_xref db="PDB" dbkey="1dsj"/>
    <db_xref db="PDB" dbkey="1dsk"/>
    <db_xref db="PDB" dbkey="1esx"/>
    <db_xref db="PDB" dbkey="1fi0"/>
    <db_xref db="PDB" dbkey="1kzs"/>
    <db_xref db="PDB" dbkey="1kzt"/>
    <db_xref db="PDB" dbkey="1kzv"/>
    <db_xref db="PDB" dbkey="1m8l"/>
    <db_xref db="PDB" dbkey="1vpc"/>
    <db_xref db="PDB" dbkey="1x9v"/>
    <db_xref db="CATH" dbkey="1.10.1690.10"/>
    <db_xref db="CATH" dbkey="1.20.5.90"/>
    <db_xref db="SCOP" dbkey="j.11.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Virus" proteins_count="3972"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000013" protein_count="41" short_name="Peptidase_M7" type="Family">
  <name>Peptidase M7, snapalysin</name>
  <abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
 <li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and  binding. </p>
<p>Metalloproteases are the most diverse of the four main types of protease, with more than 50 families identified to date. In these enzymes, a divalent cation, usually zinc, activates the water molecule. The metal ion is held in place by amino acid ligands, usually three in number. The known metal ligands are His, Glu, Asp or Lys and at least one other residue is required for catalysis, which may play an electrophillic role. 
Of the known metalloproteases, around half contain an HEXXH motif, which has been shown in crystallographic studies to form part of the metal-binding site [<cite idref="PUB00003579"/>]. The HEXXH motif is relatively common, but can be more stringently defined for metalloproteases as 'abXHEbbHbc', where 'a' is most often valine or threonine and forms part of the S1' subsite in thermolysin and neprilysin, 'b' is an uncharged residue, and 'c' a hydrophobic residue. Proline is never found in this site, possibly because it would break the helical structure adopted by this motif in metalloproteases [<cite idref="PUB00003579"/>].</p>
<p>This group of metallopeptidases belong to the MEROPS peptidase family M7 (snapalysin family, clan MA(M)). The protein fold of the peptidase domain for members of this family resembles that of thermolysin, the type example for clan MA.</p>
<p>With a molecular weight of around 16kDa, Streptomyces extracellular neutral protease is one of the smallest known proteases [<cite idref="PUB00003579"/>]; it is capable of hydrolysing milk proteins [<cite idref="PUB00003579"/>]. The enzyme is synthesised as a proenzyme with a signal peptide, a propeptide and an active domain that contains the conserved HEXXH motif characteristic of metalloproteases. Although family M7 shows active site sequence similarity to other members, it differs in one major respect: the third zinc ligand appears to be an aspartate residue rather than the usual histidine.</p>
</abstract>
  <class_list>
    <classification id="GO:0004222" class_type="GO">
      <category>Molecular Function</category>
      <description>metalloendopeptidase activity</description>
    </classification>
    <classification id="GO:0005576" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular region</description>
    </classification>
    <classification id="GO:0006508" class_type="GO">
      <category>Biological Process</category>
      <description>proteolysis</description>
    </classification>
    <classification id="GO:0008270" class_type="GO">
      <category>Molecular Function</category>
      <description>zinc ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P56406"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00003579">
      <author_list>Rawlings ND, Barrett AJ.</author_list>
      <title>Evolutionary families of metallopeptidases.</title>
      <db_xref db="PUBMED" dbkey="7674922"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="183-228" volume="248"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="41" db="PFAM" dbkey="PF02031" name="Peptidase_M7"/>
    <db_xref protein_count="34" db="PIRSF" dbkey="PIRSF016573" name="Peptidase_M7"/>
    <db_xref protein_count="39" db="PRINTS" dbkey="PR00787" name="NEUTRALPTASE"/>
    <db_xref protein_count="38" db="PRODOM" dbkey="PD016028" name="Peptidase_M7"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF02031"/>
    <db_xref db="BLOCKS" dbkey="IPB000013"/>
    <db_xref db="EC" dbkey="3.4.24.77"/>
    <db_xref db="MEROPS" dbkey="M7"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1c7k"/>
    <db_xref db="PDB" dbkey="1kuh"/>
    <db_xref db="CATH" dbkey="3.40.390.10"/>
    <db_xref db="SCOP" dbkey="d.92.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="41"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000014" protein_count="31843" short_name="PAS" type="Domain">
  <name>PAS</name>
  <abstract>
<p>PAS domains are involved in many signalling proteins where they
are used as a signal sensor domain. PAS domains appear in archaea,
bacteria and eukaryotes. Several PAS-domain proteins are known to
detect their signal by way of an associated cofactor. Haeme,
flavin, and a 4-hydroxycinnamyl chromophore are used in different
proteins. The PAS domain was named after three proteins that it
occurs in: </p>
<li>Per- period circadian protein</li>
<li>Arnt- Ah receptor nuclear translocator protein</li>
<li>Sim-  single-minded protein.</li>
<p>PAS domains are often associated with
PAC domains <db_xref db="INTERPRO" dbkey="IPR001610"/>.  It appears that these domains are directly linked, and that together they form the conserved 3D PAS fold.  The division between the PAS and PAC domains is caused by major differences in sequences in the region connecting these two motifs [<cite idref="PUB00014500"/>].  In human PAS kinase, this region has been shown to be very flexible, and adopts different conformations depending on the bound ligand [<cite idref="PUB00014501"/>].
Probably the most surprising identification of a PAS domain was that in
EAG-like K<sup>+</sup>-channels [<cite idref="PUB00005472"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0004871" class_type="GO">
      <category>Molecular Function</category>
      <description>signal transducer activity</description>
    </classification>
    <classification id="GO:0007165" class_type="GO">
      <category>Biological Process</category>
      <description>signal transduction</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O44712"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O54943"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O60658"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07663"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P19541"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00005472">
      <author_list>Zhulin IB, Taylor BL, Dixon R.</author_list>
      <title>PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.</title>
      <db_xref db="PUBMED" dbkey="9301332"/>
      <journal>Trends Biochem. Sci.</journal>
      <location issue="9" pages="331-3" volume="22"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00014500">
      <author_list>Hefti MH, Francoijs KJ, de Vries SC, Dixon R, Vervoort J.</author_list>
      <title>The PAS fold. A redefinition of the PAS domain based upon structural prediction.</title>
      <db_xref db="PUBMED" dbkey="15009198"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="6" pages="1198-208" volume="271"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00014501">
      <author_list>Amezcua CA, Harper SM, Rutter J, Gardner KH.</author_list>
      <title>Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation.</title>
      <db_xref db="PUBMED" dbkey="12377121"/>
      <journal>Structure</journal>
      <location issue="10" pages="1349-61" volume="10"/>
      <year>2002</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR013655"/>
    <rel_ref ipr_ref="IPR013656"/>
    <rel_ref ipr_ref="IPR013767"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR001294"/>
    <rel_ref ipr_ref="IPR001321"/>
    <rel_ref ipr_ref="IPR003949"/>
    <rel_ref ipr_ref="IPR003950"/>
    <rel_ref ipr_ref="IPR011785"/>
    <rel_ref ipr_ref="IPR012129"/>
    <rel_ref ipr_ref="IPR012130"/>
    <rel_ref ipr_ref="IPR012226"/>
    <rel_ref ipr_ref="IPR012704"/>
    <rel_ref ipr_ref="IPR014285"/>
    <rel_ref ipr_ref="IPR014310"/>
    <rel_ref ipr_ref="IPR014409"/>
    <rel_ref ipr_ref="IPR015524"/>
    <rel_ref ipr_ref="IPR017181"/>
    <rel_ref ipr_ref="IPR017232"/>
  </found_in>
  <member_list>
    <db_xref protein_count="21263" db="PROFILE" dbkey="PS50112" name="PAS"/>
    <db_xref protein_count="30445" db="SMART" dbkey="SM00091" name="PAS"/>
    <db_xref protein_count="21449" db="TIGRFAMs" dbkey="TIGR00229" name="sensory_box"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000014"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50112"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1byw"/>
    <db_xref db="PDB" dbkey="1d06"/>
    <db_xref db="PDB" dbkey="1d7e"/>
    <db_xref db="PDB" dbkey="1dp6"/>
    <db_xref db="PDB" dbkey="1dp8"/>
    <db_xref db="PDB" dbkey="1dp9"/>
    <db_xref db="PDB" dbkey="1drm"/>
    <db_xref db="PDB" dbkey="1ew0"/>
    <db_xref db="PDB" dbkey="1f98"/>
    <db_xref db="PDB" dbkey="1f9i"/>
    <db_xref db="PDB" dbkey="1g28"/>
    <db_xref db="PDB" dbkey="1gsv"/>
    <db_xref db="PDB" dbkey="1gsw"/>
    <db_xref db="PDB" dbkey="1gsx"/>
    <db_xref db="PDB" dbkey="1jnu"/>
    <db_xref db="PDB" dbkey="1kou"/>
    <db_xref db="PDB" dbkey="1ll8"/>
    <db_xref db="PDB" dbkey="1lsv"/>
    <db_xref db="PDB" dbkey="1lsw"/>
    <db_xref db="PDB" dbkey="1lsx"/>
    <db_xref db="PDB" dbkey="1lt0"/>
    <db_xref db="PDB" dbkey="1mzu"/>
    <db_xref db="PDB" dbkey="1n9l"/>
    <db_xref db="PDB" dbkey="1n9n"/>
    <db_xref db="PDB" dbkey="1n9o"/>
    <db_xref db="PDB" dbkey="1nwz"/>
    <db_xref db="PDB" dbkey="1odv"/>
    <db_xref db="PDB" dbkey="1ot6"/>
    <db_xref db="PDB" dbkey="1ot9"/>
    <db_xref db="PDB" dbkey="1ota"/>
    <db_xref db="PDB" dbkey="1otb"/>
    <db_xref db="PDB" dbkey="1otd"/>
    <db_xref db="PDB" dbkey="1ote"/>
    <db_xref db="PDB" dbkey="1oti"/>
    <db_xref db="PDB" dbkey="1p97"/>
    <db_xref db="PDB" dbkey="1s1y"/>
    <db_xref db="PDB" dbkey="1s1z"/>
    <db_xref db="PDB" dbkey="1s4r"/>
    <db_xref db="PDB" dbkey="1s4s"/>
    <db_xref db="PDB" dbkey="1s66"/>
    <db_xref db="PDB" dbkey="1s67"/>
    <db_xref db="PDB" dbkey="1t18"/>
    <db_xref db="PDB" dbkey="1t19"/>
    <db_xref db="PDB" dbkey="1t1a"/>
    <db_xref db="PDB" dbkey="1t1b"/>
    <db_xref db="PDB" dbkey="1t1c"/>
    <db_xref db="PDB" dbkey="1ts0"/>
    <db_xref db="PDB" dbkey="1ts6"/>
    <db_xref db="PDB" dbkey="1ts7"/>
    <db_xref db="PDB" dbkey="1ts8"/>
    <db_xref db="PDB" dbkey="1ugu"/>
    <db_xref db="PDB" dbkey="1uwn"/>
    <db_xref db="PDB" dbkey="1uwp"/>
    <db_xref db="PDB" dbkey="1v9y"/>
    <db_xref db="PDB" dbkey="1v9z"/>
    <db_xref db="PDB" dbkey="1vb6"/>
    <db_xref db="PDB" dbkey="1wa9"/>
    <db_xref db="PDB" dbkey="1xfn"/>
    <db_xref db="PDB" dbkey="1xfq"/>
    <db_xref db="PDB" dbkey="1xj2"/>
    <db_xref db="PDB" dbkey="1xj3"/>
    <db_xref db="PDB" dbkey="1xj4"/>
    <db_xref db="PDB" dbkey="1xj6"/>
    <db_xref db="PDB" dbkey="1y28"/>
    <db_xref db="PDB" dbkey="1ztu"/>
    <db_xref db="PDB" dbkey="2a24"/>
    <db_xref db="PDB" dbkey="2cmn"/>
    <db_xref db="PDB" dbkey="2d01"/>
    <db_xref db="PDB" dbkey="2d02"/>
    <db_xref db="PDB" dbkey="2i9v"/>
    <db_xref db="PDB" dbkey="2o9b"/>
    <db_xref db="PDB" dbkey="2o9c"/>
    <db_xref db="PDB" dbkey="2ohh"/>
    <db_xref db="PDB" dbkey="2ohi"/>
    <db_xref db="PDB" dbkey="2ohj"/>
    <db_xref db="PDB" dbkey="2owh"/>
    <db_xref db="PDB" dbkey="2owj"/>
    <db_xref db="PDB" dbkey="2phy"/>
    <db_xref db="PDB" dbkey="2pyp"/>
    <db_xref db="PDB" dbkey="2pyr"/>
    <db_xref db="PDB" dbkey="2qj5"/>
    <db_xref db="PDB" dbkey="2qj7"/>
    <db_xref db="PDB" dbkey="2qws"/>
    <db_xref db="PDB" dbkey="2r78"/>
    <db_xref db="PDB" dbkey="2vea"/>
    <db_xref db="PDB" dbkey="2vv6"/>
    <db_xref db="PDB" dbkey="2vv7"/>
    <db_xref db="PDB" dbkey="2vv8"/>
    <db_xref db="PDB" dbkey="3b33"/>
    <db_xref db="PDB" dbkey="3bwl"/>
    <db_xref db="PDB" dbkey="3f1n"/>
    <db_xref db="PDB" dbkey="3f1o"/>
    <db_xref db="PDB" dbkey="3f1p"/>
    <db_xref db="PDB" dbkey="3phy"/>
    <db_xref db="PDB" dbkey="3pyp"/>
    <db_xref db="CATH" dbkey="3.30.450.20"/>
    <db_xref db="CATH" dbkey="3.60.15.10"/>
    <db_xref db="SCOP" dbkey="d.110.3.1"/>
    <db_xref db="SCOP" dbkey="d.110.3.2"/>
    <db_xref db="SCOP" dbkey="d.110.3.5"/>
    <db_xref db="SCOP" dbkey="d.110.3.6"/>
    <db_xref db="SCOP" dbkey="d.110.3.7"/>
    <db_xref db="SCOP" dbkey="d.110.3.9"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="27271"/>
    <taxon_data name="Cyanobacteria" proteins_count="1122"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="33"/>
    <taxon_data name="Archaea" proteins_count="997"/>
    <taxon_data name="Eukaryota" proteins_count="3570"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="64"/>
    <taxon_data name="Rice spp." proteins_count="44"/>
    <taxon_data name="Fungi" proteins_count="548"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="23"/>
    <taxon_data name="Other Eukaryotes" proteins_count="112"/>
    <taxon_data name="Other Eukaryotes" proteins_count="82"/>
    <taxon_data name="Nematoda" proteins_count="17"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="17"/>
    <taxon_data name="Arthropoda" proteins_count="772"/>
    <taxon_data name="Fruit Fly" proteins_count="39"/>
    <taxon_data name="Chordata" proteins_count="848"/>
    <taxon_data name="Human" proteins_count="110"/>
    <taxon_data name="Mouse" proteins_count="109"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="3"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="892"/>
    <taxon_data name="Green Plants" proteins_count="892"/>
    <taxon_data name="Metazoa" proteins_count="2256"/>
    <taxon_data name="Plastid Group" proteins_count="120"/>
    <taxon_data name="Plastid Group" proteins_count="26"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="20"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR013655"/>
    <sec_ac acc="IPR013656"/>
    <sec_ac acc="IPR013767"/>
  </sec_list>
</interpro>
<interpro id="IPR000015" protein_count="2173" short_name="Fimb_usher" type="Family">
  <name>Fimbrial biogenesis outer membrane usher protein</name>
  <abstract>
In Gram-negative bacteria the biogenesis of fimbriae (or pili) requires a two-
component assembly  and  transport  system  which is composed of a periplasmic
chaperone (see <db_xref db="PROSITEDOC" dbkey="PDOC00552"/>)  and  an  outer  membrane  protein which has been
termed a  molecular  'usher'  [<cite idref="PUB00002841"/>, <cite idref="PUB00002237"/>, <cite idref="PUB00005083"/>]. <p>The usher protein is rather large (from 86 to
100 Kd) and seems to be mainly composed  of  membrane-spanning  beta-sheets, a
structure reminiscent  of  porins.  
Although the degree of sequence similarity of these proteins is not very high
they  share a number of characteristics. One of these is the presence of two pairs
of cysteines, the first one located in the N-terminal part and the second
at the  C-terminal  extremity that are probably involved in disulphide bonds.
The best conserved region is located in the central part of these proteins.</p>
</abstract>
  <class_list>
    <classification id="GO:0005215" class_type="GO">
      <category>Molecular Function</category>
      <description>transporter activity</description>
    </classification>
    <classification id="GO:0006810" class_type="GO">
      <category>Biological Process</category>
      <description>transport</description>
    </classification>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07110"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002237">
      <author_list>Schifferli DM, Alrutz MA.</author_list>
      <title>Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli.</title>
      <db_xref db="PUBMED" dbkey="7906265"/>
      <journal>J. Bacteriol.</journal>
      <location issue="4" pages="1099-110" volume="176"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00002841">
      <author_list>Jacob-Dubuisson F, Striker R, Hultgren SJ.</author_list>
      <title>Chaperone-assisted self-assembly of pili independent of cellular energy.</title>
      <db_xref db="PUBMED" dbkey="7909802"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="17" pages="12447-55" volume="269"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005083">
      <author_list>Van Rosmalen M, Saier MH Jr.</author_list>
      <title>Structural and evolutionary relationships between two families of bacterial extracytoplasmic chaperone proteins which function cooperatively in fimbrial assembly.</title>
      <db_xref db="PUBMED" dbkey="7906046"/>
      <journal>Res. Microbiol.</journal>
      <location issue="7" pages="507-27" volume="144"/>
      <year>1993</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018030"/>
  </contains>
  <member_list>
    <db_xref protein_count="2173" db="PFAM" dbkey="PF00577" name="Usher"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00577"/>
    <db_xref db="MSDsite" dbkey="PS01151"/>
    <db_xref db="BLOCKS" dbkey="IPB000015"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00886"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1zdv"/>
    <db_xref db="PDB" dbkey="1zdx"/>
    <db_xref db="PDB" dbkey="1ze3"/>
    <db_xref db="PDB" dbkey="3bwu"/>
    <db_xref db="SCOP" dbkey="b.167.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2168"/>
    <taxon_data name="Cyanobacteria" proteins_count="2"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="5"/>
    <taxon_data name="Rice spp." proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="5"/>
    <taxon_data name="Green Plants" proteins_count="5"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000018" protein_count="25" short_name="P2Y4_purnocptor" type="Family">
  <name>P2Y4 purinoceptor</name>
  <abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>In addition to their role in energy metabolism, purines (especially
adenosine and adenine nucleotides) produce a wide range of pharmacological
effects mediated by activation of cell surface receptors [<cite idref="PUB00005868"/>]. ATP is a
co-transmitter in sympathetic nerves in the autonomic nervous system,
where it exerts an important physiological role in the regulation of
smooth muscle activity, stimulating relaxation of intestinal smooth muscle
and contraction of the bladder. Receptors for adenine nucleotides are
involved in a number of other physiological pathways, including stimulation
of platelet activation by ADP, which is released from the vascular
endothelium following injury. ATP has excitatory effects in the CNS [<cite idref="PUB00005868"/>].
Distinct receptors exist for adenosine. The main effects of adenosine in
the periphery include vasodilation, bronchoconstriction, immunosuppression,
inhibition of platelet aggregation, cardiac depression, stimulation of
nociceptive afferents, inhibition of neurotransmitter release, and
inhibition of the release of hormones. In the CNS, adenosine exerts a
pre- and post-synaptic depressant action, reducing motor activity,
depressing respiration, inducing sleep and relieving anxiety. The
physiological role of adenosine is believed to be to adjust energy demands
in line with oxygen supply [<cite idref="PUB00005868"/>].</p>
<p>Purinoceptors have been classified as P1 or P2, depending on their
preference for adenosine or adenine nucleotides respectively. Adenosine
receptors (P1 purinoceptors) are characterised by their affinity for
adenosine and by the ability of methylxanthines to act as antagonists [<cite idref="PUB00005868"/>].
Adenosine has very low affinity for P2 purinoceptors.</p>
<p>The P2Y receptor is found in smooth muscle (e.g., taeni caeci) and in
vascular tissue, where it induces vasodilation through endothelium-dependent
release of nitric oxide. The receptor activates phosphoinositide metabolism
through a pertussis-toxin-insensitive G-protein, probably belonging to
the Gi/Go class [<cite idref="PUB00005868"/>].</p>
<p>A new subtype of P2 purinoceptors has been isolated [<cite idref="PUB00002940"/>]. Its deduced amino acid sequence is consistent with a GPCR that is 51% identical to the human P2Y2 receptor and 35% identical to the chicken P2Y1 receptor [<cite idref="PUB00002940"/>]. P2Y4 is expressed in the placenta, with low levels in the lung and vascular smoothmuscle.  In cells stably expressing the receptor, UTP and UDP have been shown to stimulate the formation of inositol phosphates with equivalent potency and maximal effect, while ATP behaves as a partial agonist, and ADP is almost inactive [<cite idref="PUB00002940"/>]. The receptor is thus a new member of the P2 purinergic receptor family that functionally behaves as a pyrimidinergic receptor [<cite idref="PUB00002940"/>].  P2Y4 can couple to both Gi and Gq proteins to activate phospholipase C [<cite idref="PUB00007771"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0007186" class_type="GO">
      <category>Biological Process</category>
      <description>G-protein coupled receptor protein signaling pathway</description>
    </classification>
    <classification id="GO:0016021" class_type="GO">
      <category>Cellular Component</category>
      <description>integral to membrane</description>
    </classification>
    <classification id="GO:0045028" class_type="GO">
      <category>Molecular Function</category>
      <description>purinergic nucleotide receptor activity, G-protein coupled</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O35811"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P51582"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9JJS7"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000131">
      <author_list>Birnbaumer L.</author_list>
      <title>G proteins in signal transduction.</title>
      <db_xref db="PUBMED" dbkey="2111655"/>
      <journal>Annu. Rev. Pharmacol. Toxicol.</journal>
      <location pages="675-705" volume="30"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00002477">
      <author_list>Casey PJ, Gilman AG.</author_list>
      <title>G protein involvement in receptor-effector coupling.</title>
      <db_xref db="PUBMED" dbkey="2830256"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="6" pages="2577-80" volume="263"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00002940">
      <author_list>Communi D, Pirotton S, Parmentier M, Boeynaems JM.</author_list>
      <title>Cloning and functional expression of a human uridine nucleotide receptor.</title>
      <db_xref db="PUBMED" dbkey="8537336"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="52" pages="30849-52" volume="270"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00004960">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8386361"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="167-76" volume="6"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00007771">
      <author_list>Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM.</author_list>
      <title>Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors.</title>
      <db_xref db="PUBMED" dbkey="10889463"/>
      <journal>Cell. Signal.</journal>
      <location issue="6" pages="351-60" volume="12"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00004961">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Fingerprinting G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8170923"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="195-203" volume="7"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005868">
      <author_list>Watson S, Arkinstall S.</author_list>
      <title>Adenosine and adenine nucleotides.</title>
      <book_title>ISBN:0127384405</book_title>
      <location pages="19-31"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR002286"/>
  </parent_list>
  <member_list>
    <db_xref protein_count="24" db="PANTHER" dbkey="PTHR19264:SF154" name="P2Y4_purnocptor"/>
    <db_xref protein_count="20" db="PRINTS" dbkey="PR01066" name="P2Y4PRNOCPTR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000018"/>
    <db_xref db="IUPHAR" dbkey="2396"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="25"/>
    <taxon_data name="Chordata" proteins_count="25"/>
    <taxon_data name="Human" proteins_count="4"/>
    <taxon_data name="Mouse" proteins_count="2"/>
    <taxon_data name="Metazoa" proteins_count="25"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000020" protein_count="188" short_name="Anaphylatoxin/fibulin" type="Domain">
  <name>Anaphylatoxin/fibulin</name>
  <abstract>
<p>Complement components C3, C4 and C5 are large glycoproteins that have important functions in the immune response and host defence [<cite idref="PUB00003181"/>]. They have a wide variety of biological activities and are proteolytically activated by cleavage at a specific site, forming a- and b-fragments [<cite idref="PUB00002512"/>]. A-fragments form distinct structural domains of approximately 76 amino acids, coded for by a single exon within the complement protein gene. The C3a, C4a and C5a components are referred to as anaphylatoxins [<cite idref="PUB00002512"/>, <cite idref="PUB00001343"/>]: they cause smooth muscle contraction, histamine release from mast cells, and enhanced vascular permeability [<cite idref="PUB00001343"/>]. They also mediate chemotaxis, inflammation, and generation of cytotoxic oxygen radicals [<cite idref="PUB00001343"/>]. The proteins are highly hydrophilic, with a mainly alpha-helical structure held together by 3 disulphide bridges [<cite idref="PUB00001343"/>].</p>
<p> Fibulins are secreted glycoproteins that become incorporated into a fibrillar extracellular matrix when expressed by cultured cells or added exogenously to cell monolayers [<cite idref="PUB00003065"/>, <cite idref="PUB00011223"/>]. The five known members of the family share an elongated structure and many calcium-binding sites, owing to the presence of tandem arrays of epidermal growth factor-like domains. They have overlapping binding sites for several basement-membrane proteins, tropoelastin, fibrillin, fibronectin and proteoglycans, and they participate in diverse supramolecular structures. The amino-terminal domain I of fibulin consists of three anaphylatoxin-like (AT) modules, each approximately 40 residues long and containing four or six cysteines. The structure of an AT module was determined for the complement-derived anaphylatoxin C3a, and  was found to be a compact alpha-helical fold that is stabilised by three disulphide bridges in the pattern Cys1-4, Cys2-5 and Cys3-6 (where Cys is cysteine). The bulk of the remaining portion of the fibulin molecule is a series of nine EGF-like repeats [<cite idref="PUB00003073"/>]. </p>
</abstract>
  <class_list>
    <classification id="GO:0005576" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular region</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O77469"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01029"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01031"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01032"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001343">
      <author_list>Gennaro R, Simonic T, Negri A, Mottola C, Secchi C, Ronchi S, Romeo D.</author_list>
      <title>C5a fragment of bovine complement. Purification, bioassays, amino-acid sequence and other structural studies.</title>
      <db_xref db="PUBMED" dbkey="3081348"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="1" pages="77-86" volume="155"/>
      <year>1986</year>
    </publication>
    <publication id="PUB00002512">
      <author_list>Ogata RT, Rosa PA, Zepf NE.</author_list>
      <title>Sequence of the gene for murine complement component C4.</title>
      <db_xref db="PUBMED" dbkey="2777798"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="28" pages="16565-72" volume="264"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003065">
      <author_list>Argraves WS, Tran H, Burgess WH, Dickerson K.</author_list>
      <title>Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure.</title>
      <db_xref db="PUBMED" dbkey="2269669"/>
      <journal>J. Cell Biol.</journal>
      <location issue="6 Pt 2" pages="3155-64" volume="111"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00011223">
      <author_list>Timpl R, Sasaki T, Kostka G, Chu ML.</author_list>
      <title>Fibulins: a versatile family of extracellular matrix proteins.</title>
      <db_xref db="PUBMED" dbkey="12778127"/>
      <journal>Nat. Rev. Mol. Cell Biol.</journal>
      <location issue="6" pages="479-89" volume="4"/>
      <year>2003</year>
    </publication>
    <publication id="PUB00003073">
      <author_list>Pan TC, Sasaki T, Zhang RZ, Fassler R, Timpl R, Chu ML.</author_list>
      <title>Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding.</title>
      <db_xref db="PUBMED" dbkey="8245130"/>
      <journal>J. Cell Biol.</journal>
      <location issue="5" pages="1269-77" volume="123"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00003181">
      <author_list>Fritzinger DC, Petrella EC, Connelly MB, Bredehorst R, Vogel CW.</author_list>
      <title>Primary structure of cobra complement component C3.</title>
      <db_xref db="PUBMED" dbkey="1431125"/>
      <journal>J. Immunol.</journal>
      <location issue="11" pages="3554-62" volume="149"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR018081"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR017048"/>
  </found_in>
  <member_list>
    <db_xref protein_count="182" db="PFAM" dbkey="PF01821" name="ANATO"/>
    <db_xref protein_count="143" db="PROSITE" dbkey="PS01177" name="ANAPHYLATOXIN_1"/>
    <db_xref protein_count="178" db="PROFILE" dbkey="PS01178" name="ANAPHYLATOXIN_2"/>
    <db_xref protein_count="155" db="SMART" dbkey="SM00104" name="ANATO"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01821"/>
    <db_xref db="MSDsite" dbkey="PS01177"/>
    <db_xref db="BLOCKS" dbkey="IPB000020"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00906"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1c5a"/>
    <db_xref db="PDB" dbkey="1cfa"/>
    <db_xref db="PDB" dbkey="1kjs"/>
    <db_xref db="CATH" dbkey="1.20.91.20"/>
    <db_xref db="SCOP" dbkey="a.50.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="188"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="178"/>
    <taxon_data name="Human" proteins_count="46"/>
    <taxon_data name="Mouse" proteins_count="19"/>
    <taxon_data name="Metazoa" proteins_count="188"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018081"/>
  </sec_list>
</interpro>
<interpro id="IPR000021" protein_count="435" short_name="Hok/gef_toxin" type="Family">
  <name>Hok/gef cell toxic protein</name>
  <abstract>
The hok/gef family of Gram-negative bacterial proteins are toxic to cells
when over-expressed, killing the cells from within by interfering with a
vital function in the cell membrane [<cite idref="PUB00003728"/>]. Some family members (flm) increase the stability of unstable RNA [<cite idref="PUB00003728"/>], some (pnd) induce the degradation of stable RNA at higher than optimum growth temperatures [<cite idref="PUB00000587"/>], while others affect the release of cellular magnesium by membrane alterations [<cite idref="PUB00000587"/>]. The
proteins are short (50-70 residues), consisting of an N-terminal hydrophobic (possibly membrane spanning) domain, and a C-terminal periplasmic region, which contains the toxic domain. The C-terminal region contains a conserved cysteine residue that mediates homo-dimerisation in the gef protein, although dimerisation is not necessary for the toxic effect [<cite idref="PUB00003810"/>].
</abstract>
  <class_list>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P0ACG4"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000587">
      <author_list>Sakikawa T, Akimoto S, Ohnishi Y.</author_list>
      <title>The pnd gene in E. coli plasmid R16: nucleotide sequence and gene expression leading to cell Mg2+ release and stable RNA degradation.</title>
      <db_xref db="PUBMED" dbkey="2465777"/>
      <journal>Biochim. Biophys. Acta</journal>
      <location issue="2" pages="158-66" volume="1007"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003728">
      <author_list>Golub EI, Panzer HA.</author_list>
      <title>The F factor of Escherichia coli carries a locus of stable plasmid inheritance stm, similar to the parB locus of plasmid RI.</title>
      <db_xref db="PUBMED" dbkey="3070354"/>
      <journal>Mol. Gen. Genet.</journal>
      <location issue="2" pages="353-7" volume="214"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00003810">
      <author_list>Poulsen LK, Refn A, Molin S, Andersson P.</author_list>
      <title>Topographic analysis of the toxic Gef protein from Escherichia coli.</title>
      <db_xref db="PUBMED" dbkey="1943700"/>
      <journal>Mol. Microbiol.</journal>
      <location issue="7" pages="1627-37" volume="5"/>
      <year>1991</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018084"/>
  </contains>
  <member_list>
    <db_xref protein_count="435" db="PFAM" dbkey="PF01848" name="HOK_GEF"/>
    <db_xref protein_count="385" db="PRINTS" dbkey="PR00281" name="HOKGEFTOXIC"/>
    <db_xref protein_count="405" db="PRODOM" dbkey="PD005979" name="Hok/gef_toxin"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01848"/>
    <db_xref db="MSDsite" dbkey="PS00556"/>
    <db_xref db="BLOCKS" dbkey="IPB000021"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00481"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="424"/>
    <taxon_data name="Virus" proteins_count="8"/>
    <taxon_data name="Unclassified" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000022" protein_count="5636" short_name="Carboxyl_trans" type="Domain">
  <name>Carboxyl transferase</name>
  <abstract>
<p>Members in this domain include biotin dependent carboxylases
[<cite idref="PUB00001442"/>, <cite idref="PUB00002227"/>].
The carboxyl transferase domain carries out the following reaction;
transcarboxylation from biotin to an acceptor molecule. There are
two recognised types of carboxyl transferase. One of them uses acyl-CoA
and the other uses 2-oxo acid as the acceptor molecule of carbon dioxide.  
All of the members in this family utilise acyl-CoA as the acceptor
molecule.</p>
</abstract>
  <class_list>
    <classification id="GO:0016874" class_type="GO">
      <category>Molecular Function</category>
      <description>ligase activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00763"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P34385"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q00955"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q3ULD5"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9V9A7"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001442">
      <author_list>Toh H, Kondo H, Tanabe T.</author_list>
      <title>Molecular evolution of biotin-dependent carboxylases.</title>
      <db_xref db="PUBMED" dbkey="8102604"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="3" pages="687-96" volume="215"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00002227">
      <author_list>Thornton CG, Kumar GK, Haase FC, Phillips NF, Woo SB, Park VM, Magner WJ, Shenoy BC, Wood HG, Samols D.</author_list>
      <title>Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli.</title>
      <db_xref db="PUBMED" dbkey="8366018"/>
      <journal>J. Bacteriol.</journal>
      <location issue="17" pages="5301-8" volume="175"/>
      <year>1993</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR011762"/>
    <rel_ref ipr_ref="IPR011763"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR000438"/>
    <rel_ref ipr_ref="IPR005783"/>
    <rel_ref ipr_ref="IPR017556"/>
  </found_in>
  <member_list>
    <db_xref protein_count="5637" db="PFAM" dbkey="PF01039" name="Carboxyl_trans"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01039"/>
    <db_xref db="BLOCKS" dbkey="IPB000022"/>
    <db_xref db="EC" dbkey="6.4.1.2"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1od2"/>
    <db_xref db="PDB" dbkey="1od4"/>
    <db_xref db="PDB" dbkey="1on3"/>
    <db_xref db="PDB" dbkey="1on9"/>
    <db_xref db="PDB" dbkey="1pix"/>
    <db_xref db="PDB" dbkey="1uyr"/>
    <db_xref db="PDB" dbkey="1uys"/>
    <db_xref db="PDB" dbkey="1uyt"/>
    <db_xref db="PDB" dbkey="1uyv"/>
    <db_xref db="PDB" dbkey="1vrg"/>
    <db_xref db="PDB" dbkey="1w2x"/>
    <db_xref db="PDB" dbkey="1x0u"/>
    <db_xref db="PDB" dbkey="1xnv"/>
    <db_xref db="PDB" dbkey="1xnw"/>
    <db_xref db="PDB" dbkey="1xny"/>
    <db_xref db="PDB" dbkey="1xo6"/>
    <db_xref db="PDB" dbkey="2a7s"/>
    <db_xref db="PDB" dbkey="2bzr"/>
    <db_xref db="PDB" dbkey="2f9y"/>
    <db_xref db="CATH" dbkey="3.90.226.10"/>
    <db_xref db="SCOP" dbkey="c.14.1.4"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="3755"/>
    <taxon_data name="Cyanobacteria" proteins_count="56"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="91"/>
    <taxon_data name="Eukaryota" proteins_count="1789"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="11"/>
    <taxon_data name="Rice spp." proteins_count="14"/>
    <taxon_data name="Fungi" proteins_count="150"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
    <taxon_data name="Nematoda" proteins_count="6"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="6"/>
    <taxon_data name="Arthropoda" proteins_count="41"/>
    <taxon_data name="Fruit Fly" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="110"/>
    <taxon_data name="Human" proteins_count="29"/>
    <taxon_data name="Mouse" proteins_count="18"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="1366"/>
    <taxon_data name="Green Plants" proteins_count="1366"/>
    <taxon_data name="Metazoa" proteins_count="333"/>
    <taxon_data name="Plastid Group" proteins_count="36"/>
    <taxon_data name="Plastid Group" proteins_count="19"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000023" protein_count="2630" short_name="Phosphofructokinase" type="Domain">
  <name>Phosphofructokinase</name>
  <abstract>
The enzyme-catalysed transfer of a phosphoryl group from ATP is an
important reaction in a wide variety of biological processes [<cite idref="PUB00004002"/>]. One
enzyme that utilises this reaction is phosphofructokinase (PFK), which
catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-
bisphosphate, a key regulatory step in the glycolytic pathway [<cite idref="PUB00014238"/>, <cite idref="PUB00000020"/>]. 
PFK exists as a homotetramer in bacteria and mammals (where each monomer
possesses 2 similar domains), and as an octomer in yeast (where there are
4 alpha- (PFK1) and 4 beta-chains (PFK2), the latter, like the mammalian
monomers, possessing 2 similar domains [<cite idref="PUB00000020"/>]). <p>PFK is ~300 amino acids in length, and structural studies of the
bacterial enzyme have shown it comprises two similar (alpha/beta) lobes: one involved in
ATP binding and the other housing both the substrate-binding site and the allosteric site (a regulatory binding site distinct from the active site, but that affects enzyme
activity). The identical tetramer subunits  adopt 2 
different conformations: in a 'closed' state, the bound magnesium ion
bridges the phosphoryl groups of the enzyme products (ADP and fructose-1,6-
bisphosphate); and in an 'open' state, the magnesium ion binds only the ADP
[<cite idref="PUB00003237"/>], as the 2 products are now further apart. These conformations are
thought to be successive stages of a reaction pathway that requires subunit
closure to bring the 2 molecules sufficiently close to react [<cite idref="PUB00003237"/>].</p>
<p>Deficiency in PFK leads to glycogenosis type VII (Tauri's disease), an
autosomal recessive disorder characterised by severe nausea, vomiting,
muscle cramps and myoglobinuria in response to bursts of intense or
vigorous exercise [<cite idref="PUB00000020"/>]. Sufferers are usually able to lead a reasonably
ordinary life by learning to adjust activity levels [<cite idref="PUB00000020"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0003872" class_type="GO">
      <category>Molecular Function</category>
      <description>6-phosphofructokinase activity</description>
    </classification>
    <classification id="GO:0005945" class_type="GO">
      <category>Cellular Component</category>
      <description>6-phosphofructokinase complex</description>
    </classification>
    <classification id="GO:0006096" class_type="GO">
      <category>Biological Process</category>
      <description>glycolysis</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P08237"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P12382"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P16861"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P52034"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q27483"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000020">
      <author_list>Raben N, Exelbert R, Spiegel R, Sherman JB, Nakajima H, Plotz P, Heinisch J.</author_list>
      <title>Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency.</title>
      <db_xref db="PUBMED" dbkey="7825568"/>
      <journal>Am. J. Hum. Genet.</journal>
      <location issue="1" pages="131-41" volume="56"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00003237">
      <author_list>Shirakihara Y, Evans PR.</author_list>
      <title>Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products.</title>
      <db_xref db="PUBMED" dbkey="2975709"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="4" pages="973-94" volume="204"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00004002">
      <author_list>Hellinga HW, Evans PR.</author_list>
      <title>Mutations in the active site of Escherichia coli phosphofructokinase.</title>
      <db_xref db="PUBMED" dbkey="2953977"/>
      <journal>Nature</journal>
      <location issue="6121" pages="437-9" volume="327"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00014238">
      <author_list>Wegener G, Krause U.</author_list>
      <title>Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle.</title>
      <db_xref db="PUBMED" dbkey="12023862"/>
      <journal>Biochem. Soc. Trans.</journal>
      <location issue="2" pages="264-70" volume="30"/>
      <year>2002</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR011183"/>
    <rel_ref ipr_ref="IPR011403"/>
    <rel_ref ipr_ref="IPR011404"/>
    <rel_ref ipr_ref="IPR011405"/>
    <rel_ref ipr_ref="IPR012003"/>
    <rel_ref ipr_ref="IPR012004"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR013981"/>
    <rel_ref ipr_ref="IPR015912"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR009161"/>
  </found_in>
  <member_list>
    <db_xref protein_count="2586" db="PFAM" dbkey="PF00365" name="PFK"/>
    <db_xref protein_count="2522" db="PRINTS" dbkey="PR00476" name="PHFRCTKINASE"/>
    <db_xref protein_count="2622" db="SSF" dbkey="SSF53784" name="Ppfruckinase"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00365"/>
    <db_xref db="BLOCKS" dbkey="IPB000023"/>
    <db_xref db="EC" dbkey="2.7.1.11"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1kzh"/>
    <db_xref db="PDB" dbkey="1mto"/>
    <db_xref db="PDB" dbkey="1pfk"/>
    <db_xref db="PDB" dbkey="1zxx"/>
    <db_xref db="PDB" dbkey="2f48"/>
    <db_xref db="PDB" dbkey="2pfk"/>
    <db_xref db="PDB" dbkey="3pfk"/>
    <db_xref db="PDB" dbkey="4pfk"/>
    <db_xref db="PDB" dbkey="6pfk"/>
    <db_xref db="CATH" dbkey="1.10.10.480"/>
    <db_xref db="CATH" dbkey="3.40.50.450"/>
    <db_xref db="CATH" dbkey="3.40.50.460"/>
    <db_xref db="SCOP" dbkey="c.89.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2023"/>
    <taxon_data name="Cyanobacteria" proteins_count="43"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
    <taxon_data name="Archaea" proteins_count="16"/>
    <taxon_data name="Eukaryota" proteins_count="587"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="15"/>
    <taxon_data name="Rice spp." proteins_count="50"/>
    <taxon_data name="Fungi" proteins_count="102"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="12"/>
    <taxon_data name="Other Eukaryotes" proteins_count="13"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Nematoda" proteins_count="3"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="25"/>
    <taxon_data name="Fruit Fly" proteins_count="3"/>
    <taxon_data name="Chordata" proteins_count="92"/>
    <taxon_data name="Human" proteins_count="27"/>
    <taxon_data name="Mouse" proteins_count="11"/>
    <taxon_data name="Virus" proteins_count="2"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="11"/>
    <taxon_data name="Plastid Group" proteins_count="199"/>
    <taxon_data name="Green Plants" proteins_count="199"/>
    <taxon_data name="Metazoa" proteins_count="283"/>
    <taxon_data name="Plastid Group" proteins_count="53"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="8"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR011183"/>
    <sec_ac acc="IPR011403"/>
    <sec_ac acc="IPR011404"/>
    <sec_ac acc="IPR011405"/>
    <sec_ac acc="IPR012003"/>
    <sec_ac acc="IPR012004"/>
  </sec_list>
</interpro>
<interpro id="IPR000024" protein_count="595" short_name="Frizzled_Cys-rich" type="Domain">
  <name>Frizzled cysteine-rich domain</name>
  <abstract>
The Frizzled CRD (cysteine rich domain) is conserved in diverse proteins including several receptor tyrosine kinases
[<cite idref="PUB00001039"/>, <cite idref="PUB00005055"/>, <cite idref="PUB00005486"/>].
In <taxon tax_id="7227">Drosophila melanogaster</taxon>, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have in their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. Sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development, include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2.
The structure of this domain is known and is composed mainly of alpha helices.
This domain contains ten conserved cysteines that form five disulphide bridges.
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00144"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O19116"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O77438"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P39061"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q24760"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001039">
      <author_list>Xu YK, Nusse R.</author_list>
      <title>The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases.</title>
      <db_xref db="PUBMED" dbkey="9637908"/>
      <journal>Curr. Biol.</journal>
      <location issue="12" pages="R405-6" volume="8"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00005055">
      <author_list>Saldanha J, Singh J, Mahadevan D.</author_list>
      <title>Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases.</title>
      <db_xref db="PUBMED" dbkey="9684897"/>
      <journal>Protein Sci.</journal>
      <location issue="7" pages="1632-5" volume="7"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00005486">
      <author_list>Rehn M, Pihlajaniemi T, Hofmann K, Bucher P.</author_list>
      <title>The frizzled motif: in how many different protein families does it occur?</title>
      <db_xref db="PUBMED" dbkey="9852758"/>
      <journal>Trends Biochem. Sci.</journal>
      <location issue="11" pages="415-7" volume="23"/>
      <year>1998</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR020067"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR020068"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR015526"/>
    <rel_ref ipr_ref="IPR017052"/>
    <rel_ref ipr_ref="IPR017343"/>
  </found_in>
  <member_list>
    <db_xref protein_count="542" db="GENE3D" dbkey="G3DSA:1.10.2000.10" name="Frizzled_Cys-rich"/>
    <db_xref protein_count="596" db="SSF" dbkey="SSF63501" name="Frizzled_Cys-rich"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01392"/>
    <db_xref db="BLOCKS" dbkey="IPB000024"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50038"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ijx"/>
    <db_xref db="PDB" dbkey="1ijy"/>
    <db_xref db="CATH" dbkey="1.10.2000.10"/>
    <db_xref db="SCOP" dbkey="a.141.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="596"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="8"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="8"/>
    <taxon_data name="Arthropoda" proteins_count="147"/>
    <taxon_data name="Fruit Fly" proteins_count="20"/>
    <taxon_data name="Chordata" proteins_count="366"/>
    <taxon_data name="Human" proteins_count="48"/>
    <taxon_data name="Mouse" proteins_count="49"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
    <taxon_data name="Green Plants" proteins_count="2"/>
    <taxon_data name="Metazoa" proteins_count="584"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR020068"/>
  </sec_list>
</interpro>
<interpro id="IPR000025" protein_count="125" short_name="Melatonin_rcpt" type="Family">
  <name>Melatonin receptor</name>
  <abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>Melatonin is secreted by the pineal gland during darkness [<cite idref="PUB00005892"/>]. It regulates
a variety of neuroendocrine functions and is thought to play an essential
role in circadian rhythms. Drugs that modify the action of melatonin,
and hence influence circadian cycles, are of clinical interest (for example,
in the treatment of jet-lag). Melatonin receptors are found in the
retina, in the pars tuberalis of the pituitary, and in discrete areas of
the brain. The receptor inhibits adenylyl cyclase via a pertussis-toxin-sensitive G-protein, probably of the Gi/Go class [<cite idref="PUB00005892"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0007186" class_type="GO">
      <category>Biological Process</category>
      <description>G-protein coupled receptor protein signaling pathway</description>
    </classification>
    <classification id="GO:0008502" class_type="GO">
      <category>Molecular Function</category>
      <description>melatonin receptor activity</description>
    </classification>
    <classification id="GO:0016021" class_type="GO">
      <category>Cellular Component</category>
      <description>integral to membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O88495"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P48039"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P48040"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000131">
      <author_list>Birnbaumer L.</author_list>
      <title>G proteins in signal transduction.</title>
      <db_xref db="PUBMED" dbkey="2111655"/>
      <journal>Annu. Rev. Pharmacol. Toxicol.</journal>
      <location pages="675-705" volume="30"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00002477">
      <author_list>Casey PJ, Gilman AG.</author_list>
      <title>G protein involvement in receptor-effector coupling.</title>
      <db_xref db="PUBMED" dbkey="2830256"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="6" pages="2577-80" volume="263"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00004960">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8386361"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="167-76" volume="6"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004961">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Fingerprinting G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8170923"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="195-203" volume="7"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005892">
      <author_list>Watson S, Arkinstall S.</author_list>
      <title>Melatonin.</title>
      <book_title>ISBN:0127384405</book_title>
      <location pages="192-3"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR000276"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR002278"/>
    <rel_ref ipr_ref="IPR002279"/>
    <rel_ref ipr_ref="IPR002280"/>
  </child_list>
  <member_list>
    <db_xref protein_count="125" db="PRINTS" dbkey="PR00857" name="MELATONINR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000025"/>
    <db_xref db="IUPHAR" dbkey="2361"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="125"/>
    <taxon_data name="Chordata" proteins_count="125"/>
    <taxon_data name="Human" proteins_count="7"/>
    <taxon_data name="Mouse" proteins_count="7"/>
    <taxon_data name="Metazoa" proteins_count="125"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR002278"/>
    <sec_ac acc="IPR002279"/>
    <sec_ac acc="IPR002280"/>
  </sec_list>
</interpro>
<interpro id="IPR000026" protein_count="399" short_name="Gua-sp_ribonuclease_N1/T1" type="Family">
  <name>Guanine-specific ribonuclease N1/T1</name>
  <abstract>
<p>Ribonuclease N1 (RNase N1) is a guanine-specific ribonuclease from fungi.  RNase T1 and other bacteria RNases are related.</p>
<p>The enzyme hydrolyses the phosphodiester bonds in RNA and oligoribonucleotides [<cite idref="PUB00000397"/>], resulting in 3'-nucleoside monophosphates via 2',3'-cyclophosphate intermediates.</p>
</abstract>
  <class_list>
    <classification id="GO:0003723" class_type="GO">
      <category>Molecular Function</category>
      <description>RNA binding</description>
    </classification>
    <classification id="GO:0004521" class_type="GO">
      <category>Molecular Function</category>
      <description>endoribonuclease activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00648"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00651"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000397">
      <author_list>Buckle AM, Fersht AR.</author_list>
      <title>Subsite binding in an RNase: structure of a barnase-tetranucleotide complex at 1.76-A resolution.</title>
      <db_xref db="PUBMED" dbkey="8110767"/>
      <journal>Biochemistry</journal>
      <location issue="7" pages="1644-53" volume="33"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR001887"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR016191"/>
  </contains>
  <member_list>
    <db_xref protein_count="399" db="PFAM" dbkey="PF00545" name="Ribonuclease"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00545"/>
    <db_xref db="BLOCKS" dbkey="IPB000026"/>
    <db_xref db="EC" dbkey="3.1.27"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a2p"/>
    <db_xref db="PDB" dbkey="1aqz"/>
    <db_xref db="PDB" dbkey="1ay7"/>
    <db_xref db="PDB" dbkey="1b20"/>
    <db_xref db="PDB" dbkey="1b21"/>
    <db_xref db="PDB" dbkey="1b27"/>
    <db_xref db="PDB" dbkey="1b2m"/>
    <db_xref db="PDB" dbkey="1b2s"/>
    <db_xref db="PDB" dbkey="1b2u"/>
    <db_xref db="PDB" dbkey="1b2x"/>
    <db_xref db="PDB" dbkey="1b2z"/>
    <db_xref db="PDB" dbkey="1b3s"/>
    <db_xref db="PDB" dbkey="1ban"/>
    <db_xref db="PDB" dbkey="1bao"/>
    <db_xref db="PDB" dbkey="1bgs"/>
    <db_xref db="PDB" dbkey="1bir"/>
    <db_xref db="PDB" dbkey="1bne"/>
    <db_xref db="PDB" dbkey="1bnf"/>
    <db_xref db="PDB" dbkey="1bng"/>
    <db_xref db="PDB" dbkey="1bni"/>
    <db_xref db="PDB" dbkey="1bnj"/>
    <db_xref db="PDB" dbkey="1bnr"/>
    <db_xref db="PDB" dbkey="1bns"/>
    <db_xref db="PDB" dbkey="1box"/>
    <db_xref db="PDB" dbkey="1brg"/>
    <db_xref db="PDB" dbkey="1brh"/>
    <db_xref db="PDB" dbkey="1bri"/>
    <db_xref db="PDB" dbkey="1brj"/>
    <db_xref db="PDB" dbkey="1brk"/>
    <db_xref db="PDB" dbkey="1brn"/>
    <db_xref db="PDB" dbkey="1brs"/>
    <db_xref db="PDB" dbkey="1bsa"/>
    <db_xref db="PDB" dbkey="1bsb"/>
    <db_xref db="PDB" dbkey="1bsc"/>
    <db_xref db="PDB" dbkey="1bsd"/>
    <db_xref db="PDB" dbkey="1bse"/>
    <db_xref db="PDB" dbkey="1bu4"/>
    <db_xref db="PDB" dbkey="1buj"/>
    <db_xref db="PDB" dbkey="1bvi"/>
    <db_xref db="PDB" dbkey="1c54"/>
    <db_xref db="PDB" dbkey="1ch0"/>
    <db_xref db="PDB" dbkey="1de3"/>
    <db_xref db="PDB" dbkey="1det"/>
    <db_xref db="PDB" dbkey="1fus"/>
    <db_xref db="PDB" dbkey="1fut"/>
    <db_xref db="PDB" dbkey="1fw7"/>
    <db_xref db="PDB" dbkey="1fys"/>
    <db_xref db="PDB" dbkey="1fzu"/>
    <db_xref db="PDB" dbkey="1g02"/>
    <db_xref db="PDB" dbkey="1gmp"/>
    <db_xref db="PDB" dbkey="1gmq"/>
    <db_xref db="PDB" dbkey="1gmr"/>
    <db_xref db="PDB" dbkey="1gou"/>
    <db_xref db="PDB" dbkey="1gov"/>
    <db_xref db="PDB" dbkey="1goy"/>
    <db_xref db="PDB" dbkey="1gsp"/>
    <db_xref db="PDB" dbkey="1hyf"/>
    <db_xref db="PDB" dbkey="1hz1"/>
    <db_xref db="PDB" dbkey="1i0v"/>
    <db_xref db="PDB" dbkey="1i0x"/>
    <db_xref db="PDB" dbkey="1i2e"/>
    <db_xref db="PDB" dbkey="1i2f"/>
    <db_xref db="PDB" dbkey="1i2g"/>
    <db_xref db="PDB" dbkey="1i3f"/>
    <db_xref db="PDB" dbkey="1i3i"/>
    <db_xref db="PDB" dbkey="1i70"/>
    <db_xref db="PDB" dbkey="1i8v"/>
    <db_xref db="PDB" dbkey="1iyy"/>
    <db_xref db="PDB" dbkey="1jbr"/>
    <db_xref db="PDB" dbkey="1jbs"/>
    <db_xref db="PDB" dbkey="1jbt"/>
    <db_xref db="PDB" dbkey="1lni"/>
    <db_xref db="PDB" dbkey="1lov"/>
    <db_xref db="PDB" dbkey="1low"/>
    <db_xref db="PDB" dbkey="1loy"/>
    <db_xref db="PDB" dbkey="1lra"/>
    <db_xref db="PDB" dbkey="1mgr"/>
    <db_xref db="PDB" dbkey="1mgw"/>
    <db_xref db="PDB" dbkey="1py3"/>
    <db_xref db="PDB" dbkey="1pyl"/>
    <db_xref db="PDB" dbkey="1q9e"/>
    <db_xref db="PDB" dbkey="1r4y"/>
    <db_xref db="PDB" dbkey="1rck"/>
    <db_xref db="PDB" dbkey="1rcl"/>
    <db_xref db="PDB" dbkey="1rds"/>
    <db_xref db="PDB" dbkey="1rga"/>
    <db_xref db="PDB" dbkey="1rgc"/>
    <db_xref db="PDB" dbkey="1rge"/>
    <db_xref db="PDB" dbkey="1rgf"/>
    <db_xref db="PDB" dbkey="1rgg"/>
    <db_xref db="PDB" dbkey="1rgh"/>
    <db_xref db="PDB" dbkey="1rgk"/>
    <db_xref db="PDB" dbkey="1rgl"/>
    <db_xref db="PDB" dbkey="1rhl"/>
    <db_xref db="PDB" dbkey="1rls"/>
    <db_xref db="PDB" dbkey="1rms"/>
    <db_xref db="PDB" dbkey="1rn1"/>
    <db_xref db="PDB" dbkey="1rn4"/>
    <db_xref db="PDB" dbkey="1rnb"/>
    <db_xref db="PDB" dbkey="1rnt"/>
    <db_xref db="PDB" dbkey="1rsn"/>
    <db_xref db="PDB" dbkey="1rtu"/>
    <db_xref db="PDB" dbkey="1sar"/>
    <db_xref db="PDB" dbkey="1t2h"/>
    <db_xref db="PDB" dbkey="1t2i"/>
    <db_xref db="PDB" dbkey="1trp"/>
    <db_xref db="PDB" dbkey="1trq"/>
    <db_xref db="PDB" dbkey="1tto"/>
    <db_xref db="PDB" dbkey="1uci"/>
    <db_xref db="PDB" dbkey="1ucj"/>
    <db_xref db="PDB" dbkey="1uck"/>
    <db_xref db="PDB" dbkey="1ucl"/>
    <db_xref db="PDB" dbkey="1x1u"/>
    <db_xref db="PDB" dbkey="1x1w"/>
    <db_xref db="PDB" dbkey="1x1x"/>
    <db_xref db="PDB" dbkey="1x1y"/>
    <db_xref db="PDB" dbkey="1ygw"/>
    <db_xref db="PDB" dbkey="1ynv"/>
    <db_xref db="PDB" dbkey="1yvs"/>
    <db_xref db="PDB" dbkey="2aad"/>
    <db_xref db="PDB" dbkey="2aae"/>
    <db_xref db="PDB" dbkey="2bir"/>
    <db_xref db="PDB" dbkey="2bu4"/>
    <db_xref db="PDB" dbkey="2c4b"/>
    <db_xref db="PDB" dbkey="2f4y"/>
    <db_xref db="PDB" dbkey="2f56"/>
    <db_xref db="PDB" dbkey="2f5m"/>
    <db_xref db="PDB" dbkey="2f5w"/>
    <db_xref db="PDB" dbkey="2gsp"/>
    <db_xref db="PDB" dbkey="2hoh"/>
    <db_xref db="PDB" dbkey="2rbi"/>
    <db_xref db="PDB" dbkey="2rnt"/>
    <db_xref db="PDB" dbkey="2sar"/>
    <db_xref db="PDB" dbkey="3bir"/>
    <db_xref db="PDB" dbkey="3bu4"/>
    <db_xref db="PDB" dbkey="3gsp"/>
    <db_xref db="PDB" dbkey="3hoh"/>
    <db_xref db="PDB" dbkey="3rnt"/>
    <db_xref db="PDB" dbkey="4bir"/>
    <db_xref db="PDB" dbkey="4bu4"/>
    <db_xref db="PDB" dbkey="4gsp"/>
    <db_xref db="PDB" dbkey="4hoh"/>
    <db_xref db="PDB" dbkey="4rnt"/>
    <db_xref db="PDB" dbkey="5bir"/>
    <db_xref db="PDB" dbkey="5bu4"/>
    <db_xref db="PDB" dbkey="5gsp"/>
    <db_xref db="PDB" dbkey="5hoh"/>
    <db_xref db="PDB" dbkey="5rnt"/>
    <db_xref db="PDB" dbkey="6gsp"/>
    <db_xref db="PDB" dbkey="6rnt"/>
    <db_xref db="PDB" dbkey="7gsp"/>
    <db_xref db="PDB" dbkey="7rnt"/>
    <db_xref db="PDB" dbkey="8rnt"/>
    <db_xref db="PDB" dbkey="9rnt"/>
    <db_xref db="CATH" dbkey="3.10.450.30"/>
    <db_xref db="SCOP" dbkey="d.1.1.2"/>
    <db_xref db="SCOP" dbkey="d.1.1.3"/>
    <db_xref db="SCOP" dbkey="d.1.1.4"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="288"/>
    <taxon_data name="Cyanobacteria" proteins_count="2"/>
    <taxon_data name="Archaea" proteins_count="2"/>
    <taxon_data name="Eukaryota" proteins_count="109"/>
    <taxon_data name="Fungi" proteins_count="109"/>
    <taxon_data name="Metazoa" proteins_count="109"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR001887"/>
  </sec_list>
</interpro>
<interpro id="IPR000028" protein_count="155" short_name="Chloroperoxidase" type="Family">
  <name>Chloroperoxidase</name>
  <abstract>
<p>Chloroperoxidase (CPO), also known as Heme haloperoxidase, is a ~250 residue heme-containing glycoprotein that is secreted by various fungi. Chloroperoxidase was first identified  in <taxon tax_id="5474">Caldariomyces fumago</taxon> where it catalyzes the hydrogen
peroxide-dependent chlorination of cyclopentanedione during the biosynthesis
of the antibiotic caldarioymcin. Additionally, heme haloperoxidase catalyzes
the iodination and bromination of a wide range of substrates. Besides
performing  H2O2-dependent  halogenation reactions, the enzyme catalyzes
dehydrogenation reactions. Chloroperoxidase also functions as a catalase, facilitating the decomposition of hydrogen peroxide to oxygen and water. Furthermore, chloroperoxidase catalyzes P450-like oxygen insertion reactions. The capability of chloroperoxidase to perform these diverse reactions makes it one of the most versatile of all known heme proteins [<cite idref="PUB00052607"/>, <cite idref="PUB00052608"/>].</p>
<p>Despite functional similarities with other heme enzymes, chloroperoxidase
folds into a novel tertiary structure dominated by eight helical segments [<cite idref="PUB00005255"/>]. Structurally, chloroperoxidase is unique, but it shares
features with both peroxidases and P450 enzymes. As in cytochrome P450
enzymes, the proximal heme ligand is a cysteine,
but similar to peroxidases, the distal side of the heme is polar. However,
unlike other peroxidases, the normally conserved distal arginine is lacking
and the catalytic acid base is a glutamic acid and not a histidine [<cite idref="PUB00040032"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0004601" class_type="GO">
      <category>Molecular Function</category>
      <description>peroxidase activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P04963"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00005255">
      <author_list>Sundaramoorthy M, Terner J, Poulos TL.</author_list>
      <title>The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid.</title>
      <db_xref db="PUBMED" dbkey="8747463"/>
      <journal>Structure</journal>
      <location issue="12" pages="1367-77" volume="3"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00040032">
      <author_list>Kuhnel K, Blankenfeldt W, Terner J, Schlichting I.</author_list>
      <title>Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate.</title>
      <db_xref db="PUBMED" dbkey="16790441"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="33" pages="23990-8" volume="281"/>
      <year>2006</year>
    </publication>
    <publication id="PUB00052608">
      <author_list>Manoj KM, Hager LP.</author_list>
      <title>Chloroperoxidase, a janus enzyme.</title>
      <db_xref db="PUBMED" dbkey="18220360"/>
      <journal>Biochemistry</journal>
      <location issue="9" pages="2997-3003" volume="47"/>
      <year>2008</year>
    </publication>
    <publication id="PUB00052607">
      <author_list>Hofrichter M, Ullrich R.</author_list>
      <title>Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance.</title>
      <db_xref db="PUBMED" dbkey="16628447"/>
      <journal>Appl. Microbiol. Biotechnol.</journal>
      <location issue="3" pages="276-88" volume="71"/>
      <year>2006</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="148" db="PFAM" dbkey="PF01328" name="Peroxidase_2"/>
    <db_xref protein_count="155" db="PROFILE" dbkey="PS51405" name="HEME_HALOPEROXIDASE"/>
    <db_xref protein_count="148" db="GENE3D" dbkey="G3DSA:1.10.489.10" name="Chloroperoxidase"/>
    <db_xref protein_count="145" db="SSF" dbkey="SSF47571" name="Chloroperoxidase"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01328"/>
    <db_xref db="COMe" dbkey="PRX000234"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1cpo"/>
    <db_xref db="PDB" dbkey="2civ"/>
    <db_xref db="PDB" dbkey="2ciw"/>
    <db_xref db="PDB" dbkey="2cix"/>
    <db_xref db="PDB" dbkey="2ciy"/>
    <db_xref db="PDB" dbkey="2ciz"/>
    <db_xref db="PDB" dbkey="2cj0"/>
    <db_xref db="PDB" dbkey="2cj1"/>
    <db_xref db="PDB" dbkey="2cj2"/>
    <db_xref db="PDB" dbkey="2cpo"/>
    <db_xref db="PDB" dbkey="2j18"/>
    <db_xref db="PDB" dbkey="2j19"/>
    <db_xref db="PDB" dbkey="2j5m"/>
    <db_xref db="CATH" dbkey="1.10.489.10"/>
    <db_xref db="SCOP" dbkey="a.39.3.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="155"/>
    <taxon_data name="Fungi" proteins_count="146"/>
    <taxon_data name="Metazoa" proteins_count="146"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000030" protein_count="938" short_name="Uncharacterised_PPE" type="Family">
  <name>Uncharacterised protein family, PPE protein</name>
  <abstract>
This mycobacterial family is named after a conserved amino-terminal region of about 180
amino acids, the PPE motif. The carboxy termini of proteins belonging to the PPE family are variable, and on the basis of this region at least three groups can be distinguished. The MPTR subgroup is characterised by tandem copies of a motif NXGXGNXG. The second subgroup contains a conserved motif at about position 350.
The third group shares only similarity in the amino terminal region.
The function of these proteins is uncertain but it has been suggested that they may be related to antigenic variation of <taxon tax_id="1773">Mycobacterium tuberculosis</taxon> [<cite idref="PUB00004280"/>].
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O06246"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004280">
      <author_list>Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG.</author_list>
      <title>Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.</title>
      <db_xref db="PUBMED" dbkey="9634230"/>
      <journal>Nature</journal>
      <location issue="6685" pages="537-44" volume="393"/>
      <year>1998</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="938" db="PFAM" dbkey="PF00823" name="PPE"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00823"/>
    <db_xref db="BLOCKS" dbkey="IPB000030"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="2g38"/>
    <db_xref db="SCOP" dbkey="a.25.4.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="937"/>
    <taxon_data name="Virus" proteins_count="1"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000031" protein_count="2381" short_name="AIR_COase_core" type="Domain">
  <name>1-(5-Phosphoribosyl)-5-amino-4-imidazole-carboxylate (AIR) carboxylase</name>
  <abstract>
<p>Phosphoribosylaminoimidazole carboxylase is a fusion protein in plants and fungi, but consists of two non-interacting proteins in bacteria, PurK and PurE.
PurK, N5-carboxyaminoimidazole ribonucleotide (N5_CAIR) synthetase, catalyzes the conversion of 5-aminoimidazole ribonucleotide (AIR), ATP, and bicarbonate to N5-CAIR, ADP, and Pi. PurE converts N5-CAIR to CAIR, the sixth step of de novo purine biosynthesis. In the presence of high concentrations of bicarbonate, PurE is reported able to convert AIR to CAIR directly and without ATP. Some members of this family contain two copies of this domain [<cite idref="PUB00016905"/>]. The crystal structure of PurE indicates a unique quaternary structure that confirms the octameric nature of the enzyme [<cite idref="PUB00016906"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0004638" class_type="GO">
      <category>Molecular Function</category>
      <description>phosphoribosylaminoimidazole carboxylase activity</description>
    </classification>
    <classification id="GO:0006189" class_type="GO">
      <category>Biological Process</category>
      <description>'de novo' IMP biosynthetic process</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P21264"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22234"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q10457"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9DCL9"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9I7S8"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00016905">
      <author_list>Meyer E, Kappock TJ, Osuji C, Stubbe J.</author_list>
      <title>Evidence for the direct transfer of the carboxylate of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to generate 4-carboxy-5-aminoimidazole ribonucleotide catalyzed by Escherichia coli PurE, an N5-CAIR mutase.</title>
      <db_xref db="PUBMED" dbkey="10074353"/>
      <journal>Biochemistry</journal>
      <location issue="10" pages="3012-8" volume="38"/>
      <year>1999</year>
    </publication>
    <publication id="PUB00016906">
      <author_list>Mathews II, Kappock TJ, Stubbe J, Ealick SE.</author_list>
      <title>Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway.</title>
      <db_xref db="PUBMED" dbkey="10574791"/>
      <journal>Structure</journal>
      <location issue="11" pages="1395-406" volume="7"/>
      <year>1999</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR016301"/>
  </found_in>
  <member_list>
    <db_xref protein_count="1991" db="PANTHER" dbkey="PTHR23046" name="AIR_carboxyl"/>
    <db_xref protein_count="2381" db="PFAM" dbkey="PF00731" name="AIRC"/>
    <db_xref protein_count="1974" db="TIGRFAMs" dbkey="TIGR01162" name="purE"/>
    <db_xref protein_count="2293" db="GENE3D" dbkey="G3DSA:3.40.50.7700" name="AIR_carboxyl"/>
    <db_xref protein_count="2369" db="SSF" dbkey="SSF52255" name="AIR_carboxyl"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00731"/>
    <db_xref db="BLOCKS" dbkey="IPB000031"/>
    <db_xref db="EC" dbkey="4.1.1.21"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1d7a"/>
    <db_xref db="PDB" dbkey="1o4v"/>
    <db_xref db="PDB" dbkey="1qcz"/>
    <db_xref db="PDB" dbkey="1u11"/>
    <db_xref db="PDB" dbkey="1xmp"/>
    <db_xref db="PDB" dbkey="2ate"/>
    <db_xref db="PDB" dbkey="2fw1"/>
    <db_xref db="PDB" dbkey="2fw6"/>
    <db_xref db="PDB" dbkey="2fw7"/>
    <db_xref db="PDB" dbkey="2fw8"/>
    <db_xref db="PDB" dbkey="2fw9"/>
    <db_xref db="PDB" dbkey="2fwa"/>
    <db_xref db="PDB" dbkey="2fwb"/>
    <db_xref db="PDB" dbkey="2fwi"/>
    <db_xref db="PDB" dbkey="2fwj"/>
    <db_xref db="PDB" dbkey="2fwp"/>
    <db_xref db="PDB" dbkey="2nsh"/>
    <db_xref db="PDB" dbkey="2nsj"/>
    <db_xref db="PDB" dbkey="2nsl"/>
    <db_xref db="PDB" dbkey="2ywx"/>
    <db_xref db="CATH" dbkey="3.40.50.7700"/>
    <db_xref db="SCOP" dbkey="c.23.8.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2074"/>
    <taxon_data name="Cyanobacteria" proteins_count="109"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
    <taxon_data name="Archaea" proteins_count="137"/>
    <taxon_data name="Eukaryota" proteins_count="170"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="3"/>
    <taxon_data name="Rice spp." proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="76"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="25"/>
    <taxon_data name="Fruit Fly" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="22"/>
    <taxon_data name="Human" proteins_count="2"/>
    <taxon_data name="Mouse" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="26"/>
    <taxon_data name="Green Plants" proteins_count="26"/>
    <taxon_data name="Metazoa" proteins_count="133"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000032" protein_count="3118" short_name="PTS_HPr_prot-like" type="Domain">
  <name>Phosphotransferase system, phosphocarrier HPr protein-like</name>
  <abstract>
<p>This entry represents a structural domain found in both the histidine-containing phosphocarrier protein HPr, as well as its structural homologues, which includes the catabolite repression protein Crh found in <taxon tax_id="1423">Bacillus subtilis</taxon>. This domain has a alpha+beta structure found in two layers with an overall architecture of an open faced beta-sandwich in which a beta-sheet is packed against three alpha-helices. </p>
<p>The histidine-containing phosphocarrier  protein (HPr) is a central component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), which  transfers metabolic carbohydrates across the cell membrane in many bacterial  species [<cite idref="PUB00003612"/>, <cite idref="PUB00000073"/>]. PTS catalyses the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. The general mechanism of the PTS is as follows: a phosphoryl group from phosphoenolpyruvate  (PEP) is transferred to Enzyme I (EI) of the PTS, which in turn transfers it to the phosphoryl carrier protein (HPr) [<cite idref="PUB00003342"/>, <cite idref="PUB00005243"/>]. Phospho-HPr then transfers the phosphoryl group to a sugar-specific permease complex (enzymes EII/EIII). </p>
<p>HPr [<cite idref="PUB00004777"/>, <cite idref="PUB00005010"/>] is a small cytoplasmic protein of 70 to 90 amino acid residues. In some bacteria, HPr is a domain in a larger protein that includes a EIII(Fru) (IIA) domain and in some cases also the EI domain. A conserved histidine in the N-terminal section of HPr serves as an acceptor for the phosphoryl group of EI. In the central part of HPr, there is a conserved serine which (in Gram-positive bacteria only) is phosphorylated by an ATP-dependent protein kinase; a process which probably play a regulatory role in sugar transport. Regulatory phosphorylation at the conserved Ser residue does not appear to  induce large structural changes to the HPr domain, in particular in the region of the active site [<cite idref="PUB00025027"/>, <cite idref="PUB00032584"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0005351" class_type="GO">
      <category>Molecular Function</category>
      <description>sugar:hydrogen symporter activity</description>
    </classification>
    <classification id="GO:0009401" class_type="GO">
      <category>Biological Process</category>
      <description>phosphoenolpyruvate-dependent sugar phosphotransferase system</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O06976"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000073">
      <author_list>Meadow ND, Fox DK, Roseman S.</author_list>
      <title>The bacterial phosphoenolpyruvate: glycose phosphotransferase system.</title>
      <db_xref db="PUBMED" dbkey="2197982"/>
      <journal>Annu. Rev. Biochem.</journal>
      <location pages="497-542" volume="59"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00003342">
      <author_list>van Nuland NA, Boelens R, Scheek RM, Robillard GT.</author_list>
      <title>High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data.</title>
      <db_xref db="PUBMED" dbkey="7853396"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="1" pages="180-93" volume="246"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00003612">
      <author_list>Postma PW, Lengeler JW, Jacobson GR.</author_list>
      <title>Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.</title>
      <db_xref db="PUBMED" dbkey="8246840"/>
      <journal>Microbiol. Rev.</journal>
      <location issue="3" pages="543-94" volume="57"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004777">
      <author_list>Herzberg O, Reddy P, Sutrina S, Saier MH Jr, Reizer J, Kapadia G.</author_list>
      <title>Structure of the histidine-containing phosphocarrier protein HPr from Bacillus subtilis at 2.0-A resolution.</title>
      <db_xref db="PUBMED" dbkey="1549615"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="6" pages="2499-503" volume="89"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00032584">
      <author_list>Sridharan S, Razvi A, Scholtz JM, Sacchettini JC.</author_list>
      <title>The HPr proteins from the thermophile Bacillus stearothermophilus can form domain-swapped dimers.</title>
      <db_xref db="PUBMED" dbkey="15713472"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="3" pages="919-31" volume="346"/>
      <year>2005</year>
    </publication>
    <publication id="PUB00025027">
      <author_list>Audette GF, Engelmann R, Hengstenberg W, Deutscher J, Hayakawa K, Quail JW, Delbaere LT.</author_list>
      <title>The 1.9 A resolution structure of phospho-serine 46 HPr from Enterococcus faecalis.</title>
      <db_xref db="PUBMED" dbkey="11054290"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="4" pages="545-53" volume="303"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00005010">
      <author_list>Reizer J, Hoischen C, Reizer A, Pham TN, Saier MH Jr.</author_list>
      <title>Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.</title>
      <db_xref db="PUBMED" dbkey="7686067"/>
      <journal>Protein Sci.</journal>
      <location issue="4" pages="506-21" volume="2"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00005243">
      <author_list>Liao DI, Herzberg O.</author_list>
      <title>Refined structures of the active Ser83--&gt;Cys and impaired Ser46--&gt;Asp histidine-containing phosphocarrier proteins.</title>
      <db_xref db="PUBMED" dbkey="7704530"/>
      <journal>Structure</journal>
      <location issue="12" pages="1203-16" volume="2"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR005698"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR001020"/>
    <rel_ref ipr_ref="IPR002114"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR016258"/>
    <rel_ref ipr_ref="IPR016910"/>
  </found_in>
  <member_list>
    <db_xref protein_count="3109" db="PROFILE" dbkey="PS51350" name="PTS_HPR_DOM"/>
    <db_xref protein_count="2835" db="GENE3D" dbkey="G3DSA:3.30.1340.10" name="PTS_HPr_protein"/>
    <db_xref protein_count="3066" db="SSF" dbkey="SSF55594" name="HPr_protein"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00381"/>
    <db_xref db="BLOCKS" dbkey="IPB000032"/>
    <db_xref db="EC" dbkey="2.7.11"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1cm2"/>
    <db_xref db="PDB" dbkey="1cm3"/>
    <db_xref db="PDB" dbkey="1fu0"/>
    <db_xref db="PDB" dbkey="1ggr"/>
    <db_xref db="PDB" dbkey="1hdn"/>
    <db_xref db="PDB" dbkey="1j6t"/>
    <db_xref db="PDB" dbkey="1jem"/>
    <db_xref db="PDB" dbkey="1k1c"/>
    <db_xref db="PDB" dbkey="1ka5"/>
    <db_xref db="PDB" dbkey="1kkl"/>
    <db_xref db="PDB" dbkey="1kkm"/>
    <db_xref db="PDB" dbkey="1mo1"/>
    <db_xref db="PDB" dbkey="1mu4"/>
    <db_xref db="PDB" dbkey="1opd"/>
    <db_xref db="PDB" dbkey="1pch"/>
    <db_xref db="PDB" dbkey="1pfh"/>
    <db_xref db="PDB" dbkey="1poh"/>
    <db_xref db="PDB" dbkey="1ptf"/>
    <db_xref db="PDB" dbkey="1qfr"/>
    <db_xref db="PDB" dbkey="1qr5"/>
    <db_xref db="PDB" dbkey="1rzr"/>
    <db_xref db="PDB" dbkey="1sph"/>
    <db_xref db="PDB" dbkey="1txe"/>
    <db_xref db="PDB" dbkey="1vrc"/>
    <db_xref db="PDB" dbkey="1y51"/>
    <db_xref db="PDB" dbkey="1zvv"/>
    <db_xref db="PDB" dbkey="2ak7"/>
    <db_xref db="PDB" dbkey="2hid"/>
    <db_xref db="PDB" dbkey="2hpr"/>
    <db_xref db="PDB" dbkey="2jel"/>
    <db_xref db="PDB" dbkey="2nzu"/>
    <db_xref db="PDB" dbkey="2nzv"/>
    <db_xref db="PDB" dbkey="2oen"/>
    <db_xref db="PDB" dbkey="2rlz"/>
    <db_xref db="PDB" dbkey="3ccd"/>
    <db_xref db="PDB" dbkey="3eza"/>
    <db_xref db="PDB" dbkey="3ezb"/>
    <db_xref db="PDB" dbkey="3eze"/>
    <db_xref db="CATH" dbkey="3.30.1340.10"/>
    <db_xref db="SCOP" dbkey="d.94.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="3109"/>
    <taxon_data name="Cyanobacteria" proteins_count="5"/>
    <taxon_data name="Archaea" proteins_count="5"/>
    <taxon_data name="Eukaryota" proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
    <taxon_data name="Green Plants" proteins_count="3"/>
    <taxon_data name="Metazoa" proteins_count="1"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR005698"/>
  </sec_list>
</interpro>
<interpro id="IPR000033" protein_count="721" short_name="LDL_rcpt_classB_YWTD_rpt" type="Repeat">
  <name>Low-density lipoprotein receptor, class B (YWTD) repeat</name>
  <abstract>
<p> The low-density lipoprotein receptor (LDLR) is the major cholesterol-carrying lipoprotein of plasma, acting to regulate cholesterol homeostasis in mammalian cells. The LDL receptor binds LDL and transports it into cells by acidic endocytosis. In order to be internalized, the receptor-ligand complex must first cluster into clathrin-coated pits. Once inside the cell, the LDLR separates from its ligand, which is degraded in the lysosomes, while the receptor returns to the cell surface [<cite idref="PUB00017008"/>]. The internal dissociation of the LDLR with its ligand is mediated by proton pumps within the walls of the endosome that lower the pH. The LDLR is a multi-domain protein, containing: </p>
<p>
      <ul>
        <li>The ligand-binding domain contains seven or eight 40-amino acid LDLR class A (cysteine-rich) repeats, each of which contains a coordinated calcium ion and six cysteine residues involved in disulphide bond formation [<cite idref="PUB00000798"/>]. Similar domains have been found in other extracellular and membrane proteins [<cite idref="PUB00004868"/>]. </li>
      </ul>
    </p>
<p>
      <ul>
        <li>The second conserved region contains two EGF repeats, followed by six LDLR class B (YWTD) repeats, and another EGF repeat. The LDLR class B repeats each contain a conserved YWTD motif, and is predicted to form a beta-propeller structure [<cite idref="PUB00003391"/>]. This region is critical for ligand release and recycling of the receptor [<cite idref="PUB00017009"/>].</li>
      </ul>
    </p>
<p>
      <ul>
        <li>The third domain is rich in serine and threonine residues and contains clustered O-linked carbohydrate chains.</li>
      </ul>
    </p>
<p>
      <ul>
        <li>The fourth domain is the hydrophobic transmembrane region.</li>
      </ul>
    </p>
<p>
      <ul>
        <li>The fifth domain is the cytoplasmic tail that directs the receptor to clathrin-coated pits.</li>
      </ul>
    </p>
<p>LDLR is closely related in structure to several other receptors, including LRP1, LRP1b, megalin/LRP2, VLDL receptor, lipoprotein receptor, MEGF7/LRP4, and LRP8/apolipoprotein E receptor2); these proteins participate in a wide range of physiological processes, including the regulation of lipid metabolism, protection against atherosclerosis, neurodevelopment, and transport of nutrients and vitamins [<cite idref="PUB00042617"/>].</p>
<p>This entry represents the LDLR classB (YWTD) repeat, the structure of which has been solved [<cite idref="PUB00017010"/>]. The six YWTD repeats together fold into a six-bladed beta-propeller. Each blade of the propeller consists of four antiparallel beta-strands; the innermost strand of each blade is labeled 1 and the outermost strand, 4. The sequence repeats are offset with respect to the blades of the propeller, such that any given 40-residue YWTD repeat spans strands 24 of one propeller blade and strand 1 of the subsequent blade. This offset ensures circularization of the propeller because the last strand of the final sequence repeat acts as an innermost strand 1 of the blade that harbors strands 24 from the first sequence repeat. The repeat is found in a variety of proteins that include, vitellogenin receptor from <taxon tax_id="7227">Drosophila melanogaster</taxon>, low-density lipoprotein (LDL) receptor [<cite idref="PUB00000798"/>], preproepidermal growth factor, and nidogen (entactin).</p>
</abstract>
  <class_list>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01130"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01132"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P13368"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P98158"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q04833"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000798">
      <author_list>Yamamoto T, Davis CG, Brown MS, Schneider WJ, Casey ML, Goldstein JL, Russell DW.</author_list>
      <title>The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA.</title>
      <db_xref db="PUBMED" dbkey="6091915"/>
      <journal>Cell</journal>
      <location issue="1" pages="27-38" volume="39"/>
      <year>1984</year>
    </publication>
    <publication id="PUB00003391">
      <author_list>Springer TA.</author_list>
      <title>An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components.</title>
      <db_xref db="PUBMED" dbkey="9790844"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="4" pages="837-62" volume="283"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00004868">
      <author_list>Daly NL, Scanlon MJ, Djordjevic JT, Kroon PA, Smith R.</author_list>
      <title>Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor.</title>
      <db_xref db="PUBMED" dbkey="7603991"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="14" pages="6334-8" volume="92"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00042617">
      <author_list>May P, Woldt E, Matz RL, Boucher P.</author_list>
      <title>The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions.</title>
      <db_xref db="PUBMED" dbkey="17457719"/>
      <journal>Ann. Med.</journal>
      <location issue="3" pages="219-28" volume="39"/>
      <year>2007</year>
    </publication>
    <publication id="PUB00017008">
      <author_list>Brown MS, Goldstein JL.</author_list>
      <title>A receptor-mediated pathway for cholesterol homeostasis.</title>
      <db_xref db="PUBMED" dbkey="3513311"/>
      <journal>Science</journal>
      <location issue="4746" pages="34-47" volume="232"/>
      <year>1986</year>
    </publication>
    <publication id="PUB00017009">
      <author_list>Davis CG, Goldstein JL, Sudhof TC, Anderson RG, Russell DW, Brown MS.</author_list>
      <title>Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region.</title>
      <db_xref db="PUBMED" dbkey="3494949"/>
      <journal>Nature</journal>
      <location issue="6115" pages="760-5" volume="326"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00017010">
      <author_list>Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC.</author_list>
      <title>Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair.</title>
      <db_xref db="PUBMED" dbkey="11373616"/>
      <journal>Nat. Struct. Biol.</journal>
      <location issue="6" pages="499-504" volume="8"/>
      <year>2001</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR011042"/>
    <rel_ref ipr_ref="IPR016317"/>
    <rel_ref ipr_ref="IPR017049"/>
  </found_in>
  <member_list>
    <db_xref protein_count="546" db="PFAM" dbkey="PF00058" name="Ldl_recept_b"/>
    <db_xref protein_count="561" db="PROFILE" dbkey="PS51120" name="LDLRB"/>
    <db_xref protein_count="709" db="SMART" dbkey="SM00135" name="LY"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00058"/>
    <db_xref db="BLOCKS" dbkey="IPB000033"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC51120"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ijq"/>
    <db_xref db="PDB" dbkey="1n7d"/>
    <db_xref db="PDB" dbkey="1npe"/>
    <db_xref db="CATH" dbkey="2.120.10.30"/>
    <db_xref db="SCOP" dbkey="b.68.5.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="49"/>
    <taxon_data name="Cyanobacteria" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="9"/>
    <taxon_data name="Eukaryota" proteins_count="662"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="2"/>
    <taxon_data name="Rice spp." proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="34"/>
    <taxon_data name="Other Eukaryotes" proteins_count="10"/>
    <taxon_data name="Nematoda" proteins_count="12"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="12"/>
    <taxon_data name="Arthropoda" proteins_count="240"/>
    <taxon_data name="Fruit Fly" proteins_count="31"/>
    <taxon_data name="Chordata" proteins_count="310"/>
    <taxon_data name="Human" proteins_count="56"/>
    <taxon_data name="Mouse" proteins_count="51"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="9"/>
    <taxon_data name="Green Plants" proteins_count="9"/>
    <taxon_data name="Metazoa" proteins_count="642"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000034" protein_count="191" short_name="Laminin_B_type_IV" type="Domain">
  <name>Laminin B type IV</name>
  <abstract>
<p>Laminins represent a distinct family of extracellular matrix proteins present only in basement membranes in almost every animal tissue. They are heterotrimeric molecules composed of alpha, beta and gamma subunits  (formerly A, B1, and B2, respectively [<cite idref="PUB00016907"/>]) and form a cruciform structure consisting of 3 short arms, each formed by a different chain, and a long arm composed of all 3 chains, [<cite idref="PUB00001500"/>, <cite idref="PUB00016908"/>]. Most of the globular domains of the short arms correspond to one of two different motifs, the 200-residue laminin N-terminal (domain VI) (LN) module and the 250-residue laminin domain IV (L4) module [<cite idref="PUB00016909"/>].  All alpha chains share a unique C-terminal G domain which consists of five laminin G modules. The laminins can self-assemble, bind to other matrix macromolecules, and have unique and shared cell interactions mediated by integrins, dystroglycan, and other receptors.  There are at least 14 laminin isoforms that regulate a variety of cellular functions including cell adhesion, migration, proliferation, signalling and differentiation [<cite idref="PUB00016910"/>, <cite idref="PUB00016908"/>, <cite idref="PUB00016911"/>].</p>
<p>The laminin B domain (also known as domain IV) is an extracellular module of unknown function. It is found in a number of different proteins that include, heparan sulphate proteoglycan from basement membrane, a laminin-like protein from <taxon tax_id="6239">Caenorhabditis elegans</taxon> and laminin. Laminin IV domain is not found in short laminin chains (alpha4 or beta3). </p>
</abstract>
  <class_list>
    <classification id="GO:0007155" class_type="GO">
      <category>Biological Process</category>
      <description>cell adhesion</description>
    </classification>
    <classification id="GO:0031012" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular matrix</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A0JP86"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O15230"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02468"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P15215"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q06561"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001500">
      <author_list>Beck K, Hunter I, Engel J.</author_list>
      <title>Structure and function of laminin: anatomy of a multidomain glycoprotein.</title>
      <db_xref db="PUBMED" dbkey="2404817"/>
      <journal>FASEB J.</journal>
      <location issue="2" pages="148-60" volume="4"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00016907">
      <author_list>Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman H, Martin GR, Meneguzzi G, Paulsson M, Sanes J.</author_list>
      <title>A new nomenclature for the laminins.</title>
      <db_xref db="PUBMED" dbkey="7921537"/>
      <journal>Matrix Biol.</journal>
      <location issue="3" pages="209-11" volume="14"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00016908">
      <author_list>Timpl R, Brown JC.</author_list>
      <title>The laminins.</title>
      <db_xref db="PUBMED" dbkey="7827749"/>
      <journal>Matrix Biol.</journal>
      <location issue="4" pages="275-81" volume="14"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00016909">
      <author_list>Schulze B, Mann K, Poschl E, Yamada Y, Timpl R.</author_list>
      <title>Structural and functional analysis of the globular domain IVa of the laminin alpha 1 chain and its impact on an adjacent RGD site.</title>
      <db_xref db="PUBMED" dbkey="8615779"/>
      <journal>Biochem. J.</journal>
      <location pages="847-51" volume="314 ( Pt 3)"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00016911">
      <author_list>Tunggal P, Smyth N, Paulsson M, Ott MC.</author_list>
      <title>Laminins: structure and genetic regulation.</title>
      <db_xref db="PUBMED" dbkey="11054872"/>
      <journal>Microsc. Res. Tech.</journal>
      <location issue="3" pages="214-27" volume="51"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00016910">
      <author_list>Aumailley M, Smyth N.</author_list>
      <title>The role of laminins in basement membrane function.</title>
      <db_xref db="PUBMED" dbkey="9758133"/>
      <journal>J. Anat.</journal>
      <location pages="1-21" volume="193 ( Pt 1)"/>
      <year>1998</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR018031"/>
  </child_list>
  <member_list>
    <db_xref protein_count="183" db="PFAM" dbkey="PF00052" name="Laminin_B"/>
    <db_xref protein_count="190" db="PROFILE" dbkey="PS51115" name="LAMININ_IVA"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00052"/>
    <db_xref db="BLOCKS" dbkey="IPB000034"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC51115"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="2"/>
    <taxon_data name="Eukaryota" proteins_count="188"/>
    <taxon_data name="Nematoda" proteins_count="8"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="8"/>
    <taxon_data name="Arthropoda" proteins_count="78"/>
    <taxon_data name="Fruit Fly" proteins_count="14"/>
    <taxon_data name="Chordata" proteins_count="82"/>
    <taxon_data name="Human" proteins_count="19"/>
    <taxon_data name="Mouse" proteins_count="17"/>
    <taxon_data name="Metazoa" proteins_count="187"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018031"/>
  </sec_list>
</interpro>
<interpro id="IPR000035" protein_count="241" short_name="Alkylbase_DNA_glycsylse_CS" type="Conserved_site">
  <name>Alkylbase DNA glycosidase, conserved site</name>
  <abstract>
<p>Alkylbase DNA glycosidases [<cite idref="PUB00000053"/>] are  DNA repair  enzymes  that hydrolyse the deoxyribose N-glycosidic bond to excise various alkylated bases from a damaged DNA polymer. In <taxon tax_id="562">Escherichia coli</taxon> there  are two alkylbase DNA glycosidases: one (gene tag) which is constitutively expressed and  which is specific for the removal of 3-methyladenine (<db_xref db="EC" dbkey="3.2.2.20"/>), and one (gene alkA) which is induced during adaptation to alkylation and which can remove a variety of alkylation products (<db_xref db="EC" dbkey="3.2.2.21"/>). Tag and alkA do not share any region of sequence similarity. In yeast there is  an alkylbase DNA glycosidase (gene MAG1) [<cite idref="PUB00001200"/>, <cite idref="PUB00001201"/>], which can remove 3-methyladenine or 7-methyladenine and which is structurally related to alkA. MAG and alkA are both proteins of about 300 amino acid residues.  While the C- and N-terminal ends appear to be unrelated, there is a central region of about 130 residues which is well conserved.</p>
</abstract>
  <class_list>
    <classification id="GO:0003905" class_type="GO">
      <category>Molecular Function</category>
      <description>alkylbase DNA N-glycosylase activity</description>
    </classification>
    <classification id="GO:0006281" class_type="GO">
      <category>Biological Process</category>
      <description>DNA repair</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O94468"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P04395"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22134"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000053">
      <author_list>Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y.</author_list>
      <title>Regulation and expression of the adaptive response to alkylating agents.</title>
      <db_xref db="PUBMED" dbkey="3052269"/>
      <journal>Annu. Rev. Biochem.</journal>
      <location pages="133-57" volume="57"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00001200">
      <author_list>Berdal KG, Bjoras M, Bjelland S, Seeberg E.</author_list>
      <title>Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene.</title>
      <db_xref db="PUBMED" dbkey="2265619"/>
      <journal>EMBO J.</journal>
      <location issue="13" pages="4563-8" volume="9"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00001201">
      <author_list>Chen J, Derfler B, Samson L.</author_list>
      <title>Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage.</title>
      <db_xref db="PUBMED" dbkey="2265620"/>
      <journal>EMBO J.</journal>
      <location issue="13" pages="4569-75" volume="9"/>
      <year>1990</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR003265"/>
    <rel_ref ipr_ref="IPR011257"/>
  </found_in>
  <member_list>
    <db_xref protein_count="241" db="PROSITE" dbkey="PS00516" name="ALKYLBASE_DNA_GLYCOS"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS00516"/>
    <db_xref db="EC" dbkey="3.2.2.21"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00447"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1diz"/>
    <db_xref db="PDB" dbkey="1mpg"/>
    <db_xref db="PDB" dbkey="1pvs"/>
    <db_xref db="PDB" dbkey="3cvs"/>
    <db_xref db="PDB" dbkey="3cvt"/>
    <db_xref db="PDB" dbkey="3cw7"/>
    <db_xref db="PDB" dbkey="3cwa"/>
    <db_xref db="PDB" dbkey="3cws"/>
    <db_xref db="PDB" dbkey="3cwt"/>
    <db_xref db="PDB" dbkey="3cwu"/>
    <db_xref db="PDB" dbkey="3d4v"/>
    <db_xref db="CATH" dbkey="1.10.1670.10"/>
    <db_xref db="CATH" dbkey="1.10.340.30"/>
    <db_xref db="SCOP" dbkey="a.96.1.3"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="214"/>
    <taxon_data name="Archaea" proteins_count="3"/>
    <taxon_data name="Eukaryota" proteins_count="23"/>
    <taxon_data name="Fungi" proteins_count="23"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="7"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="23"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000036" protein_count="171" short_name="Peptidase_A26" type="Family">
  <name>Peptidase A26, omptin</name>
  <abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
 <li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and  binding. </p>
<p>Aspartic endopeptidases <db_xref db="EC" dbkey="3.4.23."/>  of vertebrate, fungal and retroviral origin have been characterised [<cite idref="PUB00006548"/>]. More recently, aspartic endopeptidases associated with the processing of bacterial type 4 prepilin [<cite idref="PUB00020023"/>] and archaean preflagellin have been described [<cite idref="PUB00035904"/>, <cite idref="PUB00014343"/>].</p>
<p>Structurally, aspartic endopeptidases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localised between the two lobes of the molecule. One lobe has probably evolved from the other through a gene duplication event in the distant past. In modern-day enzymes, although the three-dimensional structures are very similar, the amino acid sequences are more divergent, except for the catalytic site motif, which is very conserved. The presence and position of disulphide bridges are other conserved features of aspartic peptidases.
All or most aspartate peptidases are endopeptidases. These enzymes have been assigned into clans (proteins which are evolutionary related), and further sub-divided into families, largely on the basis of their tertiary structure.</p>
<p>This group of aspartic peptidases  belongs to the MEROPS family A26 (clan AF). The omptin family, comprises a number of novel outer membrane-associated
serine proteases that are distinct from trypsin-like proteases in that 
they cleave polypeptides between two basically-charged amino acids [<cite idref="PUB00002071"/>]. The enzyme is sensitive to the serine protease inhibitor diisopropylfluoro-phosphate, to divalent cations such as Cu<sup>2+</sup>, Zn<sup>2+</sup> and Fe<sup>2+</sup> [<cite idref="PUB00002071"/>], and is
temperature regulated, activity decreasing at lower temperatures [<cite idref="PUB00002071"/>, <cite idref="PUB00002246"/>]. Temperature regulation is most prominently shown in the <taxon tax_id="632">Yersinia pestis</taxon>
coagulase/fibrinolysin protein, where coagulase activity is prevalent 
below 30 degrees Celsius, and fibrinolysin (protease) activity is prevalent
above this point, the optimum temperature being 37 degrees [<cite idref="PUB00003795"/>]. It is possible that this assists in 'flea blockage' and transmission of the bacteria to animals [<cite idref="PUB00003795"/>].</p>
<p>The <taxon tax_id="562">Escherichia coli</taxon> OmpT has previously been classified as a serine protease with Ser(99) and His(212) as active site residues. The X-ray structure of the enzyme is inconsistent with this classification, and the involvement of a nucleophilic water molecule that is activated by the Asp(210)/His(212) catalytic dyad classifies this as a aspartic endopeptidase where activity is also strongly dependent on Asp(83) and Asp(85). Both may function in binding of the water molecule and/or oxyanion stabilisation. The proposed mechanism implies a novel proteolytic catalytic site [<cite idref="PUB00011706"/>, <cite idref="PUB00011707"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0004175" class_type="GO">
      <category>Molecular Function</category>
      <description>endopeptidase activity</description>
    </classification>
    <classification id="GO:0006508" class_type="GO">
      <category>Biological Process</category>
      <description>proteolysis</description>
    </classification>
    <classification id="GO:0009279" class_type="GO">
      <category>Cellular Component</category>
      <description>cell outer membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P09169"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002071">
      <author_list>Sugimura K, Nishihara T.</author_list>
      <title>Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT.</title>
      <db_xref db="PUBMED" dbkey="3056908"/>
      <journal>J. Bacteriol.</journal>
      <location issue="12" pages="5625-32" volume="170"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00002246">
      <author_list>Kaufmann A, Stierhof YD, Henning U.</author_list>
      <title>New outer membrane-associated protease of Escherichia coli K-12.</title>
      <db_xref db="PUBMED" dbkey="8288530"/>
      <journal>J. Bacteriol.</journal>
      <location issue="2" pages="359-67" volume="176"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00003795">
      <author_list>McDonough KA, Falkow S.</author_list>
      <title>A Yersinia pestis-specific DNA fragment encodes temperature-dependent coagulase and fibrinolysin-associated phenotypes.</title>
      <db_xref db="PUBMED" dbkey="2526282"/>
      <journal>Mol. Microbiol.</journal>
      <location issue="6" pages="767-75" volume="3"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00006548">
      <author_list>Szecsi PB.</author_list>
      <title>The aspartic proteases.</title>
      <db_xref db="PUBMED" dbkey="1455179"/>
      <journal>Scand. J. Clin. Lab. Invest. Suppl.</journal>
      <location pages="5-22" volume="210"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00011706">
      <author_list>Kramer RA, Vandeputte-Rutten L, de Roon GJ, Gros P, Dekker N, Egmond MR.</author_list>
      <title>Identification of essential acidic residues of outer membrane protease OmpT supports a novel active site.</title>
      <db_xref db="PUBMED" dbkey="11576541"/>
      <journal>FEBS Lett.</journal>
      <location issue="3" pages="426-30" volume="505"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00014343">
      <author_list>Bardy SL, Jarrell KF.</author_list>
      <title>Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae.</title>
      <db_xref db="PUBMED" dbkey="14622420"/>
      <journal>Mol. Microbiol.</journal>
      <location issue="4" pages="1339-47" volume="50"/>
      <year>2003</year>
    </publication>
    <publication id="PUB00011707">
      <author_list>Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P.</author_list>
      <title>Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site.</title>
      <db_xref db="PUBMED" dbkey="11566868"/>
      <journal>EMBO J.</journal>
      <location issue="18" pages="5033-9" volume="20"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00035904">
      <author_list>Ng SY, Chaban B, Jarrell KF.</author_list>
      <title>Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications.</title>
      <db_xref db="PUBMED" dbkey="16983194"/>
      <journal>J. Mol. Microbiol. Biotechnol.</journal>
      <location issue="3-5" pages="167-91" volume="11"/>
      <year>2006</year>
    </publication>
    <publication id="PUB00020023">
      <author_list>LaPointe CF, Taylor RK.</author_list>
      <title>The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases.</title>
      <db_xref db="PUBMED" dbkey="10625704"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="2" pages="1502-10" volume="275"/>
      <year>2000</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR020080"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR020079"/>
  </contains>
  <member_list>
    <db_xref protein_count="170" db="PFAM" dbkey="PF01278" name="Omptin"/>
    <db_xref protein_count="150" db="PIRSF" dbkey="PIRSF001522" name="Peptidase_A26"/>
    <db_xref protein_count="161" db="PRINTS" dbkey="PR00482" name="OMPTIN"/>
    <db_xref protein_count="162" db="GENE3D" dbkey="G3DSA:2.40.128.90" name="Peptidase_A26"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01278"/>
    <db_xref db="MSDsite" dbkey="PS00834"/>
    <db_xref db="MSDsite" dbkey="PS00835"/>
    <db_xref db="BLOCKS" dbkey="IPB000036"/>
    <db_xref db="EC" dbkey="3.4.23"/>
    <db_xref db="MEROPS" dbkey="A26"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00657"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1i78"/>
    <db_xref db="CATH" dbkey="2.40.128.90"/>
    <db_xref db="SCOP" dbkey="f.4.4.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="171"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000037" protein_count="2049" short_name="SsrA-bd_prot" type="Family">
  <name>SsrA-binding protein</name>
  <abstract>
<p>This entry represents SsrA-binding protein (aka small protein B or SmpB), which is a unique RNA-binding protein that is conserved throughout the bacterial kingdom and is an essential component of the SsrA quality-control system. Tight recognition of codon-anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the 'tmRNA-SmpB' system (transfer messenger RNA-small protein B). SmpB binds specifically to the ssrA RNA (tmRNA) and is required for stable association of ssrA with ribosomes. SsrA RNA recognises ribosomes stalled on defective messages and acts to mediate the addition of a short peptide tag to the C terminus of the partially synthesised nascent polypeptide chain. Within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon-anticodon pairing occurs [<cite idref="PUB00045920"/>]. The SsrA-tagged protein is then degraded by C-terminal-specific proteases. Formation of an SmpB-SsrA complex appears to be critical in mediating SsrA activity after aminoacylation with alanine but prior to the transpeptidation reaction that couples this alanine to the nascent chain [<cite idref="PUB00006449"/>]. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon. </p>
</abstract>
  <class_list>
    <classification id="GO:0003723" class_type="GO">
      <category>Molecular Function</category>
      <description>RNA binding</description>
    </classification>
    <classification id="GO:0006412" class_type="GO">
      <category>Biological Process</category>
      <description>translation</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A2BTJ8"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O66640"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P74355"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00006449">
      <author_list>Karzai AW, Susskind MM, Sauer RT.</author_list>
      <title>SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA).</title>
      <db_xref db="PUBMED" dbkey="10393194"/>
      <journal>EMBO J.</journal>
      <location issue="13" pages="3793-9" volume="18"/>
      <year>1999</year>
    </publication>
    <publication id="PUB00045920">
      <author_list>Nonin-Lecomte S, Germain-Amiot N, Gillet R, Hallier M, Ponchon L, Dardel F, Felden B.</author_list>
      <title>Ribosome hijacking: a role for small protein B during trans-translation.</title>
      <db_xref db="PUBMED" dbkey="19132006"/>
      <journal>EMBO Rep.</journal>
      <location issue="2" pages="160-5" volume="10"/>
      <year>2009</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR020081"/>
  </contains>
  <member_list>
    <db_xref protein_count="2032" db="PFAM" dbkey="PF01668" name="SmpB"/>
    <db_xref protein_count="2014" db="PRODOM" dbkey="PD004488" name="SmpB"/>
    <db_xref protein_count="2022" db="TIGRFAMs" dbkey="TIGR00086" name="smpB"/>
    <db_xref protein_count="1941" db="GENE3D" dbkey="G3DSA:2.40.280.10" name="SmpB"/>
    <db_xref protein_count="2040" db="SSF" dbkey="SSF74982" name="SmpB"/>
    <db_xref protein_count="1894" db="HAMAP" dbkey="MF_00023" name="SmpB"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01668"/>
    <db_xref db="MSDsite" dbkey="PS01317"/>
    <db_xref db="BLOCKS" dbkey="IPB000037"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC01021"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1j1h"/>
    <db_xref db="PDB" dbkey="1k8h"/>
    <db_xref db="PDB" dbkey="1p6v"/>
    <db_xref db="PDB" dbkey="1wjx"/>
    <db_xref db="PDB" dbkey="2czj"/>
    <db_xref db="CATH" dbkey="2.40.280.10"/>
    <db_xref db="SCOP" dbkey="b.111.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2041"/>
    <taxon_data name="Cyanobacteria" proteins_count="55"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="8"/>
    <taxon_data name="Fungi" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="3"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000038" protein_count="1164" short_name="Cell_Div_GTP-bd" type="Family">
  <name>Cell division/GTP binding protein</name>
  <abstract>
<p>Septins constitute a eukaryotic family of guanine nucleotide-binding proteins, most of which polymerise to form filaments [<cite idref="PUB00021050"/>]. Members of the family were first identified by genetic screening for <taxon tax_id="4932">Saccharomyces cerevisiae</taxon> (Baker's yeast) mutants defective in cytokinesis [<cite idref="PUB00010278"/>]. Temperature-sensitive mutations in four genes, CDC3, CDC10, CDC11 and CDC12, were found to cause cell-cycle arrest and defects in bud growth and cytokinesis. The protein products of these genes localise at the division plane between mother and daughter cells, indicating a role in mother-daughter separation during cytokinesis [<cite idref="PUB00010277"/>]. Members of the family were therefore termed septins to reflect their role in septation and cell division. The identification of septin homologues in higher eukaryotes, which localise to the cleavage furrow in dividing cells, supports an orthologous function in cytokinesis. Septins have since been identified in most eukaryotes, except plants [<cite idref="PUB00010366"/>].</p>
<p>Septins are approximately 40-50 kDa in molecular mass, and typically comprise a conserved central core domain (more than 35% sequence identity between mammalian and yeast homologues) flanked by more divergent N- and C-termini. Most septins possess a P-loop motif in their N-terminal domain (which is characteristic of GTP-binding proteins), and a predicted C-terminal coiled-coil domain [<cite idref="PUB00010351"/>].</p>
<p>A number of septin interaction partners have been identified in yeast, many of which are components of the budding site selection machinery, kinase cascades or of the ubiquitination pathway. It has been proposed that septins may act as a scaffold that provides an interaction  matrix for other proteins [<cite idref="PUB00010366"/>, <cite idref="PUB00010351"/>]. In mammals, septins have been shown to regulate vesicle dynamics [<cite idref="PUB00010422"/>]. Mammalian septins have also been implicated in a variety of other cellular processes, including apoptosis, carcinogenesis and neurodegeneration [<cite idref="PUB00010316"/>].</p>
<p>This entry represents a variety of septins and homologous sequences involved in the cell division process.</p>
</abstract>
  <class_list>
    <classification id="GO:0005525" class_type="GO">
      <category>Molecular Function</category>
      <description>GTP binding</description>
    </classification>
    <classification id="GO:0007049" class_type="GO">
      <category>Biological Process</category>
      <description>cell cycle</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A0LY86"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P25342"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P40797"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P42208"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q14141"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00010277">
      <author_list>Haarer BK, Pringle JR.</author_list>
      <title>Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck.</title>
      <db_xref db="PUBMED" dbkey="3316985"/>
      <journal>Mol. Cell. Biol.</journal>
      <location issue="10" pages="3678-87" volume="7"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00010278">
      <author_list>Hartwell LH.</author_list>
      <title>Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis.</title>
      <db_xref db="PUBMED" dbkey="4950437"/>
      <journal>Exp. Cell Res.</journal>
      <location issue="2" pages="265-76" volume="69"/>
      <year>1971</year>
    </publication>
    <publication id="PUB00010316">
      <author_list>Kinoshita M, Kumar S, Mizoguchi A, Ide C, Kinoshita A, Haraguchi T, Hiraoka Y, Noda M.</author_list>
      <title>Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures.</title>
      <db_xref db="PUBMED" dbkey="9203580"/>
      <journal>Genes Dev.</journal>
      <location issue="12" pages="1535-47" volume="11"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00010351">
      <author_list>Field CM, Kellogg D.</author_list>
      <title>Septins: cytoskeletal polymers or signalling GTPases?</title>
      <db_xref db="PUBMED" dbkey="10481176"/>
      <journal>Trends Cell Biol.</journal>
      <location issue="10" pages="387-94" volume="9"/>
      <year>1999</year>
    </publication>
    <publication id="PUB00021050">
      <author_list>Kinoshita M.</author_list>
      <title>The septins.</title>
      <db_xref db="PUBMED" dbkey="14611653"/>
      <journal>Genome Biol.</journal>
      <location issue="11" pages="236" volume="4"/>
      <year>2003</year>
    </publication>
    <publication id="PUB00010366">
      <author_list>Longtine MS, Theesfeld CL, McMillan JN, Weaver E, Pringle JR, Lew DJ.</author_list>
      <title>Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae.</title>
      <db_xref db="PUBMED" dbkey="10805747"/>
      <journal>Mol. Cell. Biol.</journal>
      <location issue="11" pages="4049-61" volume="20"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00010422">
      <author_list>Kinoshita M, Noda M.</author_list>
      <title>Roles of septins in the mammalian cytokinesis machinery.</title>
      <db_xref db="PUBMED" dbkey="11942624"/>
      <journal>Cell Struct. Funct.</journal>
      <location issue="6" pages="667-70" volume="26"/>
      <year>2001</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR016491"/>
  </child_list>
  <member_list>
    <db_xref protein_count="1131" db="PANTHER" dbkey="PTHR18884" name="Cell_Div_GTP_bd"/>
    <db_xref protein_count="945" db="PFAM" dbkey="PF00735" name="Septin"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00735"/>
    <db_xref db="BLOCKS" dbkey="IPB000038"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="114"/>
    <taxon_data name="Cyanobacteria" proteins_count="7"/>
    <taxon_data name="Eukaryota" proteins_count="1048"/>
    <taxon_data name="Fungi" proteins_count="462"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="44"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Nematoda" proteins_count="4"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="4"/>
    <taxon_data name="Arthropoda" proteins_count="96"/>
    <taxon_data name="Fruit Fly" proteins_count="11"/>
    <taxon_data name="Chordata" proteins_count="361"/>
    <taxon_data name="Human" proteins_count="93"/>
    <taxon_data name="Mouse" proteins_count="49"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="32"/>
    <taxon_data name="Plastid Group" proteins_count="20"/>
    <taxon_data name="Green Plants" proteins_count="20"/>
    <taxon_data name="Metazoa" proteins_count="967"/>
    <taxon_data name="Plastid Group" proteins_count="20"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR016491"/>
  </sec_list>
</interpro>
<interpro id="IPR000039" protein_count="330" short_name="Ribosomal_L18e" type="Family">
  <name>Ribosomal protein L18e</name>
  <abstract>
<p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [<cite idref="PUB00007068"/>, <cite idref="PUB00007069"/>].  About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. </p>
<p>Many of ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [<cite idref="PUB00007069"/>, <cite idref="PUB00007070"/>].</p>
<p>Members of this family are large subunit ribosomal proteins which are found in the Eukaryota and Archaea. These proteins have 115 to 187 amino-acid residues. The family consists of:<ul>
<li>Vertebrate L18 (known as L14 in Xenopus) [<cite idref="PUB00000657"/>]</li>
<li>Plant L18</li>
<li>Yeast L18 (Rp28)</li>
<li>
          <taxon tax_id="2238">Haloarcula marismortui</taxon> (Halobacterium marismortui) HL29</li>
<li>
          <taxon tax_id="2285">Sulfolobus acidocaldarius</taxon> HL29e</li>
      </ul>
</p>
</abstract>
  <class_list>
    <classification id="GO:0003735" class_type="GO">
      <category>Molecular Function</category>
      <description>structural constituent of ribosome</description>
    </classification>
    <classification id="GO:0005622" class_type="GO">
      <category>Cellular Component</category>
      <description>intracellular</description>
    </classification>
    <classification id="GO:0005840" class_type="GO">
      <category>Cellular Component</category>
      <description>ribosome</description>
    </classification>
    <classification id="GO:0006412" class_type="GO">
      <category>Biological Process</category>
      <description>translation</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O45946"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07279"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P35980"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q07020"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9VS34"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000657">
      <author_list>Puder M, Barnard GF, Staniunas RJ, Steele GD Jr, Chen LB.</author_list>
      <title>Nucleotide and deduced amino acid sequence of human ribosomal protein L18.</title>
      <db_xref db="PUBMED" dbkey="8218404"/>
      <journal>Biochim. Biophys. Acta</journal>
      <location issue="1" pages="134-6" volume="1216"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00007068">
      <author_list>Ramakrishnan V, Moore PB.</author_list>
      <title>Atomic structures at last: the ribosome in 2000.</title>
      <db_xref db="PUBMED" dbkey="11297922"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="2" pages="144-54" volume="11"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00007069">
      <author_list>Maguire BA, Zimmermann RA.</author_list>
      <title>The ribosome in focus.</title>
      <db_xref db="PUBMED" dbkey="11290319"/>
      <journal>Cell</journal>
      <location issue="6" pages="813-6" volume="104"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00007070">
      <author_list>Chandra Sanyal S, Liljas A.</author_list>
      <title>The end of the beginning: structural studies of ribosomal proteins.</title>
      <db_xref db="PUBMED" dbkey="11114498"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="6" pages="633-6" volume="10"/>
      <year>2000</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR021131"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR021132"/>
  </contains>
  <member_list>
    <db_xref protein_count="330" db="PANTHER" dbkey="PTHR10934" name="Ribosomal_L18e"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00828"/>
    <db_xref db="MSDsite" dbkey="PS01106"/>
    <db_xref db="BLOCKS" dbkey="IPB000039"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00850"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Archaea" proteins_count="24"/>
    <taxon_data name="Eukaryota" proteins_count="305"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="3"/>
    <taxon_data name="Rice spp." proteins_count="6"/>
    <taxon_data name="Fungi" proteins_count="66"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="4"/>
    <taxon_data name="Other Eukaryotes" proteins_count="5"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="42"/>
    <taxon_data name="Fruit Fly" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="70"/>
    <taxon_data name="Human" proteins_count="4"/>
    <taxon_data name="Mouse" proteins_count="4"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="54"/>
    <taxon_data name="Green Plants" proteins_count="54"/>
    <taxon_data name="Metazoa" proteins_count="202"/>
    <taxon_data name="Plastid Group" proteins_count="23"/>
    <taxon_data name="Plastid Group" proteins_count="9"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000040" protein_count="233" short_name="AML1_Runt" type="Family">
  <name>Acute myeloid leukemia 1 protein (AML 1)/Runt</name>
  <abstract>
The AML1 gene is rearranged by the t(8;21) translocation in acute myeloid
               leukemia [<cite idref="PUB00004459"/>]. The gene is highly similar to the <taxon tax_id="7227">Drosophila melanogaster</taxon> segmentation 
               gene runt and to the mouse transcription factor PEBP2 alpha subunit gene [<cite idref="PUB00004459"/>].
               The region of shared similarity, known as the Runt domain, is responsible 
               for DNA-binding and protein-protein interaction. 
    <p> In addition to the highly-conserved Runt domain, the AML-1 gene product
               carries a putative ATP-binding site (GRSGRGKS), and has a C-terminal region
               rich in proline and serine residues. The protein (known as acute myeloid 
               leukemia 1 protein, oncogene AML-1, core-binding factor (CBF), alpha-B 
               subunit, etc.) binds to the core site, 5'-pygpyggt-3', of a number of
               enhancers and promoters. </p>
<p>The protein is a heterodimer of alpha- and beta-subunits. The alpha-subunit
               binds DNA as a monomer, and appears to have a role in the development of
               normal hematopoiesis. CBF is a nuclear protein expressed in numerous tissue
               types, except brain and heart; highest levels have been found to occur in 
               thymus, bone marrow and peripheral blood.</p>
</abstract>
  <class_list>
    <classification id="GO:0003677" class_type="GO">
      <category>Molecular Function</category>
      <description>DNA binding</description>
    </classification>
    <classification id="GO:0005524" class_type="GO">
      <category>Molecular Function</category>
      <description>ATP binding</description>
    </classification>
    <classification id="GO:0005634" class_type="GO">
      <category>Cellular Component</category>
      <description>nucleus</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22814"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q01196"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q03347"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q63046"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004459">
      <author_list>Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E, Ohki M.</author_list>
      <title>Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia.</title>
      <db_xref db="PUBMED" dbkey="7651838"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="14" pages="2762-9" volume="23"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR016554"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR013524"/>
    <rel_ref ipr_ref="IPR013711"/>
  </contains>
  <member_list>
    <db_xref protein_count="233" db="PANTHER" dbkey="PTHR11950" name="AML1_Runt"/>
    <db_xref protein_count="207" db="PRINTS" dbkey="PR00967" name="ONCOGENEAML1"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000040"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1cmo"/>
    <db_xref db="PDB" dbkey="1co1"/>
    <db_xref db="PDB" dbkey="1e50"/>
    <db_xref db="PDB" dbkey="1ean"/>
    <db_xref db="PDB" dbkey="1eao"/>
    <db_xref db="PDB" dbkey="1eaq"/>
    <db_xref db="PDB" dbkey="1h9d"/>
    <db_xref db="PDB" dbkey="1hjb"/>
    <db_xref db="PDB" dbkey="1hjc"/>
    <db_xref db="PDB" dbkey="1io4"/>
    <db_xref db="PDB" dbkey="1ljm"/>
    <db_xref db="PDB" dbkey="2j6w"/>
    <db_xref db="CATH" dbkey="2.60.40.720"/>
    <db_xref db="SCOP" dbkey="b.2.5.6"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="233"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="99"/>
    <taxon_data name="Fruit Fly" proteins_count="8"/>
    <taxon_data name="Chordata" proteins_count="122"/>
    <taxon_data name="Human" proteins_count="22"/>
    <taxon_data name="Mouse" proteins_count="12"/>
    <taxon_data name="Metazoa" proteins_count="233"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR016554"/>
  </sec_list>
</interpro>
<interpro id="IPR000043" protein_count="1367" short_name="S-Ado-L-homoCys_hydrolase" type="Family">
  <name>S-adenosyl-L-homocysteine hydrolase</name>
  <abstract>
<p>S-adenosyl-L-homocysteine hydrolase (<db_xref db="EC" dbkey="3.3.1.1"/>) (AdoHcyase) is an enzyme of the activated methyl cycle, responsible for the reversible hydration of S-adenosyl-L-homocysteine into adenosine and homocysteine. AdoHcyase is an ubiquitous enzyme which binds and requires NAD<sup>+</sup> as a cofactor. AdoHcyase is a highly conserved protein [<cite idref="PUB00004791"/>] of about 430 to 470 amino acids. The family contains a glycine-rich region in the central part of AdoHcyase, which is thought to be involved in NAD-binding.</p>
</abstract>
  <class_list>
    <classification id="GO:0004013" class_type="GO">
      <category>Molecular Function</category>
      <description>adenosylhomocysteinase activity</description>
    </classification>
    <classification id="GO:0006730" class_type="GO">
      <category>Biological Process</category>
      <description>one-carbon metabolic process</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P23526"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P27604"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P39954"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P50245"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P50247"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004791">
      <author_list>Sganga MW, Aksamit RR, Cantoni GL, Bauer CE.</author_list>
      <title>Mutational and nucleotide sequence analysis of S-adenosyl-L-homocysteine hydrolase from Rhodobacter capsulatus.</title>
      <db_xref db="PUBMED" dbkey="1631127"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="14" pages="6328-32" volume="89"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR015878"/>
    <rel_ref ipr_ref="IPR016040"/>
    <rel_ref ipr_ref="IPR020082"/>
  </contains>
  <member_list>
    <db_xref protein_count="1355" db="PANTHER" dbkey="PTHR23420" name="Ad_hcy_hydrolase"/>
    <db_xref protein_count="1333" db="PFAM" dbkey="PF05221" name="AdoHcyase"/>
    <db_xref protein_count="1200" db="PIRSF" dbkey="PIRSF001109" name="Ad_hcy_hydrolase"/>
    <db_xref protein_count="1188" db="TIGRFAMs" dbkey="TIGR00936" name="ahcY"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF05221"/>
    <db_xref db="MSDsite" dbkey="PS00738"/>
    <db_xref db="MSDsite" dbkey="PS00739"/>
    <db_xref db="BLOCKS" dbkey="IPB000043"/>
    <db_xref db="EC" dbkey="3.3.1.1"/>
    <db_xref db="PRIAM" dbkey="PRI000861"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00603"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a7a"/>
    <db_xref db="PDB" dbkey="1b3r"/>
    <db_xref db="PDB" dbkey="1d4f"/>
    <db_xref db="PDB" dbkey="1k0u"/>
    <db_xref db="PDB" dbkey="1ky4"/>
    <db_xref db="PDB" dbkey="1ky5"/>
    <db_xref db="PDB" dbkey="1li4"/>
    <db_xref db="PDB" dbkey="1v8b"/>
    <db_xref db="PDB" dbkey="1xwf"/>
    <db_xref db="PDB" dbkey="2h5l"/>
    <db_xref db="PDB" dbkey="3d64"/>
    <db_xref db="CATH" dbkey="3.40.50.1480"/>
    <db_xref db="CATH" dbkey="3.40.50.720"/>
    <db_xref db="SCOP" dbkey="c.2.1.4"/>
    <db_xref db="SCOP" dbkey="c.23.12.3"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="872"/>
    <taxon_data name="Cyanobacteria" proteins_count="55"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="94"/>
    <taxon_data name="Eukaryota" proteins_count="401"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="14"/>
    <taxon_data name="Rice spp." proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="70"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="7"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="57"/>
    <taxon_data name="Fruit Fly" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="83"/>
    <taxon_data name="Human" proteins_count="15"/>
    <taxon_data name="Mouse" proteins_count="16"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="112"/>
    <taxon_data name="Green Plants" proteins_count="112"/>
    <taxon_data name="Metazoa" proteins_count="237"/>
    <taxon_data name="Plastid Group" proteins_count="28"/>
    <taxon_data name="Plastid Group" proteins_count="10"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000044" protein_count="25" short_name="Uncharacterised_lipoprot_MG045" type="Family">
  <name>Uncharacterised lipoprotein MG045</name>
  <abstract>
<p>  Mycoplasma genitalium has the smallest known genome of any free-living organism. Its complete genome sequence has been determined by whole-genome random sequencing and assembly [<cite idref="PUB00005212"/>]. Only 470 putative coding regions were identified, including genes for DNA replication, transcription and translation, DNA repair, cellular transport and energy metabolism [<cite idref="PUB00005212"/>]. A hypothetical protein from the MG045 gene [<cite idref="PUB00002233"/>] has a homologue of similarly unknown function in M.pneumoniae; these, in turn, share regions of similarity with a family of putative lipoproteins from Ureaplasma parvum and Ureaplasma urealyticum. </p>
</abstract>
  <class_list>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P47291"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002233">
      <author_list>Peterson SN, Hu PC, Bott KF, Hutchison CA 3rd.</author_list>
      <title>A survey of the Mycoplasma genitalium genome by using random sequencing.</title>
      <db_xref db="PUBMED" dbkey="8253680"/>
      <journal>J. Bacteriol.</journal>
      <location issue="24" pages="7918-30" volume="175"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00005212">
      <author_list>Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA 3rd, Venter JC.</author_list>
      <title>The minimal gene complement of Mycoplasma genitalium.</title>
      <db_xref db="PUBMED" dbkey="7569993"/>
      <journal>Science</journal>
      <location issue="5235" pages="397-403" volume="270"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="25" db="PRINTS" dbkey="PR00905" name="MG045FAMILY"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF02030"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="25"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000045" protein_count="2278" short_name="Peptidase_A24A_prepilin_IV" type="Domain">
  <name>Peptidase A24A, prepilin type IV</name>
  <abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
 <li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and  binding. </p>
<p>Aspartic endopeptidases <db_xref db="EC" dbkey="3.4.23."/>  of vertebrate, fungal and retroviral origin have been characterised [<cite idref="PUB00006548"/>]. More recently, aspartic endopeptidases associated with the processing of bacterial type 4 prepilin [<cite idref="PUB00020023"/>] and archaean preflagellin have been described [<cite idref="PUB00035904"/>, <cite idref="PUB00014343"/>].</p>
<p>Structurally, aspartic endopeptidases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localised between the two lobes of the molecule. One lobe has probably evolved from the other through a gene duplication event in the distant past. In modern-day enzymes, although the three-dimensional structures are very similar, the amino acid sequences are more divergent, except for the catalytic site motif, which is very conserved. The presence and position of disulphide bridges are other conserved features of aspartic peptidases.
All or most aspartate peptidases are endopeptidases. These enzymes have been assigned into clans (proteins which are evolutionary related), and further sub-divided into families, largely on the basis of their tertiary structure.</p>
<p>This group of aspartic endopeptidases belong to MEROPS peptidase family A24 (type IV prepilin peptidase family, clan AD), subfamily A24A.</p>
<p>Bacteria produce a number of protein precursors that undergo post-translational methylation and proteolysis prior to secretion as active
proteins. Type IV prepilin leader peptidases are enzymes that mediate this type of post-translational modification. Type IV pilin is a protein found on the surface of <taxon tax_id="287">Pseudomonas aeruginosa</taxon>, <taxon tax_id="485">Neisseria gonorrhoeae</taxon> and other Gram-negative
pathogens. Pilin subunits attach the infecting organism to the surface of
host epithelial cells. They are synthesised as prepilin subunits, which
differ from mature pilin by virtue of containing a 6-8 residue leader
peptide consisting of charged amino acids. Mature type IV pilins also
contain a methylated N-terminal phenylalanine residue.</p>
<p> The bifunctional enzyme prepilin peptidase (PilD) from <taxon tax_id="287">Pseudomonas aeruginosa</taxon> is a key determinant in both type-IV pilus biogenesis and extracellular protein secretion, in its roles as a leader peptidase and methyl transferase (MTase). It is responsible for endopeptidic cleavage of the unique leader peptides that characterise type-IV pilin    precursors, as well as proteins with homologous leader sequences that are essential components of the general secretion pathway found in a variety of                        Gram-negative pathogens. Following removal of the leader peptides, the same  enzyme is responsible for the second posttranslational modification that characterises the type-IV pilins and their homologues, namely N-methylation of the newly exposed N-terminal amino acid residue [<cite idref="PUB00014532"/>]. </p>
</abstract>
  <class_list>
    <classification id="GO:0004190" class_type="GO">
      <category>Molecular Function</category>
      <description>aspartic-type endopeptidase activity</description>
    </classification>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A2T195"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O26521"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P72640"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00006548">
      <author_list>Szecsi PB.</author_list>
      <title>The aspartic proteases.</title>
      <db_xref db="PUBMED" dbkey="1455179"/>
      <journal>Scand. J. Clin. Lab. Invest. Suppl.</journal>
      <location pages="5-22" volume="210"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00014343">
      <author_list>Bardy SL, Jarrell KF.</author_list>
      <title>Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae.</title>
      <db_xref db="PUBMED" dbkey="14622420"/>
      <journal>Mol. Microbiol.</journal>
      <location issue="4" pages="1339-47" volume="50"/>
      <year>2003</year>
    </publication>
    <publication id="PUB00014532">
      <author_list>Lory S, Strom MS.</author_list>
      <title>Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa--a review.</title>
      <db_xref db="PUBMED" dbkey="9224881"/>
      <journal>Gene</journal>
      <location issue="1" pages="117-21" volume="192"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00020023">
      <author_list>LaPointe CF, Taylor RK.</author_list>
      <title>The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases.</title>
      <db_xref db="PUBMED" dbkey="10625704"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="2" pages="1502-10" volume="275"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00035904">
      <author_list>Ng SY, Chaban B, Jarrell KF.</author_list>
      <title>Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications.</title>
      <db_xref db="PUBMED" dbkey="16983194"/>
      <journal>J. Mol. Microbiol. Biotechnol.</journal>
      <location issue="3-5" pages="167-91" volume="11"/>
      <year>2006</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR014032"/>
  </found_in>
  <member_list>
    <db_xref protein_count="2278" db="PFAM" dbkey="PF01478" name="Peptidase_A24"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01478"/>
    <db_xref db="BLOCKS" dbkey="IPB000045"/>
    <db_xref db="MEROPS" dbkey="A24"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2185"/>
    <taxon_data name="Cyanobacteria" proteins_count="47"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="87"/>
    <taxon_data name="Eukaryota" proteins_count="3"/>
    <taxon_data name="Chordata" proteins_count="1"/>
    <taxon_data name="Mouse" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
    <taxon_data name="Green Plants" proteins_count="2"/>
    <taxon_data name="Metazoa" proteins_count="1"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000046" protein_count="25" short_name="NK1_rcpt" type="Family">
  <name>Neurokinin NK1 receptor</name>
  <abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>Neuropeptide receptors are present in very small quantities in the cell
and are embedded tightly in the plasma membrane. The neuropeptides exhibit
a high degree of functional diversity through both regulation of peptide
production and through peptide-receptor interaction [<cite idref="PUB00002518"/>]. The mammalian
tachykinin system consists of 3 distinct peptides: substance P, substance
K and neuromedin K. All possess a common spectrum of biological activities,
including sensory transmission in the nervous system and contraction/
relaxation of peripheral smooth muscles, and each interacts with a
specific receptor type.</p>
<p>In the brain, high concentrations of the NK1 receptor are found in striatum,
olfactory bulb, dendate gyrus, locus coeruleus and spinal chord [<cite idref="PUB00010571"/>]. In
peripheral tissues NK1 receptors are found in smooth muscle (e.g., ileum
and bladder), enteric neurons, secretory glands (e.g. parotid), cells of
the immune system and vascular endothelium. NK1 receptors activate the
phosphoinositide pathway through a pertussis-toxin-insensitive G-protein [<cite idref="PUB00010572"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0004995" class_type="GO">
      <category>Molecular Function</category>
      <description>tachykinin receptor activity</description>
    </classification>
    <classification id="GO:0005886" class_type="GO">
      <category>Cellular Component</category>
      <description>plasma membrane</description>
    </classification>
    <classification id="GO:0007186" class_type="GO">
      <category>Biological Process</category>
      <description>G-protein coupled receptor protein signaling pathway</description>
    </classification>
    <classification id="GO:0016021" class_type="GO">
      <category>Cellular Component</category>
      <description>integral to membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P14600"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P25103"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P30548"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000131">
      <author_list>Birnbaumer L.</author_list>
      <title>G proteins in signal transduction.</title>
      <db_xref db="PUBMED" dbkey="2111655"/>
      <journal>Annu. Rev. Pharmacol. Toxicol.</journal>
      <location pages="675-705" volume="30"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00002477">
      <author_list>Casey PJ, Gilman AG.</author_list>
      <title>G protein involvement in receptor-effector coupling.</title>
      <db_xref db="PUBMED" dbkey="2830256"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="6" pages="2577-80" volume="263"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00002518">
      <author_list>Yokota Y, Sasai Y, Tanaka K, Fujiwara T, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S.</author_list>
      <title>Molecular characterization of a functional cDNA for rat substance P receptor.</title>
      <db_xref db="PUBMED" dbkey="2478537"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="30" pages="17649-52" volume="264"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00004960">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8386361"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="167-76" volume="6"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004961">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Fingerprinting G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8170923"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="195-203" volume="7"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00010571">
      <author_list>Yip J, Chahl LA.</author_list>
      <title>Localization of tachykinin receptors and Fos-like immunoreactivity induced by substance P in guinea-pig brain.</title>
      <db_xref db="PUBMED" dbkey="11071315"/>
      <journal>Clin. Exp. Pharmacol. Physiol.</journal>
      <location issue="11" pages="943-6" volume="27"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00010572">
      <author_list>Gilbert R, Ryan JS, Horackova M, Smith FM, Kelly ME.</author_list>
      <title>Actions of substance P on membrane potential and ionic currents in guinea pig stellate ganglion neurons.</title>
      <db_xref db="PUBMED" dbkey="9575785"/>
      <journal>Am. J. Physiol.</journal>
      <location issue="4 Pt 1" pages="C892-903" volume="274"/>
      <year>1998</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR001681"/>
  </parent_list>
  <member_list>
    <db_xref protein_count="25" db="PRINTS" dbkey="PR01024" name="NEUROKININ1R"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000046"/>
    <db_xref db="IUPHAR" dbkey="3029"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="25"/>
    <taxon_data name="Chordata" proteins_count="25"/>
    <taxon_data name="Human" proteins_count="4"/>
    <taxon_data name="Mouse" proteins_count="3"/>
    <taxon_data name="Metazoa" proteins_count="25"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000047" protein_count="1740" short_name="HTH_lambrepressr" type="Domain">
  <name>Helix-turn-helix motif, lambda-like repressor</name>
  <abstract>
Helix-turn-helix (HTH) motifs are found in all known DNA binding proteins
that regulate gene expression. The motif consists of approximately 20 
residues and is characterised by 2 alpha-helices, which make intimate 
contacts with the DNA and are joined by a short turn. The second helix of 
the HTH motif binds to DNA via a number of hydrogen bonds and hydrophobic 
interactions, which occur between specific side chains and the exposed 
bases and thymine methyl groups within the major groove of the DNA [<cite idref="PUB00002521"/>]. The
first helix helps to stabilise the structure [<cite idref="PUB00003978"/>]. 
<p>The HTH motif is very similar in sequence and structure to the N-terminal 
region of the lamda [<cite idref="PUB00000036"/>] and other repressor proteins, and has also been 
identified in many other DNA-binding proteins on the basis of sequence and 
structural similarity [<cite idref="PUB00002521"/>]. One of the principal differences between HTH 
motifs in these different proteins arises from the stereochemical 
requirement for glycine in the turn, which is needed to avoid steric 
interference of the beta-carbon with the main chain: for cro and other 
repressors the Gly appears to be mandatory, while for many of the homeotic
and other DNA-binding proteins the requirement is relaxed.</p>
</abstract>
  <class_list>
    <classification id="GO:0003700" class_type="GO">
      <category>Molecular Function</category>
      <description>transcription factor activity</description>
    </classification>
    <classification id="GO:0005634" class_type="GO">
      <category>Cellular Component</category>
      <description>nucleus</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O08686"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O23208"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02836"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P20269"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P56178"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000036">
      <author_list>Pabo CO, Sauer RT.</author_list>
      <title>Protein-DNA recognition.</title>
      <db_xref db="PUBMED" dbkey="6236744"/>
      <journal>Annu. Rev. Biochem.</journal>
      <location pages="293-321" volume="53"/>
      <year>1984</year>
    </publication>
    <publication id="PUB00002521">
      <author_list>Brennan RG, Matthews BW.</author_list>
      <title>The helix-turn-helix DNA binding motif.</title>
      <db_xref db="PUBMED" dbkey="2644244"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="4" pages="1903-6" volume="264"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003978">
      <author_list>Sauer RT, Yocum RR, Doolittle RF, Lewis M, Pabo CO.</author_list>
      <title>Homology among DNA-binding proteins suggests use of a conserved super-secondary structure.</title>
      <db_xref db="PUBMED" dbkey="6896364"/>
      <journal>Nature</journal>
      <location issue="5873" pages="447-51" volume="298"/>
      <year>1982</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR017970"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR000747"/>
    <rel_ref ipr_ref="IPR001356"/>
    <rel_ref ipr_ref="IPR009057"/>
    <rel_ref ipr_ref="IPR012287"/>
    <rel_ref ipr_ref="IPR015703"/>
    <rel_ref ipr_ref="IPR015704"/>
    <rel_ref ipr_ref="IPR015705"/>
    <rel_ref ipr_ref="IPR020479"/>
  </found_in>
  <member_list>
    <db_xref protein_count="1740" db="PRINTS" dbkey="PR00031" name="HTHREPRESSR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000047"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1du0"/>
    <db_xref db="PDB" dbkey="1enh"/>
    <db_xref db="PDB" dbkey="1hdd"/>
    <db_xref db="PDB" dbkey="1p7i"/>
    <db_xref db="PDB" dbkey="1p7j"/>
    <db_xref db="PDB" dbkey="1ztr"/>
    <db_xref db="PDB" dbkey="2hdd"/>
    <db_xref db="PDB" dbkey="2jwt"/>
    <db_xref db="PDB" dbkey="2p81"/>
    <db_xref db="PDB" dbkey="3hdd"/>
    <db_xref db="CATH" dbkey="1.10.10.60"/>
    <db_xref db="SCOP" dbkey="a.4.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="1739"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="30"/>
    <taxon_data name="Rice spp." proteins_count="61"/>
    <taxon_data name="Fungi" proteins_count="7"/>
    <taxon_data name="Nematoda" proteins_count="13"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="13"/>
    <taxon_data name="Arthropoda" proteins_count="358"/>
    <taxon_data name="Fruit Fly" proteins_count="31"/>
    <taxon_data name="Chordata" proteins_count="658"/>
    <taxon_data name="Human" proteins_count="59"/>
    <taxon_data name="Mouse" proteins_count="54"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="338"/>
    <taxon_data name="Green Plants" proteins_count="338"/>
    <taxon_data name="Metazoa" proteins_count="1401"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000048" protein_count="4511" short_name="IQ_CaM-bd_region" type="Region">
  <name>IQ calmodulin-binding region</name>
  <abstract>
<p>Calmodulin (CaM) is recognised as a major calcium sensor and orchestrator of  regulatory events through its interaction with a diverse group of cellular proteins. Three classes of recognition motifs exist for many of the known CaM binding proteins; the IQ motif as a consensus for Ca<sup>2+</sup>-independent binding and two related motifs for Ca<sup>2+</sup>-dependent binding, termed
18-14 and 1-5-10 based on the position of conserved hydrophobic residues [<cite idref="PUB00001532"/>].</p>
<p>The regulatory domain of scallop myosin is a three-chain protein complex that
 switches on this motor in response to Ca<sup>2+</sup> binding. Side-chain interactions link the two light chains in tandem to adjacent segments of the heavy chain bearing the IQ-sequence motif. The Ca<sup>2+</sup>-binding site is a novel EF-hand motif on the  essential light chain and is stabilised by linkages involving the heavy chain and both light chains, accounting for the requirement of all three chains for Ca<sup>2+</sup> binding and regulation in the intact myosin molecule [<cite idref="PUB00004175"/>].</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P05661"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P12844"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P12883"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P19524"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P27671"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001532">
      <author_list>Rhoads AR, Friedberg F.</author_list>
      <title>Sequence motifs for calmodulin recognition.</title>
      <db_xref db="PUBMED" dbkey="9141499"/>
      <journal>FASEB J.</journal>
      <location issue="5" pages="331-40" volume="11"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00004175">
      <author_list>Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Gyorgyi AG, Cohen C.</author_list>
      <title>Structure of the regulatory domain of scallop myosin at 2.8 A resolution.</title>
      <db_xref db="PUBMED" dbkey="8127365"/>
      <journal>Nature</journal>
      <location issue="6469" pages="306-12" volume="368"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018243"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR001422"/>
    <rel_ref ipr_ref="IPR001696"/>
    <rel_ref ipr_ref="IPR008052"/>
    <rel_ref ipr_ref="IPR008053"/>
    <rel_ref ipr_ref="IPR008054"/>
    <rel_ref ipr_ref="IPR012008"/>
    <rel_ref ipr_ref="IPR012105"/>
    <rel_ref ipr_ref="IPR015650"/>
  </found_in>
  <member_list>
    <db_xref protein_count="2291" db="PFAM" dbkey="PF00612" name="IQ"/>
    <db_xref protein_count="4216" db="PROFILE" dbkey="PS50096" name="IQ"/>
    <db_xref protein_count="3768" db="SMART" dbkey="SM00015" name="IQ"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00612"/>
    <db_xref db="BLOCKS" dbkey="IPB000048"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50096"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1b7t"/>
    <db_xref db="PDB" dbkey="1br1"/>
    <db_xref db="PDB" dbkey="1br2"/>
    <db_xref db="PDB" dbkey="1br4"/>
    <db_xref db="PDB" dbkey="1d0x"/>
    <db_xref db="PDB" dbkey="1d0y"/>
    <db_xref db="PDB" dbkey="1d0z"/>
    <db_xref db="PDB" dbkey="1d1a"/>
    <db_xref db="PDB" dbkey="1d1b"/>
    <db_xref db="PDB" dbkey="1d1c"/>
    <db_xref db="PDB" dbkey="1dfk"/>
    <db_xref db="PDB" dbkey="1dfl"/>
    <db_xref db="PDB" dbkey="1fmv"/>
    <db_xref db="PDB" dbkey="1fmw"/>
    <db_xref db="PDB" dbkey="1jwy"/>
    <db_xref db="PDB" dbkey="1jx2"/>
    <db_xref db="PDB" dbkey="1kk7"/>
    <db_xref db="PDB" dbkey="1kk8"/>
    <db_xref db="PDB" dbkey="1kqm"/>
    <db_xref db="PDB" dbkey="1kwo"/>
    <db_xref db="PDB" dbkey="1l2o"/>
    <db_xref db="PDB" dbkey="1lvk"/>
    <db_xref db="PDB" dbkey="1mma"/>
    <db_xref db="PDB" dbkey="1mmd"/>
    <db_xref db="PDB" dbkey="1mmg"/>
    <db_xref db="PDB" dbkey="1mmn"/>
    <db_xref db="PDB" dbkey="1mnd"/>
    <db_xref db="PDB" dbkey="1mne"/>
    <db_xref db="PDB" dbkey="1oe9"/>
    <db_xref db="PDB" dbkey="1qvi"/>
    <db_xref db="PDB" dbkey="1s5g"/>
    <db_xref db="PDB" dbkey="1scm"/>
    <db_xref db="PDB" dbkey="1sr6"/>
    <db_xref db="PDB" dbkey="1vom"/>
    <db_xref db="PDB" dbkey="1w7i"/>
    <db_xref db="PDB" dbkey="1w7j"/>
    <db_xref db="PDB" dbkey="1wdc"/>
    <db_xref db="PDB" dbkey="2mys"/>
    <db_xref db="CATH" dbkey="4.10.270.10"/>
    <db_xref db="SCOP" dbkey="c.37.1.9"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="198"/>
    <taxon_data name="Cyanobacteria" proteins_count="6"/>
    <taxon_data name="Archaea" proteins_count="3"/>
    <taxon_data name="Eukaryota" proteins_count="4305"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="118"/>
    <taxon_data name="Rice spp." proteins_count="224"/>
    <taxon_data name="Fungi" proteins_count="344"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="24"/>
    <taxon_data name="Other Eukaryotes" proteins_count="31"/>
    <taxon_data name="Other Eukaryotes" proteins_count="37"/>
    <taxon_data name="Nematoda" proteins_count="30"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="30"/>
    <taxon_data name="Arthropoda" proteins_count="585"/>
    <taxon_data name="Fruit Fly" proteins_count="90"/>
    <taxon_data name="Chordata" proteins_count="1326"/>
    <taxon_data name="Human" proteins_count="235"/>
    <taxon_data name="Mouse" proteins_count="210"/>
    <taxon_data name="Virus" proteins_count="6"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="20"/>
    <taxon_data name="Plastid Group" proteins_count="946"/>
    <taxon_data name="Green Plants" proteins_count="946"/>
    <taxon_data name="Metazoa" proteins_count="2519"/>
    <taxon_data name="Plastid Group" proteins_count="314"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="180"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="52"/>
    <taxon_data name="Other Eukaryotes" proteins_count="20"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000049" protein_count="1178" short_name="ET-Flavoprotein_bsu_CS" type="Conserved_site">
  <name>Electron transfer flavoprotein, beta-subunit, conserved site</name>
  <abstract>
The electron  transfer flavoprotein (ETF) [<cite idref="PUB00004936"/>, <cite idref="PUB00005086"/>]
serves as a  specific electron
acceptor for various mitochondrial dehydrogenases.  ETF transfers electrons to
the  main  respiratory chain  via  ETF-ubiquinone  oxidoreductase.  ETF  is an
heterodimer that consist of  an  alpha  and  a beta subunit and which bind one
molecule of FAD per dimer. A similar system also exists in some bacteria.
The beta  subunit  of  ETF  is  a protein of about 28 Kd which is structurally
related to  the  bacterial  nitrogen  fixation protein fixA which could play a
role in a redox process and feed electrons to ferredoxin.
The beta subunit protein is distantly related to and forms a
heterodimer with the alpha subunit <db_xref db="INTERPRO" dbkey="IPR001308"/>.
</abstract>
  <class_list>
    <classification id="GO:0009055" class_type="GO">
      <category>Molecular Function</category>
      <description>electron carrier activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A2XQV4"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P38117"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P42940"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9DCW4"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9LSW8"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004936">
      <author_list>Finocchiaro G, Ikeda Y, Ito M, Tanaka K.</author_list>
      <title>Biosynthesis, molecular cloning and sequencing of electron transfer flavoprotein.</title>
      <db_xref db="PUBMED" dbkey="2326318"/>
      <journal>Prog. Clin. Biol. Res.</journal>
      <location pages="637-52" volume="321"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00005086">
      <author_list>Tsai MH, Saier MH Jr.</author_list>
      <title>Phylogenetic characterization of the ubiquitous electron transfer flavoprotein families ETF-alpha and ETF-beta.</title>
      <db_xref db="PUBMED" dbkey="8525056"/>
      <journal>Res. Microbiol.</journal>
      <location issue="5" pages="397-404" volume="146"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR012255"/>
    <rel_ref ipr_ref="IPR014729"/>
    <rel_ref ipr_ref="IPR014730"/>
  </found_in>
  <member_list>
    <db_xref protein_count="1178" db="PROSITE" dbkey="PS01065" name="ETF_BETA"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS01065"/>
    <db_xref db="COMe" dbkey="PRX000051"/>
    <db_xref db="BLOCKS" dbkey="IPB000049"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00816"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1efp"/>
    <db_xref db="PDB" dbkey="1efv"/>
    <db_xref db="PDB" dbkey="1o94"/>
    <db_xref db="PDB" dbkey="1o95"/>
    <db_xref db="PDB" dbkey="1o96"/>
    <db_xref db="PDB" dbkey="1o97"/>
    <db_xref db="PDB" dbkey="1t9g"/>
    <db_xref db="PDB" dbkey="2a1t"/>
    <db_xref db="PDB" dbkey="2a1u"/>
    <db_xref db="PDB" dbkey="3clr"/>
    <db_xref db="PDB" dbkey="3cls"/>
    <db_xref db="PDB" dbkey="3clt"/>
    <db_xref db="PDB" dbkey="3clu"/>
    <db_xref db="CATH" dbkey="3.40.50.620"/>
    <db_xref db="SCOP" dbkey="c.26.2.3"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1066"/>
    <taxon_data name="Cyanobacteria" proteins_count="3"/>
    <taxon_data name="Archaea" proteins_count="4"/>
    <taxon_data name="Eukaryota" proteins_count="107"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="3"/>
    <taxon_data name="Rice spp." proteins_count="3"/>
    <taxon_data name="Fungi" proteins_count="41"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Arthropoda" proteins_count="23"/>
    <taxon_data name="Fruit Fly" proteins_count="2"/>
    <taxon_data name="Chordata" proteins_count="17"/>
    <taxon_data name="Human" proteins_count="2"/>
    <taxon_data name="Mouse" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="16"/>
    <taxon_data name="Green Plants" proteins_count="16"/>
    <taxon_data name="Metazoa" proteins_count="87"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000052" protein_count="996" short_name="Pltvir_coat" type="Domain">
  <name>Potex/carlavirus coat protein</name>
  <abstract>
<p>Potexviruses and Carlaviruses are plant-infecting viruses whose genome consist of a single-stranded RNA molecule encapsided in a coat protein. The genome of many Potexviruses is known  and their coat protein sequence has been shown to be rather well conserved [<cite idref="PUB00003128"/>]. The same observation applies to the coat protein of a variety of Carlaviruses whose sequences are related to those of Potexviruses [<cite idref="PUB00003127"/>, <cite idref="PUB00003145"/>]. The coat proteins of Potexviruses and of Carlaviruses
contain from 190 to 300 amino acid residues. The best conserved region of these coat proteins is located in the central part.</p>
</abstract>
  <class_list>
    <classification id="GO:0005198" class_type="GO">
      <category>Molecular Function</category>
      <description>structural molecule activity</description>
    </classification>
    <classification id="GO:0019028" class_type="GO">
      <category>Cellular Component</category>
      <description>viral capsid</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07699"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00003127">
      <author_list>MacKenzie DJ, Tremaine JH, Stace-Smith R.</author_list>
      <title>Organization and interviral homologies of the 3'-terminal portion of potato virus S RNA.</title>
      <db_xref db="PUBMED" dbkey="2732711"/>
      <journal>J. Gen. Virol.</journal>
      <location pages="1053-63" volume="70 ( Pt 5)"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003128">
      <author_list>Abouhaidar MG, Lai R.</author_list>
      <title>Nucleotide sequence of the 3'-terminal region of clover yellow mosaic virus RNA.</title>
      <db_xref db="PUBMED" dbkey="2738582"/>
      <journal>J. Gen. Virol.</journal>
      <location pages="1871-5" volume="70 ( Pt 7)"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003145">
      <author_list>Henderson J, Gibbs MJ, Edwards ML, Clarke VA, Gardner KA, Cooper JI.</author_list>
      <title>Partial nucleotide sequence of poplar mosaic virus RNA confirms its classification as a carlavirus.</title>
      <db_xref db="PUBMED" dbkey="1629709"/>
      <journal>J. Gen. Virol.</journal>
      <location pages="1887-90" volume="73 ( Pt 7)"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="996" db="PFAM" dbkey="PF00286" name="Flexi_CP"/>
    <db_xref protein_count="955" db="PRINTS" dbkey="PR00232" name="POTXCARLCOAT"/>
    <db_xref protein_count="838" db="PROSITE" dbkey="PS00418" name="POTEX_CARLAVIRUS_COAT"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00286"/>
    <db_xref db="MSDsite" dbkey="PS00418"/>
    <db_xref db="BLOCKS" dbkey="IPB000052"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00346"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Virus" proteins_count="996"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000053" protein_count="1187" short_name="Pyrmidine_PPase" type="Family">
  <name>Pyrimidine-nucleoside phosphorylase</name>
  <abstract>
<p>Two highly similar activities are represented in this group: thymidine phosphorylase (TP, gene deoA, <db_xref db="EC" dbkey="2.4.2.4"/>) and pyrimidine-nucleoside phosphorylase (PyNP, gene pdp, <db_xref db="EC" dbkey="2.4.2.2"/>). Both are dimeric enzymes that function in the salvage pathway to catalyse the reversible phosphorolysis of pyrimidine nucleosides to the free base and sugar moieties. In the case of thymidine phosphorylase, thymidine (and to a lesser extent, 2'-deoxyuridine) is lysed to produce thymine (or uracil) and 2'-deoxyribose-1-phosphate. Pyrimidine-nucleoside phosphorylase performs the analogous reaction on thymidine (to produce the same products) and uridine (to produce uracil and ribose-1-phosphate). PyNP is typically the only pyrimidine nucleoside phosphorylase encoded by Gram positive bacteria, while eukaryotes and proteobacteria encode two: TP, and the unrelated uridine phosphorylase. In humans, TP was originally characterised as platelet-derived endothelial cell growth factor and gliostatin [<cite idref="PUB00010722"/>]. Structurally, the enzymes are homodimers, each composed of a rigid all alpha-helix lobe and a mixed alpha-helix/beta-sheet lobe, which are connected by a flexible hinge [<cite idref="PUB00010723"/>, <cite idref="PUB00010724"/>]. Prior to substrate binding, the lobes are separated by a large cleft. A functional active site and subsequent catalysis occurs upon closing of the cleft. The active site, composed of a phosphate binding site and a (deoxy)ribonucleotide binding site within the cleft region, is highly conserved between the two enzymes of this group. Active site residues (Escherichia coli DeoA numbering) include the phosphate binding Lys84 and Ser86 (close to a glycine-rich loop), Ser113, and Thr123, and the pyrimidine nucleoside-binding Arg171, Ser186, and Lys190. Sequence comparison between the active site residues for both enzymes reveals only one difference [<cite idref="PUB00010724"/>], which has been proposed to partially mediate substrate specificity. In TP, position 111 is a methionine, while the analogous position in PyNP is lysine. It should be noted that the uncharacterised archaeal members of this family differ in a number of respects from either of the characterised activities. The residue at position 108 is lysine, indicating the activity might be PyNP-like (though the determinants of substrate specificity have not been fully elucidated). Position 171 is glutamate (negative charge side chain) rather than arginine (positive charge side chain). In addition, a large loop that may "lock in" the substrates within the active site is much smaller than in the characterised members. It is not clear what effect these and other differences have on activity and specificity.</p>
</abstract>
  <class_list>
    <classification id="GO:0006206" class_type="GO">
      <category>Biological Process</category>
      <description>pyrimidine base metabolic process</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A0B6C9"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07650"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P19971"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q5FVR2"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q99N42"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00010722">
      <author_list>Griffiths L, Stratford IJ.</author_list>
      <title>Platelet-derived endothelial cell growth factor thymidine phosphorylase in tumour growth and response to therapy.</title>
      <db_xref db="PUBMED" dbkey="9310231"/>
      <journal>Br. J. Cancer</journal>
      <location issue="6" pages="689-93" volume="76"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00010723">
      <author_list>Pugmire MJ, Cook WJ, Jasanoff A, Walter MR, Ealick SE.</author_list>
      <title>Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase.</title>
      <db_xref db="PUBMED" dbkey="9698549"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="2" pages="285-99" volume="281"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00010724">
      <author_list>Pugmire MJ, Ealick SE.</author_list>
      <title>The crystal structure of pyrimidine nucleoside phosphorylase in a closed conformation.</title>
      <db_xref db="PUBMED" dbkey="9817849"/>
      <journal>Structure</journal>
      <location issue="11" pages="1467-79" volume="6"/>
      <year>1998</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR013466"/>
    <rel_ref ipr_ref="IPR018090"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR000312"/>
    <rel_ref ipr_ref="IPR013102"/>
    <rel_ref ipr_ref="IPR017459"/>
    <rel_ref ipr_ref="IPR017872"/>
    <rel_ref ipr_ref="IPR020072"/>
  </contains>
  <member_list>
    <db_xref protein_count="1182" db="PANTHER" dbkey="PTHR10515" name="Pyrmidine_PPase"/>
    <db_xref protein_count="1120" db="PIRSF" dbkey="PIRSF000478" name="TP_PyNP"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000053"/>
    <db_xref db="EC" dbkey="2.4.2.4"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00557"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1azy"/>
    <db_xref db="PDB" dbkey="1brw"/>
    <db_xref db="PDB" dbkey="1otp"/>
    <db_xref db="PDB" dbkey="1tpt"/>
    <db_xref db="PDB" dbkey="1uou"/>
    <db_xref db="PDB" dbkey="2dsj"/>
    <db_xref db="PDB" dbkey="2j0f"/>
    <db_xref db="PDB" dbkey="2tpt"/>
    <db_xref db="CATH" dbkey="1.20.970.10"/>
    <db_xref db="CATH" dbkey="3.40.1030.10"/>
    <db_xref db="CATH" dbkey="3.90.1170.30"/>
    <db_xref db="SCOP" dbkey="a.46.2.1"/>
    <db_xref db="SCOP" dbkey="c.27.1.1"/>
    <db_xref db="SCOP" dbkey="d.41.3.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1121"/>
    <taxon_data name="Archaea" proteins_count="46"/>
    <taxon_data name="Eukaryota" proteins_count="20"/>
    <taxon_data name="Chordata" proteins_count="15"/>
    <taxon_data name="Human" proteins_count="5"/>
    <taxon_data name="Mouse" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="17"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR013466"/>
    <sec_ac acc="IPR018090"/>
  </sec_list>
</interpro>
<interpro id="IPR000054" protein_count="454" short_name="Ribosomal_L31e" type="Family">
  <name>Ribosomal protein L31e</name>
  <abstract>
<p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [<cite idref="PUB00007068"/>, <cite idref="PUB00007069"/>].  About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. </p>
<p>Many of ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [<cite idref="PUB00007069"/>, <cite idref="PUB00007070"/>].</p>
<p>A number of eukaryotic and archaebacterial large subunit ribosomal
proteins can be grouped on the basis of sequence similarities.
These proteins have 87 to 128 amino-acid residues. This family consists of:
<li>Yeast L34</li>
<li>Archaeal L31 [<cite idref="PUB00000605"/>]</li>
<li>Plants L31</li>
<li>Mammalian L31 [<cite idref="PUB00001348"/>]</li>
    </p>
</abstract>
  <class_list>
    <classification id="GO:0003735" class_type="GO">
      <category>Molecular Function</category>
      <description>structural constituent of ribosome</description>
    </classification>
    <classification id="GO:0005622" class_type="GO">
      <category>Cellular Component</category>
      <description>intracellular</description>
    </classification>
    <classification id="GO:0005840" class_type="GO">
      <category>Cellular Component</category>
      <description>ribosome</description>
    </classification>
    <classification id="GO:0006412" class_type="GO">
      <category>Biological Process</category>
      <description>translation</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P0C2H8"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P62899"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P62900"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9U332"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9V597"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000605">
      <author_list>Bergmann U, Arndt E.</author_list>
      <title>Evidence for an additional archaebacterial gene cluster in Halobacterium marismortui encoding ribosomal proteins HL46e and HL30.</title>
      <db_xref db="PUBMED" dbkey="2207169"/>
      <journal>Biochim. Biophys. Acta</journal>
      <location issue="1-3" pages="56-60" volume="1050"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00001348">
      <author_list>Tanaka T, Kuwano Y, Kuzumaki T, Ishikawa K, Ogata K.</author_list>
      <title>Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L31.</title>
      <db_xref db="PUBMED" dbkey="3816785"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="1" pages="45-8" volume="162"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00007068">
      <author_list>Ramakrishnan V, Moore PB.</author_list>
      <title>Atomic structures at last: the ribosome in 2000.</title>
      <db_xref db="PUBMED" dbkey="11297922"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="2" pages="144-54" volume="11"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00007069">
      <author_list>Maguire BA, Zimmermann RA.</author_list>
      <title>The ribosome in focus.</title>
      <db_xref db="PUBMED" dbkey="11290319"/>
      <journal>Cell</journal>
      <location issue="6" pages="813-6" volume="104"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00007070">
      <author_list>Chandra Sanyal S, Liljas A.</author_list>
      <title>The end of the beginning: structural studies of ribosomal proteins.</title>
      <db_xref db="PUBMED" dbkey="11114498"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="6" pages="633-6" volume="10"/>
      <year>2000</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR020052"/>
  </contains>
  <member_list>
    <db_xref protein_count="417" db="PANTHER" dbkey="PTHR10956" name="Ribosomal_L31e"/>
    <db_xref protein_count="453" db="PFAM" dbkey="PF01198" name="Ribosomal_L31e"/>
    <db_xref protein_count="427" db="PRODOM" dbkey="PD006030" name="Ribosomal_L31e"/>
    <db_xref protein_count="430" db="GENE3D" dbkey="G3DSA:3.10.440.10" name="Ribosomal_L31e"/>
    <db_xref protein_count="443" db="SSF" dbkey="SSF54575" name="Ribosomal_L31e"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01198"/>
    <db_xref db="MSDsite" dbkey="PS01144"/>
    <db_xref db="BLOCKS" dbkey="IPB000054"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00881"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ffk"/>
    <db_xref db="PDB" dbkey="1jj2"/>
    <db_xref db="PDB" dbkey="1k73"/>
    <db_xref db="PDB" dbkey="1k8a"/>
    <db_xref db="PDB" dbkey="1k9m"/>
    <db_xref db="PDB" dbkey="1kc8"/>
    <db_xref db="PDB" dbkey="1kd1"/>
    <db_xref db="PDB" dbkey="1kqs"/>
    <db_xref db="PDB" dbkey="1m1k"/>
    <db_xref db="PDB" dbkey="1m90"/>
    <db_xref db="PDB" dbkey="1n8r"/>
    <db_xref db="PDB" dbkey="1nji"/>
    <db_xref db="PDB" dbkey="1q7y"/>
    <db_xref db="PDB" dbkey="1q81"/>
    <db_xref db="PDB" dbkey="1q82"/>
    <db_xref db="PDB" dbkey="1q86"/>
    <db_xref db="PDB" dbkey="1qvf"/>
    <db_xref db="PDB" dbkey="1qvg"/>
    <db_xref db="PDB" dbkey="1s72"/>
    <db_xref db="PDB" dbkey="1vq4"/>
    <db_xref db="PDB" dbkey="1vq5"/>
    <db_xref db="PDB" dbkey="1vq6"/>
    <db_xref db="PDB" dbkey="1vq7"/>
    <db_xref db="PDB" dbkey="1vq8"/>
    <db_xref db="PDB" dbkey="1vq9"/>
    <db_xref db="PDB" dbkey="1vqk"/>
    <db_xref db="PDB" dbkey="1vql"/>
    <db_xref db="PDB" dbkey="1vqm"/>
    <db_xref db="PDB" dbkey="1vqn"/>
    <db_xref db="PDB" dbkey="1vqo"/>
    <db_xref db="PDB" dbkey="1vqp"/>
    <db_xref db="PDB" dbkey="1w2b"/>
    <db_xref db="PDB" dbkey="1yhq"/>
    <db_xref db="PDB" dbkey="1yi2"/>
    <db_xref db="PDB" dbkey="1yij"/>
    <db_xref db="PDB" dbkey="1yit"/>
    <db_xref db="PDB" dbkey="1yj9"/>
    <db_xref db="PDB" dbkey="1yjn"/>
    <db_xref db="PDB" dbkey="1yjw"/>
    <db_xref db="PDB" dbkey="2otj"/>
    <db_xref db="PDB" dbkey="2otl"/>
    <db_xref db="PDB" dbkey="2qa4"/>
    <db_xref db="PDB" dbkey="2qex"/>
    <db_xref db="PDB" dbkey="3cc2"/>
    <db_xref db="PDB" dbkey="3cc4"/>
    <db_xref db="PDB" dbkey="3cc7"/>
    <db_xref db="PDB" dbkey="3cce"/>
    <db_xref db="PDB" dbkey="3ccj"/>
    <db_xref db="PDB" dbkey="3ccl"/>
    <db_xref db="PDB" dbkey="3ccm"/>
    <db_xref db="PDB" dbkey="3ccq"/>
    <db_xref db="PDB" dbkey="3ccr"/>
    <db_xref db="PDB" dbkey="3ccs"/>
    <db_xref db="PDB" dbkey="3ccu"/>
    <db_xref db="PDB" dbkey="3ccv"/>
    <db_xref db="PDB" dbkey="3cd6"/>
    <db_xref db="PDB" dbkey="3cma"/>
    <db_xref db="PDB" dbkey="3cme"/>
    <db_xref db="PDB" dbkey="3cpw"/>
    <db_xref db="CATH" dbkey="3.10.440.10"/>
    <db_xref db="SCOP" dbkey="d.29.1.1"/>
    <db_xref db="SCOP" dbkey="i.1.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Archaea" proteins_count="95"/>
    <taxon_data name="Eukaryota" proteins_count="359"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
    <taxon_data name="Rice spp." proteins_count="8"/>
    <taxon_data name="Fungi" proteins_count="74"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="11"/>
    <taxon_data name="Other Eukaryotes" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="42"/>
    <taxon_data name="Fruit Fly" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="88"/>
    <taxon_data name="Human" proteins_count="12"/>
    <taxon_data name="Mouse" proteins_count="11"/>
    <taxon_data name="Other Eukaryotes" proteins_count="5"/>
    <taxon_data name="Plastid Group" proteins_count="59"/>
    <taxon_data name="Green Plants" proteins_count="59"/>
    <taxon_data name="Metazoa" proteins_count="241"/>
    <taxon_data name="Plastid Group" proteins_count="28"/>
    <taxon_data name="Plastid Group" proteins_count="8"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000055" protein_count="2980" short_name="Restrct_endonuc_I_S_EcoBI" type="Domain">
  <name>Restriction endonuclease, type I, S subunit, EcoBI</name>
  <abstract>
<p>There are four classes of restriction endonucleases: types I, II,III and IV. All types of enzymes recognise specific short DNA sequences and carry out the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. They differ in their recognition sequence, subunit composition, cleavage position, and cofactor requirements [<cite idref="PUB00035705"/>, <cite idref="PUB00035707"/>], as summarised below:</p>
<p>
      <ul>
<li>Type I enzymes (<db_xref db="EC" dbkey="3.1.21.3"/>) cleave at sites remote from recognition site; require both ATP and S-adenosyl-L-methionine to function; multifunctional protein with both restriction and methylase (<db_xref db="EC" dbkey="2.1.1.72"/>) activities.</li>
<li>Type II enzymes (<db_xref db="EC" dbkey="3.1.21.4"/>) cleave within or at short specific distances from recognition site; most require magnesium; single function (restriction) enzymes independent of methylase.</li>
<li>Type III enzymes (<db_xref db="EC" dbkey="3.1.21.5"/>) cleave at sites a short distance from recognition site; require ATP (but doesn't hydrolyse it);  S-adenosyl-L-methionine stimulates reaction but is not required; exists as part of a complex with a modification methylase methylase (<db_xref db="EC" dbkey="2.1.1.72"/>).</li>
<li>Type IV enzymes target methylated DNA.</li>
</ul>
    </p>
<p>Type I restriction endonucleases are components of prokaryotic DNA restriction-modification mechanisms that protects the organism against invading foreign DNA. Type I enzymes have three different subunits subunits - M (modification), S (specificity) and R (restriction) - that form multifunctional enzymes with restriction (<db_xref db="EC" dbkey="3.1.21.3"/>), methylase (<db_xref db="EC" dbkey="2.1.1.72"/>) and ATPase activities [<cite idref="PUB00035705"/>, <cite idref="PUB00035706"/>]. The S subunit is required for both restriction and modification and is responsible for recognition of the DNA sequence specific for the system. The M subunit is necessary for modification, and the R subunit is required for restriction. These enzymes use S-Adenosyl-L-methionine (AdoMet) as the methyl group donor in the methylation reaction, and have a requirement for ATP. They recognise asymmetric DNA sequences split into two domains of specific sequence, one 3-4 bp long and another 4-5 bp long, separated by a nonspecific spacer 6-8 bp in length. Cleavage occurs a considerable distance from the recognition sites, rarely less than 400 bp away and up to 7000 bp away. Adenosyl residues are methylated, one on each strand of the recognition sequence. These enzymes are widespread in eubacteria and archaea. In enteric bacteria they have been subdivide into four families: types IA, IB, IC and ID.</p>
<p>This entry represents the S subunit of type I restriction endonucleases such as EcoBI and EcoKI (<db_xref db="EC" dbkey="3.1.21.3"/>), which recognise the DNA sequence 5' TGAN(8)TGCT and 5'-AACN(6)GTGC, respectively [<cite idref="PUB00035711"/>, <cite idref="PUB00035712"/>]. The M and S subunits together form a methyltransferase that methylates two adenine residues in complementary strands of a bipartite DNA recognition sequence. In the presence of the R subunit the complex can also act as an endonuclease, binding to the same target sequence but cutting the DNA some distance from this site. Whether the DNA is cut or modified depends on the methylation state of the target sequence: when the target site is unmodified, the DNA is cut; when the target site is hemi-methylated, the complex acts as a maintenance methyltransferase to modify the DNA, methylating both strands [<cite idref="PUB00003392"/>]. Most of the proteins in this family have two copies of the domain.</p>
</abstract>
  <class_list>
    <classification id="GO:0003677" class_type="GO">
      <category>Molecular Function</category>
      <description>DNA binding</description>
    </classification>
    <classification id="GO:0006304" class_type="GO">
      <category>Biological Process</category>
      <description>DNA modification</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q49434"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q57594"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00003392">
      <author_list>Janscak P, Bickle TA.</author_list>
      <title>The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain.</title>
      <db_xref db="PUBMED" dbkey="9837717"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="4" pages="937-48" volume="284"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00035705">
      <author_list>Sistla S, Rao DN.</author_list>
      <title>S-Adenosyl-L-methionine-dependent restriction enzymes.</title>
      <db_xref db="PUBMED" dbkey="15121719"/>
      <journal>Crit. Rev. Biochem. Mol. Biol.</journal>
      <location issue="1" pages="1-19" volume="39"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00035706">
      <author_list>Bourniquel AA, Bickle TA.</author_list>
      <title>Complex restriction enzymes: NTP-driven molecular motors.</title>
      <db_xref db="PUBMED" dbkey="12595133"/>
      <journal>Biochimie</journal>
      <location issue="11" pages="1047-59" volume="84"/>
      <year>2002</year>
    </publication>
    <publication id="PUB00035707">
      <author_list>Williams RJ.</author_list>
      <title>Restriction endonucleases: classification, properties, and applications.</title>
      <db_xref db="PUBMED" dbkey="12665693"/>
      <journal>Mol. Biotechnol.</journal>
      <location issue="3" pages="225-43" volume="23"/>
      <year>2003</year>
    </publication>
    <publication id="PUB00035711">
      <author_list>Kasarjian JK, Kodama Y, Iida M, Matsuda K, Ryu J.</author_list>
      <title>Four new type I restriction enzymes identified in Escherichia coli clinical isolates.</title>
      <db_xref db="PUBMED" dbkey="16040596"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="13" pages="e114" volume="33"/>
      <year>2005</year>
    </publication>
    <publication id="PUB00035712">
      <author_list>Cajthamlova K, Sisakova E, Weiser J, Weiserova M.</author_list>
      <title>Phosphorylation of Type IA restriction-modification complex enzyme EcoKI on the HsdR subunit.</title>
      <db_xref db="PUBMED" dbkey="17439637"/>
      <journal>FEMS Microbiol. Lett.</journal>
      <location issue="1" pages="171-7" volume="270"/>
      <year>2007</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR017043"/>
  </found_in>
  <member_list>
    <db_xref protein_count="2980" db="PFAM" dbkey="PF01420" name="Methylase_S"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01420"/>
    <db_xref db="BLOCKS" dbkey="IPB000055"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ydx"/>
    <db_xref db="PDB" dbkey="1yf2"/>
    <db_xref db="SCOP" dbkey="d.287.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2895"/>
    <taxon_data name="Cyanobacteria" proteins_count="92"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="2"/>
    <taxon_data name="Archaea" proteins_count="81"/>
    <taxon_data name="Eukaryota" proteins_count="1"/>
    <taxon_data name="Fungi" proteins_count="1"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="1"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000056" protein_count="2590" short_name="Ribul_P_3_epim" type="Family">
  <name>Ribulose-phosphate 3-epimerase</name>
  <abstract>
Ribulose-phosphate 3-epimerase (<db_xref db="EC" dbkey="5.1.3.1"/>) (also known as pentose-5-phosphate 3-epimerase or PPE) is  the enzyme  that  converts D-ribulose 5-phosphate into D-xylulose 5-phosphate in  Calvin's  reductive  pentose  phosphate  cycle.  In <taxon tax_id="106590">Ralstonia eutropha</taxon> (Alcaligenes eutrophus) two  copies of the gene coding for PPE are known [<cite idref="PUB00002204"/>], one is  chromosomally  encoded <db_xref db="SWISSPROT" dbkey="P40117"/>, the other one is on a plasmid <db_xref db="SWISSPROT" dbkey="Q04539"/>. PPE has  been  found  in  a  wide  range of bacteria, archaebacteria, fungi and plants. All the proteins have from 209 to 241 amino acid residues. The enzyme has a TIM barrel structure.
</abstract>
  <class_list>
    <classification id="GO:0004750" class_type="GO">
      <category>Molecular Function</category>
      <description>ribulose-phosphate 3-epimerase activity</description>
    </classification>
    <classification id="GO:0005975" class_type="GO">
      <category>Biological Process</category>
      <description>carbohydrate metabolic process</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P46969"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P74061"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q8VEE0"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q96AT9"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9SE42"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002204">
      <author_list>Kusian B, Yoo JG, Bednarski R, Bowien B.</author_list>
      <title>The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus.</title>
      <db_xref db="PUBMED" dbkey="1429456"/>
      <journal>J. Bacteriol.</journal>
      <location issue="22" pages="7337-44" volume="174"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR011060"/>
  </parent_list>
  <member_list>
    <db_xref protein_count="2560" db="PANTHER" dbkey="PTHR11749" name="Ribul_P_3_epim"/>
    <db_xref protein_count="2544" db="PFAM" dbkey="PF00834" name="Ribul_P_3_epim"/>
    <db_xref protein_count="2075" db="PROSITE" dbkey="PS01085" name="RIBUL_P_3_EPIMER_1"/>
    <db_xref protein_count="2031" db="PROSITE" dbkey="PS01086" name="RIBUL_P_3_EPIMER_2"/>
    <db_xref protein_count="2075" db="TIGRFAMs" dbkey="TIGR01163" name="rpe"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00834"/>
    <db_xref db="MSDsite" dbkey="PS01085"/>
    <db_xref db="MSDsite" dbkey="PS01086"/>
    <db_xref db="BLOCKS" dbkey="IPB000056"/>
    <db_xref db="EC" dbkey="5.1.3"/>
    <db_xref db="PRIAM" dbkey="PRI000772"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00833"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1h1y"/>
    <db_xref db="PDB" dbkey="1h1z"/>
    <db_xref db="PDB" dbkey="1rpx"/>
    <db_xref db="PDB" dbkey="1tqj"/>
    <db_xref db="PDB" dbkey="1tqx"/>
    <db_xref db="PDB" dbkey="2fli"/>
    <db_xref db="PDB" dbkey="3ct7"/>
    <db_xref db="PDB" dbkey="3ctl"/>
    <db_xref db="PDB" dbkey="3cu2"/>
    <db_xref db="CATH" dbkey="3.20.20.70"/>
    <db_xref db="SCOP" dbkey="c.1.2.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2300"/>
    <taxon_data name="Cyanobacteria" proteins_count="58"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="38"/>
    <taxon_data name="Eukaryota" proteins_count="252"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
    <taxon_data name="Rice spp." proteins_count="7"/>
    <taxon_data name="Fungi" proteins_count="69"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="5"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="23"/>
    <taxon_data name="Fruit Fly" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="44"/>
    <taxon_data name="Human" proteins_count="12"/>
    <taxon_data name="Mouse" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="59"/>
    <taxon_data name="Green Plants" proteins_count="59"/>
    <taxon_data name="Metazoa" proteins_count="145"/>
    <taxon_data name="Plastid Group" proteins_count="13"/>
    <taxon_data name="Plastid Group" proteins_count="15"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000057" protein_count="22" short_name="IL8B_rcpt" type="Family">
  <name>Interleukin 8B receptor</name>
  <abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The rhodopsin-like GPCRs themselves represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7
transmembrane (TM) helices [<cite idref="PUB00000131"/>, <cite idref="PUB00002477"/>, <cite idref="PUB00004960"/>].</p>
<p>Interleukin-8 (IL8) is a pro-inflammatory cytokine involved in the cellular
response to inflammation, being a powerful chemoattractant for neutrophils
[<cite idref="PUB00005143"/>]. There are 2 similar cell surface receptors for IL8: type 1 (IL-8RA) is
a high affinity receptor for IL8 alone; while type 2 (IL-8RB) is a high
affinity receptor for IL8, growth related gene (GRO) and neutrophil-activating protein-2 (NAP-2). The affinity of type 1 receptors for IL8 is
higher than that of type 2 receptors [<cite idref="PUB00005143"/>, <cite idref="PUB00001953"/>]. The receptors are coupled to
<taxon tax_id="520">Bordetella pertussis</taxon> toxin-sensitive GTP-binding proteins [<cite idref="PUB00001646"/>]. Signal
transduction depends on the activation of a phospholipase C specific for
phosphatidylinositol-4,5-bisphosphate, producing 2 second messengers:
inositol triphosphate and diacylglycerol [<cite idref="PUB00001646"/>]. Inositol triphosphate induces
a rise in the levels of cytosolic free calcium, while diacylglycerol
activates protein kinase C, leading to activation of neutrophils [<cite idref="PUB00001646"/>].</p>
<p>IL8RB receptors are found in high density in neutrophils, monocytes,
basophils, and melanoma cells, and in lower density in T-cells. IL8
has been reported to stimulate the phosphoinositide pathway through an
uncharacterised G-protein; pertussis toxin also inhibits several of its
actions [<cite idref="PUB00005876"/>]. The IL8RB receptor shares around 80% similarity with the
IL8RA receptor.</p>
</abstract>
  <class_list>
    <classification id="GO:0004918" class_type="GO">
      <category>Molecular Function</category>
      <description>interleukin-8 receptor activity</description>
    </classification>
    <classification id="GO:0006935" class_type="GO">
      <category>Biological Process</category>
      <description>chemotaxis</description>
    </classification>
    <classification id="GO:0016021" class_type="GO">
      <category>Cellular Component</category>
      <description>integral to membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O97571"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P25025"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P35343"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000131">
      <author_list>Birnbaumer L.</author_list>
      <title>G proteins in signal transduction.</title>
      <db_xref db="PUBMED" dbkey="2111655"/>
      <journal>Annu. Rev. Pharmacol. Toxicol.</journal>
      <location pages="675-705" volume="30"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00001646">
      <author_list>Baggiolini M, Clark-Lewis I.</author_list>
      <title>Interleukin-8, a chemotactic and inflammatory cytokine.</title>
      <db_xref db="PUBMED" dbkey="1639201"/>
      <journal>FEBS Lett.</journal>
      <location issue="1" pages="97-101" volume="307"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00001953">
      <author_list>Mollereau C, Muscatelli F, Mattei MG, Vassart G, Parmentier M.</author_list>
      <title>The high-affinity interleukin 8 receptor gene (IL8RA) maps to the 2q33-q36 region of the human genome: cloning of a pseudogene (IL8RBP) for the low-affinity receptor.</title>
      <db_xref db="PUBMED" dbkey="8486366"/>
      <journal>Genomics</journal>
      <location issue="1" pages="248-51" volume="16"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00002477">
      <author_list>Casey PJ, Gilman AG.</author_list>
      <title>G protein involvement in receptor-effector coupling.</title>
      <db_xref db="PUBMED" dbkey="2830256"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="6" pages="2577-80" volume="263"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00004960">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Design of a discriminating fingerprint for G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8386361"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="167-76" volume="6"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004961">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Fingerprinting G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8170923"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="195-203" volume="7"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005143">
      <author_list>Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI.</author_list>
      <title>Structure and functional expression of a human interleukin-8 receptor.</title>
      <db_xref db="PUBMED" dbkey="1840701"/>
      <journal>Science</journal>
      <location issue="5025" pages="1278-80" volume="253"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00005876">
      <author_list>Watson S, Arkinstall S.</author_list>
      <title>Chemokines.</title>
      <book_title>ISBN:0127384405</book_title>
      <location pages="83-8"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR000174"/>
  </parent_list>
  <member_list>
    <db_xref protein_count="22" db="PRINTS" dbkey="PR00573" name="INTRLEUKN8BR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000057"/>
    <db_xref db="IUPHAR" dbkey="2212"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="22"/>
    <taxon_data name="Chordata" proteins_count="22"/>
    <taxon_data name="Human" proteins_count="6"/>
    <taxon_data name="Mouse" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="22"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000058" protein_count="711" short_name="Znf_AN1" type="Domain">
  <name>Zinc finger, AN1-type</name>
  <abstract>
<p>Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from <taxon tax_id="8355">Xenopus laevis</taxon> (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [<cite idref="PUB00035807"/>, <cite idref="PUB00035805"/>, <cite idref="PUB00035806"/>, <cite idref="PUB00035804"/>, <cite idref="PUB00014077"/>]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [<cite idref="PUB00035812"/>].  Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target. </p>
<p>This entry represents the AN1-type zinc finger domain, which has a dimetal (zinc)-bound alpha/beta fold. This domain was first identified as a zinc finger at the C terminus of AN1 <db_xref db="SWISSPROT" dbkey="Q91889"/>, a ubiquitin-like
protein in <taxon tax_id="8355">Xenopus laevis</taxon> [<cite idref="PUB00001828"/>]. The AN1-type zinc finger contains six conserved cysteines and two histidines that could potentially coordinate 2 zinc atoms.</p>
<p>Certain stress-associated proteins (SAP) contain AN1 domain, often in combination with A20 zinc finger domains (SAP8) or C2H2 domains (SAP16) [<cite idref="PUB00042925"/>]. For example, the human protein Znf216 has an A20 zinc-finger at the N terminus and an AN1 zinc-finger at the C terminus, acting to negatively regulate the NFkappaB activation pathway and to interact with components of the immune response like RIP, IKKgamma and TRAF6. The interact of Znf216 with IKK-gamma and RIP is mediated by the A20 zinc-finger domain, while its interaction with TRAF6 is mediated by the AN1 zinc-finger domain; therefore, both zinc-finger domains are involved in regulating the immune response [<cite idref="PUB00042926"/>]. The AN1 zinc finger domain is also found in proteins containing a ubiquitin-like domain, which are involved in the ubiquitination pathway [<cite idref="PUB00001828"/>]. Proteins containing an AN1-type zinc finger include:</p>
<p>
<ul>
<li>Ascidian posterior end mark 6 (pem-6) protein  [<cite idref="PUB00018493"/>].</li>
<li>Human AWP1 protein (associated with PRK1), which is expressed during early embryogenesis [<cite idref="PUB00018494"/>].</li>
<li>Human immunoglobulin mu binding protein 2 (SMUBP-2), mutations in which cause muscular atrophy with respiratory distress type 1 [<cite idref="PUB00018517"/>].</li>
</ul>
    </p>
<p>More information about these proteins can be found at Protein of the Month: Zinc Fingers [<cite idref="PUB00035813"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0008270" class_type="GO">
      <category>Molecular Function</category>
      <description>zinc ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A2YEZ6"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O88878"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P38935"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P53899"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q6NNI8"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001828">
      <author_list>Linnen JM, Bailey CP, Weeks DL.</author_list>
      <title>Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins.</title>
      <db_xref db="PUBMED" dbkey="8390387"/>
      <journal>Gene</journal>
      <location issue="2" pages="181-8" volume="128"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00014077">
      <author_list>Matthews JM, Sunde M.</author_list>
      <title>Zinc fingers--folds for many occasions.</title>
      <db_xref db="PUBMED" dbkey="12665246"/>
      <journal>IUBMB Life</journal>
      <location issue="6" pages="351-5" volume="54"/>
      <year>2002</year>
    </publication>
    <publication id="PUB00018493">
      <author_list>Satou Y, Satoh N.</author_list>
      <title>Posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6: maternal genes with localized mRNA in the ascidian embryo.</title>
      <db_xref db="PUBMED" dbkey="9441682"/>
      <journal>Dev. Biol.</journal>
      <location issue="2" pages="467-81" volume="192"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00018494">
      <author_list>Duan W, Sun B, Li TW, Tan BJ, Lee MK, Teo TS.</author_list>
      <title>Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo.</title>
      <db_xref db="PUBMED" dbkey="11054541"/>
      <journal>Gene</journal>
      <location issue="1-2" pages="113-21" volume="256"/>
      <year>2000</year>
    </publication>
    <publication id="PUB00018517">
      <author_list>Liepinsh E, Leonchiks A, Sharipo A, Guignard L, Otting G.</author_list>
      <title>Solution structure of the R3H domain from human Smubp-2.</title>
      <db_xref db="PUBMED" dbkey="12547203"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="1" pages="217-23" volume="326"/>
      <year>2003</year>
    </publication>
    <publication id="PUB00035804">
      <author_list>Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP.</author_list>
      <title>Sticky fingers: zinc-fingers as protein-recognition motifs.</title>
      <db_xref db="PUBMED" dbkey="17210253"/>
      <journal>Trends Biochem. Sci.</journal>
      <location issue="2" pages="63-70" volume="32"/>
      <year>2007</year>
    </publication>
    <publication id="PUB00035805">
      <author_list>Hall TM.</author_list>
      <title>Multiple modes of RNA recognition by zinc finger proteins.</title>
      <db_xref db="PUBMED" dbkey="15963892"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="3" pages="367-73" volume="15"/>
      <year>2005</year>
    </publication>
    <publication id="PUB00035806">
      <author_list>Brown RS.</author_list>
      <title>Zinc finger proteins: getting a grip on RNA.</title>
      <db_xref db="PUBMED" dbkey="15718139"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="1" pages="94-8" volume="15"/>
      <year>2005</year>
    </publication>
    <publication id="PUB00035807">
      <author_list>Klug A.</author_list>
      <title>Zinc finger peptides for the regulation of gene expression.</title>
      <db_xref db="PUBMED" dbkey="10529348"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="2" pages="215-8" volume="293"/>
      <year>1999</year>
    </publication>
    <publication id="PUB00035812">
      <author_list>Laity JH, Lee BM, Wright PE.</author_list>
      <title>Zinc finger proteins: new insights into structural and functional diversity.</title>
      <db_xref db="PUBMED" dbkey="11179890"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="1" pages="39-46" volume="11"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00035813">
      <author_list>McDowall J.</author_list>
      <title>Protein of the Month: Zinc Fingers.</title>
      <url>http://www.ebi.ac.uk/interpro/potm/2007_3/Page1.htm</url>
      <year>2007</year>
    </publication>
    <publication id="PUB00042926">
      <author_list>Huang J, Teng L, Li L, Liu T, Li L, Chen D, Xu LG, Zhai Z, Shu HB.</author_list>
      <title>ZNF216 Is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation.</title>
      <db_xref db="PUBMED" dbkey="14754897"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="16" pages="16847-53" volume="279"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00042925">
      <author_list>Vij S, Tyagi AK.</author_list>
      <title>Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis.</title>
      <db_xref db="PUBMED" dbkey="17033811"/>
      <journal>Mol. Genet. Genomics</journal>
      <location issue="6" pages="565-75" volume="276"/>
      <year>2006</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="702" db="PFAM" dbkey="PF01428" name="zf-AN1"/>
    <db_xref protein_count="631" db="PROFILE" dbkey="PS51039" name="ZF_AN1"/>
    <db_xref protein_count="505" db="SMART" dbkey="SM00154" name="ZnF_AN1"/>
    <db_xref protein_count="607" db="GENE3D" dbkey="G3DSA:4.10.1110.10" name="Znf_AN1"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01428"/>
    <db_xref db="BLOCKS" dbkey="IPB000058"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC51039"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1wfe"/>
    <db_xref db="PDB" dbkey="1wfh"/>
    <db_xref db="PDB" dbkey="1wfl"/>
    <db_xref db="PDB" dbkey="1wfp"/>
    <db_xref db="PDB" dbkey="1wg2"/>
    <db_xref db="CATH" dbkey="4.10.1110.10"/>
    <db_xref db="SCOP" dbkey="g.80.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Archaea" proteins_count="35"/>
    <taxon_data name="Eukaryota" proteins_count="671"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="15"/>
    <taxon_data name="Rice spp." proteins_count="55"/>
    <taxon_data name="Fungi" proteins_count="122"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Nematoda" proteins_count="4"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="4"/>
    <taxon_data name="Arthropoda" proteins_count="88"/>
    <taxon_data name="Fruit Fly" proteins_count="13"/>
    <taxon_data name="Chordata" proteins_count="129"/>
    <taxon_data name="Human" proteins_count="22"/>
    <taxon_data name="Mouse" proteins_count="12"/>
    <taxon_data name="Virus" proteins_count="5"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="217"/>
    <taxon_data name="Green Plants" proteins_count="217"/>
    <taxon_data name="Metazoa" proteins_count="377"/>
    <taxon_data name="Plastid Group" proteins_count="44"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Other Eukaryotes" proteins_count="11"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000059" protein_count="242" short_name="NUDIX_hydrolase_NudL_CS" type="Conserved_site">
  <name>NUDIX hydrolase, NudL, conserved site</name>
  <abstract>
<p>Nudix hydrolases, which are commonly found in all kingdoms of life, are pyrophosphohydrolases predominantly acting on substrates that contain a nucleotide diphosphate linked to another moiety X [<cite idref="PUB00006662"/>, <cite idref="PUB00034750"/>]. These substrates include nucleoside triphosphates, nucleotide sugars, dinucleoside polyphosphates, dinucleotide coenzymes and capped RNAs. In some cases, phosphohydrolase activity has been observed with nucleoside diphopshates and some non-nucletoide substrates. These enzymes posses an almost universally conserved, charateristic twenty-three-amino acid motif, Gx(5)Ex(5)[UA]xREx(2)EExGU (where U is an aliphatic, hydrophobic amino acid residue), necessary for catalytic activity. Some members of this family protect cells by degrading potentially mutagenic oxidised nucleotides, while others control the levels of metabolic intermediates and signalling compounds.</p> 
<p>This entry represents a number of proteins which contain the characteristic Nudix domain. One of the characterised protein in this entry, PCD1, is a peroxisomal coenzyme A (CoA) diphosphatase catalysing the cleavage of coenzyme A into ADP and phosphopantetheine, with a strong preference for oxidised CoA disulphide as its substrate [<cite idref="PUB00034751"/>]. PCD1 may function, therefore, to maintain the capacity for beta-oxidation of fatty acids. It has also been shown to degrade oxo-dGTP and so may also be involved in protecting the cell from mutagenic oxidised nucleotides [<cite idref="PUB00034752"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0000287" class_type="GO">
      <category>Molecular Function</category>
      <description>magnesium ion binding</description>
    </classification>
    <classification id="GO:0009132" class_type="GO">
      <category>Biological Process</category>
      <description>nucleoside diphosphate metabolic process</description>
    </classification>
    <classification id="GO:0016818" class_type="GO">
      <category>Molecular Function</category>
      <description>hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides</description>
    </classification>
    <classification id="GO:0030145" class_type="GO">
      <category>Molecular Function</category>
      <description>manganese ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A1ABY1"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P0C024"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q12524"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q23236"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q99P30"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00006662">
      <author_list>Bessman MJ, Frick DN, O'Handley SF.</author_list>
      <title>The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes.</title>
      <db_xref db="PUBMED" dbkey="8810257"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="41" pages="25059-62" volume="271"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00034750">
      <author_list>McLennan AG.</author_list>
      <title>The Nudix hydrolase superfamily.</title>
      <db_xref db="PUBMED" dbkey="16378245"/>
      <journal>Cell. Mol. Life Sci.</journal>
      <location issue="2" pages="123-43" volume="63"/>
      <year>2006</year>
    </publication>
    <publication id="PUB00034752">
      <author_list>Nunoshiba T, Ishida R, Sasaki M, Iwai S, Nakabeppu Y, Yamamoto K.</author_list>
      <title>A novel Nudix hydrolase for oxidized purine nucleoside triphosphates encoded by ORFYLR151c (PCD1 gene) in Saccharomyces cerevisiae.</title>
      <db_xref db="PUBMED" dbkey="15475388"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="18" pages="5339-48" volume="32"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00034751">
      <author_list>Cartwright JL, Gasmi L, Spiller DG, McLennan AG.</author_list>
      <title>The Saccharomyces cerevisiae PCD1 gene encodes a peroxisomal nudix hydrolase active toward coenzyme A and its derivatives.</title>
      <db_xref db="PUBMED" dbkey="10922370"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="42" pages="32925-30" volume="275"/>
      <year>2000</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR000086"/>
    <rel_ref ipr_ref="IPR015797"/>
  </found_in>
  <member_list>
    <db_xref protein_count="242" db="PROSITE" dbkey="PS01293" name="UPF0035"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS01293"/>
    <db_xref db="BLOCKS" dbkey="IPB000059"/>
    <db_xref db="EC" dbkey="3.6.1"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00995"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="221"/>
    <taxon_data name="Eukaryota" proteins_count="21"/>
    <taxon_data name="Rice spp." proteins_count="1"/>
    <taxon_data name="Fungi" proteins_count="9"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="8"/>
    <taxon_data name="Human" proteins_count="1"/>
    <taxon_data name="Mouse" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Green Plants" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="20"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000060" protein_count="2160" short_name="BCCT_transporter" type="Family">
  <name>BCCT transporter</name>
  <abstract>
<p>These  prokaryotic transport proteins belong to a family known as BCCT (for Betaine /
Carnitine / Choline Transporters) and are specific for compounds containing
a quaternary nitrogen atom. The BCCT proteins contain 12 transmembrane regions
and are energized by proton symport. They contain a conserved region with four
tryptophans in their central region [<cite idref="PUB00002302"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0005215" class_type="GO">
      <category>Molecular Function</category>
      <description>transporter activity</description>
    </classification>
    <classification id="GO:0006810" class_type="GO">
      <category>Biological Process</category>
      <description>transport</description>
    </classification>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P54582"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002302">
      <author_list>Kappes RM, Kempf B, Bremer E.</author_list>
      <title>Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.</title>
      <db_xref db="PUBMED" dbkey="8752321"/>
      <journal>J. Bacteriol.</journal>
      <location issue="17" pages="5071-9" volume="178"/>
      <year>1996</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018093"/>
  </contains>
  <member_list>
    <db_xref protein_count="2160" db="PFAM" dbkey="PF02028" name="BCCT"/>
    <db_xref protein_count="1568" db="TIGRFAMs" dbkey="TIGR00842" name="bcct"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF02028"/>
    <db_xref db="MSDsite" dbkey="PS01303"/>
    <db_xref db="BLOCKS" dbkey="IPB000060"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC01007"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2123"/>
    <taxon_data name="Cyanobacteria" proteins_count="14"/>
    <taxon_data name="Archaea" proteins_count="20"/>
    <taxon_data name="Eukaryota" proteins_count="17"/>
    <taxon_data name="Fungi" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="7"/>
    <taxon_data name="Green Plants" proteins_count="7"/>
    <taxon_data name="Metazoa" proteins_count="8"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000061" protein_count="495" short_name="Surp" type="Domain">
  <name>SWAP/Surp</name>
  <abstract>
SWAP is derived from the Suppressor-of-White-APricot splicing
                       regulator from <taxon tax_id="7227">Drosophila melanogaster</taxon>. The domain is found in regulators responsible for pervasive, nonsex-specific alternative pre-mRNA
                       splicing characteristics and has been found in splicing regulatory proteins [<cite idref="PUB00002852"/>]. These ancient, conserved
                       SWAP proteins share a colinearly arrayed series of novel
                       sequence motifs [<cite idref="PUB00006690"/>].
</abstract>
  <class_list>
    <classification id="GO:0003723" class_type="GO">
      <category>Molecular Function</category>
      <description>RNA binding</description>
    </classification>
    <classification id="GO:0006396" class_type="GO">
      <category>Biological Process</category>
      <description>RNA processing</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P12297"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P32524"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q10580"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q15459"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q8CH02"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002852">
      <author_list>Denhez F, Lafyatis R.</author_list>
      <title>Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot.</title>
      <db_xref db="PUBMED" dbkey="8206918"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="23" pages="16170-9" volume="269"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00006690">
      <author_list>Spikes DA, Kramer J, Bingham PM, Van Doren K.</author_list>
      <title>SWAP pre-mRNA splicing regulators are a novel, ancient protein family sharing a highly conserved sequence motif with the prp21 family of constitutive splicing proteins.</title>
      <db_xref db="PUBMED" dbkey="7971282"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="21" pages="4510-9" volume="22"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="447" db="PFAM" dbkey="PF01805" name="Surp"/>
    <db_xref protein_count="475" db="PROFILE" dbkey="PS50128" name="SURP"/>
    <db_xref protein_count="482" db="SMART" dbkey="SM00648" name="SWAP"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01805"/>
    <db_xref db="BLOCKS" dbkey="IPB000061"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50128"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ug0"/>
    <db_xref db="PDB" dbkey="1x4o"/>
    <db_xref db="PDB" dbkey="1x4p"/>
    <db_xref db="PDB" dbkey="2dt6"/>
    <db_xref db="PDB" dbkey="2dt7"/>
    <db_xref db="SCOP" dbkey="a.217.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="495"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="26"/>
    <taxon_data name="Rice spp." proteins_count="18"/>
    <taxon_data name="Fungi" proteins_count="83"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="4"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="4"/>
    <taxon_data name="Arthropoda" proteins_count="72"/>
    <taxon_data name="Fruit Fly" proteins_count="8"/>
    <taxon_data name="Chordata" proteins_count="90"/>
    <taxon_data name="Human" proteins_count="17"/>
    <taxon_data name="Mouse" proteins_count="11"/>
    <taxon_data name="Other Eukaryotes" proteins_count="5"/>
    <taxon_data name="Plastid Group" proteins_count="113"/>
    <taxon_data name="Green Plants" proteins_count="113"/>
    <taxon_data name="Metazoa" proteins_count="274"/>
    <taxon_data name="Plastid Group" proteins_count="56"/>
    <taxon_data name="Plastid Group" proteins_count="29"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="8"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000062" protein_count="2350" short_name="Thymidylate_kin-like" type="Family">
  <name>Thymidylate kinase-like</name>
  <abstract>
<p>Thymidylate kinase (<db_xref db="EC" dbkey="2.7.4.9"/>; dTMP kinase) catalyzes the phosphorylation of  thymidine 5'-monophosphate (dTMP) to form thymidine 5'-diphosphate (dTDP) in the presence of ATP and magnesium: </p>
<reaction>
ATP + thymidine 5'-phosphate = ADP + thymidine 5'-diphosphate 
</reaction>
<p>Thymidylate kinase is an ubiquitous enzyme of about 25 Kd and is important in the dTTP synthesis pathway for DNA synthesis. The function of dTMP kinase in eukaryotes comes from the study of a cell cycle mutant, cdc8, in <taxon tax_id="4932">Saccharomyces cerevisiae</taxon>. Structural and functional analyses suggest that the cDNA codes for authentic human dTMP kinase. The mRNA levels and enzyme activities corresponded to cell cycle progression and cell growth stages[<cite idref="PUB00016913"/>]. </p>
<p>This entry reprsents known and predicted kinases, and related enzymes such as UMP-CMP kinase.</p>
</abstract>
  <class_list>
    <classification id="GO:0005524" class_type="GO">
      <category>Molecular Function</category>
      <description>ATP binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00572"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P23919"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P97930"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q22018"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q55593"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00016913">
      <author_list>Huang SH, Tang A, Drisco B, Zhang SQ, Seeger R, Li C, Jong A.</author_list>
      <title>Human dTMP kinase: gene expression and enzymatic activity coinciding with cell cycle progression and cell growth.</title>
      <db_xref db="PUBMED" dbkey="8024690"/>
      <journal>DNA Cell Biol.</journal>
      <location issue="5" pages="461-71" volume="13"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR014505"/>
    <rel_ref ipr_ref="IPR018094"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR018095"/>
  </contains>
  <member_list>
    <db_xref protein_count="2350" db="PFAM" dbkey="PF02223" name="Thymidylate_kin"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF02223"/>
    <db_xref db="MSDsite" dbkey="PS01331"/>
    <db_xref db="BLOCKS" dbkey="IPB000062"/>
    <db_xref db="EC" dbkey="2.7.4.9"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC01034"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1e2d"/>
    <db_xref db="PDB" dbkey="1e2e"/>
    <db_xref db="PDB" dbkey="1e2f"/>
    <db_xref db="PDB" dbkey="1e2g"/>
    <db_xref db="PDB" dbkey="1e2q"/>
    <db_xref db="PDB" dbkey="1e98"/>
    <db_xref db="PDB" dbkey="1e99"/>
    <db_xref db="PDB" dbkey="1e9a"/>
    <db_xref db="PDB" dbkey="1e9b"/>
    <db_xref db="PDB" dbkey="1e9c"/>
    <db_xref db="PDB" dbkey="1e9d"/>
    <db_xref db="PDB" dbkey="1e9e"/>
    <db_xref db="PDB" dbkey="1e9f"/>
    <db_xref db="PDB" dbkey="1g3u"/>
    <db_xref db="PDB" dbkey="1gsi"/>
    <db_xref db="PDB" dbkey="1gtv"/>
    <db_xref db="PDB" dbkey="1mrn"/>
    <db_xref db="PDB" dbkey="1mrs"/>
    <db_xref db="PDB" dbkey="1n5i"/>
    <db_xref db="PDB" dbkey="1n5j"/>
    <db_xref db="PDB" dbkey="1n5k"/>
    <db_xref db="PDB" dbkey="1n5l"/>
    <db_xref db="PDB" dbkey="1nmx"/>
    <db_xref db="PDB" dbkey="1nmy"/>
    <db_xref db="PDB" dbkey="1nmz"/>
    <db_xref db="PDB" dbkey="1nn0"/>
    <db_xref db="PDB" dbkey="1nn1"/>
    <db_xref db="PDB" dbkey="1nn3"/>
    <db_xref db="PDB" dbkey="1nn5"/>
    <db_xref db="PDB" dbkey="1tmk"/>
    <db_xref db="PDB" dbkey="1w2g"/>
    <db_xref db="PDB" dbkey="1w2h"/>
    <db_xref db="PDB" dbkey="2axp"/>
    <db_xref db="PDB" dbkey="2tmk"/>
    <db_xref db="PDB" dbkey="2v54"/>
    <db_xref db="PDB" dbkey="2w0s"/>
    <db_xref db="PDB" dbkey="3tmk"/>
    <db_xref db="PDB" dbkey="4tmk"/>
    <db_xref db="PDB" dbkey="5tmp"/>
    <db_xref db="CATH" dbkey="3.40.50.300"/>
    <db_xref db="SCOP" dbkey="c.37.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1953"/>
    <taxon_data name="Cyanobacteria" proteins_count="55"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="127"/>
    <taxon_data name="Eukaryota" proteins_count="215"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="5"/>
    <taxon_data name="Rice spp." proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="68"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="28"/>
    <taxon_data name="Fruit Fly" proteins_count="7"/>
    <taxon_data name="Chordata" proteins_count="30"/>
    <taxon_data name="Human" proteins_count="5"/>
    <taxon_data name="Mouse" proteins_count="5"/>
    <taxon_data name="Virus" proteins_count="54"/>
    <taxon_data name="Unclassified" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="29"/>
    <taxon_data name="Green Plants" proteins_count="29"/>
    <taxon_data name="Metazoa" proteins_count="139"/>
    <taxon_data name="Plastid Group" proteins_count="21"/>
    <taxon_data name="Plastid Group" proteins_count="13"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR014505"/>
    <sec_ac acc="IPR018094"/>
  </sec_list>
</interpro>
<interpro id="IPR000064" protein_count="4879" short_name="NLP_P60" type="Domain">
  <name>NLP/P60</name>
  <abstract>
<p>The <taxon tax_id="562">Escherichia coli</taxon>  NLPC/Listeria P60 domain occurs at the C terminus of a number of different bacterial and viral proteins. The viral proteins are either described as tail assembly proteins or Gp19. In bacteria, the proteins are variously described as being putative tail component of prophage, invasin, invasion associated protein, putative lipoprotein, cell wall hydrolase, or putative endopeptidase. </p>
<p>The E. coli NLPC/Listeria P60 domain is contained within the boundaries of the cysteine peptidase domain that defines the MEROPS peptidase family C40 (clan C-). A type example being dipeptidyl-peptidase VI from <taxon tax_id="1421">Bacillus sphaericus</taxon> and gamma-glutamyl-diamino acid-endopeptidase precursor from <taxon tax_id="1358">Lactococcus lactis</taxon> <db_xref db="EC" dbkey="3.4.19.11"/>. This group also contains proteins classified as non-peptidase homologues in that they either have been found experimentally to be without peptidase activity, or lack amino acid residues that are believed to be essential for the catalytic activity of peptidases in the C40 family.
</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P03729"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P0AFV4"/>
    </example>
  </example_list>
  <pub_list/>
  <found_in>
    <rel_ref ipr_ref="IPR011929"/>
  </found_in>
  <member_list>
    <db_xref protein_count="4879" db="PFAM" dbkey="PF00877" name="NLPC_P60"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00877"/>
    <db_xref db="BLOCKS" dbkey="IPB000064"/>
    <db_xref db="MEROPS" dbkey="C40"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="2hbw"/>
    <db_xref db="CATH" dbkey="3.90.1720.10"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="4787"/>
    <taxon_data name="Cyanobacteria" proteins_count="52"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="3"/>
    <taxon_data name="Eukaryota" proteins_count="37"/>
    <taxon_data name="Rice spp." proteins_count="1"/>
    <taxon_data name="Fungi" proteins_count="16"/>
    <taxon_data name="Other Eukaryotes" proteins_count="9"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Arthropoda" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="1"/>
    <taxon_data name="Mouse" proteins_count="1"/>
    <taxon_data name="Virus" proteins_count="52"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
    <taxon_data name="Green Plants" proteins_count="4"/>
    <taxon_data name="Metazoa" proteins_count="18"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000065" protein_count="150" short_name="Leptin" type="Family">
  <name>Obesity factor</name>
  <abstract>
Leptin, a metabolic monitor of food intake and energy need, is expressed
by the ob obesity gene. The protein may function as part of a signalling
pathway from adipose tissue that acts to regulate the size of the body
fat depot [<cite idref="PUB00004193"/>], the hormone effectively turning the brain's appetite
message off when it senses that the body is satiated. Obese humans have
high levels of the protein, suggesting a similarity to type II (adult
onset) diabetes, in which sufferers over-produce insulin, but can't respond
to it metabolically - they have become insulin resistant. Similarly, it is
thought that obese individuals may be leptin resistant.
</abstract>
  <class_list>
    <classification id="GO:0005179" class_type="GO">
      <category>Molecular Function</category>
      <description>hormone activity</description>
    </classification>
    <classification id="GO:0005576" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular region</description>
    </classification>
    <classification id="GO:0007165" class_type="GO">
      <category>Biological Process</category>
      <description>signal transduction</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O02720"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P41159"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P41160"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004193">
      <author_list>Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM.</author_list>
      <title>Positional cloning of the mouse obese gene and its human homologue.</title>
      <db_xref db="PUBMED" dbkey="7984236"/>
      <journal>Nature</journal>
      <location issue="6505" pages="425-32" volume="372"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR009079"/>
  </parent_list>
  <member_list>
    <db_xref protein_count="135" db="PANTHER" dbkey="PTHR11724" name="Leptin"/>
    <db_xref protein_count="145" db="PFAM" dbkey="PF02024" name="Leptin"/>
    <db_xref protein_count="84" db="PIRSF" dbkey="PIRSF001837" name="Leptin"/>
    <db_xref protein_count="132" db="PRINTS" dbkey="PR00495" name="LEPTIN"/>
    <db_xref protein_count="145" db="PRODOM" dbkey="PD005698" name="Leptin"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF02024"/>
    <db_xref db="BLOCKS" dbkey="IPB000065"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ax8"/>
    <db_xref db="CATH" dbkey="1.20.1250.10"/>
    <db_xref db="SCOP" dbkey="a.26.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="150"/>
    <taxon_data name="Chordata" proteins_count="150"/>
    <taxon_data name="Human" proteins_count="6"/>
    <taxon_data name="Mouse" proteins_count="2"/>
    <taxon_data name="Metazoa" proteins_count="150"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000066" protein_count="374" short_name="Antenna_a/b" type="Family">
  <name>Antenna complex, alpha/beta subunit</name>
  <abstract>
In photosynthetic bacteria the antenna complexes function as light-harvesting
systems that absorb light radiation and transfer the  excitation energy to the
reaction centres. The  antenna complexes  are  generally composed of two
polypeptides (alpha and beta chains); two  or three bacteriochlorophyll (BChl)
molecules and some carotenoids [<cite idref="PUB00001417"/>, <cite idref="PUB00003468"/>].
Both the  alpha and the beta chains of antenna complexes are small proteins of
42 to  68  residues which share a three-domain organisation. They are composed
of a  N-terminal  hydrophilic  cytoplasmic  domain followed by a transmembrane
region and  a  C-terminal hydrophilic periplasmic domain. In the transmembrane
region of  both  chains  there is a conserved histidine which is most probably
involved in  the binding of the magnesium atom of a bacteriochlorophyll group.
The beta  chains contain an additional conserved histidine which is located at
the C-terminal extremity  of the  cytoplasmic domain and which is also thought
to be involved in bacteriochlorophyll-binding.
</abstract>
  <class_list>
    <classification id="GO:0016021" class_type="GO">
      <category>Cellular Component</category>
      <description>integral to membrane</description>
    </classification>
    <classification id="GO:0019684" class_type="GO">
      <category>Biological Process</category>
      <description>photosynthesis, light reaction</description>
    </classification>
    <classification id="GO:0030077" class_type="GO">
      <category>Cellular Component</category>
      <description>plasma membrane light-harvesting complex</description>
    </classification>
    <classification id="GO:0045156" class_type="GO">
      <category>Molecular Function</category>
      <description>electron transporter, transferring electrons within the cyclic electron transport pathway of photosynthesis activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02947"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001417">
      <author_list>Wagner-Huber R, Brunisholz RA, Bissig I, Frank G, Suter F, Zuber H.</author_list>
      <title>The primary structure of the antenna polypeptides of Ectothiorhodospira halochloris and Ectothiorhodospira halophila. Four core-type antenna polypeptides in E. halochloris and E. halophila.</title>
      <db_xref db="PUBMED" dbkey="1577009"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="3" pages="917-25" volume="205"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00003468">
      <author_list>Brunisholz RA, Zuber H.</author_list>
      <title>Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae.</title>
      <db_xref db="PUBMED" dbkey="1460542"/>
      <journal>J. Photochem. Photobiol. B, Biol.</journal>
      <location issue="1-2" pages="113-40" volume="15"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR002362"/>
    <rel_ref ipr_ref="IPR018332"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR002361"/>
  </contains>
  <member_list>
    <db_xref protein_count="368" db="PFAM" dbkey="PF00556" name="LHC"/>
    <db_xref protein_count="367" db="SSF" dbkey="SSF56918" name="Antenna_a/b"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00556"/>
    <db_xref db="COMe" dbkey="PRX000801"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1dx7"/>
    <db_xref db="PDB" dbkey="1ijd"/>
    <db_xref db="PDB" dbkey="1jo5"/>
    <db_xref db="PDB" dbkey="1kzu"/>
    <db_xref db="PDB" dbkey="1lgh"/>
    <db_xref db="PDB" dbkey="1nkz"/>
    <db_xref db="PDB" dbkey="1wrg"/>
    <db_xref db="PDB" dbkey="1xrd"/>
    <db_xref db="PDB" dbkey="2fkw"/>
    <db_xref db="CATH" dbkey="1.20.5.250"/>
    <db_xref db="CATH" dbkey="4.10.220.20"/>
    <db_xref db="SCOP" dbkey="f.3.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="374"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR002362"/>
    <sec_ac acc="IPR018332"/>
  </sec_list>
</interpro>
<interpro id="IPR000067" protein_count="1067" short_name="FlgMring_FLIF" type="Family">
  <name>Flagellar FliF M-ring protein</name>
  <abstract>
This family corresponds to the FliF protein. FliF is the major protein
of the M-ring in bacterial flagellar basal body [<cite idref="PUB00002086"/>].
The basal body consists of four rings (L,P,S and M) surrounding the
flagellar rod, which is believed to transmit motor rotation to the filament 
[<cite idref="PUB00003254"/>]. 
The M ring is integral to the inner membrane of the cell, and may be
connected to the rod via the S (supramembrane) ring, which lies just distal
to it. The L and P rings reside in the outer membrane and periplasmic space,
respectively.
FliF lacks a signal peptide and is predicted to have considerable 
alpha-helical structure, including an N-terminal sequence that is likely
to be membrane-spanning [<cite idref="PUB00002086"/>]. Overall, however, FliF has a relatively
hydrophilic sequence, with a high charge density, especially towards its 
C terminus [<cite idref="PUB00002086"/>].
</abstract>
  <class_list>
    <classification id="GO:0001539" class_type="GO">
      <category>Biological Process</category>
      <description>ciliary or flagellar motility</description>
    </classification>
    <classification id="GO:0003774" class_type="GO">
      <category>Molecular Function</category>
      <description>motor activity</description>
    </classification>
    <classification id="GO:0009431" class_type="GO">
      <category>Cellular Component</category>
      <description>bacterial-type flagellum basal body, MS ring</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O52069"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002086">
      <author_list>Jones CJ, Homma M, Macnab RM.</author_list>
      <title>L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium: gene sequences and deduced protein sequences.</title>
      <db_xref db="PUBMED" dbkey="2544561"/>
      <journal>J. Bacteriol.</journal>
      <location issue="7" pages="3890-900" volume="171"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00003254">
      <author_list>Homma M, Kutsukake K, Hasebe M, Iino T, Macnab RM.</author_list>
      <title>FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium.</title>
      <db_xref db="PUBMED" dbkey="2129540"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="2" pages="465-77" volume="211"/>
      <year>1990</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR006182"/>
    <rel_ref ipr_ref="IPR013556"/>
  </contains>
  <member_list>
    <db_xref protein_count="1054" db="PRINTS" dbkey="PR01009" name="FLGMRINGFLIF"/>
    <db_xref protein_count="1042" db="TIGRFAMs" dbkey="TIGR00206" name="fliF"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000067"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1062"/>
    <taxon_data name="Eukaryota" proteins_count="3"/>
    <taxon_data name="Rice spp." proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
    <taxon_data name="Green Plants" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000068" protein_count="101" short_name="GPCR_3_Ca_sens_rcpt-rel" type="Family">
  <name>GPCR, family 3, extracellular calcium-sensing receptor-related</name>
  <abstract>
<p>G-protein-coupled receptors, GPCRs, constitute a vast protein family that encompasses a wide range of functions (including various autocrine, paracrine and endocrine processes). They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups. We use the term clan to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence [<cite idref="PUB00004961"/>]. The currently known clan members include the rhodopsin-like GPCRs, the secretin-like GPCRs, the cAMP receptors, the fungal mating pheromone receptors, and the metabotropic glutamate receptor family. There is a specialised database for GPCRs (http://www.gpcr.org/7tm/). </p>
<p>The metabotropic glutamate receptors are functionally and pharmacologically distinct from the ionotropic glutamate receptors. They are coupled to G-proteins and stimulate the inositol phosphate/Ca<sup>2+</sup> intracellular signalling pathway [<cite idref="PUB00004090"/>, <cite idref="PUB00005138"/>, <cite idref="PUB00002720"/>, <cite idref="PUB00004309"/>]. At least eight sub-types of metabotropic receptor (MGR1-8) have been identified in cloning studies. The sub-types differ in their agonist pharmacology and signal transduction pathways [<cite idref="PUB00005885"/>].</p>
<p>The calcium-sensing receptor (CaSR) is an integral membrane protein that
senses changes in the extracellular concentration of calcium ions. The
activity of the receptor is mediated by a G-protein that activates a
phosphatidyl-inositol-calcium second messenger system. The sequences of the
receptors show a high degree of similarity to the TM signature that
characterises the metabotropic glutamate receptors. In addition, the
sequences contain a large extracellular domain that includes clusters of
acidic amino acid residues, which may be involved in calcium binding [<cite idref="PUB00004161"/>].
Defects in CaSR that result in reduced activity of the receptor cause
familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT), inherited conditions characterised by altered calcium
homeostasis [<cite idref="PUB00002009"/>, <cite idref="PUB00003100"/>]. FHH-affected individuals exhibit mild or modest hypercalcemia, relative hypocalciuria and inappropriately normal PTH levels. By
contrast, NSHPT is a rare autosomal recessive life-threatening disorder
characterised by high serum calcium concentrations, skeletal demineralisation and parathyroid hyperplasia. In addition, defects resulting from
receptor activation at subnormal Ca<sup>2+</sup> levels cause autosomal dominant
hypocalcemia [<cite idref="PUB00003896"/>].</p>
<p>This entry represents the extracellular calcium-sensing receptors and related proteins in GPCR family 3, such as the taste receptors.</p>
</abstract>
  <class_list>
    <classification id="GO:0004930" class_type="GO">
      <category>Molecular Function</category>
      <description>G-protein coupled receptor activity</description>
    </classification>
    <classification id="GO:0007186" class_type="GO">
      <category>Biological Process</category>
      <description>G-protein coupled receptor protein signaling pathway</description>
    </classification>
    <classification id="GO:0016021" class_type="GO">
      <category>Cellular Component</category>
      <description>integral to membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A3QP01"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O70410"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P41180"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002009">
      <author_list>Ward BK, Stuckey BG, Gutteridge DH, Laing NG, Pullan PT, Ratajczak T.</author_list>
      <title>A novel mutation (L174R) in the Ca2+-sensing receptor gene associated with familial hypocalciuric hypercalcemia.</title>
      <db_xref db="PUBMED" dbkey="9298824"/>
      <journal>Hum. Mutat.</journal>
      <location issue="3" pages="233-5" volume="10"/>
      <year>1997</year>
    </publication>
    <publication id="PUB00002720">
      <author_list>Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S.</author_list>
      <title>Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction.</title>
      <db_xref db="PUBMED" dbkey="1320017"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="19" pages="13361-8" volume="267"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00003100">
      <author_list>Pearce SH, Trump D, Wooding C, Besser GM, Chew SL, Grant DB, Heath DA, Hughes IA, Paterson CR, Whyte MP.</author_list>
      <title>Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism.</title>
      <db_xref db="PUBMED" dbkey="8675635"/>
      <journal>J. Clin. Invest.</journal>
      <location issue="6" pages="2683-92" volume="96"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00003896">
      <author_list>Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG.</author_list>
      <title>Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation.</title>
      <db_xref db="PUBMED" dbkey="7874174"/>
      <journal>Nat. Genet.</journal>
      <location issue="3" pages="303-7" volume="8"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00004161">
      <author_list>Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC.</author_list>
      <title>Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid.</title>
      <db_xref db="PUBMED" dbkey="8255296"/>
      <journal>Nature</journal>
      <location issue="6455" pages="575-80" volume="366"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004961">
      <author_list>Attwood TK, Findlay JB.</author_list>
      <title>Fingerprinting G-protein-coupled receptors.</title>
      <db_xref db="PUBMED" dbkey="8170923"/>
      <journal>Protein Eng.</journal>
      <location issue="2" pages="195-203" volume="7"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005885">
      <author_list>Watson S, Arkinstall S.</author_list>
      <title>Glutamate.</title>
      <book_title>ISBN:0127384405</book_title>
      <location pages="130-41"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005138">
      <author_list>Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O'Hara PJ, Mulvihill ER, Almers W, Hagen FS.</author_list>
      <title>Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain.</title>
      <db_xref db="PUBMED" dbkey="1656524"/>
      <journal>Science</journal>
      <location issue="5010" pages="1318-21" volume="252"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00004090">
      <author_list>Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S.</author_list>
      <title>Sequence and expression of a metabotropic glutamate receptor.</title>
      <db_xref db="PUBMED" dbkey="1847995"/>
      <journal>Nature</journal>
      <location issue="6312" pages="760-5" volume="349"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00004309">
      <author_list>Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S.</author_list>
      <title>A family of metabotropic glutamate receptors.</title>
      <db_xref db="PUBMED" dbkey="1309649"/>
      <journal>Neuron</journal>
      <location issue="1" pages="169-79" volume="8"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR000337"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR015531"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR001828"/>
  </contains>
  <member_list>
    <db_xref protein_count="101" db="PRINTS" dbkey="PR00592" name="CASENSINGR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000068"/>
    <db_xref db="IUPHAR" dbkey="2926"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="101"/>
    <taxon_data name="Chordata" proteins_count="93"/>
    <taxon_data name="Human" proteins_count="13"/>
    <taxon_data name="Mouse" proteins_count="10"/>
    <taxon_data name="Metazoa" proteins_count="101"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR015531"/>
  </sec_list>
</interpro>
<interpro id="IPR000069" protein_count="3797" short_name="Env_glycoprot_M_flavivir" type="Domain">
  <name>Envelope glycoprotein M, flavivirus</name>
  <abstract>
<p>Flaviviruses are small enveloped viruses with virions comprised of
three proteins called C, M and E [<cite idref="PUB00003522"/>, <cite idref="PUB00000171"/>, <cite idref="PUB00003500"/>]. The envelope glycoprotein M is made as a precursor, called prM. The precursor portion of the protein is the signal peptide for the proteins entry into the membrane. prM is cleaved to form M in a late-stage cleavage event.  Associated with this cleavage is a change in the infectivity and fusion activity of the virus.</p>
</abstract>
  <class_list>
    <classification id="GO:0019028" class_type="GO">
      <category>Cellular Component</category>
      <description>viral capsid</description>
    </classification>
    <classification id="GO:0019058" class_type="GO">
      <category>Biological Process</category>
      <description>viral infectious cycle</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P03314"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000171">
      <author_list>Heinz FX, Auer G, Stiasny K, Holzmann H, Mandl C, Guirakhoo F, Kunz C.</author_list>
      <title>The interactions of the flavivirus envelope proteins: implications for virus entry and release.</title>
      <db_xref db="PUBMED" dbkey="7913359"/>
      <journal>Arch. Virol. Suppl.</journal>
      <location pages="339-48" volume="9"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00003500">
      <author_list>Konishi E, Mason PW.</author_list>
      <title>Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein.</title>
      <db_xref db="PUBMED" dbkey="8437237"/>
      <journal>J. Virol.</journal>
      <location issue="3" pages="1672-5" volume="67"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00003522">
      <author_list>Schalich J, Allison SL, Stiasny K, Mandl CW, Kunz C, Heinz FX.</author_list>
      <title>Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions.</title>
      <db_xref db="PUBMED" dbkey="8676481"/>
      <journal>J. Virol.</journal>
      <location issue="7" pages="4549-57" volume="70"/>
      <year>1996</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR014412"/>
  </found_in>
  <member_list>
    <db_xref protein_count="3797" db="PFAM" dbkey="PF01004" name="Flavi_M"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01004"/>
    <db_xref db="EC" dbkey="2.1.1.56"/>
    <db_xref db="EC" dbkey="2.1.1.57"/>
    <db_xref db="EC" dbkey="2.7.7.48"/>
    <db_xref db="EC" dbkey="3.4.21.91"/>
    <db_xref db="EC" dbkey="3.6.1.15"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Virus" proteins_count="3797"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000070" protein_count="1139" short_name="Pectinesterase_cat" type="Domain">
  <name>Pectinesterase, catalytic</name>
  <abstract>
<p>Pectinesterase <db_xref db="EC" dbkey="3.1.1.11"/> (pectin methylesterase) catalyses the de-esterification of pectin into pectate and methanol. Pectin is one of the main components of the plant cell wall. In plants, pectinesterase plays an important role in cell wall metabolism during fruit ripening. In plant bacterial pathogens such as <taxon tax_id="554">Erwinia carotovora</taxon>  and  in fungal pathogens  such as <taxon tax_id="5061">Aspergillus niger</taxon>, pectinesterase is involved in maceration and soft-rotting of plant tissue. Plant pectinesterases are regulated by pectinesterase inhibitors, which are ineffective against microbial enzymes [<cite idref="PUB00016279"/>].</p>
<p>Prokaryotic and eukaryotic pectinesterases share a few regions of sequence similarity. The crystal structure of pectinesterase from <taxon tax_id="556">Erwinia chrysanthemi</taxon> revealed a beta-helix structure similar to that found in pectinolytic enzymes, though it is different from most structures of esterases [<cite idref="PUB00016280"/>]. The putative catalytic residues are in a similar location to those of the active site and substrate-binding cleft of pectate lyase.</p>
</abstract>
  <class_list>
    <classification id="GO:0005618" class_type="GO">
      <category>Cellular Component</category>
      <description>cell wall</description>
    </classification>
    <classification id="GO:0030599" class_type="GO">
      <category>Molecular Function</category>
      <description>pectinesterase activity</description>
    </classification>
    <classification id="GO:0042545" class_type="GO">
      <category>Biological Process</category>
      <description>cell wall modification</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A1DBT4"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O04953"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P0C1A8"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P14280"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00016279">
      <author_list>Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D.</author_list>
      <title>Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein.</title>
      <db_xref db="PUBMED" dbkey="15722470"/>
      <journal>Plant Cell</journal>
      <location issue="3" pages="849-58" volume="17"/>
      <year>2005</year>
    </publication>
    <publication id="PUB00016280">
      <author_list>Jenkins J, Mayans O, Smith D, Worboys K, Pickersgill RW.</author_list>
      <title>Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site.</title>
      <db_xref db="PUBMED" dbkey="11162105"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="4" pages="951-60" volume="305"/>
      <year>2001</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR012334"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR018040"/>
  </contains>
  <member_list>
    <db_xref protein_count="1141" db="PFAM" dbkey="PF01095" name="Pectinesterase"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01095"/>
    <db_xref db="MSDsite" dbkey="PS00503"/>
    <db_xref db="MSDsite" dbkey="PS00800"/>
    <db_xref db="BLOCKS" dbkey="IPB000070"/>
    <db_xref db="EC" dbkey="3.1.1.11"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00413"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1gq8"/>
    <db_xref db="PDB" dbkey="1qjv"/>
    <db_xref db="PDB" dbkey="1xg2"/>
    <db_xref db="PDB" dbkey="2nsp"/>
    <db_xref db="PDB" dbkey="2nst"/>
    <db_xref db="PDB" dbkey="2nt6"/>
    <db_xref db="PDB" dbkey="2nt9"/>
    <db_xref db="PDB" dbkey="2ntb"/>
    <db_xref db="PDB" dbkey="2ntp"/>
    <db_xref db="PDB" dbkey="2ntq"/>
    <db_xref db="CATH" dbkey="2.160.20.10"/>
    <db_xref db="SCOP" dbkey="b.80.1.5"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="353"/>
    <taxon_data name="Cyanobacteria" proteins_count="3"/>
    <taxon_data name="Archaea" proteins_count="2"/>
    <taxon_data name="Eukaryota" proteins_count="786"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="79"/>
    <taxon_data name="Rice spp." proteins_count="142"/>
    <taxon_data name="Fungi" proteins_count="84"/>
    <taxon_data name="Arthropoda" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="690"/>
    <taxon_data name="Green Plants" proteins_count="690"/>
    <taxon_data name="Metazoa" proteins_count="85"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000071" protein_count="24951" short_name="Lentvrl_matrix_N" type="Domain">
  <name>Immunodeficiency lentiviral matrix, N-terminal</name>
  <abstract>
<p>Retroviral matrix proteins (or major core proteins) are components of envelope-associated capsids, which line the inner surface of virus envelopes and are associated with viral membranes [<cite idref="PUB00014063"/>]. Matrix proteins are produced as part of Gag precursor polyproteins. During viral maturation, the Gag polyprotein is cleaved into major structural proteins by the viral protease, yielding the matrix (MA), capsid (CA), nucleocapsid (NC), and some smaller peptides. Gag-derived proteins govern the entire assembly and release of the virus particles, with matrix proteins playing key roles in Gag stability, capsid assembly, transport and budding. Although matrix proteins from different retroviruses appear to perform similar functions and can have similar structural folds, their primary sequences can be very different.</p>
<p>This entry represents matrix proteins from immunodeficiency lentiviruses, such as <taxon tax_id="12721">Human immunodeficiency virus</taxon> (HIV) and <taxon tax_id="11723">Simian immunodeficiency virus</taxon> (SIV-cpz) [<cite idref="PUB00016321"/>]. The structure of the HIV protein consists of 5 alpha helices, a short 3.10 helix and a 3-stranded mixed beta-sheet [<cite idref="PUB00003338"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0005198" class_type="GO">
      <category>Molecular Function</category>
      <description>structural molecule activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O12158"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00003338">
      <author_list>Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist WI.</author_list>
      <title>Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.</title>
      <db_xref db="PUBMED" dbkey="7966331"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="2" pages="198-223" volume="244"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00014063">
      <author_list>Conte MR, Matthews S.</author_list>
      <title>Retroviral matrix proteins: a structural perspective.</title>
      <db_xref db="PUBMED" dbkey="9657938"/>
      <journal>Virology</journal>
      <location issue="2" pages="191-8" volume="246"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00016321">
      <author_list>Freed EO.</author_list>
      <title>HIV-1 replication.</title>
      <db_xref db="PUBMED" dbkey="12465460"/>
      <journal>Somat. Cell Mol. Genet.</journal>
      <location issue="1-6" pages="13-33" volume="26"/>
      <year>2001</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR012344"/>
  </parent_list>
  <member_list>
    <db_xref protein_count="24951" db="PFAM" dbkey="PF00540" name="Gag_p17"/>
    <db_xref protein_count="24741" db="PRINTS" dbkey="PR00234" name="HIV1MATRIX"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00540"/>
    <db_xref db="BLOCKS" dbkey="IPB000071"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ecw"/>
    <db_xref db="PDB" dbkey="1ed1"/>
    <db_xref db="PDB" dbkey="1hiw"/>
    <db_xref db="PDB" dbkey="1l6n"/>
    <db_xref db="PDB" dbkey="1m9c"/>
    <db_xref db="PDB" dbkey="1m9d"/>
    <db_xref db="PDB" dbkey="1m9e"/>
    <db_xref db="PDB" dbkey="1m9f"/>
    <db_xref db="PDB" dbkey="1m9x"/>
    <db_xref db="PDB" dbkey="1m9y"/>
    <db_xref db="PDB" dbkey="1tam"/>
    <db_xref db="PDB" dbkey="1uph"/>
    <db_xref db="PDB" dbkey="2gol"/>
    <db_xref db="PDB" dbkey="2h3f"/>
    <db_xref db="PDB" dbkey="2h3i"/>
    <db_xref db="PDB" dbkey="2h3q"/>
    <db_xref db="PDB" dbkey="2h3v"/>
    <db_xref db="PDB" dbkey="2h3z"/>
    <db_xref db="PDB" dbkey="2hmx"/>
    <db_xref db="PDB" dbkey="2jmg"/>
    <db_xref db="CATH" dbkey="1.10.150.90"/>
    <db_xref db="SCOP" dbkey="a.61.1.1"/>
    <db_xref db="SCOP" dbkey="a.73.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Virus" proteins_count="24951"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000072" protein_count="349" short_name="PD_growth_factor" type="Domain">
  <name>Platelet-derived growth factor (PDGF)</name>
  <abstract>
Platelet-derived growth factor (PDGF) [<cite idref="PUB00000590"/>, <cite idref="PUB00001228"/>] is a potent mitogen  for  cells of
mesenchymal  origin,  including  smooth  muscle  cells and glial  cells.  In both mouse and human, the PDGF signalling network consists of four ligands, PDGFA-D, and two receptors, PDGFRalpha and PDGFRbeta. All PDGFs function as secreted, disulphide-linked
homodimers, but only PDGFA and B can form functional heterodimers. PDGFRs also function as homo- and heterodimers. All known PDGFs have characteristic `PDGF domains',
which include eight conserved cysteines that are involved in inter- and intramolecular bonds.
Alternate splicing of the A chain  transcript  can give rise to  two different
forms that differ only in their C-terminal extremity. The transforming protein
of <taxon tax_id="11970">Woolly monkey sarcoma virus</taxon> (WMSV) (Simian sarcoma virus), encoded by the v-sis oncogene,  is derived from the B chain of PDGF.
<p>PDGFs are mitogenic during early developmental stages, driving the proliferation of undifferentiated mesenchyme and some progenitor populations. During later maturation stages, PDGF signalling has been implicated in tissue remodelling and cellular differentiation, and in inductive events involved in patterning and morphogenesis. In addition to driving
mesenchymal proliferation, PDGFs have been shown to direct the migration, differentiation and function of a variety of specialised mesenchymal and migratory cell types, both during development and in the
adult animal [<cite idref="PUB00014075"/>]. Other growth factors in this family include vascular endothelial growth factors B and C (VEGF-B, VEGF-C) [<cite idref="PUB00004886"/>, <cite idref="PUB00001288"/>] which are active in angiogenesis and endothelial cell growth, and placenta growth factor (PlGF) which is also active in angiogenesis [<cite idref="PUB00004494"/>]. </p>
<p>PDGF is  structurally  related  to a number of other growth factors which also form disulphide-linked homo- or heterodimers.</p>
</abstract>
  <class_list>
    <classification id="GO:0008083" class_type="GO">
      <category>Molecular Function</category>
      <description>growth factor activity</description>
    </classification>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P01127"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P20033"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P52584"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P67861"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q72TD6"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000590">
      <author_list>Hannink M, Donoghue DJ.</author_list>
      <title>Structure and function of platelet-derived growth factor (PDGF) and related proteins.</title>
      <db_xref db="PUBMED" dbkey="2546599"/>
      <journal>Biochim. Biophys. Acta</journal>
      <location issue="1" pages="1-10" volume="989"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00001228">
      <author_list>Heldin CH.</author_list>
      <title>Structural and functional studies on platelet-derived growth factor.</title>
      <db_xref db="PUBMED" dbkey="1425569"/>
      <journal>EMBO J.</journal>
      <location issue="12" pages="4251-9" volume="11"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00001288">
      <author_list>Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K.</author_list>
      <title>A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases.</title>
      <db_xref db="PUBMED" dbkey="8617204"/>
      <journal>EMBO J.</journal>
      <location issue="2" pages="290-98" volume="15"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00004494">
      <author_list>Maglione D, Guerriero V, Viglietto G, Ferraro MG, Aprelikova O, Alitalo K, Del Vecchio S, Lei KJ, Chou JY, Persico MG.</author_list>
      <title>Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14.</title>
      <db_xref db="PUBMED" dbkey="7681160"/>
      <journal>Oncogene</journal>
      <location issue="4" pages="925-31" volume="8"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004886">
      <author_list>Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U.</author_list>
      <title>Vascular endothelial growth factor B, a novel growth factor for endothelial cells.</title>
      <db_xref db="PUBMED" dbkey="8637916"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="6" pages="2576-81" volume="93"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00014075">
      <author_list>Hoch RV, Soriano P.</author_list>
      <title>Roles of PDGF in animal development.</title>
      <db_xref db="PUBMED" dbkey="12952899"/>
      <journal>Development</journal>
      <location issue="20" pages="4769-84" volume="130"/>
      <year>2003</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR015583"/>
  </found_in>
  <member_list>
    <db_xref protein_count="298" db="PFAM" dbkey="PF00341" name="PDGF"/>
    <db_xref protein_count="232" db="PROSITE" dbkey="PS00249" name="PDGF_1"/>
    <db_xref protein_count="333" db="PROFILE" dbkey="PS50278" name="PDGF_2"/>
    <db_xref protein_count="342" db="SMART" dbkey="SM00141" name="PDGF"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00341"/>
    <db_xref db="MSDsite" dbkey="PS00249"/>
    <db_xref db="BLOCKS" dbkey="IPB000072"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00222"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1bj1"/>
    <db_xref db="PDB" dbkey="1cz8"/>
    <db_xref db="PDB" dbkey="1flt"/>
    <db_xref db="PDB" dbkey="1fzv"/>
    <db_xref db="PDB" dbkey="1kat"/>
    <db_xref db="PDB" dbkey="1mjv"/>
    <db_xref db="PDB" dbkey="1mkg"/>
    <db_xref db="PDB" dbkey="1mkk"/>
    <db_xref db="PDB" dbkey="1pdg"/>
    <db_xref db="PDB" dbkey="1qty"/>
    <db_xref db="PDB" dbkey="1rv6"/>
    <db_xref db="PDB" dbkey="1tzh"/>
    <db_xref db="PDB" dbkey="1tzi"/>
    <db_xref db="PDB" dbkey="1vpf"/>
    <db_xref db="PDB" dbkey="1vpp"/>
    <db_xref db="PDB" dbkey="1wq8"/>
    <db_xref db="PDB" dbkey="1wq9"/>
    <db_xref db="PDB" dbkey="2c7w"/>
    <db_xref db="PDB" dbkey="2fjg"/>
    <db_xref db="PDB" dbkey="2fjh"/>
    <db_xref db="PDB" dbkey="2gnn"/>
    <db_xref db="PDB" dbkey="2qr0"/>
    <db_xref db="PDB" dbkey="2vpf"/>
    <db_xref db="PDB" dbkey="2vwe"/>
    <db_xref db="PDB" dbkey="3bdy"/>
    <db_xref db="CATH" dbkey="2.10.90.10"/>
    <db_xref db="SCOP" dbkey="g.17.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="2"/>
    <taxon_data name="Eukaryota" proteins_count="321"/>
    <taxon_data name="Rice spp." proteins_count="1"/>
    <taxon_data name="Fungi" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="60"/>
    <taxon_data name="Fruit Fly" proteins_count="8"/>
    <taxon_data name="Chordata" proteins_count="246"/>
    <taxon_data name="Human" proteins_count="28"/>
    <taxon_data name="Mouse" proteins_count="20"/>
    <taxon_data name="Virus" proteins_count="25"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Green Plants" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="320"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000073" protein_count="23474" short_name="AB_hydrolase_1" type="Domain">
  <name>Alpha/beta hydrolase fold-1</name>
  <abstract>
<p>The alpha/beta hydrolase fold [<cite idref="PUB00004958"/>] is common to a number of hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is an alpha/beta-sheet (rather than a barrel), containing 8 strands connected by helices [<cite idref="PUB00004958"/>]. The enzymes are believed to have diverged from a common ancestor, preserving the arrangement of the catalytic residues. All have a catalytic triad, the elements of which are borne on loops, which are the best conserved structural features of the fold. Esterase (EST) from <taxon tax_id="303">Pseudomonas putida</taxon> is a member of the alpha/beta hydrolase fold superfamily of enzymes [<cite idref="PUB00038968"/>].</p>
<p>In most of the family members the beta-strands are parallels, but some have an inversion of the first strands, which gives it an antiparallel orientation. The catalytic triad residues are presented on loops. One of these is the nucleophile elbow and is the most conserved feature of the fold. Some other members lack one or all of the catalytic residues. Some members are therefore inactive but others are involved in surface recognition. The ESTHER database [<cite idref="PUB00043470"/>] gathers and annotates all the published information related to gene and protein sequences of this superfamily [<cite idref="PUB00043472"/>].</p>
<p>This entry represents fold-1 of alpha/beta hydrolase.</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A6ZRW8"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O18391"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P07098"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P34914"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P41879"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004958">
      <author_list>Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J.</author_list>
      <title>The alpha/beta hydrolase fold.</title>
      <db_xref db="PUBMED" dbkey="1409539"/>
      <journal>Protein Eng.</journal>
      <location issue="3" pages="197-211" volume="5"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00038968">
      <author_list>Elmi F, Lee HT, Huang JY, Hsieh YC, Wang YL, Chen YJ, Shaw SY, Chen CJ.</author_list>
      <title>Stereoselective esterase from Pseudomonas putida IFO12996 reveals alpha/beta hydrolase folds for D-beta-acetylthioisobutyric acid synthesis.</title>
      <db_xref db="PUBMED" dbkey="16321951"/>
      <journal>J. Bacteriol.</journal>
      <location issue="24" pages="8470-6" volume="187"/>
      <year>2005</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR000639"/>
    <rel_ref ipr_ref="IPR019913"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR000952"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR005945"/>
    <rel_ref ipr_ref="IPR006296"/>
    <rel_ref ipr_ref="IPR008220"/>
    <rel_ref ipr_ref="IPR010076"/>
    <rel_ref ipr_ref="IPR010125"/>
    <rel_ref ipr_ref="IPR010963"/>
    <rel_ref ipr_ref="IPR011287"/>
    <rel_ref ipr_ref="IPR012020"/>
    <rel_ref ipr_ref="IPR016292"/>
    <rel_ref ipr_ref="IPR016812"/>
    <rel_ref ipr_ref="IPR017209"/>
    <rel_ref ipr_ref="IPR017727"/>
    <rel_ref ipr_ref="IPR022485"/>
  </found_in>
  <member_list>
    <db_xref protein_count="23475" db="PFAM" dbkey="PF00561" name="Abhydrolase_1"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00561"/>
    <db_xref db="BLOCKS" dbkey="IPB000073"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a7u"/>
    <db_xref db="PDB" dbkey="1a88"/>
    <db_xref db="PDB" dbkey="1a8q"/>
    <db_xref db="PDB" dbkey="1a8s"/>
    <db_xref db="PDB" dbkey="1a8u"/>
    <db_xref db="PDB" dbkey="1azw"/>
    <db_xref db="PDB" dbkey="1b6g"/>
    <db_xref db="PDB" dbkey="1be0"/>
    <db_xref db="PDB" dbkey="1bee"/>
    <db_xref db="PDB" dbkey="1bez"/>
    <db_xref db="PDB" dbkey="1bn6"/>
    <db_xref db="PDB" dbkey="1bn7"/>
    <db_xref db="PDB" dbkey="1bro"/>
    <db_xref db="PDB" dbkey="1brt"/>
    <db_xref db="PDB" dbkey="1c4x"/>
    <db_xref db="PDB" dbkey="1cij"/>
    <db_xref db="PDB" dbkey="1cqw"/>
    <db_xref db="PDB" dbkey="1cqz"/>
    <db_xref db="PDB" dbkey="1cr6"/>
    <db_xref db="PDB" dbkey="1cv2"/>
    <db_xref db="PDB" dbkey="1cvl"/>
    <db_xref db="PDB" dbkey="1d07"/>
    <db_xref db="PDB" dbkey="1dwo"/>
    <db_xref db="PDB" dbkey="1dwp"/>
    <db_xref db="PDB" dbkey="1dwq"/>
    <db_xref db="PDB" dbkey="1e89"/>
    <db_xref db="PDB" dbkey="1e8d"/>
    <db_xref db="PDB" dbkey="1eb8"/>
    <db_xref db="PDB" dbkey="1eb9"/>
    <db_xref db="PDB" dbkey="1edb"/>
    <db_xref db="PDB" dbkey="1edd"/>
    <db_xref db="PDB" dbkey="1ede"/>
    <db_xref db="PDB" dbkey="1ek1"/>
    <db_xref db="PDB" dbkey="1ek2"/>
    <db_xref db="PDB" dbkey="1ex9"/>
    <db_xref db="PDB" dbkey="1g42"/>
    <db_xref db="PDB" dbkey="1g4h"/>
    <db_xref db="PDB" dbkey="1g5f"/>
    <db_xref db="PDB" dbkey="1hde"/>
    <db_xref db="PDB" dbkey="1hkh"/>
    <db_xref db="PDB" dbkey="1hl7"/>
    <db_xref db="PDB" dbkey="1hlg"/>
    <db_xref db="PDB" dbkey="1hqd"/>
    <db_xref db="PDB" dbkey="1iun"/>
    <db_xref db="PDB" dbkey="1iuo"/>
    <db_xref db="PDB" dbkey="1iup"/>
    <db_xref db="PDB" dbkey="1iz7"/>
    <db_xref db="PDB" dbkey="1iz8"/>
    <db_xref db="PDB" dbkey="1j1i"/>
    <db_xref db="PDB" dbkey="1k5p"/>
    <db_xref db="PDB" dbkey="1k63"/>
    <db_xref db="PDB" dbkey="1k6e"/>
    <db_xref db="PDB" dbkey="1k8q"/>
    <db_xref db="PDB" dbkey="1m33"/>
    <db_xref db="PDB" dbkey="1mj5"/>
    <db_xref db="PDB" dbkey="1mt3"/>
    <db_xref db="PDB" dbkey="1mtz"/>
    <db_xref db="PDB" dbkey="1mu0"/>
    <db_xref db="PDB" dbkey="1oil"/>
    <db_xref db="PDB" dbkey="1q0r"/>
    <db_xref db="PDB" dbkey="1q0z"/>
    <db_xref db="PDB" dbkey="1qge"/>
    <db_xref db="PDB" dbkey="1qj4"/>
    <db_xref db="PDB" dbkey="1qo7"/>
    <db_xref db="PDB" dbkey="1qtr"/>
    <db_xref db="PDB" dbkey="1r3d"/>
    <db_xref db="PDB" dbkey="1s8o"/>
    <db_xref db="PDB" dbkey="1sc9"/>
    <db_xref db="PDB" dbkey="1sci"/>
    <db_xref db="PDB" dbkey="1sck"/>
    <db_xref db="PDB" dbkey="1scq"/>
    <db_xref db="PDB" dbkey="1tah"/>
    <db_xref db="PDB" dbkey="1uk6"/>
    <db_xref db="PDB" dbkey="1uk7"/>
    <db_xref db="PDB" dbkey="1uk8"/>
    <db_xref db="PDB" dbkey="1uk9"/>
    <db_xref db="PDB" dbkey="1uka"/>
    <db_xref db="PDB" dbkey="1ukb"/>
    <db_xref db="PDB" dbkey="1va4"/>
    <db_xref db="PDB" dbkey="1vj5"/>
    <db_xref db="PDB" dbkey="1wm1"/>
    <db_xref db="PDB" dbkey="1x2b"/>
    <db_xref db="PDB" dbkey="1x2e"/>
    <db_xref db="PDB" dbkey="1xkl"/>
    <db_xref db="PDB" dbkey="1xqv"/>
    <db_xref db="PDB" dbkey="1xqw"/>
    <db_xref db="PDB" dbkey="1xqx"/>
    <db_xref db="PDB" dbkey="1xqy"/>
    <db_xref db="PDB" dbkey="1xrl"/>
    <db_xref db="PDB" dbkey="1xrm"/>
    <db_xref db="PDB" dbkey="1xrn"/>
    <db_xref db="PDB" dbkey="1xro"/>
    <db_xref db="PDB" dbkey="1xrp"/>
    <db_xref db="PDB" dbkey="1xrq"/>
    <db_xref db="PDB" dbkey="1xrr"/>
    <db_xref db="PDB" dbkey="1y7h"/>
    <db_xref db="PDB" dbkey="1y7i"/>
    <db_xref db="PDB" dbkey="1yas"/>
    <db_xref db="PDB" dbkey="1yb6"/>
    <db_xref db="PDB" dbkey="1yb7"/>
    <db_xref db="PDB" dbkey="1ys1"/>
    <db_xref db="PDB" dbkey="1ys2"/>
    <db_xref db="PDB" dbkey="1zd2"/>
    <db_xref db="PDB" dbkey="1zd3"/>
    <db_xref db="PDB" dbkey="1zd4"/>
    <db_xref db="PDB" dbkey="1zd5"/>
    <db_xref db="PDB" dbkey="1zoi"/>
    <db_xref db="PDB" dbkey="2b61"/>
    <db_xref db="PDB" dbkey="2bfn"/>
    <db_xref db="PDB" dbkey="2d0d"/>
    <db_xref db="PDB" dbkey="2dhc"/>
    <db_xref db="PDB" dbkey="2dhd"/>
    <db_xref db="PDB" dbkey="2dhe"/>
    <db_xref db="PDB" dbkey="2eda"/>
    <db_xref db="PDB" dbkey="2edc"/>
    <db_xref db="PDB" dbkey="2es4"/>
    <db_xref db="PDB" dbkey="2g4l"/>
    <db_xref db="PDB" dbkey="2had"/>
    <db_xref db="PDB" dbkey="2lip"/>
    <db_xref db="PDB" dbkey="2nw6"/>
    <db_xref db="PDB" dbkey="2o2h"/>
    <db_xref db="PDB" dbkey="2o2i"/>
    <db_xref db="PDB" dbkey="2pky"/>
    <db_xref db="PDB" dbkey="2pl5"/>
    <db_xref db="PDB" dbkey="2psd"/>
    <db_xref db="PDB" dbkey="2pse"/>
    <db_xref db="PDB" dbkey="2psf"/>
    <db_xref db="PDB" dbkey="2psh"/>
    <db_xref db="PDB" dbkey="2psj"/>
    <db_xref db="PDB" dbkey="2puh"/>
    <db_xref db="PDB" dbkey="2qvb"/>
    <db_xref db="PDB" dbkey="2r11"/>
    <db_xref db="PDB" dbkey="2rht"/>
    <db_xref db="PDB" dbkey="2rhw"/>
    <db_xref db="PDB" dbkey="2ri6"/>
    <db_xref db="PDB" dbkey="2v9z"/>
    <db_xref db="PDB" dbkey="2vat"/>
    <db_xref db="PDB" dbkey="2vav"/>
    <db_xref db="PDB" dbkey="2vax"/>
    <db_xref db="PDB" dbkey="2yas"/>
    <db_xref db="PDB" dbkey="2yxp"/>
    <db_xref db="PDB" dbkey="3bdi"/>
    <db_xref db="PDB" dbkey="3bwx"/>
    <db_xref db="PDB" dbkey="3c6x"/>
    <db_xref db="PDB" dbkey="3c6y"/>
    <db_xref db="PDB" dbkey="3c6z"/>
    <db_xref db="PDB" dbkey="3c70"/>
    <db_xref db="PDB" dbkey="3fob"/>
    <db_xref db="PDB" dbkey="3lip"/>
    <db_xref db="PDB" dbkey="3yas"/>
    <db_xref db="PDB" dbkey="4lip"/>
    <db_xref db="PDB" dbkey="4yas"/>
    <db_xref db="PDB" dbkey="5lip"/>
    <db_xref db="PDB" dbkey="5yas"/>
    <db_xref db="PDB" dbkey="6yas"/>
    <db_xref db="PDB" dbkey="7yas"/>
    <db_xref db="CATH" dbkey="3.40.50.1820"/>
    <db_xref db="SCOP" dbkey="c.69.1.10"/>
    <db_xref db="SCOP" dbkey="c.69.1.11"/>
    <db_xref db="SCOP" dbkey="c.69.1.12"/>
    <db_xref db="SCOP" dbkey="c.69.1.18"/>
    <db_xref db="SCOP" dbkey="c.69.1.20"/>
    <db_xref db="SCOP" dbkey="c.69.1.26"/>
    <db_xref db="SCOP" dbkey="c.69.1.28"/>
    <db_xref db="SCOP" dbkey="c.69.1.35"/>
    <db_xref db="SCOP" dbkey="c.69.1.40"/>
    <db_xref db="SCOP" dbkey="c.69.1.6"/>
    <db_xref db="SCOP" dbkey="c.69.1.7"/>
    <db_xref db="SCOP" dbkey="c.69.1.8"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="18902"/>
    <taxon_data name="Cyanobacteria" proteins_count="655"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="15"/>
    <taxon_data name="Archaea" proteins_count="226"/>
    <taxon_data name="Eukaryota" proteins_count="4316"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="154"/>
    <taxon_data name="Rice spp." proteins_count="259"/>
    <taxon_data name="Fungi" proteins_count="1519"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="93"/>
    <taxon_data name="Other Eukaryotes" proteins_count="21"/>
    <taxon_data name="Other Eukaryotes" proteins_count="25"/>
    <taxon_data name="Nematoda" proteins_count="28"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="28"/>
    <taxon_data name="Arthropoda" proteins_count="776"/>
    <taxon_data name="Fruit Fly" proteins_count="88"/>
    <taxon_data name="Chordata" proteins_count="398"/>
    <taxon_data name="Human" proteins_count="83"/>
    <taxon_data name="Mouse" proteins_count="59"/>
    <taxon_data name="Virus" proteins_count="11"/>
    <taxon_data name="Unclassified" proteins_count="18"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Plastid Group" proteins_count="1119"/>
    <taxon_data name="Green Plants" proteins_count="1119"/>
    <taxon_data name="Metazoa" proteins_count="2853"/>
    <taxon_data name="Plastid Group" proteins_count="118"/>
    <taxon_data name="Plastid Group" proteins_count="49"/>
    <taxon_data name="Other Eukaryotes" proteins_count="48"/>
    <taxon_data name="Other Eukaryotes" proteins_count="7"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR000639"/>
    <sec_ac acc="IPR019913"/>
  </sec_list>
</interpro>
<interpro id="IPR000074" protein_count="272" short_name="ApoA1_A4_E" type="Family">
  <name>Apolipoprotein A1/A4/E</name>
  <abstract>
<p> Exchangeable apolipoproteins (apoA, apoC and apoE) have the same genomic structure and are members of a multi-gene family that probably evolved from a common ancestral gene. This entry includes the ApoA1, ApoA4 and ApoE proteins. ApoA1 and ApoA4 are part of the APOA1/C3/A4/A5 gene cluster on chromosome 11 [<cite idref="PUB00015448"/>]. Apolipoproteins function in lipid transport as structural components of lipoprotein particles, cofactors for enzymes and ligands for cell-surface receptors. In particular, apoA1 is the major protein component of high-density lipoproteins; apoA4 is thought to act primarily in intestinal lipid absorption; and apoE is a blood plasma protein that mediates the transport and uptake of cholesterol and lipid by way of its high affinity interaction with different cellular receptors, including the low-density lipoprotein (LDL) receptor. Recent findings with apoA1 and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related [<cite idref="PUB00015449"/>]. The three-dimensional structure of the LDL receptor-binding domain of apoE indicates that the protein forms an unusually elongated four-helix bundle that may be stabilised by a tightly packed hydrophobic core that includes leucine zipper-type interactions and by numerous salt bridges on the mostly charged surface. Basic amino acids important for LDL receptor binding are clustered into a surface patch on one long helix [<cite idref="PUB00005140"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0005576" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular region</description>
    </classification>
    <classification id="GO:0006869" class_type="GO">
      <category>Biological Process</category>
      <description>lipid transport</description>
    </classification>
    <classification id="GO:0008289" class_type="GO">
      <category>Molecular Function</category>
      <description>lipid binding</description>
    </classification>
    <classification id="GO:0042157" class_type="GO">
      <category>Biological Process</category>
      <description>lipoprotein metabolic process</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O18759"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02647"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P08226"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00005140">
      <author_list>Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA.</author_list>
      <title>Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E.</title>
      <db_xref db="PUBMED" dbkey="2063194"/>
      <journal>Science</journal>
      <location issue="5014" pages="1817-22" volume="252"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00015448">
      <author_list>Fullerton SM, Buchanan AV, Sonpar VA, Taylor SL, Smith JD, Carlson CS, Salomaa V, Stengard JH, Boerwinkle E, Clark AG, Nickerson DA, Weiss KM.</author_list>
      <title>The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster.</title>
      <db_xref db="PUBMED" dbkey="15108119"/>
      <journal>Hum. Genet.</journal>
      <location issue="1" pages="36-56" volume="115"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00015449">
      <author_list>Saito H, Lund-Katz S, Phillips MC.</author_list>
      <title>Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins.</title>
      <db_xref db="PUBMED" dbkey="15234552"/>
      <journal>Prog. Lipid Res.</journal>
      <location issue="4" pages="350-80" volume="43"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR013326"/>
  </contains>
  <member_list>
    <db_xref protein_count="272" db="PFAM" dbkey="PF01442" name="Apolipoprotein"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01442"/>
    <db_xref db="BLOCKS" dbkey="IPB000074"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1av1"/>
    <db_xref db="PDB" dbkey="1b68"/>
    <db_xref db="PDB" dbkey="1bz4"/>
    <db_xref db="PDB" dbkey="1ea8"/>
    <db_xref db="PDB" dbkey="1gs9"/>
    <db_xref db="PDB" dbkey="1gw3"/>
    <db_xref db="PDB" dbkey="1gw4"/>
    <db_xref db="PDB" dbkey="1h7i"/>
    <db_xref db="PDB" dbkey="1le2"/>
    <db_xref db="PDB" dbkey="1le4"/>
    <db_xref db="PDB" dbkey="1lpe"/>
    <db_xref db="PDB" dbkey="1nfn"/>
    <db_xref db="PDB" dbkey="1nfo"/>
    <db_xref db="PDB" dbkey="1odp"/>
    <db_xref db="PDB" dbkey="1odq"/>
    <db_xref db="PDB" dbkey="1odr"/>
    <db_xref db="PDB" dbkey="1oef"/>
    <db_xref db="PDB" dbkey="1oeg"/>
    <db_xref db="PDB" dbkey="1or2"/>
    <db_xref db="PDB" dbkey="1or3"/>
    <db_xref db="CATH" dbkey="1.20.120.20"/>
    <db_xref db="CATH" dbkey="1.20.5.20"/>
    <db_xref db="SCOP" dbkey="a.24.1.1"/>
    <db_xref db="SCOP" dbkey="h.5.1.1"/>
    <db_xref db="SCOP" dbkey="j.39.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="79"/>
    <taxon_data name="Archaea" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="192"/>
    <taxon_data name="Chordata" proteins_count="188"/>
    <taxon_data name="Human" proteins_count="9"/>
    <taxon_data name="Mouse" proteins_count="19"/>
    <taxon_data name="Metazoa" proteins_count="188"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000076" protein_count="95" short_name="KCL_cotranspt" type="Family">
  <name>K-Cl co-transporter</name>
  <abstract>
<p>The K-Cl co-transporter (KCC) mediates the coupled movement of K<sup>+</sup> and Cl<sup>-</sup>
ions across the plasma membrane of many animal cells. This transport is
involved in the regulatory volume decrease in response to cell swelling in
red blood cells, and has been proposed to play a role in the vectorial
movement of Cl<sup>-</sup> across kidney epithelia. The transport process involves one
for one electroneutral movement of K<sup>+</sup> together with Cl<sup>-</sup>, and, in all
known mammalian cells, the net movement is outward [<cite idref="PUB00002955"/>].</p>
<p>In neurones, it appears to play a unique role in maintaining low
intracellular Cl<sup>-</sup>concentration, which is required for the functioning of Cl<sup>-</sup>
dependent fast synaptic inhibition, mediated by certain neurotransmitters,
such as gamma-aminobutyric acid (GABA) and glycine.</p>
<p>Two isoforms of the K-Cl co-transporter have been described, termed KCC1 and
KCC2, containing 1085 and 1116 amino acids, respectively. They are both
predicted to have 12 transmembrane (TM) regions in a central hydrophobic
domain, together with hydrophilic N- and C-termini that are likely
cytoplasmic. Comparison of their sequences with those of other
ion-transporting membrane proteins reveals that they are part of a new
superfamily of cation-chloride co-transporters, which includes the Na-Cl and
Na-K-2Cl co-transporters. KCC1 is widely expressed in human tissues, while
KCC2 is expressed only in brain neurones, making it likely that this is the
isoform responsible for maintaining low Cl<sup>-</sup> concentration in neurones [<cite idref="PUB00002956"/>, <cite idref="PUB00004291"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0005215" class_type="GO">
      <category>Molecular Function</category>
      <description>transporter activity</description>
    </classification>
    <classification id="GO:0006811" class_type="GO">
      <category>Biological Process</category>
      <description>ion transport</description>
    </classification>
    <classification id="GO:0016020" class_type="GO">
      <category>Cellular Component</category>
      <description>membrane</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q28677"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q91V14"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9H2X9"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002955">
      <author_list>Gillen CM, Brill S, Payne JA, Forbush B 3rd.</author_list>
      <title>Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family.</title>
      <db_xref db="PUBMED" dbkey="8663127"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="27" pages="16237-44" volume="271"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00002956">
      <author_list>Payne JA, Stevenson TJ, Donaldson LF.</author_list>
      <title>Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform.</title>
      <db_xref db="PUBMED" dbkey="8663311"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="27" pages="16245-52" volume="271"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00004291">
      <author_list>Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K.</author_list>
      <title>The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation.</title>
      <db_xref db="PUBMED" dbkey="9930699"/>
      <journal>Nature</journal>
      <location issue="6716" pages="251-5" volume="397"/>
      <year>1999</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR004842"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR000622"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR004841"/>
    <rel_ref ipr_ref="IPR018491"/>
  </contains>
  <member_list>
    <db_xref protein_count="95" db="PRINTS" dbkey="PR01081" name="KCLTRNSPORT"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000076"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="95"/>
    <taxon_data name="Arthropoda" proteins_count="19"/>
    <taxon_data name="Fruit Fly" proteins_count="4"/>
    <taxon_data name="Chordata" proteins_count="76"/>
    <taxon_data name="Human" proteins_count="23"/>
    <taxon_data name="Mouse" proteins_count="23"/>
    <taxon_data name="Metazoa" proteins_count="95"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR000622"/>
  </sec_list>
</interpro>
<interpro id="IPR000077" protein_count="319" short_name="Ribosomal_L39" type="Family">
  <name>Ribosomal protein L39e</name>
  <abstract>
<p>Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [<cite idref="PUB00007068"/>, <cite idref="PUB00007069"/>].  About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. </p>
<p>Many of ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [<cite idref="PUB00007069"/>, <cite idref="PUB00007070"/>].</p>
<p>A number of eukaryotic and archaebacterial large subunit ribosomal proteins can be grouped on the basis of sequence similarities.
These proteins are very basic. About 50 residues long, they are the smallest
proteins of eukaryotic-type ribosomes.</p>
</abstract>
  <class_list>
    <classification id="GO:0003735" class_type="GO">
      <category>Molecular Function</category>
      <description>structural constituent of ribosome</description>
    </classification>
    <classification id="GO:0005622" class_type="GO">
      <category>Cellular Component</category>
      <description>intracellular</description>
    </classification>
    <classification id="GO:0005840" class_type="GO">
      <category>Cellular Component</category>
      <description>ribosome</description>
    </classification>
    <classification id="GO:0006412" class_type="GO">
      <category>Biological Process</category>
      <description>translation</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O16130"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P04650"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P52814"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P62891"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P62892"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00007068">
      <author_list>Ramakrishnan V, Moore PB.</author_list>
      <title>Atomic structures at last: the ribosome in 2000.</title>
      <db_xref db="PUBMED" dbkey="11297922"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="2" pages="144-54" volume="11"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00007069">
      <author_list>Maguire BA, Zimmermann RA.</author_list>
      <title>The ribosome in focus.</title>
      <db_xref db="PUBMED" dbkey="11290319"/>
      <journal>Cell</journal>
      <location issue="6" pages="813-6" volume="104"/>
      <year>2001</year>
    </publication>
    <publication id="PUB00007070">
      <author_list>Chandra Sanyal S, Liljas A.</author_list>
      <title>The end of the beginning: structural studies of ribosomal proteins.</title>
      <db_xref db="PUBMED" dbkey="11114498"/>
      <journal>Curr. Opin. Struct. Biol.</journal>
      <location issue="6" pages="633-6" volume="10"/>
      <year>2000</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR020083"/>
  </contains>
  <member_list>
    <db_xref protein_count="311" db="PANTHER" dbkey="PTHR19970" name="Ribosomal_L39"/>
    <db_xref protein_count="319" db="PFAM" dbkey="PF00832" name="Ribosomal_L39"/>
    <db_xref protein_count="296" db="GENE3D" dbkey="G3DSA:1.10.1620.10" name="Ribosomal_L39"/>
    <db_xref protein_count="316" db="SSF" dbkey="SSF48662" name="Ribosomal_L39"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00832"/>
    <db_xref db="MSDsite" dbkey="PS00051"/>
    <db_xref db="BLOCKS" dbkey="IPB000077"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00050"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ffk"/>
    <db_xref db="PDB" dbkey="1jj2"/>
    <db_xref db="PDB" dbkey="1k73"/>
    <db_xref db="PDB" dbkey="1k8a"/>
    <db_xref db="PDB" dbkey="1k9m"/>
    <db_xref db="PDB" dbkey="1kc8"/>
    <db_xref db="PDB" dbkey="1kd1"/>
    <db_xref db="PDB" dbkey="1kqs"/>
    <db_xref db="PDB" dbkey="1m1k"/>
    <db_xref db="PDB" dbkey="1m90"/>
    <db_xref db="PDB" dbkey="1n8r"/>
    <db_xref db="PDB" dbkey="1nji"/>
    <db_xref db="PDB" dbkey="1q7y"/>
    <db_xref db="PDB" dbkey="1q81"/>
    <db_xref db="PDB" dbkey="1q82"/>
    <db_xref db="PDB" dbkey="1q86"/>
    <db_xref db="PDB" dbkey="1qvf"/>
    <db_xref db="PDB" dbkey="1qvg"/>
    <db_xref db="PDB" dbkey="1s72"/>
    <db_xref db="PDB" dbkey="1vq4"/>
    <db_xref db="PDB" dbkey="1vq5"/>
    <db_xref db="PDB" dbkey="1vq6"/>
    <db_xref db="PDB" dbkey="1vq7"/>
    <db_xref db="PDB" dbkey="1vq8"/>
    <db_xref db="PDB" dbkey="1vq9"/>
    <db_xref db="PDB" dbkey="1vqk"/>
    <db_xref db="PDB" dbkey="1vql"/>
    <db_xref db="PDB" dbkey="1vqm"/>
    <db_xref db="PDB" dbkey="1vqn"/>
    <db_xref db="PDB" dbkey="1vqo"/>
    <db_xref db="PDB" dbkey="1vqp"/>
    <db_xref db="PDB" dbkey="1w2b"/>
    <db_xref db="PDB" dbkey="1yhq"/>
    <db_xref db="PDB" dbkey="1yi2"/>
    <db_xref db="PDB" dbkey="1yij"/>
    <db_xref db="PDB" dbkey="1yit"/>
    <db_xref db="PDB" dbkey="1yj9"/>
    <db_xref db="PDB" dbkey="1yjn"/>
    <db_xref db="PDB" dbkey="1yjw"/>
    <db_xref db="PDB" dbkey="2otj"/>
    <db_xref db="PDB" dbkey="2otl"/>
    <db_xref db="PDB" dbkey="2qa4"/>
    <db_xref db="PDB" dbkey="2qex"/>
    <db_xref db="PDB" dbkey="3cc2"/>
    <db_xref db="PDB" dbkey="3cc4"/>
    <db_xref db="PDB" dbkey="3cc7"/>
    <db_xref db="PDB" dbkey="3cce"/>
    <db_xref db="PDB" dbkey="3ccj"/>
    <db_xref db="PDB" dbkey="3ccl"/>
    <db_xref db="PDB" dbkey="3ccm"/>
    <db_xref db="PDB" dbkey="3ccq"/>
    <db_xref db="PDB" dbkey="3ccr"/>
    <db_xref db="PDB" dbkey="3ccs"/>
    <db_xref db="PDB" dbkey="3ccu"/>
    <db_xref db="PDB" dbkey="3ccv"/>
    <db_xref db="PDB" dbkey="3cd6"/>
    <db_xref db="PDB" dbkey="3cma"/>
    <db_xref db="PDB" dbkey="3cme"/>
    <db_xref db="PDB" dbkey="3cpw"/>
    <db_xref db="CATH" dbkey="1.10.1620.10"/>
    <db_xref db="SCOP" dbkey="a.137.1.1"/>
    <db_xref db="SCOP" dbkey="i.1.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Archaea" proteins_count="86"/>
    <taxon_data name="Eukaryota" proteins_count="233"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="4"/>
    <taxon_data name="Rice spp." proteins_count="7"/>
    <taxon_data name="Fungi" proteins_count="52"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="5"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="39"/>
    <taxon_data name="Fruit Fly" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="43"/>
    <taxon_data name="Human" proteins_count="3"/>
    <taxon_data name="Mouse" proteins_count="3"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
    <taxon_data name="Plastid Group" proteins_count="29"/>
    <taxon_data name="Green Plants" proteins_count="29"/>
    <taxon_data name="Metazoa" proteins_count="170"/>
    <taxon_data name="Plastid Group" proteins_count="17"/>
    <taxon_data name="Plastid Group" proteins_count="8"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000079" protein_count="174" short_name="HMG14/HMG17" type="Family">
  <name>High mobility group protein HMG14/HMG17</name>
  <abstract>
<p>High mobility group (HMG) proteins constitute a family of relatively low molecular weight non-histone components in chromatin. HMG14 and HMG17 are highly-similar proteins of about 100 amino acid residues; the sequence of chicken HMG14 is almost as similar to chicken HMG17 as it is to mammalian HMG14 polypeptides [<cite idref="PUB00001764"/>]. The proteins bind to the inner side of the nucleosomal DNA, altering the interaction between the DNA and the histone octamer. It is thought that they may be involved in the process that confers specific chromatin conformations to transcribable regions in the genome [<cite idref="PUB00002433"/>].</p>
<p>The SMART signature describes a nucleosomal binding domain, which facilitates binding of proteins to nucleosomes in chromatin. The domain is most commonly found in the high mobility group (HMG) proteins, HMG14 and HMG17, however, it is also found in other proteins which bind to nucleosomes, e.g. NBP-45. NBP-45 is a nucleosomal binding protein, first identified in mice [<cite idref="PUB00009423"/>], which is related to HMG14 and HMG17. NBP-45 binds specifically to nucleosome core particles, and can function as a transcriptional activator. These findings led to the suggestion that this domain, common to NBP-45, HMG14 and HMG17 is responsible for binding of the proteins to nucleosomes in chromatin.</p>
</abstract>
  <class_list>
    <classification id="GO:0000785" class_type="GO">
      <category>Cellular Component</category>
      <description>chromatin</description>
    </classification>
    <classification id="GO:0003677" class_type="GO">
      <category>Molecular Function</category>
      <description>DNA binding</description>
    </classification>
    <classification id="GO:0005634" class_type="GO">
      <category>Cellular Component</category>
      <description>nucleus</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A6NN55"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="B4F777"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P09602"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001764">
      <author_list>Dodgson JB, Browne DL, Black AJ.</author_list>
      <title>Chicken chromosomal protein HMG-14 and HMG-17 cDNA clones: isolation, characterization and sequence comparison.</title>
      <db_xref db="PUBMED" dbkey="3384337"/>
      <journal>Gene</journal>
      <location issue="2" pages="287-95" volume="63"/>
      <year>1988</year>
    </publication>
    <publication id="PUB00002433">
      <author_list>Landsman D, Soares N, Gonzalez FJ, Bustin M.</author_list>
      <title>Chromosomal protein HMG-17. Complete human cDNA sequence and evidence for a multigene family.</title>
      <db_xref db="PUBMED" dbkey="3754870"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="16" pages="7479-84" volume="261"/>
      <year>1986</year>
    </publication>
    <publication id="PUB00009423">
      <author_list>Shirakawa H, Landsman D, Postnikov YV, Bustin M.</author_list>
      <title>NBP-45, a novel nucleosomal binding protein with a tissue-specific and developmentally regulated expression.</title>
      <db_xref db="PUBMED" dbkey="10692437"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="9" pages="6368-74" volume="275"/>
      <year>2000</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="158" db="PANTHER" dbkey="PTHR23087" name="HMG_14_17"/>
    <db_xref protein_count="172" db="PFAM" dbkey="PF01101" name="HMG14_17"/>
    <db_xref protein_count="166" db="PRINTS" dbkey="PR00925" name="NONHISHMG17"/>
    <db_xref protein_count="138" db="PROSITE" dbkey="PS00355" name="HMG14_17"/>
    <db_xref protein_count="166" db="SMART" dbkey="SM00527" name="HMG17"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01101"/>
    <db_xref db="MSDsite" dbkey="PS00355"/>
    <db_xref db="BLOCKS" dbkey="IPB000079"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00307"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="173"/>
    <taxon_data name="Fungi" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="1"/>
    <taxon_data name="Chordata" proteins_count="169"/>
    <taxon_data name="Human" proteins_count="18"/>
    <taxon_data name="Mouse" proteins_count="14"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Green Plants" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="172"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000081" protein_count="2038" short_name="Peptidase_C3" type="Domain">
  <name>Peptidase C3, picornavirus core protein 2A</name>
  <abstract>
<p>In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:</p>
<ul>
 <li>Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins.</li>
<li>Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule.</li>
</ul>
<p>In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and  binding. </p>
<p>Cysteine peptidases have characteristic molecular topologies, which can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures.  These are peptidases in which the nucleophile is the sulphydryl group of a cysteine residue. Cysteine proteases are divided into clans (proteins which are evolutionary related), and further sub-divided into families, on the basis of the architecture of their catalytic dyad or triad [<cite idref="PUB00011704"/>]. </p>
<p>This domain defines cysteine peptidases belong to MEROPS peptidase family C3 (picornain, clan PA(C)), subfamilies 3CA and 3CB. The protein fold of this peptidase domain for members of this family resembles that of the serine peptidase, chymotrypsin [<cite idref="PUB00004181"/>], the type example for clan PA.</p>
<p>Picornaviral proteins are expressed as a single polyprotein
which is cleaved by the viral 3C cysteine protease [<cite idref="PUB00003174"/>]. The poliovirus polyprotein is selectively cleaved between the Gln-|-Gly bond. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
</p>
</abstract>
  <class_list>
    <classification id="GO:0006508" class_type="GO">
      <category>Biological Process</category>
      <description>proteolysis</description>
    </classification>
    <classification id="GO:0008233" class_type="GO">
      <category>Molecular Function</category>
      <description>peptidase activity</description>
    </classification>
    <classification id="GO:0016032" class_type="GO">
      <category>Biological Process</category>
      <description>viral reproduction</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O91734"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00003174">
      <author_list>Zoll J, van Kuppeveld FJ, Galama JM, Melchers WJ.</author_list>
      <title>Genetic analysis of mengovirus protein 2A: its function in polyprotein processing and virus reproduction.</title>
      <db_xref db="PUBMED" dbkey="9460917"/>
      <journal>J. Gen. Virol.</journal>
      <location pages="17-25" volume="79 ( Pt 1)"/>
      <year>1998</year>
    </publication>
    <publication id="PUB00004181">
      <author_list>Allaire M, Chernaia MM, Malcolm BA, James MN.</author_list>
      <title>Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases.</title>
      <db_xref db="PUBMED" dbkey="8164744"/>
      <journal>Nature</journal>
      <location issue="6475" pages="72-6" volume="369"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00011704">
      <author_list>Barrett AJ, Rawlings ND.</author_list>
      <title>Evolutionary lines of cysteine peptidases.</title>
      <db_xref db="PUBMED" dbkey="11517925"/>
      <journal>Biol. Chem.</journal>
      <location issue="5" pages="727-33" volume="382"/>
      <year>2001</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="1286" db="PFAM" dbkey="PF00947" name="Pico_P2A"/>
    <db_xref protein_count="2030" db="PRODOM" dbkey="PD001306" name="Peptidase_C3"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00947"/>
    <db_xref db="EC" dbkey="2.7.7.48"/>
    <db_xref db="EC" dbkey="3.4.22.28"/>
    <db_xref db="EC" dbkey="3.4.22.29"/>
    <db_xref db="EC" dbkey="3.6.1.15"/>
    <db_xref db="MEROPS" dbkey="C3"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1al2"/>
    <db_xref db="PDB" dbkey="1ar6"/>
    <db_xref db="PDB" dbkey="1ar7"/>
    <db_xref db="PDB" dbkey="1ar8"/>
    <db_xref db="PDB" dbkey="1ar9"/>
    <db_xref db="PDB" dbkey="1asj"/>
    <db_xref db="PDB" dbkey="1bev"/>
    <db_xref db="PDB" dbkey="1cqq"/>
    <db_xref db="PDB" dbkey="1d4m"/>
    <db_xref db="PDB" dbkey="1eah"/>
    <db_xref db="PDB" dbkey="1ev1"/>
    <db_xref db="PDB" dbkey="1hri"/>
    <db_xref db="PDB" dbkey="1hrv"/>
    <db_xref db="PDB" dbkey="1hxs"/>
    <db_xref db="PDB" dbkey="1k5m"/>
    <db_xref db="PDB" dbkey="1na1"/>
    <db_xref db="PDB" dbkey="1ncq"/>
    <db_xref db="PDB" dbkey="1oop"/>
    <db_xref db="PDB" dbkey="1piv"/>
    <db_xref db="PDB" dbkey="1po1"/>
    <db_xref db="PDB" dbkey="1po2"/>
    <db_xref db="PDB" dbkey="1pov"/>
    <db_xref db="PDB" dbkey="1pvc"/>
    <db_xref db="PDB" dbkey="1r08"/>
    <db_xref db="PDB" dbkey="1r09"/>
    <db_xref db="PDB" dbkey="1rmu"/>
    <db_xref db="PDB" dbkey="1ruc"/>
    <db_xref db="PDB" dbkey="1rud"/>
    <db_xref db="PDB" dbkey="1rue"/>
    <db_xref db="PDB" dbkey="1ruf"/>
    <db_xref db="PDB" dbkey="1rug"/>
    <db_xref db="PDB" dbkey="1ruh"/>
    <db_xref db="PDB" dbkey="1rui"/>
    <db_xref db="PDB" dbkey="1ruj"/>
    <db_xref db="PDB" dbkey="1rvf"/>
    <db_xref db="PDB" dbkey="1vba"/>
    <db_xref db="PDB" dbkey="1vbb"/>
    <db_xref db="PDB" dbkey="1vbc"/>
    <db_xref db="PDB" dbkey="1vbd"/>
    <db_xref db="PDB" dbkey="1vbe"/>
    <db_xref db="PDB" dbkey="1vrh"/>
    <db_xref db="PDB" dbkey="2hrv"/>
    <db_xref db="PDB" dbkey="2hwb"/>
    <db_xref db="PDB" dbkey="2hwc"/>
    <db_xref db="PDB" dbkey="2plv"/>
    <db_xref db="PDB" dbkey="2r04"/>
    <db_xref db="PDB" dbkey="2r06"/>
    <db_xref db="PDB" dbkey="2r07"/>
    <db_xref db="PDB" dbkey="2rm2"/>
    <db_xref db="PDB" dbkey="2rmu"/>
    <db_xref db="PDB" dbkey="2rr1"/>
    <db_xref db="PDB" dbkey="2rs1"/>
    <db_xref db="PDB" dbkey="2rs3"/>
    <db_xref db="PDB" dbkey="2rs5"/>
    <db_xref db="PDB" dbkey="4rhv"/>
    <db_xref db="CATH" dbkey="2.40.10.10"/>
    <db_xref db="CATH" dbkey="2.60.120.20"/>
    <db_xref db="SCOP" dbkey="b.121.4.1"/>
    <db_xref db="SCOP" dbkey="b.47.1.4"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Virus" proteins_count="2038"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000082" protein_count="409" short_name="SEA" type="Domain">
  <name>SEA</name>
  <abstract>
SEA is an extracellular domain associated with
                       O-glycosylation [<cite idref="PUB00005026"/>].
Proteins found to contain SEA-modules include, agrin, enterokinase, 63 kDa <taxon tax_id="7668">Strongylocentrotus purpuratus</taxon> (Purple sea urchin)
 sperm protein, perlecan (heparan sulphate proteoglycan core, mucin 1 and the cell surface antigen, 114/A10, and two functionally uncharacterised,
                       probably extracellular, <taxon tax_id="6239">Caenorhabditis elegans</taxon> proteins. Despite the functional
                       diversity of these adhesive proteins, a common denominator seems to be their
                       existence in heavily glycosylated environments. In addition, the better characterised
                       proteins all contain O-glycosidic-linked carbohydrates such as
                       heparan sulphate that contribute considerably to their molecular masses. The common
                       module might regulate or assist binding to neighbouring carbohydrate moieties.
<p>Enterokinase, the initiator of intestinal digestion, is a
             mosaic protease composed of a distinctive assortment of
             domains [<cite idref="PUB00004849"/>]. </p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P15941"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P31696"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P34576"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q05793"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q07929"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004849">
      <author_list>Kitamoto Y, Yuan X, Wu Q, McCourt DW, Sadler JE.</author_list>
      <title>Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains.</title>
      <db_xref db="PUBMED" dbkey="8052624"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="16" pages="7588-92" volume="91"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00005026">
      <author_list>Bork P, Patthy L.</author_list>
      <title>The SEA module: a new extracellular domain associated with O-glycosylation.</title>
      <db_xref db="PUBMED" dbkey="7670383"/>
      <journal>Protein Sci.</journal>
      <location issue="7" pages="1421-5" volume="4"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR011163"/>
    <rel_ref ipr_ref="IPR017051"/>
    <rel_ref ipr_ref="IPR017118"/>
    <rel_ref ipr_ref="IPR017329"/>
    <rel_ref ipr_ref="IPR017343"/>
  </found_in>
  <member_list>
    <db_xref protein_count="358" db="PFAM" dbkey="PF01390" name="SEA"/>
    <db_xref protein_count="262" db="PROFILE" dbkey="PS50024" name="SEA"/>
    <db_xref protein_count="185" db="SMART" dbkey="SM00200" name="SEA"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01390"/>
    <db_xref db="BLOCKS" dbkey="IPB000082"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50024"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1ivz"/>
    <db_xref db="CATH" dbkey="3.30.70.960"/>
    <db_xref db="SCOP" dbkey="d.58.41.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="13"/>
    <taxon_data name="Archaea" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="395"/>
    <taxon_data name="Fungi" proteins_count="2"/>
    <taxon_data name="Nematoda" proteins_count="7"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="7"/>
    <taxon_data name="Arthropoda" proteins_count="58"/>
    <taxon_data name="Fruit Fly" proteins_count="8"/>
    <taxon_data name="Chordata" proteins_count="289"/>
    <taxon_data name="Human" proteins_count="96"/>
    <taxon_data name="Mouse" proteins_count="38"/>
    <taxon_data name="Metazoa" proteins_count="392"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000083" protein_count="125" short_name="Fibrnctn1" type="Domain">
  <name>Fibronectin, type I</name>
  <abstract>
<p>Fibronectin type I repeats are one of the three repeats found in the fibronectin protein.
               Fibronectin is a plasma protein that binds cell surfaces and various compounds
               including collagen, fibrin, heparin, DNA, and actin. Type I domain (FN1) is approximately
               40 residues in length. Four conserved cysteines are involved in disulphide bonds. The 3D
               structure of the FN1 domain has been determined [<cite idref="PUB00004065"/>, <cite idref="PUB00003289"/>, <cite idref="PUB00005265"/>]. It consists of two antiparallel
               beta-sheets, first a double-stranded one, that is linked by a disulphide bond to a
               triple-stranded beta-sheet. The second conserved disulphide bridge links the C-terminal
               adjacent strands of the domain.</p>
<p>               In human tissue plasminogen activator chain A the FN1 domain together with the
               following epidermal growth factor (EGF)-like domain are involved in
               fibrin-binding [<cite idref="PUB00002685"/>]. It has been suggested that these two modules form a single structural
               and functional unit [<cite idref="PUB00005265"/>]. The two domains keep their specific tertiary structure, but interact
               intimately to bury a hydrophobic core; the inter-module linker makes up the third strand of
               the EGF-module's major beta-sheet.</p>
</abstract>
  <class_list>
    <classification id="GO:0005576" class_type="GO">
      <category>Cellular Component</category>
      <description>extracellular region</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00750"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P11276"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P98119"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002685">
      <author_list>Bennett WF, Paoni NF, Keyt BA, Botstein D, Jones AJ, Presta L, Wurm FM, Zoller MJ.</author_list>
      <title>High resolution analysis of functional determinants on human tissue-type plasminogen activator.</title>
      <db_xref db="PUBMED" dbkey="1900516"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="8" pages="5191-201" volume="266"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003289">
      <author_list>Downing AK, Driscoll PC, Harvey TS, Dudgeon TJ, Smith BO, Baron M, Campbell ID.</author_list>
      <title>Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance.</title>
      <db_xref db="PUBMED" dbkey="1602484"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="3" pages="821-33" volume="225"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00004065">
      <author_list>Baron M, Norman D, Willis A, Campbell ID.</author_list>
      <title>Structure of the fibronectin type 1 module.</title>
      <db_xref db="PUBMED" dbkey="2112232"/>
      <journal>Nature</journal>
      <location issue="6276" pages="642-6" volume="345"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00005265">
      <author_list>Smith BO, Downing AK, Driscoll PC, Dudgeon TJ, Campbell ID.</author_list>
      <title>The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator.</title>
      <db_xref db="PUBMED" dbkey="7582899"/>
      <journal>Structure</journal>
      <location issue="8" pages="823-33" volume="3"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <found_in>
    <rel_ref ipr_ref="IPR001314"/>
    <rel_ref ipr_ref="IPR014394"/>
  </found_in>
  <member_list>
    <db_xref protein_count="119" db="PFAM" dbkey="PF00039" name="fn1"/>
    <db_xref protein_count="117" db="PROSITE" dbkey="PS01253" name="FN1_1"/>
    <db_xref protein_count="122" db="PROFILE" dbkey="PS51091" name="FN1_2"/>
    <db_xref protein_count="110" db="SMART" dbkey="SM00058" name="FN1"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00039"/>
    <db_xref db="MSDsite" dbkey="PS01253"/>
    <db_xref db="BLOCKS" dbkey="IPB000083"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00965"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1e88"/>
    <db_xref db="PDB" dbkey="1e8b"/>
    <db_xref db="PDB" dbkey="1fbr"/>
    <db_xref db="PDB" dbkey="1o9a"/>
    <db_xref db="PDB" dbkey="1qgb"/>
    <db_xref db="PDB" dbkey="1qo6"/>
    <db_xref db="PDB" dbkey="1tpg"/>
    <db_xref db="PDB" dbkey="1tpm"/>
    <db_xref db="PDB" dbkey="1tpn"/>
    <db_xref db="PDB" dbkey="2cg6"/>
    <db_xref db="PDB" dbkey="2cg7"/>
    <db_xref db="PDB" dbkey="2cku"/>
    <db_xref db="PDB" dbkey="2fn2"/>
    <db_xref db="PDB" dbkey="2rky"/>
    <db_xref db="PDB" dbkey="2rkz"/>
    <db_xref db="PDB" dbkey="2rl0"/>
    <db_xref db="PDB" dbkey="3cal"/>
    <db_xref db="CATH" dbkey="2.10.10.10"/>
    <db_xref db="CATH" dbkey="2.10.25.10"/>
    <db_xref db="CATH" dbkey="2.10.70.10"/>
    <db_xref db="SCOP" dbkey="g.14.1.2"/>
    <db_xref db="SCOP" dbkey="g.27.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="125"/>
    <taxon_data name="Chordata" proteins_count="125"/>
    <taxon_data name="Human" proteins_count="28"/>
    <taxon_data name="Mouse" proteins_count="22"/>
    <taxon_data name="Metazoa" proteins_count="125"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000084" protein_count="1081" short_name="PE_region_N" type="Domain">
  <name>PE N-terminal</name>
  <abstract>
This family is named after a PE motif near to the amino
terminus.  The carboxyl terminus of this family
are variable and fall into several classes.  The
largest class of PE proteins is the highly repetitive
PGRS class which have a high glycine content.
The function of these proteins is uncertain but it
has been suggested that they may be related to
antigenic variation of <taxon tax_id="1773">Mycobacterium tuberculosis</taxon> [<cite idref="PUB00004280"/>].
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O53416"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004280">
      <author_list>Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG.</author_list>
      <title>Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.</title>
      <db_xref db="PUBMED" dbkey="9634230"/>
      <journal>Nature</journal>
      <location issue="6685" pages="537-44" volume="393"/>
      <year>1998</year>
    </publication>
  </pub_list>
  <member_list>
    <db_xref protein_count="1082" db="PFAM" dbkey="PF00934" name="PE"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00934"/>
    <db_xref db="BLOCKS" dbkey="IPB000084"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="2g38"/>
    <db_xref db="SCOP" dbkey="a.25.4.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1082"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000085" protein_count="1825" short_name="RuvA" type="Family">
  <name>Bacterial DNA recombination protein RuvA</name>
  <abstract>
<p>In prokaryotes, RuvA, RuvB, and RuvC process the universal DNA intermediate of homologous recombination, termed Holliday junction. The tetrameric DNA helicase RuvA specifically binds to the Holliday junction and facilitates the isomerization of the junction from the stacked folded configuration to the square-planar structure [<cite idref="PUB00013198"/>]. In the RuvA tetramer, each subunit consists of three domains, I, II and III, where I and II form the major core that is responsible for Holliday junction binding and base pair rearrangements of Holliday junction executed at the crossover point, whereas domain III regulates branch migration through direct contact with RuvB.</p>
</abstract>
  <class_list>
    <classification id="GO:0003678" class_type="GO">
      <category>Molecular Function</category>
      <description>DNA helicase activity</description>
    </classification>
    <classification id="GO:0006281" class_type="GO">
      <category>Biological Process</category>
      <description>DNA repair</description>
    </classification>
    <classification id="GO:0006310" class_type="GO">
      <category>Biological Process</category>
      <description>DNA recombination</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A2BQZ1"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P0A809"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P73554"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00013198">
      <author_list>Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, Iwasaki H, Shinagawa H, Ariyoshi M, Mayanagi K, Morikawa K.</author_list>
      <title>Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery.</title>
      <db_xref db="PUBMED" dbkey="12408833"/>
      <journal>Mol. Cell</journal>
      <location issue="3" pages="671-81" volume="10"/>
      <year>2002</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR003583"/>
    <rel_ref ipr_ref="IPR010994"/>
    <rel_ref ipr_ref="IPR011114"/>
    <rel_ref ipr_ref="IPR013849"/>
  </contains>
  <member_list>
    <db_xref protein_count="1766" db="TIGRFAMs" dbkey="TIGR00084" name="ruvA"/>
    <db_xref protein_count="1822" db="HAMAP" dbkey="MF_00031" name="DNA_helic_RuvA"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000085"/>
    <db_xref db="EC" dbkey="3.6.1"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1bdx"/>
    <db_xref db="PDB" dbkey="1bvs"/>
    <db_xref db="PDB" dbkey="1c7y"/>
    <db_xref db="PDB" dbkey="1cuk"/>
    <db_xref db="PDB" dbkey="1d8l"/>
    <db_xref db="PDB" dbkey="1hjp"/>
    <db_xref db="PDB" dbkey="1ixr"/>
    <db_xref db="PDB" dbkey="1ixs"/>
    <db_xref db="PDB" dbkey="2h5x"/>
    <db_xref db="CATH" dbkey="1.10.150.20"/>
    <db_xref db="CATH" dbkey="1.10.8.10"/>
    <db_xref db="CATH" dbkey="2.40.50.140"/>
    <db_xref db="SCOP" dbkey="a.5.1.1"/>
    <db_xref db="SCOP" dbkey="a.60.2.1"/>
    <db_xref db="SCOP" dbkey="b.40.4.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1820"/>
    <taxon_data name="Cyanobacteria" proteins_count="56"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="1"/>
    <taxon_data name="Archaea" proteins_count="4"/>
    <taxon_data name="Eukaryota" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000086" protein_count="21099" short_name="NUDIX_hydrolase_dom" type="Domain">
  <name>NUDIX hydrolase domain</name>
  <abstract>
MutT is a small bacterial protein (~12-15Kd) involved in the GO system [<cite idref="PUB00002202"/>]
               responsible for removing an oxidatively damaged form of guanine (8-hydroxy-
               guanine or 7,8-dihydro-8-oxoguanine) from DNA and the nucleotide pool.
               8-oxo-dGTP is inserted opposite dA and dC residues of template DNA with near equal efficiency, leading to A.T to G.C transversions. MutT
 specifically degrades 8-oxo-dGTP to the monophosphate, with the concomitant
 release of pyrophosphate. A short conserved N-terminal region of mutT 
               (designated the MutT domain) is also found in a variety of other
               prokaryotic, viral and eukaryotic proteins [<cite idref="PUB00004433"/>, <cite idref="PUB00003856"/>, <cite idref="PUB00002808"/>, <cite idref="PUB00006677"/>].
           <p>The generic name `NUDIX hydrolases' (NUcleoside DIphosphate linked
               to some other moiety X) has been coined for this domain family [<cite idref="PUB00006662"/>]. The
               family can be divided into a number of subgroups, of which MutT anti-
               mutagenic activity represents only one type; most of the rest hydrolyse
               diverse nucleoside diphosphate derivatives (including ADP-ribose, GDP-
               mannose, TDP-glucose, NADH, UDP-sugars, dNTP and NTP).</p>
</abstract>
  <class_list>
    <classification id="GO:0016787" class_type="GO">
      <category>Molecular Function</category>
      <description>hydrolase activity</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O22951"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O95989"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P53550"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q8R2U6"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9U2M7"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00002202">
      <author_list>Michaels ML, Miller JH.</author_list>
      <title>The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine).</title>
      <db_xref db="PUBMED" dbkey="1328155"/>
      <journal>J. Bacteriol.</journal>
      <location issue="20" pages="6321-5" volume="174"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00002808">
      <author_list>Sakumi K, Furuichi M, Tsuzuki T, Kakuma T, Kawabata S, Maki H, Sekiguchi M.</author_list>
      <title>Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis.</title>
      <db_xref db="PUBMED" dbkey="8226881"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="31" pages="23524-30" volume="268"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00003856">
      <author_list>Mejean V, Salles C, Bullions LC, Bessman MJ, Claverys JP.</author_list>
      <title>Characterization of the mutX gene of Streptococcus pneumoniae as a homologue of Escherichia coli mutT, and tentative definition of a catalytic domain of the dGTP pyrophosphohydrolases.</title>
      <db_xref db="PUBMED" dbkey="8170394"/>
      <journal>Mol. Microbiol.</journal>
      <location issue="2" pages="323-30" volume="11"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00004433">
      <author_list>Koonin EV.</author_list>
      <title>A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses.</title>
      <db_xref db="PUBMED" dbkey="8233837"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="20" pages="4847" volume="21"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00006662">
      <author_list>Bessman MJ, Frick DN, O'Handley SF.</author_list>
      <title>The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes.</title>
      <db_xref db="PUBMED" dbkey="8810257"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="41" pages="25059-62" volume="271"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00006677">
      <author_list>McLennan AG.</author_list>
      <title>The MutT motif family of nucleotide phosphohydrolases in man and human pathogens (review).</title>
      <db_xref db="PUBMED" dbkey="10373642"/>
      <journal>Int. J. Mol. Med.</journal>
      <location issue="1" pages="79-89" volume="4"/>
      <year>1999</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR015797"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR003293"/>
    <rel_ref ipr_ref="IPR003561"/>
    <rel_ref ipr_ref="IPR003562"/>
    <rel_ref ipr_ref="IPR003563"/>
    <rel_ref ipr_ref="IPR003564"/>
    <rel_ref ipr_ref="IPR003565"/>
    <rel_ref ipr_ref="IPR004385"/>
    <rel_ref ipr_ref="IPR011876"/>
    <rel_ref ipr_ref="IPR014078"/>
    <rel_ref ipr_ref="IPR017397"/>
    <rel_ref ipr_ref="IPR021161"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR000059"/>
    <rel_ref ipr_ref="IPR020084"/>
    <rel_ref ipr_ref="IPR020476"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR003300"/>
    <rel_ref ipr_ref="IPR003301"/>
  </found_in>
  <member_list>
    <db_xref protein_count="19640" db="PFAM" dbkey="PF00293" name="NUDIX"/>
    <db_xref protein_count="20025" db="GENE3D" dbkey="G3DSA:3.90.79.10" name="NUDIX_hydrolase"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00293"/>
    <db_xref db="MSDsite" dbkey="PS00893"/>
    <db_xref db="BLOCKS" dbkey="IPB000086"/>
    <db_xref db="EC" dbkey="3.6.1"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00695"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1f3y"/>
    <db_xref db="PDB" dbkey="1g0s"/>
    <db_xref db="PDB" dbkey="1g9q"/>
    <db_xref db="PDB" dbkey="1ga7"/>
    <db_xref db="PDB" dbkey="1hx3"/>
    <db_xref db="PDB" dbkey="1hzt"/>
    <db_xref db="PDB" dbkey="1i9a"/>
    <db_xref db="PDB" dbkey="1iry"/>
    <db_xref db="PDB" dbkey="1jkn"/>
    <db_xref db="PDB" dbkey="1jrk"/>
    <db_xref db="PDB" dbkey="1k26"/>
    <db_xref db="PDB" dbkey="1k2e"/>
    <db_xref db="PDB" dbkey="1khz"/>
    <db_xref db="PDB" dbkey="1kt9"/>
    <db_xref db="PDB" dbkey="1ktg"/>
    <db_xref db="PDB" dbkey="1mk1"/>
    <db_xref db="PDB" dbkey="1mp2"/>
    <db_xref db="PDB" dbkey="1mqe"/>
    <db_xref db="PDB" dbkey="1mqw"/>
    <db_xref db="PDB" dbkey="1mr2"/>
    <db_xref db="PDB" dbkey="1mut"/>
    <db_xref db="PDB" dbkey="1nfs"/>
    <db_xref db="PDB" dbkey="1nfz"/>
    <db_xref db="PDB" dbkey="1nqy"/>
    <db_xref db="PDB" dbkey="1nqz"/>
    <db_xref db="PDB" dbkey="1ow2"/>
    <db_xref db="PDB" dbkey="1ppv"/>
    <db_xref db="PDB" dbkey="1ppw"/>
    <db_xref db="PDB" dbkey="1ppx"/>
    <db_xref db="PDB" dbkey="1pun"/>
    <db_xref db="PDB" dbkey="1puq"/>
    <db_xref db="PDB" dbkey="1pus"/>
    <db_xref db="PDB" dbkey="1pvf"/>
    <db_xref db="PDB" dbkey="1q27"/>
    <db_xref db="PDB" dbkey="1q33"/>
    <db_xref db="PDB" dbkey="1q54"/>
    <db_xref db="PDB" dbkey="1qvj"/>
    <db_xref db="PDB" dbkey="1r67"/>
    <db_xref db="PDB" dbkey="1rrq"/>
    <db_xref db="PDB" dbkey="1rrs"/>
    <db_xref db="PDB" dbkey="1rya"/>
    <db_xref db="PDB" dbkey="1sjy"/>
    <db_xref db="PDB" dbkey="1soi"/>
    <db_xref db="PDB" dbkey="1su2"/>
    <db_xref db="PDB" dbkey="1sz3"/>
    <db_xref db="PDB" dbkey="1tum"/>
    <db_xref db="PDB" dbkey="1u20"/>
    <db_xref db="PDB" dbkey="1v8i"/>
    <db_xref db="PDB" dbkey="1v8l"/>
    <db_xref db="PDB" dbkey="1v8m"/>
    <db_xref db="PDB" dbkey="1v8n"/>
    <db_xref db="PDB" dbkey="1v8r"/>
    <db_xref db="PDB" dbkey="1v8s"/>
    <db_xref db="PDB" dbkey="1v8t"/>
    <db_xref db="PDB" dbkey="1v8u"/>
    <db_xref db="PDB" dbkey="1v8v"/>
    <db_xref db="PDB" dbkey="1v8w"/>
    <db_xref db="PDB" dbkey="1v8y"/>
    <db_xref db="PDB" dbkey="1vc8"/>
    <db_xref db="PDB" dbkey="1vc9"/>
    <db_xref db="PDB" dbkey="1vcd"/>
    <db_xref db="PDB" dbkey="1vhg"/>
    <db_xref db="PDB" dbkey="1vhz"/>
    <db_xref db="PDB" dbkey="1viq"/>
    <db_xref db="PDB" dbkey="1viu"/>
    <db_xref db="PDB" dbkey="1vk6"/>
    <db_xref db="PDB" dbkey="1vrl"/>
    <db_xref db="PDB" dbkey="1x51"/>
    <db_xref db="PDB" dbkey="1x83"/>
    <db_xref db="PDB" dbkey="1x84"/>
    <db_xref db="PDB" dbkey="1xsb"/>
    <db_xref db="PDB" dbkey="1xsc"/>
    <db_xref db="PDB" dbkey="2a6t"/>
    <db_xref db="PDB" dbkey="2a8p"/>
    <db_xref db="PDB" dbkey="2a8q"/>
    <db_xref db="PDB" dbkey="2a8r"/>
    <db_xref db="PDB" dbkey="2a8s"/>
    <db_xref db="PDB" dbkey="2a8t"/>
    <db_xref db="PDB" dbkey="2azw"/>
    <db_xref db="PDB" dbkey="2b06"/>
    <db_xref db="PDB" dbkey="2b0v"/>
    <db_xref db="PDB" dbkey="2b2k"/>
    <db_xref db="PDB" dbkey="2fb1"/>
    <db_xref db="PDB" dbkey="2fkb"/>
    <db_xref db="PDB" dbkey="2fml"/>
    <db_xref db="PDB" dbkey="2fvv"/>
    <db_xref db="PDB" dbkey="2g73"/>
    <db_xref db="PDB" dbkey="2g74"/>
    <db_xref db="PDB" dbkey="2gt2"/>
    <db_xref db="PDB" dbkey="2gt4"/>
    <db_xref db="PDB" dbkey="2o5f"/>
    <db_xref db="PDB" dbkey="2pqv"/>
    <db_xref db="PDB" dbkey="2q9p"/>
    <db_xref db="PDB" dbkey="2qkl"/>
    <db_xref db="PDB" dbkey="2vnp"/>
    <db_xref db="PDB" dbkey="2vnq"/>
    <db_xref db="PDB" dbkey="3cng"/>
    <db_xref db="CATH" dbkey="3.90.79.10"/>
    <db_xref db="SCOP" dbkey="a.242.1.1"/>
    <db_xref db="SCOP" dbkey="d.113.1.1"/>
    <db_xref db="SCOP" dbkey="d.113.1.2"/>
    <db_xref db="SCOP" dbkey="d.113.1.3"/>
    <db_xref db="SCOP" dbkey="d.113.1.4"/>
    <db_xref db="SCOP" dbkey="d.113.1.5"/>
    <db_xref db="SCOP" dbkey="d.113.1.6"/>
    <db_xref db="SCOP" dbkey="d.113.1.7"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="18277"/>
    <taxon_data name="Cyanobacteria" proteins_count="293"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="8"/>
    <taxon_data name="Archaea" proteins_count="343"/>
    <taxon_data name="Eukaryota" proteins_count="2300"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="36"/>
    <taxon_data name="Rice spp." proteins_count="76"/>
    <taxon_data name="Fungi" proteins_count="764"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="37"/>
    <taxon_data name="Other Eukaryotes" proteins_count="15"/>
    <taxon_data name="Other Eukaryotes" proteins_count="24"/>
    <taxon_data name="Nematoda" proteins_count="13"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="13"/>
    <taxon_data name="Arthropoda" proteins_count="291"/>
    <taxon_data name="Fruit Fly" proteins_count="32"/>
    <taxon_data name="Chordata" proteins_count="324"/>
    <taxon_data name="Human" proteins_count="49"/>
    <taxon_data name="Mouse" proteins_count="54"/>
    <taxon_data name="Virus" proteins_count="170"/>
    <taxon_data name="Unclassified" proteins_count="9"/>
    <taxon_data name="Other Eukaryotes" proteins_count="10"/>
    <taxon_data name="Plastid Group" proteins_count="501"/>
    <taxon_data name="Green Plants" proteins_count="501"/>
    <taxon_data name="Metazoa" proteins_count="1479"/>
    <taxon_data name="Plastid Group" proteins_count="108"/>
    <taxon_data name="Plastid Group" proteins_count="52"/>
    <taxon_data name="Other Eukaryotes" proteins_count="35"/>
    <taxon_data name="Other Eukaryotes" proteins_count="11"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR003293"/>
    <sec_ac acc="IPR003561"/>
    <sec_ac acc="IPR003562"/>
    <sec_ac acc="IPR003563"/>
    <sec_ac acc="IPR003564"/>
    <sec_ac acc="IPR003565"/>
    <sec_ac acc="IPR004385"/>
    <sec_ac acc="IPR011876"/>
    <sec_ac acc="IPR014078"/>
    <sec_ac acc="IPR017397"/>
    <sec_ac acc="IPR021161"/>
  </sec_list>
</interpro>
<interpro id="IPR000089" protein_count="10637" short_name="Biotin_lipoyl" type="Domain">
  <name>Biotin/lipoyl attachment</name>
  <abstract>
The biotin / lipoyl attachment domain has a conserved lysine residue that binds biotin or lipoic acid. Biotin plays a  catalytic role in  some carboxyl transfer reactions and is covalently attached,  via  an  amide  bond,  to  a  lysine  residue in enzymes requiring this coenzyme [<cite idref="PUB00002740"/>]. E2 acyltransferases have an essential cofactor, lipoic acid, which is covalently bound  via an amide linkage to a lysine group [<cite idref="PUB00000614"/>]. The lipoic acid cofactor is found in a variety of proteins that include, H-protein of the glycine cleavage system (GCS), mammalian and yeast pyruvate dehydrogenases and fast migrating protein (FMP) (gene acoC) from <taxon tax_id="106590">Ralstonia eutropha</taxon> (Alcaligenes eutrophus).
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00330"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O17732"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P53395"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q00955"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q0WQF7"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000614">
      <author_list>Russell GC, Guest JR.</author_list>
      <title>Sequence similarities within the family of dihydrolipoamide acyltransferases and discovery of a previously unidentified fungal enzyme.</title>
      <db_xref db="PUBMED" dbkey="1825611"/>
      <journal>Biochim. Biophys. Acta</journal>
      <location issue="2" pages="225-32" volume="1076"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00002740">
      <author_list>Shenoy BC, Xie Y, Park VL, Kumar GK, Beegen H, Wood HG, Samols D.</author_list>
      <title>The importance of methionine residues for the catalysis of the biotin enzyme, transcarboxylase. Analysis by site-directed mutagenesis.</title>
      <db_xref db="PUBMED" dbkey="1526981"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="26" pages="18407-12" volume="267"/>
      <year>1992</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR001882"/>
    <rel_ref ipr_ref="IPR003016"/>
    <rel_ref ipr_ref="IPR011053"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR005930"/>
    <rel_ref ipr_ref="IPR006255"/>
    <rel_ref ipr_ref="IPR006256"/>
    <rel_ref ipr_ref="IPR006257"/>
    <rel_ref ipr_ref="IPR014084"/>
    <rel_ref ipr_ref="IPR014276"/>
    <rel_ref ipr_ref="IPR015761"/>
    <rel_ref ipr_ref="IPR017695"/>
  </found_in>
  <member_list>
    <db_xref protein_count="10487" db="PFAM" dbkey="PF00364" name="Biotin_lipoyl"/>
    <db_xref protein_count="10472" db="PROFILE" dbkey="PS50968" name="BIOTINYL_LIPOYL"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00364"/>
    <db_xref db="COMe" dbkey="PRX001138"/>
    <db_xref db="BLOCKS" dbkey="IPB000089"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC50968"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a6x"/>
    <db_xref db="PDB" dbkey="1bdo"/>
    <db_xref db="PDB" dbkey="1dcz"/>
    <db_xref db="PDB" dbkey="1dd2"/>
    <db_xref db="PDB" dbkey="1fyc"/>
    <db_xref db="PDB" dbkey="1ghj"/>
    <db_xref db="PDB" dbkey="1ghk"/>
    <db_xref db="PDB" dbkey="1gjx"/>
    <db_xref db="PDB" dbkey="1iyu"/>
    <db_xref db="PDB" dbkey="1iyv"/>
    <db_xref db="PDB" dbkey="1k8m"/>
    <db_xref db="PDB" dbkey="1k8o"/>
    <db_xref db="PDB" dbkey="1lab"/>
    <db_xref db="PDB" dbkey="1lac"/>
    <db_xref db="PDB" dbkey="1o78"/>
    <db_xref db="PDB" dbkey="1pmr"/>
    <db_xref db="PDB" dbkey="1qjo"/>
    <db_xref db="PDB" dbkey="1y8n"/>
    <db_xref db="PDB" dbkey="1y8o"/>
    <db_xref db="PDB" dbkey="1y8p"/>
    <db_xref db="PDB" dbkey="1z6h"/>
    <db_xref db="PDB" dbkey="1z7t"/>
    <db_xref db="PDB" dbkey="2b8f"/>
    <db_xref db="PDB" dbkey="2b8g"/>
    <db_xref db="PDB" dbkey="2bdo"/>
    <db_xref db="PDB" dbkey="2d5d"/>
    <db_xref db="PDB" dbkey="2evb"/>
    <db_xref db="PDB" dbkey="2pnr"/>
    <db_xref db="PDB" dbkey="2q8i"/>
    <db_xref db="PDB" dbkey="3bdo"/>
    <db_xref db="CATH" dbkey="2.40.50.100"/>
    <db_xref db="SCOP" dbkey="b.84.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="9150"/>
    <taxon_data name="Cyanobacteria" proteins_count="122"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="3"/>
    <taxon_data name="Archaea" proteins_count="160"/>
    <taxon_data name="Eukaryota" proteins_count="1323"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="37"/>
    <taxon_data name="Rice spp." proteins_count="35"/>
    <taxon_data name="Fungi" proteins_count="487"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="46"/>
    <taxon_data name="Other Eukaryotes" proteins_count="16"/>
    <taxon_data name="Nematoda" proteins_count="10"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="10"/>
    <taxon_data name="Arthropoda" proteins_count="123"/>
    <taxon_data name="Fruit Fly" proteins_count="13"/>
    <taxon_data name="Chordata" proteins_count="162"/>
    <taxon_data name="Human" proteins_count="35"/>
    <taxon_data name="Mouse" proteins_count="21"/>
    <taxon_data name="Unclassified" proteins_count="6"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
    <taxon_data name="Plastid Group" proteins_count="282"/>
    <taxon_data name="Green Plants" proteins_count="282"/>
    <taxon_data name="Metazoa" proteins_count="832"/>
    <taxon_data name="Plastid Group" proteins_count="85"/>
    <taxon_data name="Plastid Group" proteins_count="42"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
    <taxon_data name="Other Eukaryotes" proteins_count="12"/>
    <taxon_data name="Other Eukaryotes" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000090" protein_count="1144" short_name="Flg_Motor_Flig" type="Family">
  <name>Flagellar motor switch protein FliG</name>
  <abstract>
<p>The flagellar motor switch in <taxon tax_id="562">Escherichia coli</taxon> and <taxon tax_id="602">Salmonella typhimurium</taxon> regulates the 
direction of flagellar rotation and hence controls swimming behaviour [<cite idref="PUB00001834"/>].
The switch is a complex apparatus that responds to signals transduced by the
chemotaxis sensory signalling system during chemotactic behaviour [<cite idref="PUB00001834"/>]. CheY,
the chemotaxis response regulator, is believed to act directly on the switch
to induce tumbles in the swimming pattern, but no physical interactions of 
CheY and switch proteins have yet been demonstrated. </p>
<p>The switch complex comprises at least three proteins - FliG, FliM and FliN.
It has been shown that FliG interacts with FliM, FliM interacts with itself,
and FliM interacts with FliN [<cite idref="PUB00002290"/>]. Several residues within the middle third
of FliG appear to be strongly involved in the FliG-FliM interaction, with
residues near the N- or C-termini being less important [<cite idref="PUB00002290"/>]. Such clustering
suggests that FliG-FliM interaction plays a central role in switching.</p> 
<p>Analysis of the FliG, FliM and FliN sequences shows that none are especially
hydrophobic or appear to be integral membrane proteins [<cite idref="PUB00002083"/>]. This result is
consistent with other evidence suggesting that the proteins may be 
peripheral to the membrane, possibly mounted on the basal body M ring [<cite idref="PUB00002083"/>, <cite idref="PUB00004790"/>]. FliG is present in about 25 copies per flagellum.  This structure of the
C-terminal domain is known, this domain functions
specifically in motor rotation [<cite idref="PUB00004294"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0001539" class_type="GO">
      <category>Biological Process</category>
      <description>ciliary or flagellar motility</description>
    </classification>
    <classification id="GO:0003774" class_type="GO">
      <category>Molecular Function</category>
      <description>motor activity</description>
    </classification>
    <classification id="GO:0006935" class_type="GO">
      <category>Biological Process</category>
      <description>chemotaxis</description>
    </classification>
    <classification id="GO:0009288" class_type="GO">
      <category>Cellular Component</category>
      <description>bacterial-type flagellum</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9WY63"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001834">
      <author_list>Roman SJ, Frantz BB, Matsumura P.</author_list>
      <title>Gene sequence, overproduction, purification and determination of the wild-type level of the Escherichia coli flagellar switch protein FliG.</title>
      <db_xref db="PUBMED" dbkey="8224881"/>
      <journal>Gene</journal>
      <location issue="1" pages="103-8" volume="133"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00002083">
      <author_list>Kihara M, Homma M, Kutsukake K, Macnab RM.</author_list>
      <title>Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences.</title>
      <db_xref db="PUBMED" dbkey="2656645"/>
      <journal>J. Bacteriol.</journal>
      <location issue="6" pages="3247-57" volume="171"/>
      <year>1989</year>
    </publication>
    <publication id="PUB00002290">
      <author_list>Marykwas DL, Berg HC.</author_list>
      <title>A mutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli.</title>
      <db_xref db="PUBMED" dbkey="8631704"/>
      <journal>J. Bacteriol.</journal>
      <location issue="5" pages="1289-94" volume="178"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00004790">
      <author_list>Francis NR, Irikura VM, Yamaguchi S, DeRosier DJ, Macnab RM.</author_list>
      <title>Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body.</title>
      <db_xref db="PUBMED" dbkey="1631122"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="14" pages="6304-8" volume="89"/>
      <year>1992</year>
    </publication>
    <publication id="PUB00004294">
      <author_list>Lloyd SA, Whitby FG, Blair DF, Hill CP.</author_list>
      <title>Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.</title>
      <db_xref db="PUBMED" dbkey="10440379"/>
      <journal>Nature</journal>
      <location issue="6743" pages="472-5" volume="400"/>
      <year>1999</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR011002"/>
  </contains>
  <member_list>
    <db_xref protein_count="1131" db="PFAM" dbkey="PF01706" name="FliG_C"/>
    <db_xref protein_count="1123" db="PRINTS" dbkey="PR00954" name="FLGMOTORFLIG"/>
    <db_xref protein_count="853" db="TIGRFAMs" dbkey="TIGR00207" name="fliG"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01706"/>
    <db_xref db="BLOCKS" dbkey="IPB000090"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1lkv"/>
    <db_xref db="PDB" dbkey="1qc7"/>
    <db_xref db="CATH" dbkey="1.10.220.30"/>
    <db_xref db="SCOP" dbkey="a.118.14.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1143"/>
    <taxon_data name="Eukaryota" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="1"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000091" protein_count="139" short_name="Huntingtin" type="Family">
  <name>Huntingtin</name>
  <abstract>
Huntington's disease (HD) is a mid-life onset, inherited, neurodegenerative
disorder characterised by motor impairment, involuntary movements (chorea),
psychiatric disorders and dementia [<cite idref="PUB00003898"/>]. The disease results from the
expansion of a polyglutamine-encoding CAG repeat in a gene of unknown
function. Moderate expansion of glutamine-coding CAG repeats has been
found in other neurological diseases (e.g. spinobulbar muscular atrophy
and Machado-Joseph disease), in all of which the pathological mechanism
linked to the expansion of the polyglutamine tract in the protein remains
a mystery.
<p>The HD transcript is highly conserved, significant differences, as already
noted, occurring in the N-terminal Gln-repeat region. Huntingtin normally
contains 10-35 repeats, but shows 36-120 repeats in the disease form.
Migration differences between normal and mutated huntingtin in a denaturing
polyacrylamide gel suggest that the poly-Gln stretch disrupts the protein
conformation. This finding is consistent with the observation that
Gln repeats may form tightly-linked beta-sheets that could act as polar
zippers [<cite idref="PUB00004844"/>].</p>
</abstract>
  <class_list>
    <classification id="GO:0005634" class_type="GO">
      <category>Cellular Component</category>
      <description>nucleus</description>
    </classification>
    <classification id="GO:0005737" class_type="GO">
      <category>Cellular Component</category>
      <description>cytoplasm</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P42858"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P42859"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P51111"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q76P24"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00003898">
      <author_list>Baxendale S, Abdulla S, Elgar G, Buck D, Berks M, Micklem G, Durbin R, Bates G, Brenner S, Beck S.</author_list>
      <title>Comparative sequence analysis of the human and pufferfish Huntington's disease genes.</title>
      <db_xref db="PUBMED" dbkey="7647794"/>
      <journal>Nat. Genet.</journal>
      <location issue="1" pages="67-76" volume="10"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00004844">
      <author_list>Perutz MF, Johnson T, Suzuki M, Finch JT.</author_list>
      <title>Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases.</title>
      <db_xref db="PUBMED" dbkey="8202492"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="12" pages="5355-8" volume="91"/>
      <year>1994</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR000357"/>
    <rel_ref ipr_ref="IPR016024"/>
  </contains>
  <member_list>
    <db_xref protein_count="138" db="PANTHER" dbkey="PTHR10170" name="Huntingtin"/>
    <db_xref protein_count="52" db="PRINTS" dbkey="PR00375" name="HUNTINGTIN"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000091"/>
  </external_doc_list>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="139"/>
    <taxon_data name="Arthropoda" proteins_count="25"/>
    <taxon_data name="Fruit Fly" proteins_count="3"/>
    <taxon_data name="Chordata" proteins_count="25"/>
    <taxon_data name="Human" proteins_count="4"/>
    <taxon_data name="Mouse" proteins_count="1"/>
    <taxon_data name="Metazoa" proteins_count="137"/>
    <taxon_data name="Other Eukaryotes" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
</interprodb>