1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interprodb SYSTEM "interpro.dtd">
<interprodb>
<release>
<dbinfo dbname="PANTHER" entry_count="30128" file_date="04-OCT-06" version="6.1"/>
<dbinfo dbname="PFAM" entry_count="11912" file_date="01-SEP-09" version="24.0"/>
<dbinfo dbname="PIRSF" entry_count="3222" file_date="18-MAR-10" version="2.72"/>
<dbinfo dbname="PRINTS" entry_count="2000" file_date="09-FEB-10" version="40.0"/>
<dbinfo dbname="PRODOM" entry_count="1894" file_date="23-APR-09" version="2006.1"/>
<dbinfo dbname="PROSITE" entry_count="1308" file_date="28-JUL-09" version="20.52"/>
<dbinfo dbname="PROFILE" entry_count="860" file_date="28-JUL-09" version="20.52"/>
<dbinfo dbname="SMART" entry_count="809" file_date="24-MAR-09" version="6.0"/>
<dbinfo dbname="TIGRFAMs" entry_count="3808" file_date="11-NOV-09" version="9.0"/>
<dbinfo dbname="GENE3D" entry_count="2147" file_date="11-SEP-06" version="3.0.0"/>
<dbinfo dbname="SSF" entry_count="1538" file_date="30-NOV-06" version="1.69"/>
<dbinfo dbname="SWISSPROT" entry_count="517100" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="TREMBL" entry_count="10867798" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="INTERPRO" entry_count="20329" file_date="24-MAR-10" version="26.0"/>
<dbinfo dbname="GO" entry_count="23937" file_date="27-MAR-07" version="N/A"/>
<dbinfo dbname="MEROPS" entry_count="3802" file_date="25-MAR-10" version="9.1"/>
<dbinfo dbname="UniProt" entry_count="11384898" file_date="18-MAY-10" version="2010_06"/>
<dbinfo dbname="HAMAP" entry_count="1633" file_date="28-MAY-09" version="280509"/>
<dbinfo dbname="PFAMB" entry_count="142303" file_date="02-DEC-09" version="24.0"/>
</release>
<interpro id="IPR000001" protein_count="655" short_name="Kringle" type="Domain">
<name>Kringle</name>
<abstract>
<p>Kringles are autonomous structural domains, found throughout the blood clotting and fibrinolytic proteins. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00002414"/>, <cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>].
Kringle domains [<cite idref="PUB00003400"/>, <cite idref="PUB00000803"/>, <cite idref="PUB00001620"/>] are characterised by a triple loop, 3-disulphide bridge structure, whose conformation is defined by a number of hydrogen bonds and small pieces of anti-parallel beta-sheet. They are found in a varying number of copies in some plasma proteins including prothrombin and urokinase-type plasminogen activator, which are serine proteases belonging to MEROPS peptidase family S1A.</p>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P00747"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P98119"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q08048"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q24488"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000803">
<author_list>Patthy L.</author_list>
<title>Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.</title>
<db_xref db="PUBMED" dbkey="3891096"/>
<journal>Cell</journal>
<location issue="3" pages="657-63" volume="41"/>
<year>1985</year>
</publication>
<publication id="PUB00001541">
<author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
<title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
<db_xref db="PUBMED" dbkey="6373375"/>
<journal>FEBS Lett.</journal>
<location issue="1" pages="131-6" volume="171"/>
<year>1984</year>
</publication>
<publication id="PUB00002414">
<author_list>McMullen BA, Fujikawa K.</author_list>
<title>Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor).</title>
<db_xref db="PUBMED" dbkey="3886654"/>
<journal>J. Biol. Chem.</journal>
<location issue="9" pages="5328-41" volume="260"/>
<year>1985</year>
</publication>
<publication id="PUB00001620">
<author_list>Ikeo K, Takahashi K, Gojobori T.</author_list>
<title>Evolutionary origin of numerous kringles in human and simian apolipoprotein(a).</title>
<db_xref db="PUBMED" dbkey="1879523"/>
<journal>FEBS Lett.</journal>
<location issue="1-2" pages="146-8" volume="287"/>
<year>1991</year>
</publication>
<publication id="PUB00006168">
<author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
<title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
<db_xref db="PUBMED" dbkey="8165128"/>
<journal>Nucleic Acids Res.</journal>
<location issue="7" pages="1161-6" volume="22"/>
<year>1994</year>
</publication>
<publication id="PUB00015853">
<author_list>Schwabe JW, Teichmann SA.</author_list>
<title>Nuclear receptors: the evolution of diversity.</title>
<db_xref db="PUBMED" dbkey="14747695"/>
<journal>Sci. STKE</journal>
<location issue="217" pages="pe4" volume="2004"/>
<year>2004</year>
</publication>
<publication id="PUB00003257">
<author_list>Atkinson RA, Williams RJ.</author_list>
<title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
<db_xref db="PUBMED" dbkey="2157850"/>
<journal>J. Mol. Biol.</journal>
<location issue="3" pages="541-52" volume="212"/>
<year>1990</year>
</publication>
<publication id="PUB00003400">
<author_list>Castellino FJ, Beals JM.</author_list>
<title>The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII.</title>
<db_xref db="PUBMED" dbkey="3131537"/>
<journal>J. Mol. Evol.</journal>
<location issue="4" pages="358-69" volume="26"/>
<year>1987</year>
</publication>
<publication id="PUB00004464">
<author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
<title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
<db_xref db="PUBMED" dbkey="7899080"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="606-11" volume="23"/>
<year>1995</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR013806"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018059"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR018056"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR001314"/>
<rel_ref ipr_ref="IPR011358"/>
<rel_ref ipr_ref="IPR012051"/>
<rel_ref ipr_ref="IPR014394"/>
<rel_ref ipr_ref="IPR016247"/>
<rel_ref ipr_ref="IPR017076"/>
<rel_ref ipr_ref="IPR020715"/>
</found_in>
<member_list>
<db_xref protein_count="630" db="PFAM" dbkey="PF00051" name="Kringle"/>
<db_xref protein_count="645" db="PROFILE" dbkey="PS50070" name="KRINGLE_2"/>
<db_xref protein_count="651" db="SMART" dbkey="SM00130" name="KR"/>
<db_xref protein_count="618" db="GENE3D" dbkey="G3DSA:2.40.20.10" name="Kringle"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00051"/>
<db_xref db="MSDsite" dbkey="PS00021"/>
<db_xref db="BLOCKS" dbkey="IPB000001"/>
<db_xref db="MEROPS" dbkey="S1"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00020"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a0h"/>
<db_xref db="PDB" dbkey="1a5h"/>
<db_xref db="PDB" dbkey="1b2i"/>
<db_xref db="PDB" dbkey="1bda"/>
<db_xref db="PDB" dbkey="1bht"/>
<db_xref db="PDB" dbkey="1bml"/>
<db_xref db="PDB" dbkey="1bui"/>
<db_xref db="PDB" dbkey="1cea"/>
<db_xref db="PDB" dbkey="1ceb"/>
<db_xref db="PDB" dbkey="1ddj"/>
<db_xref db="PDB" dbkey="1gmn"/>
<db_xref db="PDB" dbkey="1gmo"/>
<db_xref db="PDB" dbkey="1gp9"/>
<db_xref db="PDB" dbkey="1hpj"/>
<db_xref db="PDB" dbkey="1hpk"/>
<db_xref db="PDB" dbkey="1i5k"/>
<db_xref db="PDB" dbkey="1i71"/>
<db_xref db="PDB" dbkey="1jfn"/>
<db_xref db="PDB" dbkey="1kdu"/>
<db_xref db="PDB" dbkey="1ki0"/>
<db_xref db="PDB" dbkey="1kiv"/>
<db_xref db="PDB" dbkey="1krn"/>
<db_xref db="PDB" dbkey="1l4d"/>
<db_xref db="PDB" dbkey="1l4z"/>
<db_xref db="PDB" dbkey="1nk1"/>
<db_xref db="PDB" dbkey="1nl1"/>
<db_xref db="PDB" dbkey="1nl2"/>
<db_xref db="PDB" dbkey="1pk2"/>
<db_xref db="PDB" dbkey="1pk4"/>
<db_xref db="PDB" dbkey="1pkr"/>
<db_xref db="PDB" dbkey="1pmk"/>
<db_xref db="PDB" dbkey="1pml"/>
<db_xref db="PDB" dbkey="1qrz"/>
<db_xref db="PDB" dbkey="1rjx"/>
<db_xref db="PDB" dbkey="1rtf"/>
<db_xref db="PDB" dbkey="1tpg"/>
<db_xref db="PDB" dbkey="1tpk"/>
<db_xref db="PDB" dbkey="1urk"/>
<db_xref db="PDB" dbkey="2doh"/>
<db_xref db="PDB" dbkey="2doi"/>
<db_xref db="PDB" dbkey="2fd6"/>
<db_xref db="PDB" dbkey="2hgf"/>
<db_xref db="PDB" dbkey="2hpp"/>
<db_xref db="PDB" dbkey="2hpq"/>
<db_xref db="PDB" dbkey="2i9a"/>
<db_xref db="PDB" dbkey="2i9b"/>
<db_xref db="PDB" dbkey="2pf1"/>
<db_xref db="PDB" dbkey="2pf2"/>
<db_xref db="PDB" dbkey="2pk4"/>
<db_xref db="PDB" dbkey="2qj2"/>
<db_xref db="PDB" dbkey="2qj4"/>
<db_xref db="PDB" dbkey="2spt"/>
<db_xref db="PDB" dbkey="3bt1"/>
<db_xref db="PDB" dbkey="3bt2"/>
<db_xref db="PDB" dbkey="3e6p"/>
<db_xref db="PDB" dbkey="3kiv"/>
<db_xref db="PDB" dbkey="4kiv"/>
<db_xref db="PDB" dbkey="5hpg"/>
<db_xref db="CATH" dbkey="2.10.25.10"/>
<db_xref db="CATH" dbkey="2.40.20.10"/>
<db_xref db="CATH" dbkey="3.50.4.10"/>
<db_xref db="SCOP" dbkey="b.47.1.2"/>
<db_xref db="SCOP" dbkey="g.10.1.1"/>
<db_xref db="SCOP" dbkey="g.14.1.1"/>
<db_xref db="SCOP" dbkey="g.3.11.1"/>
<db_xref db="SCOP" dbkey="g.32.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="653"/>
<taxon_data name="Nematoda" proteins_count="5"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="5"/>
<taxon_data name="Arthropoda" proteins_count="34"/>
<taxon_data name="Fruit Fly" proteins_count="2"/>
<taxon_data name="Chordata" proteins_count="529"/>
<taxon_data name="Human" proteins_count="79"/>
<taxon_data name="Mouse" proteins_count="41"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Green Plants" proteins_count="14"/>
<taxon_data name="Metazoa" proteins_count="618"/>
<taxon_data name="Plastid Group" proteins_count="14"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018059"/>
</sec_list>
</interpro>
<interpro id="IPR000003" protein_count="452" short_name="RtnoidX_rcpt" type="Family">
<name>Retinoid X receptor</name>
<abstract>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
<p>The retinoic acid (retinoid X) receptor consists of 3 functional and
structural domains: an N-terminal (modulatory) domain; a DNA binding domain
that mediates specific binding to target DNA sequences (ligand-responsive
elements); and a hormone binding domain. The N-terminal domain differs
between retinoic acid isoforms; the small highly-conserved DNA-binding
domain (~65 residues) occupies the central portion of the protein; and
the ligand binding domain lies at the receptor C terminus.</p>
<p>Synonym(s): 2B nuclear receptor</p>
</abstract>
<class_list>
<classification id="GO:0003677" class_type="GO">
<category>Molecular Function</category>
<description>DNA binding</description>
</classification>
<classification id="GO:0004879" class_type="GO">
<category>Molecular Function</category>
<description>ligand-dependent nuclear receptor activity</description>
</classification>
<classification id="GO:0005496" class_type="GO">
<category>Molecular Function</category>
<description>steroid binding</description>
</classification>
<classification id="GO:0005634" class_type="GO">
<category>Cellular Component</category>
<description>nucleus</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
<classification id="GO:0008270" class_type="GO">
<category>Molecular Function</category>
<description>zinc ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O44960"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O95718"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P22449"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P28700"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P49866"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00004464">
<author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
<title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
<db_xref db="PUBMED" dbkey="7899080"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="606-11" volume="23"/>
<year>1995</year>
</publication>
<publication id="PUB00006168">
<author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
<title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
<db_xref db="PUBMED" dbkey="8165128"/>
<journal>Nucleic Acids Res.</journal>
<location issue="7" pages="1161-6" volume="22"/>
<year>1994</year>
</publication>
<publication id="PUB00015853">
<author_list>Schwabe JW, Teichmann SA.</author_list>
<title>Nuclear receptors: the evolution of diversity.</title>
<db_xref db="PUBMED" dbkey="14747695"/>
<journal>Sci. STKE</journal>
<location issue="217" pages="pe4" volume="2004"/>
<year>2004</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR001723"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR000536"/>
<rel_ref ipr_ref="IPR008946"/>
</contains>
<member_list>
<db_xref protein_count="452" db="PRINTS" dbkey="PR00545" name="RETINOIDXR"/>
</member_list>
<external_doc_list>
<db_xref db="BLOCKS" dbkey="IPB000003"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1by4"/>
<db_xref db="PDB" dbkey="1dkf"/>
<db_xref db="PDB" dbkey="1dsz"/>
<db_xref db="PDB" dbkey="1fby"/>
<db_xref db="PDB" dbkey="1fm6"/>
<db_xref db="PDB" dbkey="1fm9"/>
<db_xref db="PDB" dbkey="1g1u"/>
<db_xref db="PDB" dbkey="1g2n"/>
<db_xref db="PDB" dbkey="1g5y"/>
<db_xref db="PDB" dbkey="1h9u"/>
<db_xref db="PDB" dbkey="1k74"/>
<db_xref db="PDB" dbkey="1kv6"/>
<db_xref db="PDB" dbkey="1lbd"/>
<db_xref db="PDB" dbkey="1lo1"/>
<db_xref db="PDB" dbkey="1lv2"/>
<db_xref db="PDB" dbkey="1m7w"/>
<db_xref db="PDB" dbkey="1mv9"/>
<db_xref db="PDB" dbkey="1mvc"/>
<db_xref db="PDB" dbkey="1mzn"/>
<db_xref db="PDB" dbkey="1pzl"/>
<db_xref db="PDB" dbkey="1r0n"/>
<db_xref db="PDB" dbkey="1r1k"/>
<db_xref db="PDB" dbkey="1r20"/>
<db_xref db="PDB" dbkey="1rdt"/>
<db_xref db="PDB" dbkey="1rxr"/>
<db_xref db="PDB" dbkey="1s9p"/>
<db_xref db="PDB" dbkey="1s9q"/>
<db_xref db="PDB" dbkey="1tfc"/>
<db_xref db="PDB" dbkey="1uhl"/>
<db_xref db="PDB" dbkey="1vjb"/>
<db_xref db="PDB" dbkey="1xb7"/>
<db_xref db="PDB" dbkey="1xdk"/>
<db_xref db="PDB" dbkey="1xiu"/>
<db_xref db="PDB" dbkey="1xls"/>
<db_xref db="PDB" dbkey="1xv9"/>
<db_xref db="PDB" dbkey="1xvp"/>
<db_xref db="PDB" dbkey="1ynw"/>
<db_xref db="PDB" dbkey="2acl"/>
<db_xref db="PDB" dbkey="2e2r"/>
<db_xref db="PDB" dbkey="2ewp"/>
<db_xref db="PDB" dbkey="2gl8"/>
<db_xref db="PDB" dbkey="2gp7"/>
<db_xref db="PDB" dbkey="2gpo"/>
<db_xref db="PDB" dbkey="2gpp"/>
<db_xref db="PDB" dbkey="2gpu"/>
<db_xref db="PDB" dbkey="2gpv"/>
<db_xref db="PDB" dbkey="2nll"/>
<db_xref db="PDB" dbkey="2nxx"/>
<db_xref db="PDB" dbkey="2p1t"/>
<db_xref db="PDB" dbkey="2p1u"/>
<db_xref db="PDB" dbkey="2p1v"/>
<db_xref db="PDB" dbkey="2p7a"/>
<db_xref db="PDB" dbkey="2p7g"/>
<db_xref db="PDB" dbkey="2p7z"/>
<db_xref db="PDB" dbkey="2pjl"/>
<db_xref db="PDB" dbkey="2q60"/>
<db_xref db="PDB" dbkey="2r40"/>
<db_xref db="PDB" dbkey="2zas"/>
<db_xref db="PDB" dbkey="2zbs"/>
<db_xref db="PDB" dbkey="3cbb"/>
<db_xref db="PDB" dbkey="3d24"/>
<db_xref db="PDB" dbkey="3eyb"/>
<db_xref db="CATH" dbkey="1.10.565.10"/>
<db_xref db="CATH" dbkey="3.30.50.10"/>
<db_xref db="SCOP" dbkey="a.123.1.1"/>
<db_xref db="SCOP" dbkey="g.39.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="452"/>
<taxon_data name="Nematoda" proteins_count="1"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
<taxon_data name="Arthropoda" proteins_count="119"/>
<taxon_data name="Fruit Fly" proteins_count="7"/>
<taxon_data name="Chordata" proteins_count="305"/>
<taxon_data name="Human" proteins_count="45"/>
<taxon_data name="Mouse" proteins_count="30"/>
<taxon_data name="Metazoa" proteins_count="452"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000005" protein_count="22704" short_name="HTH_AraC-typ" type="Domain">
<name>Helix-turn-helix, AraC type</name>
<abstract>
<p>Many bacterial transcription regulation proteins bind DNA through a
'helix-turn-helix' (HTH) motif. One major subfamily of these proteins [<cite idref="PUB00004444"/>, <cite idref="PUB00003566"/>] is related to the arabinose
operon regulatory protein AraC [<cite idref="PUB00004444"/>], <cite idref="PUB00003566"/>. Except for celD [<cite idref="PUB00001933"/>], all of these proteins seem to be positive transcriptional factors.</p>
<p>Although the sequences belonging to this family differ somewhat in length, in nearly every case the HTH motif is situated towards the C terminus in the third quarter of most of the sequences. The minimal DNA binding domain spans roughly 100 residues and comprises two HTH subdomains; the classical HTH domain and another HTH subdomain with similarity to the classical HTH domain but with an insertion of one residue in the turn-region. The N-terminal and central regions of these proteins are presumed to interact with effector molecules and may be involved in dimerisation [<cite idref="PUB00004817"/>].</p>
<p>The known structure of MarA (<db_xref db="SWISSPROT" dbkey="P27246"/>) shows that the AraC domain is alpha helical and shows the two HTH subdomains both bind the major groove of the DNA. The two HTH subdomains are separated by only 27
angstroms, which causes the cognate DNA to bend.</p>
</abstract>
<class_list>
<classification id="GO:0003700" class_type="GO">
<category>Molecular Function</category>
<description>transcription factor activity</description>
</classification>
<classification id="GO:0005622" class_type="GO">
<category>Cellular Component</category>
<description>intracellular</description>
</classification>
<classification id="GO:0006355" class_type="GO">
<category>Biological Process</category>
<description>regulation of transcription, DNA-dependent</description>
</classification>
<classification id="GO:0043565" class_type="GO">
<category>Molecular Function</category>
<description>sequence-specific DNA binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P06134"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001933">
<author_list>Parker LL, Hall BG.</author_list>
<title>Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.</title>
<db_xref db="PUBMED" dbkey="2179047"/>
<journal>Genetics</journal>
<location issue="3" pages="455-71" volume="124"/>
<year>1990</year>
</publication>
<publication id="PUB00003566">
<author_list>Henikoff S, Wallace JC, Brown JP.</author_list>
<title>Finding protein similarities with nucleotide sequence databases.</title>
<db_xref db="PUBMED" dbkey="2314271"/>
<journal>Meth. Enzymol.</journal>
<location pages="111-32" volume="183"/>
<year>1990</year>
</publication>
<publication id="PUB00004444">
<author_list>Gallegos MT, Michan C, Ramos JL.</author_list>
<title>The XylS/AraC family of regulators.</title>
<db_xref db="PUBMED" dbkey="8451183"/>
<journal>Nucleic Acids Res.</journal>
<location issue="4" pages="807-10" volume="21"/>
<year>1993</year>
</publication>
<publication id="PUB00004817">
<author_list>Bustos SA, Schleif RF.</author_list>
<title>Functional domains of the AraC protein.</title>
<db_xref db="PUBMED" dbkey="8516313"/>
<journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
<location issue="12" pages="5638-42" volume="90"/>
<year>1993</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR012287"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018062"/>
<rel_ref ipr_ref="IPR020449"/>
</child_list>
<found_in>
<rel_ref ipr_ref="IPR011983"/>
<rel_ref ipr_ref="IPR016220"/>
<rel_ref ipr_ref="IPR016221"/>
<rel_ref ipr_ref="IPR016981"/>
<rel_ref ipr_ref="IPR018060"/>
</found_in>
<member_list>
<db_xref protein_count="22704" db="PFAM" dbkey="PF00165" name="HTH_AraC"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00165"/>
<db_xref db="MSDsite" dbkey="PS00041"/>
<db_xref db="BLOCKS" dbkey="IPB000005"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00040"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1bl0"/>
<db_xref db="PDB" dbkey="1d5y"/>
<db_xref db="PDB" dbkey="1xs9"/>
<db_xref db="CATH" dbkey="1.10.10.60"/>
<db_xref db="SCOP" dbkey="a.4.1.8"/>
<db_xref db="SCOP" dbkey="i.11.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="22594"/>
<taxon_data name="Cyanobacteria" proteins_count="150"/>
<taxon_data name="Synechocystis PCC 6803" proteins_count="4"/>
<taxon_data name="Archaea" proteins_count="4"/>
<taxon_data name="Eukaryota" proteins_count="100"/>
<taxon_data name="Rice spp." proteins_count="4"/>
<taxon_data name="Fungi" proteins_count="43"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Unclassified" proteins_count="2"/>
<taxon_data name="Unclassified" proteins_count="3"/>
<taxon_data name="Plastid Group" proteins_count="54"/>
<taxon_data name="Green Plants" proteins_count="54"/>
<taxon_data name="Metazoa" proteins_count="45"/>
<taxon_data name="Plastid Group" proteins_count="1"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018062"/>
<sec_ac acc="IPR020449"/>
</sec_list>
</interpro>
<interpro id="IPR000006" protein_count="253" short_name="Metallothionein_vert" type="Family">
<name>Metallothionein, vertebrate</name>
<abstract>
<p>Metallothioneins (MT) are small proteins that bind heavy metals, such as zinc, copper, cadmium, nickel, etc. They have a high content of cysteine residues that bind the metal ions through clusters of thiolate bonds [<cite idref="PUB00003570"/>, <cite idref="PUB00001490"/>]. An empirical classification into three classes has been proposed by Fowler and coworkers [<cite idref="PUB00005944"/>] and Kojima [<cite idref="PUB00003571"/>]. Members of class I are defined to include polypeptides related in the positions of their cysteines to equine MT-1B, and include mammalian MTs as well as from crustaceans and molluscs. Class II groups MTs from a variety of species, including sea urchins,
fungi, insects and cyanobacteria. Class III MTs are atypical polypeptides composed of gamma-glutamylcysteinyl units [<cite idref="PUB00005944"/>].</p>
<p>This original classification system has been found to be limited, in the sense that it does not allow clear differentiation of patterns of structural similarities, either between or within classes. Consequently, all class I and class II MTs (the proteinaceous sequences) have now been grouped into families of phylogenetically-related and thus alignable sequences. This system subdivides the MT superfamily into families, subfamilies, subgroups, and isolated isoforms and alleles. </p>
<p>The metallothionein superfamily comprises all polypeptides that resemble equine renal metallothionein in several respects [<cite idref="PUB00005944"/>]: e.g., low molecular weight; high metal content; amino acid composition with high Cys and low aromatic residue content; unique sequence with characteristic distribution of cysteines, and spectroscopic manifestations indicative of metal thiolate clusters. A MT family subsumes MTs that share particular sequence-specific features and are thought to be evolutionarily related. The inclusion of a MT within a family presupposes that its amino acid sequence is alignable with that of all members. Fifteen MT families have been characterised, each family being identified by its number and its taxonomic range: e.g., Family 1: vertebrate MTs [see http://www.bioc.unizh.ch/mtpage/protali.html]. </p>
<p> The members of family 1 are recognised by the sequence pattern K-x(1,2)-C-C-x-C-C-P-x(2)-C located at the beginning of the third exon.
The taxonomic range of the members extends to vertebrates.
Known characteristics: 60 to 68 AAs; 20 Cys (21 in one case), 19 of them are totally conserved; the protein sequence is divided into two structural domains, containing 9 and 11 Cys all binding 3 and 4 bivalent metal ions, respectively. The gene is composed of 3 exons, 2 introns and the splicing sites are conserved. Family 1 includes subfamilies: m1, m2, m3, m4, m, a, a1, a2, b, ba, t, all of them hit the same InterPro entry.
</p>
</abstract>
<class_list>
<classification id="GO:0046872" class_type="GO">
<category>Molecular Function</category>
<description>metal ion binding</description>
</classification>
</class_list>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P02795"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P02802"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P04355"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001490">
<author_list>Kagi JH, Kojima Y.</author_list>
<title>Chemistry and biochemistry of metallothionein.</title>
<db_xref db="PUBMED" dbkey="2959513"/>
<journal>Experientia Suppl.</journal>
<location pages="25-61" volume="52"/>
<year>1987</year>
</publication>
<publication id="PUB00003570">
<author_list>Kagi JH.</author_list>
<title>Overview of metallothionein.</title>
<db_xref db="PUBMED" dbkey="1779825"/>
<journal>Meth. Enzymol.</journal>
<location pages="613-26" volume="205"/>
<year>1991</year>
</publication>
<publication id="PUB00003571">
<author_list>Kojima Y.</author_list>
<title>Definitions and nomenclature of metallothioneins.</title>
<db_xref db="PUBMED" dbkey="1779826"/>
<journal>Meth. Enzymol.</journal>
<location pages="8-10" volume="205"/>
<year>1991</year>
</publication>
<publication id="PUB00005944">
<author_list>Fowler BA, Hildebrand CE, Kojima Y, Webb M.</author_list>
<title>Nomenclature of metallothionein.</title>
<db_xref db="PUBMED" dbkey="2959504"/>
<journal>Experientia Suppl.</journal>
<location pages="19-22" volume="52"/>
<year>1987</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR003019"/>
</parent_list>
<contains>
<rel_ref ipr_ref="IPR017854"/>
<rel_ref ipr_ref="IPR018064"/>
</contains>
<member_list>
<db_xref protein_count="250" db="PANTHER" dbkey="PTHR23299" name="Metallothionein_vert"/>
<db_xref protein_count="220" db="PRINTS" dbkey="PR00860" name="MTVERTEBRATE"/>
<db_xref protein_count="238" db="GENE3D" dbkey="G3DSA:4.10.10.10" name="Metallothionein_vert"/>
</member_list>
<external_doc_list>
<db_xref db="MSDsite" dbkey="PS00203"/>
<db_xref db="COMe" dbkey="PRX001296"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00180"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1dfs"/>
<db_xref db="PDB" dbkey="1dft"/>
<db_xref db="PDB" dbkey="1ji9"/>
<db_xref db="PDB" dbkey="1m0g"/>
<db_xref db="PDB" dbkey="1m0j"/>
<db_xref db="PDB" dbkey="1mhu"/>
<db_xref db="PDB" dbkey="1mrb"/>
<db_xref db="PDB" dbkey="1mrt"/>
<db_xref db="PDB" dbkey="2mhu"/>
<db_xref db="PDB" dbkey="2mrb"/>
<db_xref db="PDB" dbkey="2mrt"/>
<db_xref db="PDB" dbkey="4mt2"/>
<db_xref db="CATH" dbkey="4.10.10.10"/>
<db_xref db="SCOP" dbkey="g.46.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="253"/>
<taxon_data name="Chordata" proteins_count="249"/>
<taxon_data name="Human" proteins_count="27"/>
<taxon_data name="Mouse" proteins_count="15"/>
<taxon_data name="Metazoa" proteins_count="251"/>
<taxon_data name="Plastid Group" proteins_count="2"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000007" protein_count="355" short_name="Tubby_C" type="Domain">
<name>Tubby, C-terminal</name>
<abstract>
<p> Tubby, an autosomal recessive mutation, mapping to mouse chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This mutation maps to the tub gene [<cite idref="PUB00000932"/>, <cite idref="PUB00004232"/>]. The mouse tubby mutation is the cause of maturity-onset obesity, insulin resistance and sensory deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [<cite idref="PUB00007281"/>], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [<cite idref="PUB00014197"/>].</p>
<p>Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (<db_xref db="INTERPRO" dbkey="IPR005398"/>) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed beta-barrel that surrounds a central alpha helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [<cite idref="PUB00007281"/>].</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="O00294"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="O80699"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P50586"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q09306"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q10LG8"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000932">
<author_list>Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glucksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ.</author_list>
<title>Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family.</title>
<db_xref db="PUBMED" dbkey="8612280"/>
<journal>Cell</journal>
<location issue="2" pages="281-90" volume="85"/>
<year>1996</year>
</publication>
<publication id="PUB00004232">
<author_list>Noben-Trauth K, Naggert JK, North MA, Nishina PM.</author_list>
<title>A candidate gene for the mouse mutation tubby.</title>
<db_xref db="PUBMED" dbkey="8606774"/>
<journal>Nature</journal>
<location issue="6574" pages="534-8" volume="380"/>
<year>1996</year>
</publication>
<publication id="PUB00007281">
<author_list>Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L.</author_list>
<title>Implication of tubby proteins as transcription factors by structure-based functional analysis.</title>
<db_xref db="PUBMED" dbkey="10591637"/>
<journal>Science</journal>
<location issue="5447" pages="2119-25" volume="286"/>
<year>1999</year>
</publication>
<publication id="PUB00014197">
<author_list>Carroll K, Gomez C, Shapiro L.</author_list>
<title>Tubby proteins: the plot thickens.</title>
<db_xref db="PUBMED" dbkey="14708010"/>
<journal>Nat. Rev. Mol. Cell Biol.</journal>
<location issue="1" pages="55-63" volume="5"/>
<year>2004</year>
</publication>
</pub_list>
<contains>
<rel_ref ipr_ref="IPR018066"/>
</contains>
<member_list>
<db_xref protein_count="345" db="PFAM" dbkey="PF01167" name="Tub"/>
<db_xref protein_count="284" db="PRINTS" dbkey="PR01573" name="SUPERTUBBY"/>
<db_xref protein_count="324" db="GENE3D" dbkey="G3DSA:3.20.90.10" name="Tubby_C"/>
<db_xref protein_count="345" db="SSF" dbkey="SSF54518" name="Tubby_C"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF01167"/>
<db_xref db="MSDsite" dbkey="PS01200"/>
<db_xref db="MSDsite" dbkey="PS01201"/>
<db_xref db="BLOCKS" dbkey="IPB000007"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00923"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1c8z"/>
<db_xref db="PDB" dbkey="1i7e"/>
<db_xref db="PDB" dbkey="1s31"/>
<db_xref db="PDB" dbkey="2fim"/>
<db_xref db="PDB" dbkey="3c5n"/>
<db_xref db="CATH" dbkey="3.20.90.10"/>
<db_xref db="SCOP" dbkey="d.23.1.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="355"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="16"/>
<taxon_data name="Rice spp." proteins_count="48"/>
<taxon_data name="Fungi" proteins_count="10"/>
<taxon_data name="Other Eukaryotes" proteins_count="16"/>
<taxon_data name="Other Eukaryotes" proteins_count="1"/>
<taxon_data name="Nematoda" proteins_count="2"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="2"/>
<taxon_data name="Arthropoda" proteins_count="40"/>
<taxon_data name="Fruit Fly" proteins_count="5"/>
<taxon_data name="Chordata" proteins_count="64"/>
<taxon_data name="Human" proteins_count="13"/>
<taxon_data name="Mouse" proteins_count="16"/>
<taxon_data name="Plastid Group" proteins_count="161"/>
<taxon_data name="Green Plants" proteins_count="161"/>
<taxon_data name="Metazoa" proteins_count="124"/>
<taxon_data name="Plastid Group" proteins_count="38"/>
<taxon_data name="Plastid Group" proteins_count="3"/>
</taxonomy_distribution>
</interpro>
<interpro id="IPR000008" protein_count="5988" short_name="C2_Ca-dep" type="Domain">
<name>C2 calcium-dependent membrane targeting</name>
<abstract>
The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about 116 amino-acid residues and is located between the two copies of
the C1 domain in Protein Kinase C (that bind phorbol esters and diacylglycerol) (see <db_xref db="PROSITEDOC" dbkey="PDOC00379"/>)
and the protein kinase catalytic domain (see <db_xref db="PROSITEDOC" dbkey="PDOC00100"/>). Regions with
significant homology [<cite idref="PUB00002925"/>] to the C2-domain have been found in many proteins.
The C2 domain is thought to be involved in calcium-dependent phospholipid
binding [<cite idref="PUB00002815"/>] and in membrane targetting processes such as subcellular localisation. <p>The 3D structure of the
C2 domain of synaptotagmin has been reported
[<cite idref="PUB00000918"/>], the domain forms an eight-stranded beta sandwich constructed around a
conserved 4-stranded motif, designated a C2 key [<cite idref="PUB00000918"/>]. Calcium binds in
a cup-shaped depression formed by the N- and C-terminal loops of the
C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca<sup>2+</sup>-binding loops are located at the end of an 8 stranded antiparallel beta sandwich. </p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="A0FGR8"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P11792"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P27715"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P28867"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q9VVI3"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00000918">
<author_list>Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR.</author_list>
<title>Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold.</title>
<db_xref db="PUBMED" dbkey="7697723"/>
<journal>Cell</journal>
<location issue="6" pages="929-38" volume="80"/>
<year>1995</year>
</publication>
<publication id="PUB00002815">
<author_list>Davletov BA, Sudhof TC.</author_list>
<title>A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding.</title>
<db_xref db="PUBMED" dbkey="8253763"/>
<journal>J. Biol. Chem.</journal>
<location issue="35" pages="26386-90" volume="268"/>
<year>1993</year>
</publication>
<publication id="PUB00002925">
<author_list>Brose N, Hofmann K, Hata Y, Sudhof TC.</author_list>
<title>Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins.</title>
<db_xref db="PUBMED" dbkey="7559667"/>
<journal>J. Biol. Chem.</journal>
<location issue="42" pages="25273-80" volume="270"/>
<year>1995</year>
</publication>
</pub_list>
<parent_list>
<rel_ref ipr_ref="IPR008973"/>
</parent_list>
<child_list>
<rel_ref ipr_ref="IPR018029"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR001565"/>
<rel_ref ipr_ref="IPR020477"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR001192"/>
<rel_ref ipr_ref="IPR011402"/>
<rel_ref ipr_ref="IPR014375"/>
<rel_ref ipr_ref="IPR014376"/>
<rel_ref ipr_ref="IPR014638"/>
<rel_ref ipr_ref="IPR014705"/>
<rel_ref ipr_ref="IPR015427"/>
<rel_ref ipr_ref="IPR015428"/>
<rel_ref ipr_ref="IPR016279"/>
<rel_ref ipr_ref="IPR016280"/>
<rel_ref ipr_ref="IPR017147"/>
</found_in>
<member_list>
<db_xref protein_count="5145" db="PFAM" dbkey="PF00168" name="C2"/>
<db_xref protein_count="5888" db="SMART" dbkey="SM00239" name="C2"/>
</member_list>
<external_doc_list>
<db_xref db="PANDIT" dbkey="PF00168"/>
<db_xref db="BLOCKS" dbkey="IPB000008"/>
<db_xref db="PROSITEDOC" dbkey="PDOC00380"/>
</external_doc_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a25"/>
<db_xref db="PDB" dbkey="1bci"/>
<db_xref db="PDB" dbkey="1bdy"/>
<db_xref db="PDB" dbkey="1byn"/>
<db_xref db="PDB" dbkey="1cjy"/>
<db_xref db="PDB" dbkey="1djg"/>
<db_xref db="PDB" dbkey="1djh"/>
<db_xref db="PDB" dbkey="1dji"/>
<db_xref db="PDB" dbkey="1djw"/>
<db_xref db="PDB" dbkey="1djx"/>
<db_xref db="PDB" dbkey="1djy"/>
<db_xref db="PDB" dbkey="1djz"/>
<db_xref db="PDB" dbkey="1dqv"/>
<db_xref db="PDB" dbkey="1dsy"/>
<db_xref db="PDB" dbkey="1gmi"/>
<db_xref db="PDB" dbkey="1k5w"/>
<db_xref db="PDB" dbkey="1qas"/>
<db_xref db="PDB" dbkey="1qat"/>
<db_xref db="PDB" dbkey="1rh8"/>
<db_xref db="PDB" dbkey="1rlw"/>
<db_xref db="PDB" dbkey="1rsy"/>
<db_xref db="PDB" dbkey="1tjm"/>
<db_xref db="PDB" dbkey="1tjx"/>
<db_xref db="PDB" dbkey="1ugk"/>
<db_xref db="PDB" dbkey="1uov"/>
<db_xref db="PDB" dbkey="1uow"/>
<db_xref db="PDB" dbkey="1v27"/>
<db_xref db="PDB" dbkey="1w15"/>
<db_xref db="PDB" dbkey="1w16"/>
<db_xref db="PDB" dbkey="1wfj"/>
<db_xref db="PDB" dbkey="1wfm"/>
<db_xref db="PDB" dbkey="1yrk"/>
<db_xref db="PDB" dbkey="2bwq"/>
<db_xref db="PDB" dbkey="2chd"/>
<db_xref db="PDB" dbkey="2cjs"/>
<db_xref db="PDB" dbkey="2cjt"/>
<db_xref db="PDB" dbkey="2cm5"/>
<db_xref db="PDB" dbkey="2cm6"/>
<db_xref db="PDB" dbkey="2d8k"/>
<db_xref db="PDB" dbkey="2enp"/>
<db_xref db="PDB" dbkey="2ep6"/>
<db_xref db="PDB" dbkey="2fju"/>
<db_xref db="PDB" dbkey="2fk9"/>
<db_xref db="PDB" dbkey="2isd"/>
<db_xref db="PDB" dbkey="2k3h"/>
<db_xref db="PDB" dbkey="2nq3"/>
<db_xref db="PDB" dbkey="2nsq"/>
<db_xref db="PDB" dbkey="2r83"/>
<db_xref db="PDB" dbkey="2rd0"/>
<db_xref db="PDB" dbkey="2uzp"/>
<db_xref db="PDB" dbkey="2yrb"/>
<db_xref db="PDB" dbkey="2zkm"/>
<db_xref db="PDB" dbkey="3bxj"/>
<db_xref db="PDB" dbkey="3fdw"/>
<db_xref db="PDB" dbkey="3rpb"/>
<db_xref db="CATH" dbkey="2.20.170.10"/>
<db_xref db="CATH" dbkey="2.60.40.150"/>
<db_xref db="SCOP" dbkey="b.7.1.1"/>
<db_xref db="SCOP" dbkey="b.7.1.2"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Bacteria" proteins_count="3"/>
<taxon_data name="Cyanobacteria" proteins_count="1"/>
<taxon_data name="Eukaryota" proteins_count="5994"/>
<taxon_data name="Arabidopsis thaliana" proteins_count="161"/>
<taxon_data name="Rice spp." proteins_count="274"/>
<taxon_data name="Fungi" proteins_count="816"/>
<taxon_data name="Saccharomyces cerevisiae" proteins_count="68"/>
<taxon_data name="Other Eukaryotes" proteins_count="57"/>
<taxon_data name="Other Eukaryotes" proteins_count="82"/>
<taxon_data name="Nematoda" proteins_count="76"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="76"/>
<taxon_data name="Arthropoda" proteins_count="839"/>
<taxon_data name="Fruit Fly" proteins_count="132"/>
<taxon_data name="Chordata" proteins_count="1924"/>
<taxon_data name="Human" proteins_count="436"/>
<taxon_data name="Mouse" proteins_count="371"/>
<taxon_data name="Virus" proteins_count="1"/>
<taxon_data name="Other Eukaryotes" proteins_count="54"/>
<taxon_data name="Plastid Group" proteins_count="1230"/>
<taxon_data name="Green Plants" proteins_count="1230"/>
<taxon_data name="Metazoa" proteins_count="4034"/>
<taxon_data name="Plastid Group" proteins_count="243"/>
<taxon_data name="Plastid Group" proteins_count="109"/>
<taxon_data name="Other Eukaryotes" proteins_count="84"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR018029"/>
</sec_list>
</interpro>
<interpro id="IPR013806" protein_count="0" short_name="Kringle-like" type="Domain">
<name>Kringle-like fold</name>
<abstract>
<p>This entry represents proteins displaying a Kringle-like structure, which consists of a nearly all-beta, disulphide-rich fold. Proteins displaying this fold include both Kringle modules as well as fibronectin type II modules, the latter displaying a shorter two-disulphide version of the Kringle module.</p>
<p> Kringle modules occur in blood clotting and fibrinolytic proteins, such as plasminogen, prothrombin, meizothrombin, and urokinase-type plasminogen activator, as well as in apolipoprotein and hepatocyte growth factor. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>].</p>
<p>Fibronectin type II modules occur in fibronectin, as well as in gelatinase A (MMP-2), gelatinase B (MMP-9), and the collagen-binding domain of PDC-109. Fibronectin is a multi-domain glycoprotein, found in a soluble form in plasma, and in an insoluble form in loose connective tissue and basement membranes, that binds cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin [<cite idref="PUB00001346"/>]. Fibronectins are involved in a number of important functions e.g., wound healing; cell adhesion; blood coagulation; cell differentiation and migration; maintenance of the cellular cytoskeleton; and tumour metastasis. Gelatinases A and B are members of the matrix metalloproteinase family that act as neutral proteinases in the breakdown and remodelling of the extracellular matrix. These gelatinases play important roles in the pathogenesis of inflammation, infection and in neoplastic diseases [<cite idref="PUB00028079"/>]. In gelatinase A, the three fibronectin-like modules are inserted within a catalytic domain, these modules acting to target the enzyme to matrix macromolecules [<cite idref="PUB00028080"/>].</p>
</abstract>
<example_list>
<example>
<db_xref db="SWISSPROT" dbkey="P00747"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P02784"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="P11276"/>
</example>
<example>
<db_xref db="SWISSPROT" dbkey="Q24488"/>
</example>
</example_list>
<pub_list>
<publication id="PUB00001346">
<author_list>Skorstengaard K, Jensen MS, Sahl P, Petersen TE, Magnusson S.</author_list>
<title>Complete primary structure of bovine plasma fibronectin.</title>
<db_xref db="PUBMED" dbkey="3780752"/>
<journal>Eur. J. Biochem.</journal>
<location issue="2" pages="441-53" volume="161"/>
<year>1986</year>
</publication>
<publication id="PUB00001541">
<author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
<title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
<db_xref db="PUBMED" dbkey="6373375"/>
<journal>FEBS Lett.</journal>
<location issue="1" pages="131-6" volume="171"/>
<year>1984</year>
</publication>
<publication id="PUB00003257">
<author_list>Atkinson RA, Williams RJ.</author_list>
<title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
<db_xref db="PUBMED" dbkey="2157850"/>
<journal>J. Mol. Biol.</journal>
<location issue="3" pages="541-52" volume="212"/>
<year>1990</year>
</publication>
<publication id="PUB00028079">
<author_list>Chakrabarti S, Patel KD.</author_list>
<title>Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology.</title>
<db_xref db="PUBMED" dbkey="16019990"/>
<journal>Exp. Lung Res.</journal>
<location issue="6" pages="599-621" volume="31"/>
<year>2005</year>
</publication>
<publication id="PUB00028080">
<author_list>Hornebeck W, Bellon G, Emonard H.</author_list>
<title>Fibronectin type II (FnII)-like modules regulate gelatinase A activity.</title>
<db_xref db="PUBMED" dbkey="16085117"/>
<journal>Pathol. Biol.</journal>
<location issue="7" pages="405-10" volume="53"/>
<year>2005</year>
</publication>
</pub_list>
<child_list>
<rel_ref ipr_ref="IPR000001"/>
<rel_ref ipr_ref="IPR000562"/>
</child_list>
<contains>
<rel_ref ipr_ref="IPR018056"/>
<rel_ref ipr_ref="IPR018059"/>
</contains>
<found_in>
<rel_ref ipr_ref="IPR016247"/>
<rel_ref ipr_ref="IPR020715"/>
</found_in>
<member_list>
<db_xref protein_count="923" db="SSF" dbkey="SSF57440" name="Kringle-like"/>
</member_list>
<structure_db_links>
<db_xref db="PDB" dbkey="1a0h"/>
<db_xref db="PDB" dbkey="1a5h"/>
<db_xref db="PDB" dbkey="1a5i"/>
<db_xref db="PDB" dbkey="1avg"/>
<db_xref db="PDB" dbkey="1b2i"/>
<db_xref db="PDB" dbkey="1bbr"/>
<db_xref db="PDB" dbkey="1bda"/>
<db_xref db="PDB" dbkey="1bht"/>
<db_xref db="PDB" dbkey="1bml"/>
<db_xref db="PDB" dbkey="1bui"/>
<db_xref db="PDB" dbkey="1c5w"/>
<db_xref db="PDB" dbkey="1c5x"/>
<db_xref db="PDB" dbkey="1c5y"/>
<db_xref db="PDB" dbkey="1c5z"/>
<db_xref db="PDB" dbkey="1cea"/>
<db_xref db="PDB" dbkey="1ceb"/>
<db_xref db="PDB" dbkey="1ck7"/>
<db_xref db="PDB" dbkey="1cxw"/>
<db_xref db="PDB" dbkey="1ddj"/>
<db_xref db="PDB" dbkey="1e88"/>
<db_xref db="PDB" dbkey="1e8b"/>
<db_xref db="PDB" dbkey="1eak"/>
<db_xref db="PDB" dbkey="1ejn"/>
<db_xref db="PDB" dbkey="1etr"/>
<db_xref db="PDB" dbkey="1ets"/>
<db_xref db="PDB" dbkey="1ett"/>
<db_xref db="PDB" dbkey="1f5k"/>
<db_xref db="PDB" dbkey="1f5l"/>
<db_xref db="PDB" dbkey="1f92"/>
<db_xref db="PDB" dbkey="1fbr"/>
<db_xref db="PDB" dbkey="1fv9"/>
<db_xref db="PDB" dbkey="1gi7"/>
<db_xref db="PDB" dbkey="1gi8"/>
<db_xref db="PDB" dbkey="1gi9"/>
<db_xref db="PDB" dbkey="1gj7"/>
<db_xref db="PDB" dbkey="1gj8"/>
<db_xref db="PDB" dbkey="1gj9"/>
<db_xref db="PDB" dbkey="1gja"/>
<db_xref db="PDB" dbkey="1gjb"/>
<db_xref db="PDB" dbkey="1gjc"/>
<db_xref db="PDB" dbkey="1gjd"/>
<db_xref db="PDB" dbkey="1gkc"/>
<db_xref db="PDB" dbkey="1gkd"/>
<db_xref db="PDB" dbkey="1gmn"/>
<db_xref db="PDB" dbkey="1gmo"/>
<db_xref db="PDB" dbkey="1gp9"/>
<db_xref db="PDB" dbkey="1gxd"/>
<db_xref db="PDB" dbkey="1h8p"/>
<db_xref db="PDB" dbkey="1hov"/>
<db_xref db="PDB" dbkey="1hpj"/>
<db_xref db="PDB" dbkey="1hpk"/>
<db_xref db="PDB" dbkey="1hrt"/>
<db_xref db="PDB" dbkey="1i5k"/>
<db_xref db="PDB" dbkey="1i71"/>
<db_xref db="PDB" dbkey="1id5"/>
<db_xref db="PDB" dbkey="1j7m"/>
<db_xref db="PDB" dbkey="1jfn"/>
<db_xref db="PDB" dbkey="1kdu"/>
<db_xref db="PDB" dbkey="1ki0"/>
<db_xref db="PDB" dbkey="1kiv"/>
<db_xref db="PDB" dbkey="1krn"/>
<db_xref db="PDB" dbkey="1ks0"/>
<db_xref db="PDB" dbkey="1l4d"/>
<db_xref db="PDB" dbkey="1l4z"/>
<db_xref db="PDB" dbkey="1l6j"/>
<db_xref db="PDB" dbkey="1lmw"/>
<db_xref db="PDB" dbkey="1mkw"/>
<db_xref db="PDB" dbkey="1mkx"/>
<db_xref db="PDB" dbkey="1nk1"/>
<db_xref db="PDB" dbkey="1nl1"/>
<db_xref db="PDB" dbkey="1nl2"/>
<db_xref db="PDB" dbkey="1o3p"/>
<db_xref db="PDB" dbkey="1o5a"/>
<db_xref db="PDB" dbkey="1o5b"/>
<db_xref db="PDB" dbkey="1o5c"/>
<db_xref db="PDB" dbkey="1o9a"/>
<db_xref db="PDB" dbkey="1owd"/>
<db_xref db="PDB" dbkey="1owe"/>
<db_xref db="PDB" dbkey="1owh"/>
<db_xref db="PDB" dbkey="1owi"/>
<db_xref db="PDB" dbkey="1owj"/>
<db_xref db="PDB" dbkey="1owk"/>
<db_xref db="PDB" dbkey="1pdc"/>
<db_xref db="PDB" dbkey="1pk2"/>
<db_xref db="PDB" dbkey="1pk4"/>
<db_xref db="PDB" dbkey="1pkr"/>
<db_xref db="PDB" dbkey="1pmk"/>
<db_xref db="PDB" dbkey="1pml"/>
<db_xref db="PDB" dbkey="1qgb"/>
<db_xref db="PDB" dbkey="1qib"/>
<db_xref db="PDB" dbkey="1qo6"/>
<db_xref db="PDB" dbkey="1qrz"/>
<db_xref db="PDB" dbkey="1rjx"/>
<db_xref db="PDB" dbkey="1rtf"/>
<db_xref db="PDB" dbkey="1sc8"/>
<db_xref db="PDB" dbkey="1sqa"/>
<db_xref db="PDB" dbkey="1sqo"/>
<db_xref db="PDB" dbkey="1sqt"/>
<db_xref db="PDB" dbkey="1tbq"/>
<db_xref db="PDB" dbkey="1tbr"/>
<db_xref db="PDB" dbkey="1toc"/>
<db_xref db="PDB" dbkey="1tpg"/>
<db_xref db="PDB" dbkey="1tpk"/>
<db_xref db="PDB" dbkey="1u6q"/>
<db_xref db="PDB" dbkey="1ucy"/>
<db_xref db="PDB" dbkey="1urk"/>
<db_xref db="PDB" dbkey="1uvt"/>
<db_xref db="PDB" dbkey="1uvu"/>
<db_xref db="PDB" dbkey="1vit"/>
<db_xref db="PDB" dbkey="1vj9"/>
<db_xref db="PDB" dbkey="1vja"/>
<db_xref db="PDB" dbkey="1w0z"/>
<db_xref db="PDB" dbkey="1w10"/>
<db_xref db="PDB" dbkey="1w11"/>
<db_xref db="PDB" dbkey="1w12"/>
<db_xref db="PDB" dbkey="1w13"/>
<db_xref db="PDB" dbkey="1w14"/>
<db_xref db="PDB" dbkey="1ycp"/>
<db_xref db="PDB" dbkey="2a1d"/>
<db_xref db="PDB" dbkey="2cg7"/>
<db_xref db="PDB" dbkey="2doh"/>
<db_xref db="PDB" dbkey="2doi"/>
<db_xref db="PDB" dbkey="2fd6"/>
<db_xref db="PDB" dbkey="2fn2"/>
<db_xref db="PDB" dbkey="2hgf"/>
<db_xref db="PDB" dbkey="2hpp"/>
<db_xref db="PDB" dbkey="2hpq"/>
<db_xref db="PDB" dbkey="2i9a"/>
<db_xref db="PDB" dbkey="2i9b"/>
<db_xref db="PDB" dbkey="2ody"/>
<db_xref db="PDB" dbkey="2ovx"/>
<db_xref db="PDB" dbkey="2ovz"/>
<db_xref db="PDB" dbkey="2ow0"/>
<db_xref db="PDB" dbkey="2ow1"/>
<db_xref db="PDB" dbkey="2ow2"/>
<db_xref db="PDB" dbkey="2pf1"/>
<db_xref db="PDB" dbkey="2pf2"/>
<db_xref db="PDB" dbkey="2pk4"/>
<db_xref db="PDB" dbkey="2qj2"/>
<db_xref db="PDB" dbkey="2qj4"/>
<db_xref db="PDB" dbkey="2r2w"/>
<db_xref db="PDB" dbkey="2spt"/>
<db_xref db="PDB" dbkey="2vin"/>
<db_xref db="PDB" dbkey="2vio"/>
<db_xref db="PDB" dbkey="2vip"/>
<db_xref db="PDB" dbkey="2viq"/>
<db_xref db="PDB" dbkey="2viv"/>
<db_xref db="PDB" dbkey="2viw"/>
<db_xref db="PDB" dbkey="3bt1"/>
<db_xref db="PDB" dbkey="3bt2"/>
<db_xref db="PDB" dbkey="3e6p"/>
<db_xref db="PDB" dbkey="3kiv"/>
<db_xref db="PDB" dbkey="4kiv"/>
<db_xref db="PDB" dbkey="5hpg"/>
<db_xref db="CATH" dbkey="2.10.10.10"/>
<db_xref db="CATH" dbkey="2.10.25.10"/>
<db_xref db="CATH" dbkey="2.10.70.10"/>
<db_xref db="CATH" dbkey="2.40.20.10"/>
<db_xref db="CATH" dbkey="3.40.390.10"/>
<db_xref db="CATH" dbkey="3.50.4.10"/>
<db_xref db="CATH" dbkey="4.10.140.10"/>
<db_xref db="SCOP" dbkey="b.47.1.2"/>
<db_xref db="SCOP" dbkey="d.92.1.11"/>
<db_xref db="SCOP" dbkey="g.10.1.1"/>
<db_xref db="SCOP" dbkey="g.14.1.1"/>
<db_xref db="SCOP" dbkey="g.14.1.2"/>
<db_xref db="SCOP" dbkey="g.3.11.1"/>
</structure_db_links>
<taxonomy_distribution>
<taxon_data name="Eukaryota" proteins_count="923"/>
<taxon_data name="Nematoda" proteins_count="6"/>
<taxon_data name="Caenorhabditis elegans" proteins_count="6"/>
<taxon_data name="Arthropoda" proteins_count="42"/>
<taxon_data name="Fruit Fly" proteins_count="2"/>
<taxon_data name="Chordata" proteins_count="775"/>
<taxon_data name="Human" proteins_count="111"/>
<taxon_data name="Mouse" proteins_count="84"/>
<taxon_data name="Plastid Group" proteins_count="12"/>
<taxon_data name="Green Plants" proteins_count="12"/>
<taxon_data name="Metazoa" proteins_count="889"/>
<taxon_data name="Plastid Group" proteins_count="16"/>
<taxon_data name="Plastid Group" proteins_count="4"/>
</taxonomy_distribution>
<sec_list>
<sec_ac acc="IPR000001"/>
<sec_ac acc="IPR000562"/>
</sec_list>
</interpro>
<deleted_entries>
<del_ref id="IPR000000"/>
<del_ref id="IPR000002"/>
</deleted_entries>
</interprodb>
|