File: interpro_sample.xml

package info (click to toggle)
bioperl 1.7.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,964 kB
  • sloc: perl: 94,019; xml: 14,811; makefile: 15
file content (1196 lines) | stat: -rw-r--r-- 61,095 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interprodb SYSTEM "interpro.dtd">
<interprodb>
<release>
  <dbinfo dbname="PANTHER" entry_count="30128" file_date="04-OCT-06" version="6.1"/>
  <dbinfo dbname="PFAM" entry_count="11912" file_date="01-SEP-09" version="24.0"/>
  <dbinfo dbname="PIRSF" entry_count="3222" file_date="18-MAR-10" version="2.72"/>
  <dbinfo dbname="PRINTS" entry_count="2000" file_date="09-FEB-10" version="40.0"/>
  <dbinfo dbname="PRODOM" entry_count="1894" file_date="23-APR-09" version="2006.1"/>
  <dbinfo dbname="PROSITE" entry_count="1308" file_date="28-JUL-09" version="20.52"/>
  <dbinfo dbname="PROFILE" entry_count="860" file_date="28-JUL-09" version="20.52"/>
  <dbinfo dbname="SMART" entry_count="809" file_date="24-MAR-09" version="6.0"/>
  <dbinfo dbname="TIGRFAMs" entry_count="3808" file_date="11-NOV-09" version="9.0"/>
  <dbinfo dbname="GENE3D" entry_count="2147" file_date="11-SEP-06" version="3.0.0"/>
  <dbinfo dbname="SSF" entry_count="1538" file_date="30-NOV-06" version="1.69"/>
  <dbinfo dbname="SWISSPROT" entry_count="517100" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="TREMBL" entry_count="10867798" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="INTERPRO" entry_count="20329" file_date="24-MAR-10" version="26.0"/>
  <dbinfo dbname="GO" entry_count="23937" file_date="27-MAR-07" version="N/A"/>
  <dbinfo dbname="MEROPS" entry_count="3802" file_date="25-MAR-10" version="9.1"/>
  <dbinfo dbname="UniProt" entry_count="11384898" file_date="18-MAY-10" version="2010_06"/>
  <dbinfo dbname="HAMAP" entry_count="1633" file_date="28-MAY-09" version="280509"/>
  <dbinfo dbname="PFAMB" entry_count="142303" file_date="02-DEC-09" version="24.0"/>
</release>
<interpro id="IPR000001" protein_count="655" short_name="Kringle" type="Domain">
  <name>Kringle</name>
  <abstract>
<p>Kringles are autonomous structural domains, found throughout the blood clotting and fibrinolytic proteins. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00002414"/>, <cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>]. 
Kringle domains [<cite idref="PUB00003400"/>, <cite idref="PUB00000803"/>, <cite idref="PUB00001620"/>] are characterised by a triple loop, 3-disulphide bridge structure, whose  conformation is defined by a number of hydrogen bonds and small pieces of  anti-parallel beta-sheet. They are found in a varying number  of  copies  in some plasma proteins including prothrombin and urokinase-type plasminogen activator, which are serine proteases belonging to MEROPS peptidase family S1A.</p>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00747"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P98119"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q08048"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q24488"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000803">
      <author_list>Patthy L.</author_list>
      <title>Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.</title>
      <db_xref db="PUBMED" dbkey="3891096"/>
      <journal>Cell</journal>
      <location issue="3" pages="657-63" volume="41"/>
      <year>1985</year>
    </publication>
    <publication id="PUB00001541">
      <author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
      <title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
      <db_xref db="PUBMED" dbkey="6373375"/>
      <journal>FEBS Lett.</journal>
      <location issue="1" pages="131-6" volume="171"/>
      <year>1984</year>
    </publication>
    <publication id="PUB00002414">
      <author_list>McMullen BA, Fujikawa K.</author_list>
      <title>Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor).</title>
      <db_xref db="PUBMED" dbkey="3886654"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="9" pages="5328-41" volume="260"/>
      <year>1985</year>
    </publication>
    <publication id="PUB00001620">
      <author_list>Ikeo K, Takahashi K, Gojobori T.</author_list>
      <title>Evolutionary origin of numerous kringles in human and simian apolipoprotein(a).</title>
      <db_xref db="PUBMED" dbkey="1879523"/>
      <journal>FEBS Lett.</journal>
      <location issue="1-2" pages="146-8" volume="287"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00006168">
      <author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
      <title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
      <db_xref db="PUBMED" dbkey="8165128"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="7" pages="1161-6" volume="22"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00015853">
      <author_list>Schwabe JW, Teichmann SA.</author_list>
      <title>Nuclear receptors: the evolution of diversity.</title>
      <db_xref db="PUBMED" dbkey="14747695"/>
      <journal>Sci. STKE</journal>
      <location issue="217" pages="pe4" volume="2004"/>
      <year>2004</year>
    </publication>
    <publication id="PUB00003257">
      <author_list>Atkinson RA, Williams RJ.</author_list>
      <title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
      <db_xref db="PUBMED" dbkey="2157850"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="3" pages="541-52" volume="212"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00003400">
      <author_list>Castellino FJ, Beals JM.</author_list>
      <title>The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII.</title>
      <db_xref db="PUBMED" dbkey="3131537"/>
      <journal>J. Mol. Evol.</journal>
      <location issue="4" pages="358-69" volume="26"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00004464">
      <author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
      <title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
      <db_xref db="PUBMED" dbkey="7899080"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="606-11" volume="23"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR013806"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018059"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR018056"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR001314"/>
    <rel_ref ipr_ref="IPR011358"/>
    <rel_ref ipr_ref="IPR012051"/>
    <rel_ref ipr_ref="IPR014394"/>
    <rel_ref ipr_ref="IPR016247"/>
    <rel_ref ipr_ref="IPR017076"/>
    <rel_ref ipr_ref="IPR020715"/>
  </found_in>
  <member_list>
    <db_xref protein_count="630" db="PFAM" dbkey="PF00051" name="Kringle"/>
    <db_xref protein_count="645" db="PROFILE" dbkey="PS50070" name="KRINGLE_2"/>
    <db_xref protein_count="651" db="SMART" dbkey="SM00130" name="KR"/>
    <db_xref protein_count="618" db="GENE3D" dbkey="G3DSA:2.40.20.10" name="Kringle"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00051"/>
    <db_xref db="MSDsite" dbkey="PS00021"/>
    <db_xref db="BLOCKS" dbkey="IPB000001"/>
    <db_xref db="MEROPS" dbkey="S1"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00020"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a0h"/>
    <db_xref db="PDB" dbkey="1a5h"/>
    <db_xref db="PDB" dbkey="1b2i"/>
    <db_xref db="PDB" dbkey="1bda"/>
    <db_xref db="PDB" dbkey="1bht"/>
    <db_xref db="PDB" dbkey="1bml"/>
    <db_xref db="PDB" dbkey="1bui"/>
    <db_xref db="PDB" dbkey="1cea"/>
    <db_xref db="PDB" dbkey="1ceb"/>
    <db_xref db="PDB" dbkey="1ddj"/>
    <db_xref db="PDB" dbkey="1gmn"/>
    <db_xref db="PDB" dbkey="1gmo"/>
    <db_xref db="PDB" dbkey="1gp9"/>
    <db_xref db="PDB" dbkey="1hpj"/>
    <db_xref db="PDB" dbkey="1hpk"/>
    <db_xref db="PDB" dbkey="1i5k"/>
    <db_xref db="PDB" dbkey="1i71"/>
    <db_xref db="PDB" dbkey="1jfn"/>
    <db_xref db="PDB" dbkey="1kdu"/>
    <db_xref db="PDB" dbkey="1ki0"/>
    <db_xref db="PDB" dbkey="1kiv"/>
    <db_xref db="PDB" dbkey="1krn"/>
    <db_xref db="PDB" dbkey="1l4d"/>
    <db_xref db="PDB" dbkey="1l4z"/>
    <db_xref db="PDB" dbkey="1nk1"/>
    <db_xref db="PDB" dbkey="1nl1"/>
    <db_xref db="PDB" dbkey="1nl2"/>
    <db_xref db="PDB" dbkey="1pk2"/>
    <db_xref db="PDB" dbkey="1pk4"/>
    <db_xref db="PDB" dbkey="1pkr"/>
    <db_xref db="PDB" dbkey="1pmk"/>
    <db_xref db="PDB" dbkey="1pml"/>
    <db_xref db="PDB" dbkey="1qrz"/>
    <db_xref db="PDB" dbkey="1rjx"/>
    <db_xref db="PDB" dbkey="1rtf"/>
    <db_xref db="PDB" dbkey="1tpg"/>
    <db_xref db="PDB" dbkey="1tpk"/>
    <db_xref db="PDB" dbkey="1urk"/>
    <db_xref db="PDB" dbkey="2doh"/>
    <db_xref db="PDB" dbkey="2doi"/>
    <db_xref db="PDB" dbkey="2fd6"/>
    <db_xref db="PDB" dbkey="2hgf"/>
    <db_xref db="PDB" dbkey="2hpp"/>
    <db_xref db="PDB" dbkey="2hpq"/>
    <db_xref db="PDB" dbkey="2i9a"/>
    <db_xref db="PDB" dbkey="2i9b"/>
    <db_xref db="PDB" dbkey="2pf1"/>
    <db_xref db="PDB" dbkey="2pf2"/>
    <db_xref db="PDB" dbkey="2pk4"/>
    <db_xref db="PDB" dbkey="2qj2"/>
    <db_xref db="PDB" dbkey="2qj4"/>
    <db_xref db="PDB" dbkey="2spt"/>
    <db_xref db="PDB" dbkey="3bt1"/>
    <db_xref db="PDB" dbkey="3bt2"/>
    <db_xref db="PDB" dbkey="3e6p"/>
    <db_xref db="PDB" dbkey="3kiv"/>
    <db_xref db="PDB" dbkey="4kiv"/>
    <db_xref db="PDB" dbkey="5hpg"/>
    <db_xref db="CATH" dbkey="2.10.25.10"/>
    <db_xref db="CATH" dbkey="2.40.20.10"/>
    <db_xref db="CATH" dbkey="3.50.4.10"/>
    <db_xref db="SCOP" dbkey="b.47.1.2"/>
    <db_xref db="SCOP" dbkey="g.10.1.1"/>
    <db_xref db="SCOP" dbkey="g.14.1.1"/>
    <db_xref db="SCOP" dbkey="g.3.11.1"/>
    <db_xref db="SCOP" dbkey="g.32.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="653"/>
    <taxon_data name="Nematoda" proteins_count="5"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="5"/>
    <taxon_data name="Arthropoda" proteins_count="34"/>
    <taxon_data name="Fruit Fly" proteins_count="2"/>
    <taxon_data name="Chordata" proteins_count="529"/>
    <taxon_data name="Human" proteins_count="79"/>
    <taxon_data name="Mouse" proteins_count="41"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Green Plants" proteins_count="14"/>
    <taxon_data name="Metazoa" proteins_count="618"/>
    <taxon_data name="Plastid Group" proteins_count="14"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018059"/>
  </sec_list>
</interpro>
<interpro id="IPR000003" protein_count="452" short_name="RtnoidX_rcpt" type="Family">
  <name>Retinoid X receptor</name>
  <abstract>
<p>Steroid or nuclear hormone receptors (4A nuclear receptor, NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [<cite idref="PUB00015853"/>]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [<cite idref="PUB00004464"/>, <cite idref="PUB00006168"/>]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.</p>
<p>NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.</p>
<p>The retinoic acid (retinoid X) receptor consists of 3 functional and 
               structural domains: an N-terminal (modulatory) domain; a DNA binding domain
               that mediates specific binding to target DNA sequences (ligand-responsive
               elements); and a hormone binding domain. The N-terminal domain differs 
               between retinoic acid isoforms; the small highly-conserved DNA-binding
               domain (~65 residues) occupies the central portion of the protein; and 
               the ligand binding domain lies at the receptor C terminus.</p>
<p>Synonym(s): 2B nuclear receptor</p>
</abstract>
  <class_list>
    <classification id="GO:0003677" class_type="GO">
      <category>Molecular Function</category>
      <description>DNA binding</description>
    </classification>
    <classification id="GO:0004879" class_type="GO">
      <category>Molecular Function</category>
      <description>ligand-dependent nuclear receptor activity</description>
    </classification>
    <classification id="GO:0005496" class_type="GO">
      <category>Molecular Function</category>
      <description>steroid binding</description>
    </classification>
    <classification id="GO:0005634" class_type="GO">
      <category>Cellular Component</category>
      <description>nucleus</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
    <classification id="GO:0008270" class_type="GO">
      <category>Molecular Function</category>
      <description>zinc ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O44960"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O95718"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P22449"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P28700"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P49866"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00004464">
      <author_list>Nishikawa J, Kitaura M, Imagawa M, Nishihara T.</author_list>
      <title>Vitamin D receptor contains multiple dimerization interfaces that are functionally different.</title>
      <db_xref db="PUBMED" dbkey="7899080"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="606-11" volume="23"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00006168">
      <author_list>De Vos P, Schmitt J, Verhoeven G, Stunnenberg HG.</author_list>
      <title>Human androgen receptor expressed in HeLa cells activates transcription in vitro.</title>
      <db_xref db="PUBMED" dbkey="8165128"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="7" pages="1161-6" volume="22"/>
      <year>1994</year>
    </publication>
    <publication id="PUB00015853">
      <author_list>Schwabe JW, Teichmann SA.</author_list>
      <title>Nuclear receptors: the evolution of diversity.</title>
      <db_xref db="PUBMED" dbkey="14747695"/>
      <journal>Sci. STKE</journal>
      <location issue="217" pages="pe4" volume="2004"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR001723"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR000536"/>
    <rel_ref ipr_ref="IPR008946"/>
  </contains>
  <member_list>
    <db_xref protein_count="452" db="PRINTS" dbkey="PR00545" name="RETINOIDXR"/>
  </member_list>
  <external_doc_list>
    <db_xref db="BLOCKS" dbkey="IPB000003"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1by4"/>
    <db_xref db="PDB" dbkey="1dkf"/>
    <db_xref db="PDB" dbkey="1dsz"/>
    <db_xref db="PDB" dbkey="1fby"/>
    <db_xref db="PDB" dbkey="1fm6"/>
    <db_xref db="PDB" dbkey="1fm9"/>
    <db_xref db="PDB" dbkey="1g1u"/>
    <db_xref db="PDB" dbkey="1g2n"/>
    <db_xref db="PDB" dbkey="1g5y"/>
    <db_xref db="PDB" dbkey="1h9u"/>
    <db_xref db="PDB" dbkey="1k74"/>
    <db_xref db="PDB" dbkey="1kv6"/>
    <db_xref db="PDB" dbkey="1lbd"/>
    <db_xref db="PDB" dbkey="1lo1"/>
    <db_xref db="PDB" dbkey="1lv2"/>
    <db_xref db="PDB" dbkey="1m7w"/>
    <db_xref db="PDB" dbkey="1mv9"/>
    <db_xref db="PDB" dbkey="1mvc"/>
    <db_xref db="PDB" dbkey="1mzn"/>
    <db_xref db="PDB" dbkey="1pzl"/>
    <db_xref db="PDB" dbkey="1r0n"/>
    <db_xref db="PDB" dbkey="1r1k"/>
    <db_xref db="PDB" dbkey="1r20"/>
    <db_xref db="PDB" dbkey="1rdt"/>
    <db_xref db="PDB" dbkey="1rxr"/>
    <db_xref db="PDB" dbkey="1s9p"/>
    <db_xref db="PDB" dbkey="1s9q"/>
    <db_xref db="PDB" dbkey="1tfc"/>
    <db_xref db="PDB" dbkey="1uhl"/>
    <db_xref db="PDB" dbkey="1vjb"/>
    <db_xref db="PDB" dbkey="1xb7"/>
    <db_xref db="PDB" dbkey="1xdk"/>
    <db_xref db="PDB" dbkey="1xiu"/>
    <db_xref db="PDB" dbkey="1xls"/>
    <db_xref db="PDB" dbkey="1xv9"/>
    <db_xref db="PDB" dbkey="1xvp"/>
    <db_xref db="PDB" dbkey="1ynw"/>
    <db_xref db="PDB" dbkey="2acl"/>
    <db_xref db="PDB" dbkey="2e2r"/>
    <db_xref db="PDB" dbkey="2ewp"/>
    <db_xref db="PDB" dbkey="2gl8"/>
    <db_xref db="PDB" dbkey="2gp7"/>
    <db_xref db="PDB" dbkey="2gpo"/>
    <db_xref db="PDB" dbkey="2gpp"/>
    <db_xref db="PDB" dbkey="2gpu"/>
    <db_xref db="PDB" dbkey="2gpv"/>
    <db_xref db="PDB" dbkey="2nll"/>
    <db_xref db="PDB" dbkey="2nxx"/>
    <db_xref db="PDB" dbkey="2p1t"/>
    <db_xref db="PDB" dbkey="2p1u"/>
    <db_xref db="PDB" dbkey="2p1v"/>
    <db_xref db="PDB" dbkey="2p7a"/>
    <db_xref db="PDB" dbkey="2p7g"/>
    <db_xref db="PDB" dbkey="2p7z"/>
    <db_xref db="PDB" dbkey="2pjl"/>
    <db_xref db="PDB" dbkey="2q60"/>
    <db_xref db="PDB" dbkey="2r40"/>
    <db_xref db="PDB" dbkey="2zas"/>
    <db_xref db="PDB" dbkey="2zbs"/>
    <db_xref db="PDB" dbkey="3cbb"/>
    <db_xref db="PDB" dbkey="3d24"/>
    <db_xref db="PDB" dbkey="3eyb"/>
    <db_xref db="CATH" dbkey="1.10.565.10"/>
    <db_xref db="CATH" dbkey="3.30.50.10"/>
    <db_xref db="SCOP" dbkey="a.123.1.1"/>
    <db_xref db="SCOP" dbkey="g.39.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="452"/>
    <taxon_data name="Nematoda" proteins_count="1"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="1"/>
    <taxon_data name="Arthropoda" proteins_count="119"/>
    <taxon_data name="Fruit Fly" proteins_count="7"/>
    <taxon_data name="Chordata" proteins_count="305"/>
    <taxon_data name="Human" proteins_count="45"/>
    <taxon_data name="Mouse" proteins_count="30"/>
    <taxon_data name="Metazoa" proteins_count="452"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000005" protein_count="22704" short_name="HTH_AraC-typ" type="Domain">
  <name>Helix-turn-helix, AraC type</name>
  <abstract>
<p>Many bacterial transcription regulation proteins bind DNA through a
'helix-turn-helix' (HTH) motif. One major subfamily of these proteins [<cite idref="PUB00004444"/>, <cite idref="PUB00003566"/>] is related to the arabinose 
operon regulatory protein AraC [<cite idref="PUB00004444"/>], <cite idref="PUB00003566"/>. Except for celD [<cite idref="PUB00001933"/>], all of these proteins seem to be positive transcriptional factors.</p>
<p>Although the sequences belonging to this family differ somewhat in length, in nearly every case the HTH motif is situated towards the C terminus in the third quarter of most of the sequences. The minimal DNA binding domain spans roughly 100 residues and comprises two HTH subdomains; the classical HTH domain and another HTH subdomain with similarity to the classical HTH domain but with an insertion of one residue in the turn-region. The  N-terminal and  central regions of these proteins are presumed to interact with effector molecules and may be involved in dimerisation [<cite idref="PUB00004817"/>].</p>
<p>The known structure of MarA (<db_xref db="SWISSPROT" dbkey="P27246"/>) shows that the AraC domain is alpha helical and shows the two HTH subdomains both bind the major groove of the DNA. The two HTH subdomains are separated by only 27
angstroms, which causes the cognate DNA to bend.</p>
</abstract>
  <class_list>
    <classification id="GO:0003700" class_type="GO">
      <category>Molecular Function</category>
      <description>transcription factor activity</description>
    </classification>
    <classification id="GO:0005622" class_type="GO">
      <category>Cellular Component</category>
      <description>intracellular</description>
    </classification>
    <classification id="GO:0006355" class_type="GO">
      <category>Biological Process</category>
      <description>regulation of transcription, DNA-dependent</description>
    </classification>
    <classification id="GO:0043565" class_type="GO">
      <category>Molecular Function</category>
      <description>sequence-specific DNA binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P06134"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001933">
      <author_list>Parker LL, Hall BG.</author_list>
      <title>Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.</title>
      <db_xref db="PUBMED" dbkey="2179047"/>
      <journal>Genetics</journal>
      <location issue="3" pages="455-71" volume="124"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00003566">
      <author_list>Henikoff S, Wallace JC, Brown JP.</author_list>
      <title>Finding protein similarities with nucleotide sequence databases.</title>
      <db_xref db="PUBMED" dbkey="2314271"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="111-32" volume="183"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00004444">
      <author_list>Gallegos MT, Michan C, Ramos JL.</author_list>
      <title>The XylS/AraC family of regulators.</title>
      <db_xref db="PUBMED" dbkey="8451183"/>
      <journal>Nucleic Acids Res.</journal>
      <location issue="4" pages="807-10" volume="21"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00004817">
      <author_list>Bustos SA, Schleif RF.</author_list>
      <title>Functional domains of the AraC protein.</title>
      <db_xref db="PUBMED" dbkey="8516313"/>
      <journal>Proc. Natl. Acad. Sci. U.S.A.</journal>
      <location issue="12" pages="5638-42" volume="90"/>
      <year>1993</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR012287"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018062"/>
    <rel_ref ipr_ref="IPR020449"/>
  </child_list>
  <found_in>
    <rel_ref ipr_ref="IPR011983"/>
    <rel_ref ipr_ref="IPR016220"/>
    <rel_ref ipr_ref="IPR016221"/>
    <rel_ref ipr_ref="IPR016981"/>
    <rel_ref ipr_ref="IPR018060"/>
  </found_in>
  <member_list>
    <db_xref protein_count="22704" db="PFAM" dbkey="PF00165" name="HTH_AraC"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00165"/>
    <db_xref db="MSDsite" dbkey="PS00041"/>
    <db_xref db="BLOCKS" dbkey="IPB000005"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00040"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1bl0"/>
    <db_xref db="PDB" dbkey="1d5y"/>
    <db_xref db="PDB" dbkey="1xs9"/>
    <db_xref db="CATH" dbkey="1.10.10.60"/>
    <db_xref db="SCOP" dbkey="a.4.1.8"/>
    <db_xref db="SCOP" dbkey="i.11.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="22594"/>
    <taxon_data name="Cyanobacteria" proteins_count="150"/>
    <taxon_data name="Synechocystis PCC 6803" proteins_count="4"/>
    <taxon_data name="Archaea" proteins_count="4"/>
    <taxon_data name="Eukaryota" proteins_count="100"/>
    <taxon_data name="Rice spp." proteins_count="4"/>
    <taxon_data name="Fungi" proteins_count="43"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Unclassified" proteins_count="2"/>
    <taxon_data name="Unclassified" proteins_count="3"/>
    <taxon_data name="Plastid Group" proteins_count="54"/>
    <taxon_data name="Green Plants" proteins_count="54"/>
    <taxon_data name="Metazoa" proteins_count="45"/>
    <taxon_data name="Plastid Group" proteins_count="1"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018062"/>
    <sec_ac acc="IPR020449"/>
  </sec_list>
</interpro>
<interpro id="IPR000006" protein_count="253" short_name="Metallothionein_vert" type="Family">
  <name>Metallothionein, vertebrate</name>
  <abstract>
<p>Metallothioneins (MT) are small proteins that bind heavy metals, such as zinc, copper, cadmium, nickel, etc. They have a high content of cysteine residues that bind the metal ions through clusters of thiolate bonds [<cite idref="PUB00003570"/>, <cite idref="PUB00001490"/>]. An empirical classification into three classes has been proposed by Fowler and coworkers [<cite idref="PUB00005944"/>] and Kojima [<cite idref="PUB00003571"/>]. Members of class I are defined to include polypeptides related in the positions of their cysteines to equine MT-1B, and include mammalian MTs as well as from crustaceans and molluscs. Class II groups MTs from a variety of species, including sea urchins,
fungi, insects and cyanobacteria. Class III MTs are atypical polypeptides composed of gamma-glutamylcysteinyl units [<cite idref="PUB00005944"/>].</p>
<p>This original classification system has been found to be limited, in the sense that it does not allow clear differentiation of patterns of structural similarities, either between or within classes. Consequently, all class I and class II MTs (the proteinaceous sequences) have now been grouped into families of phylogenetically-related and thus alignable sequences. This system subdivides the MT superfamily into families, subfamilies, subgroups, and isolated isoforms and alleles. </p>
<p>The metallothionein superfamily comprises all polypeptides that resemble equine renal metallothionein in several respects [<cite idref="PUB00005944"/>]: e.g., low molecular weight; high metal content; amino acid composition with high Cys and low aromatic residue content; unique sequence with characteristic distribution of cysteines, and spectroscopic manifestations indicative of metal thiolate clusters. A MT family subsumes MTs that share particular sequence-specific features and are thought to be evolutionarily related. The inclusion of a MT within a family presupposes that its amino acid sequence is alignable with that of all members. Fifteen MT families have been characterised, each family being identified by its number and its taxonomic range: e.g., Family 1: vertebrate MTs [see http://www.bioc.unizh.ch/mtpage/protali.html]. </p>
<p> The members of family 1 are recognised by the sequence pattern K-x(1,2)-C-C-x-C-C-P-x(2)-C located at the beginning of the third exon. 
The taxonomic range of the members extends to vertebrates. 
Known characteristics: 60 to 68 AAs; 20 Cys (21 in one case), 19 of them are totally conserved; the protein sequence is divided into two structural domains, containing 9 and 11 Cys all binding 3 and 4 bivalent metal ions, respectively. The gene is composed of 3 exons, 2 introns and the splicing sites are conserved. Family 1 includes subfamilies: m1, m2, m3, m4, m, a, a1, a2, b, ba, t, all of them hit the same InterPro entry. 
</p>
</abstract>
  <class_list>
    <classification id="GO:0046872" class_type="GO">
      <category>Molecular Function</category>
      <description>metal ion binding</description>
    </classification>
  </class_list>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02795"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02802"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P04355"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001490">
      <author_list>Kagi JH, Kojima Y.</author_list>
      <title>Chemistry and biochemistry of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="2959513"/>
      <journal>Experientia Suppl.</journal>
      <location pages="25-61" volume="52"/>
      <year>1987</year>
    </publication>
    <publication id="PUB00003570">
      <author_list>Kagi JH.</author_list>
      <title>Overview of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="1779825"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="613-26" volume="205"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00003571">
      <author_list>Kojima Y.</author_list>
      <title>Definitions and nomenclature of metallothioneins.</title>
      <db_xref db="PUBMED" dbkey="1779826"/>
      <journal>Meth. Enzymol.</journal>
      <location pages="8-10" volume="205"/>
      <year>1991</year>
    </publication>
    <publication id="PUB00005944">
      <author_list>Fowler BA, Hildebrand CE, Kojima Y, Webb M.</author_list>
      <title>Nomenclature of metallothionein.</title>
      <db_xref db="PUBMED" dbkey="2959504"/>
      <journal>Experientia Suppl.</journal>
      <location pages="19-22" volume="52"/>
      <year>1987</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR003019"/>
  </parent_list>
  <contains>
    <rel_ref ipr_ref="IPR017854"/>
    <rel_ref ipr_ref="IPR018064"/>
  </contains>
  <member_list>
    <db_xref protein_count="250" db="PANTHER" dbkey="PTHR23299" name="Metallothionein_vert"/>
    <db_xref protein_count="220" db="PRINTS" dbkey="PR00860" name="MTVERTEBRATE"/>
    <db_xref protein_count="238" db="GENE3D" dbkey="G3DSA:4.10.10.10" name="Metallothionein_vert"/>
  </member_list>
  <external_doc_list>
    <db_xref db="MSDsite" dbkey="PS00203"/>
    <db_xref db="COMe" dbkey="PRX001296"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00180"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1dfs"/>
    <db_xref db="PDB" dbkey="1dft"/>
    <db_xref db="PDB" dbkey="1ji9"/>
    <db_xref db="PDB" dbkey="1m0g"/>
    <db_xref db="PDB" dbkey="1m0j"/>
    <db_xref db="PDB" dbkey="1mhu"/>
    <db_xref db="PDB" dbkey="1mrb"/>
    <db_xref db="PDB" dbkey="1mrt"/>
    <db_xref db="PDB" dbkey="2mhu"/>
    <db_xref db="PDB" dbkey="2mrb"/>
    <db_xref db="PDB" dbkey="2mrt"/>
    <db_xref db="PDB" dbkey="4mt2"/>
    <db_xref db="CATH" dbkey="4.10.10.10"/>
    <db_xref db="SCOP" dbkey="g.46.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="253"/>
    <taxon_data name="Chordata" proteins_count="249"/>
    <taxon_data name="Human" proteins_count="27"/>
    <taxon_data name="Mouse" proteins_count="15"/>
    <taxon_data name="Metazoa" proteins_count="251"/>
    <taxon_data name="Plastid Group" proteins_count="2"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000007" protein_count="355" short_name="Tubby_C" type="Domain">
  <name>Tubby, C-terminal</name>
  <abstract>
<p> Tubby, an autosomal recessive mutation, mapping to mouse  chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This  mutation  maps to the tub gene [<cite idref="PUB00000932"/>, <cite idref="PUB00004232"/>]. The mouse  tubby mutation is  the  cause  of  maturity-onset  obesity, insulin resistance and  sensory  deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue  culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [<cite idref="PUB00007281"/>], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [<cite idref="PUB00014197"/>].</p>
<p>Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (<db_xref db="INTERPRO" dbkey="IPR005398"/>) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed beta-barrel that surrounds a central alpha helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [<cite idref="PUB00007281"/>].</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="O00294"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="O80699"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P50586"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q09306"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q10LG8"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000932">
      <author_list>Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glucksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ.</author_list>
      <title>Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family.</title>
      <db_xref db="PUBMED" dbkey="8612280"/>
      <journal>Cell</journal>
      <location issue="2" pages="281-90" volume="85"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00004232">
      <author_list>Noben-Trauth K, Naggert JK, North MA, Nishina PM.</author_list>
      <title>A candidate gene for the mouse mutation tubby.</title>
      <db_xref db="PUBMED" dbkey="8606774"/>
      <journal>Nature</journal>
      <location issue="6574" pages="534-8" volume="380"/>
      <year>1996</year>
    </publication>
    <publication id="PUB00007281">
      <author_list>Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L.</author_list>
      <title>Implication of tubby proteins as transcription factors by structure-based functional analysis.</title>
      <db_xref db="PUBMED" dbkey="10591637"/>
      <journal>Science</journal>
      <location issue="5447" pages="2119-25" volume="286"/>
      <year>1999</year>
    </publication>
    <publication id="PUB00014197">
      <author_list>Carroll K, Gomez C, Shapiro L.</author_list>
      <title>Tubby proteins: the plot thickens.</title>
      <db_xref db="PUBMED" dbkey="14708010"/>
      <journal>Nat. Rev. Mol. Cell Biol.</journal>
      <location issue="1" pages="55-63" volume="5"/>
      <year>2004</year>
    </publication>
  </pub_list>
  <contains>
    <rel_ref ipr_ref="IPR018066"/>
  </contains>
  <member_list>
    <db_xref protein_count="345" db="PFAM" dbkey="PF01167" name="Tub"/>
    <db_xref protein_count="284" db="PRINTS" dbkey="PR01573" name="SUPERTUBBY"/>
    <db_xref protein_count="324" db="GENE3D" dbkey="G3DSA:3.20.90.10" name="Tubby_C"/>
    <db_xref protein_count="345" db="SSF" dbkey="SSF54518" name="Tubby_C"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF01167"/>
    <db_xref db="MSDsite" dbkey="PS01200"/>
    <db_xref db="MSDsite" dbkey="PS01201"/>
    <db_xref db="BLOCKS" dbkey="IPB000007"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00923"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1c8z"/>
    <db_xref db="PDB" dbkey="1i7e"/>
    <db_xref db="PDB" dbkey="1s31"/>
    <db_xref db="PDB" dbkey="2fim"/>
    <db_xref db="PDB" dbkey="3c5n"/>
    <db_xref db="CATH" dbkey="3.20.90.10"/>
    <db_xref db="SCOP" dbkey="d.23.1.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="355"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="16"/>
    <taxon_data name="Rice spp." proteins_count="48"/>
    <taxon_data name="Fungi" proteins_count="10"/>
    <taxon_data name="Other Eukaryotes" proteins_count="16"/>
    <taxon_data name="Other Eukaryotes" proteins_count="1"/>
    <taxon_data name="Nematoda" proteins_count="2"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="2"/>
    <taxon_data name="Arthropoda" proteins_count="40"/>
    <taxon_data name="Fruit Fly" proteins_count="5"/>
    <taxon_data name="Chordata" proteins_count="64"/>
    <taxon_data name="Human" proteins_count="13"/>
    <taxon_data name="Mouse" proteins_count="16"/>
    <taxon_data name="Plastid Group" proteins_count="161"/>
    <taxon_data name="Green Plants" proteins_count="161"/>
    <taxon_data name="Metazoa" proteins_count="124"/>
    <taxon_data name="Plastid Group" proteins_count="38"/>
    <taxon_data name="Plastid Group" proteins_count="3"/>
  </taxonomy_distribution>
</interpro>
<interpro id="IPR000008" protein_count="5988" short_name="C2_Ca-dep" type="Domain">
  <name>C2 calcium-dependent membrane targeting</name>
  <abstract>
The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about  116  amino-acid  residues and is located between the two copies of
the C1 domain in Protein Kinase C (that bind phorbol esters and diacylglycerol) (see <db_xref db="PROSITEDOC" dbkey="PDOC00379"/>)
and the  protein  kinase  catalytic  domain  (see <db_xref db="PROSITEDOC" dbkey="PDOC00100"/>).  Regions with
significant homology [<cite idref="PUB00002925"/>] to  the C2-domain have been found in many proteins.
The C2  domain  is  thought  to  be involved in calcium-dependent phospholipid
binding [<cite idref="PUB00002815"/>] and in membrane targetting processes such as subcellular localisation. <p>The 3D  structure  of  the
C2 domain of synaptotagmin has been reported
[<cite idref="PUB00000918"/>], the domain forms an eight-stranded beta sandwich constructed around a 
conserved 4-stranded motif, designated a C2 key [<cite idref="PUB00000918"/>]. Calcium binds in
a cup-shaped depression formed by the N- and C-terminal loops of the
C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca<sup>2+</sup>-binding loops are located at the end of an 8 stranded antiparallel beta sandwich. </p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="A0FGR8"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P11792"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P27715"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P28867"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q9VVI3"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00000918">
      <author_list>Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR.</author_list>
      <title>Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold.</title>
      <db_xref db="PUBMED" dbkey="7697723"/>
      <journal>Cell</journal>
      <location issue="6" pages="929-38" volume="80"/>
      <year>1995</year>
    </publication>
    <publication id="PUB00002815">
      <author_list>Davletov BA, Sudhof TC.</author_list>
      <title>A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding.</title>
      <db_xref db="PUBMED" dbkey="8253763"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="35" pages="26386-90" volume="268"/>
      <year>1993</year>
    </publication>
    <publication id="PUB00002925">
      <author_list>Brose N, Hofmann K, Hata Y, Sudhof TC.</author_list>
      <title>Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins.</title>
      <db_xref db="PUBMED" dbkey="7559667"/>
      <journal>J. Biol. Chem.</journal>
      <location issue="42" pages="25273-80" volume="270"/>
      <year>1995</year>
    </publication>
  </pub_list>
  <parent_list>
    <rel_ref ipr_ref="IPR008973"/>
  </parent_list>
  <child_list>
    <rel_ref ipr_ref="IPR018029"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR001565"/>
    <rel_ref ipr_ref="IPR020477"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR001192"/>
    <rel_ref ipr_ref="IPR011402"/>
    <rel_ref ipr_ref="IPR014375"/>
    <rel_ref ipr_ref="IPR014376"/>
    <rel_ref ipr_ref="IPR014638"/>
    <rel_ref ipr_ref="IPR014705"/>
    <rel_ref ipr_ref="IPR015427"/>
    <rel_ref ipr_ref="IPR015428"/>
    <rel_ref ipr_ref="IPR016279"/>
    <rel_ref ipr_ref="IPR016280"/>
    <rel_ref ipr_ref="IPR017147"/>
  </found_in>
  <member_list>
    <db_xref protein_count="5145" db="PFAM" dbkey="PF00168" name="C2"/>
    <db_xref protein_count="5888" db="SMART" dbkey="SM00239" name="C2"/>
  </member_list>
  <external_doc_list>
    <db_xref db="PANDIT" dbkey="PF00168"/>
    <db_xref db="BLOCKS" dbkey="IPB000008"/>
    <db_xref db="PROSITEDOC" dbkey="PDOC00380"/>
  </external_doc_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a25"/>
    <db_xref db="PDB" dbkey="1bci"/>
    <db_xref db="PDB" dbkey="1bdy"/>
    <db_xref db="PDB" dbkey="1byn"/>
    <db_xref db="PDB" dbkey="1cjy"/>
    <db_xref db="PDB" dbkey="1djg"/>
    <db_xref db="PDB" dbkey="1djh"/>
    <db_xref db="PDB" dbkey="1dji"/>
    <db_xref db="PDB" dbkey="1djw"/>
    <db_xref db="PDB" dbkey="1djx"/>
    <db_xref db="PDB" dbkey="1djy"/>
    <db_xref db="PDB" dbkey="1djz"/>
    <db_xref db="PDB" dbkey="1dqv"/>
    <db_xref db="PDB" dbkey="1dsy"/>
    <db_xref db="PDB" dbkey="1gmi"/>
    <db_xref db="PDB" dbkey="1k5w"/>
    <db_xref db="PDB" dbkey="1qas"/>
    <db_xref db="PDB" dbkey="1qat"/>
    <db_xref db="PDB" dbkey="1rh8"/>
    <db_xref db="PDB" dbkey="1rlw"/>
    <db_xref db="PDB" dbkey="1rsy"/>
    <db_xref db="PDB" dbkey="1tjm"/>
    <db_xref db="PDB" dbkey="1tjx"/>
    <db_xref db="PDB" dbkey="1ugk"/>
    <db_xref db="PDB" dbkey="1uov"/>
    <db_xref db="PDB" dbkey="1uow"/>
    <db_xref db="PDB" dbkey="1v27"/>
    <db_xref db="PDB" dbkey="1w15"/>
    <db_xref db="PDB" dbkey="1w16"/>
    <db_xref db="PDB" dbkey="1wfj"/>
    <db_xref db="PDB" dbkey="1wfm"/>
    <db_xref db="PDB" dbkey="1yrk"/>
    <db_xref db="PDB" dbkey="2bwq"/>
    <db_xref db="PDB" dbkey="2chd"/>
    <db_xref db="PDB" dbkey="2cjs"/>
    <db_xref db="PDB" dbkey="2cjt"/>
    <db_xref db="PDB" dbkey="2cm5"/>
    <db_xref db="PDB" dbkey="2cm6"/>
    <db_xref db="PDB" dbkey="2d8k"/>
    <db_xref db="PDB" dbkey="2enp"/>
    <db_xref db="PDB" dbkey="2ep6"/>
    <db_xref db="PDB" dbkey="2fju"/>
    <db_xref db="PDB" dbkey="2fk9"/>
    <db_xref db="PDB" dbkey="2isd"/>
    <db_xref db="PDB" dbkey="2k3h"/>
    <db_xref db="PDB" dbkey="2nq3"/>
    <db_xref db="PDB" dbkey="2nsq"/>
    <db_xref db="PDB" dbkey="2r83"/>
    <db_xref db="PDB" dbkey="2rd0"/>
    <db_xref db="PDB" dbkey="2uzp"/>
    <db_xref db="PDB" dbkey="2yrb"/>
    <db_xref db="PDB" dbkey="2zkm"/>
    <db_xref db="PDB" dbkey="3bxj"/>
    <db_xref db="PDB" dbkey="3fdw"/>
    <db_xref db="PDB" dbkey="3rpb"/>
    <db_xref db="CATH" dbkey="2.20.170.10"/>
    <db_xref db="CATH" dbkey="2.60.40.150"/>
    <db_xref db="SCOP" dbkey="b.7.1.1"/>
    <db_xref db="SCOP" dbkey="b.7.1.2"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Bacteria" proteins_count="3"/>
    <taxon_data name="Cyanobacteria" proteins_count="1"/>
    <taxon_data name="Eukaryota" proteins_count="5994"/>
    <taxon_data name="Arabidopsis thaliana" proteins_count="161"/>
    <taxon_data name="Rice spp." proteins_count="274"/>
    <taxon_data name="Fungi" proteins_count="816"/>
    <taxon_data name="Saccharomyces cerevisiae" proteins_count="68"/>
    <taxon_data name="Other Eukaryotes" proteins_count="57"/>
    <taxon_data name="Other Eukaryotes" proteins_count="82"/>
    <taxon_data name="Nematoda" proteins_count="76"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="76"/>
    <taxon_data name="Arthropoda" proteins_count="839"/>
    <taxon_data name="Fruit Fly" proteins_count="132"/>
    <taxon_data name="Chordata" proteins_count="1924"/>
    <taxon_data name="Human" proteins_count="436"/>
    <taxon_data name="Mouse" proteins_count="371"/>
    <taxon_data name="Virus" proteins_count="1"/>
    <taxon_data name="Other Eukaryotes" proteins_count="54"/>
    <taxon_data name="Plastid Group" proteins_count="1230"/>
    <taxon_data name="Green Plants" proteins_count="1230"/>
    <taxon_data name="Metazoa" proteins_count="4034"/>
    <taxon_data name="Plastid Group" proteins_count="243"/>
    <taxon_data name="Plastid Group" proteins_count="109"/>
    <taxon_data name="Other Eukaryotes" proteins_count="84"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR018029"/>
  </sec_list>
</interpro>
<interpro id="IPR013806" protein_count="0" short_name="Kringle-like" type="Domain">
  <name>Kringle-like fold</name>
  <abstract>
<p>This entry represents proteins displaying a Kringle-like structure, which consists of a nearly all-beta, disulphide-rich fold. Proteins displaying this fold include both Kringle modules as well as fibronectin type II modules, the latter displaying a shorter two-disulphide version of the Kringle module.</p>
<p> Kringle modules occur in blood clotting and fibrinolytic proteins, such as plasminogen, prothrombin, meizothrombin, and urokinase-type plasminogen activator, as well as in apolipoprotein and hepatocyte growth factor. Kringle domains are believed to play a role in binding mediators (e.g., membranes, other proteins or phospholipids), and in the regulation of proteolytic activity [<cite idref="PUB00001541"/>, <cite idref="PUB00003257"/>].</p>
<p>Fibronectin type II modules occur in fibronectin, as well as in gelatinase A (MMP-2), gelatinase B (MMP-9), and the collagen-binding domain of PDC-109. Fibronectin is a multi-domain glycoprotein, found in a soluble form in plasma, and in an insoluble form in loose connective tissue and basement membranes, that binds cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin [<cite idref="PUB00001346"/>]. Fibronectins are involved in a number of important functions e.g., wound healing; cell adhesion; blood coagulation; cell differentiation and migration; maintenance of the cellular cytoskeleton; and tumour metastasis. Gelatinases A and B are members of the matrix metalloproteinase family that act as neutral proteinases in the breakdown and remodelling of the extracellular matrix. These gelatinases play important roles in the pathogenesis of inflammation, infection and in neoplastic diseases [<cite idref="PUB00028079"/>]. In gelatinase A, the three fibronectin-like modules are inserted within a catalytic domain, these modules acting to target the enzyme to matrix macromolecules [<cite idref="PUB00028080"/>].</p>
</abstract>
  <example_list>
    <example>
      <db_xref db="SWISSPROT" dbkey="P00747"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P02784"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="P11276"/>
    </example>
    <example>
      <db_xref db="SWISSPROT" dbkey="Q24488"/>
    </example>
  </example_list>
  <pub_list>
    <publication id="PUB00001346">
      <author_list>Skorstengaard K, Jensen MS, Sahl P, Petersen TE, Magnusson S.</author_list>
      <title>Complete primary structure of bovine plasma fibronectin.</title>
      <db_xref db="PUBMED" dbkey="3780752"/>
      <journal>Eur. J. Biochem.</journal>
      <location issue="2" pages="441-53" volume="161"/>
      <year>1986</year>
    </publication>
    <publication id="PUB00001541">
      <author_list>Patthy L, Trexler M, Vali Z, Banyai L, Varadi A.</author_list>
      <title>Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.</title>
      <db_xref db="PUBMED" dbkey="6373375"/>
      <journal>FEBS Lett.</journal>
      <location issue="1" pages="131-6" volume="171"/>
      <year>1984</year>
    </publication>
    <publication id="PUB00003257">
      <author_list>Atkinson RA, Williams RJ.</author_list>
      <title>Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry.</title>
      <db_xref db="PUBMED" dbkey="2157850"/>
      <journal>J. Mol. Biol.</journal>
      <location issue="3" pages="541-52" volume="212"/>
      <year>1990</year>
    </publication>
    <publication id="PUB00028079">
      <author_list>Chakrabarti S, Patel KD.</author_list>
      <title>Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology.</title>
      <db_xref db="PUBMED" dbkey="16019990"/>
      <journal>Exp. Lung Res.</journal>
      <location issue="6" pages="599-621" volume="31"/>
      <year>2005</year>
    </publication>
    <publication id="PUB00028080">
      <author_list>Hornebeck W, Bellon G, Emonard H.</author_list>
      <title>Fibronectin type II (FnII)-like modules regulate gelatinase A activity.</title>
      <db_xref db="PUBMED" dbkey="16085117"/>
      <journal>Pathol. Biol.</journal>
      <location issue="7" pages="405-10" volume="53"/>
      <year>2005</year>
    </publication>
  </pub_list>
  <child_list>
    <rel_ref ipr_ref="IPR000001"/>
    <rel_ref ipr_ref="IPR000562"/>
  </child_list>
  <contains>
    <rel_ref ipr_ref="IPR018056"/>
    <rel_ref ipr_ref="IPR018059"/>
  </contains>
  <found_in>
    <rel_ref ipr_ref="IPR016247"/>
    <rel_ref ipr_ref="IPR020715"/>
  </found_in>
  <member_list>
    <db_xref protein_count="923" db="SSF" dbkey="SSF57440" name="Kringle-like"/>
  </member_list>
  <structure_db_links>
    <db_xref db="PDB" dbkey="1a0h"/>
    <db_xref db="PDB" dbkey="1a5h"/>
    <db_xref db="PDB" dbkey="1a5i"/>
    <db_xref db="PDB" dbkey="1avg"/>
    <db_xref db="PDB" dbkey="1b2i"/>
    <db_xref db="PDB" dbkey="1bbr"/>
    <db_xref db="PDB" dbkey="1bda"/>
    <db_xref db="PDB" dbkey="1bht"/>
    <db_xref db="PDB" dbkey="1bml"/>
    <db_xref db="PDB" dbkey="1bui"/>
    <db_xref db="PDB" dbkey="1c5w"/>
    <db_xref db="PDB" dbkey="1c5x"/>
    <db_xref db="PDB" dbkey="1c5y"/>
    <db_xref db="PDB" dbkey="1c5z"/>
    <db_xref db="PDB" dbkey="1cea"/>
    <db_xref db="PDB" dbkey="1ceb"/>
    <db_xref db="PDB" dbkey="1ck7"/>
    <db_xref db="PDB" dbkey="1cxw"/>
    <db_xref db="PDB" dbkey="1ddj"/>
    <db_xref db="PDB" dbkey="1e88"/>
    <db_xref db="PDB" dbkey="1e8b"/>
    <db_xref db="PDB" dbkey="1eak"/>
    <db_xref db="PDB" dbkey="1ejn"/>
    <db_xref db="PDB" dbkey="1etr"/>
    <db_xref db="PDB" dbkey="1ets"/>
    <db_xref db="PDB" dbkey="1ett"/>
    <db_xref db="PDB" dbkey="1f5k"/>
    <db_xref db="PDB" dbkey="1f5l"/>
    <db_xref db="PDB" dbkey="1f92"/>
    <db_xref db="PDB" dbkey="1fbr"/>
    <db_xref db="PDB" dbkey="1fv9"/>
    <db_xref db="PDB" dbkey="1gi7"/>
    <db_xref db="PDB" dbkey="1gi8"/>
    <db_xref db="PDB" dbkey="1gi9"/>
    <db_xref db="PDB" dbkey="1gj7"/>
    <db_xref db="PDB" dbkey="1gj8"/>
    <db_xref db="PDB" dbkey="1gj9"/>
    <db_xref db="PDB" dbkey="1gja"/>
    <db_xref db="PDB" dbkey="1gjb"/>
    <db_xref db="PDB" dbkey="1gjc"/>
    <db_xref db="PDB" dbkey="1gjd"/>
    <db_xref db="PDB" dbkey="1gkc"/>
    <db_xref db="PDB" dbkey="1gkd"/>
    <db_xref db="PDB" dbkey="1gmn"/>
    <db_xref db="PDB" dbkey="1gmo"/>
    <db_xref db="PDB" dbkey="1gp9"/>
    <db_xref db="PDB" dbkey="1gxd"/>
    <db_xref db="PDB" dbkey="1h8p"/>
    <db_xref db="PDB" dbkey="1hov"/>
    <db_xref db="PDB" dbkey="1hpj"/>
    <db_xref db="PDB" dbkey="1hpk"/>
    <db_xref db="PDB" dbkey="1hrt"/>
    <db_xref db="PDB" dbkey="1i5k"/>
    <db_xref db="PDB" dbkey="1i71"/>
    <db_xref db="PDB" dbkey="1id5"/>
    <db_xref db="PDB" dbkey="1j7m"/>
    <db_xref db="PDB" dbkey="1jfn"/>
    <db_xref db="PDB" dbkey="1kdu"/>
    <db_xref db="PDB" dbkey="1ki0"/>
    <db_xref db="PDB" dbkey="1kiv"/>
    <db_xref db="PDB" dbkey="1krn"/>
    <db_xref db="PDB" dbkey="1ks0"/>
    <db_xref db="PDB" dbkey="1l4d"/>
    <db_xref db="PDB" dbkey="1l4z"/>
    <db_xref db="PDB" dbkey="1l6j"/>
    <db_xref db="PDB" dbkey="1lmw"/>
    <db_xref db="PDB" dbkey="1mkw"/>
    <db_xref db="PDB" dbkey="1mkx"/>
    <db_xref db="PDB" dbkey="1nk1"/>
    <db_xref db="PDB" dbkey="1nl1"/>
    <db_xref db="PDB" dbkey="1nl2"/>
    <db_xref db="PDB" dbkey="1o3p"/>
    <db_xref db="PDB" dbkey="1o5a"/>
    <db_xref db="PDB" dbkey="1o5b"/>
    <db_xref db="PDB" dbkey="1o5c"/>
    <db_xref db="PDB" dbkey="1o9a"/>
    <db_xref db="PDB" dbkey="1owd"/>
    <db_xref db="PDB" dbkey="1owe"/>
    <db_xref db="PDB" dbkey="1owh"/>
    <db_xref db="PDB" dbkey="1owi"/>
    <db_xref db="PDB" dbkey="1owj"/>
    <db_xref db="PDB" dbkey="1owk"/>
    <db_xref db="PDB" dbkey="1pdc"/>
    <db_xref db="PDB" dbkey="1pk2"/>
    <db_xref db="PDB" dbkey="1pk4"/>
    <db_xref db="PDB" dbkey="1pkr"/>
    <db_xref db="PDB" dbkey="1pmk"/>
    <db_xref db="PDB" dbkey="1pml"/>
    <db_xref db="PDB" dbkey="1qgb"/>
    <db_xref db="PDB" dbkey="1qib"/>
    <db_xref db="PDB" dbkey="1qo6"/>
    <db_xref db="PDB" dbkey="1qrz"/>
    <db_xref db="PDB" dbkey="1rjx"/>
    <db_xref db="PDB" dbkey="1rtf"/>
    <db_xref db="PDB" dbkey="1sc8"/>
    <db_xref db="PDB" dbkey="1sqa"/>
    <db_xref db="PDB" dbkey="1sqo"/>
    <db_xref db="PDB" dbkey="1sqt"/>
    <db_xref db="PDB" dbkey="1tbq"/>
    <db_xref db="PDB" dbkey="1tbr"/>
    <db_xref db="PDB" dbkey="1toc"/>
    <db_xref db="PDB" dbkey="1tpg"/>
    <db_xref db="PDB" dbkey="1tpk"/>
    <db_xref db="PDB" dbkey="1u6q"/>
    <db_xref db="PDB" dbkey="1ucy"/>
    <db_xref db="PDB" dbkey="1urk"/>
    <db_xref db="PDB" dbkey="1uvt"/>
    <db_xref db="PDB" dbkey="1uvu"/>
    <db_xref db="PDB" dbkey="1vit"/>
    <db_xref db="PDB" dbkey="1vj9"/>
    <db_xref db="PDB" dbkey="1vja"/>
    <db_xref db="PDB" dbkey="1w0z"/>
    <db_xref db="PDB" dbkey="1w10"/>
    <db_xref db="PDB" dbkey="1w11"/>
    <db_xref db="PDB" dbkey="1w12"/>
    <db_xref db="PDB" dbkey="1w13"/>
    <db_xref db="PDB" dbkey="1w14"/>
    <db_xref db="PDB" dbkey="1ycp"/>
    <db_xref db="PDB" dbkey="2a1d"/>
    <db_xref db="PDB" dbkey="2cg7"/>
    <db_xref db="PDB" dbkey="2doh"/>
    <db_xref db="PDB" dbkey="2doi"/>
    <db_xref db="PDB" dbkey="2fd6"/>
    <db_xref db="PDB" dbkey="2fn2"/>
    <db_xref db="PDB" dbkey="2hgf"/>
    <db_xref db="PDB" dbkey="2hpp"/>
    <db_xref db="PDB" dbkey="2hpq"/>
    <db_xref db="PDB" dbkey="2i9a"/>
    <db_xref db="PDB" dbkey="2i9b"/>
    <db_xref db="PDB" dbkey="2ody"/>
    <db_xref db="PDB" dbkey="2ovx"/>
    <db_xref db="PDB" dbkey="2ovz"/>
    <db_xref db="PDB" dbkey="2ow0"/>
    <db_xref db="PDB" dbkey="2ow1"/>
    <db_xref db="PDB" dbkey="2ow2"/>
    <db_xref db="PDB" dbkey="2pf1"/>
    <db_xref db="PDB" dbkey="2pf2"/>
    <db_xref db="PDB" dbkey="2pk4"/>
    <db_xref db="PDB" dbkey="2qj2"/>
    <db_xref db="PDB" dbkey="2qj4"/>
    <db_xref db="PDB" dbkey="2r2w"/>
    <db_xref db="PDB" dbkey="2spt"/>
    <db_xref db="PDB" dbkey="2vin"/>
    <db_xref db="PDB" dbkey="2vio"/>
    <db_xref db="PDB" dbkey="2vip"/>
    <db_xref db="PDB" dbkey="2viq"/>
    <db_xref db="PDB" dbkey="2viv"/>
    <db_xref db="PDB" dbkey="2viw"/>
    <db_xref db="PDB" dbkey="3bt1"/>
    <db_xref db="PDB" dbkey="3bt2"/>
    <db_xref db="PDB" dbkey="3e6p"/>
    <db_xref db="PDB" dbkey="3kiv"/>
    <db_xref db="PDB" dbkey="4kiv"/>
    <db_xref db="PDB" dbkey="5hpg"/>
    <db_xref db="CATH" dbkey="2.10.10.10"/>
    <db_xref db="CATH" dbkey="2.10.25.10"/>
    <db_xref db="CATH" dbkey="2.10.70.10"/>
    <db_xref db="CATH" dbkey="2.40.20.10"/>
    <db_xref db="CATH" dbkey="3.40.390.10"/>
    <db_xref db="CATH" dbkey="3.50.4.10"/>
    <db_xref db="CATH" dbkey="4.10.140.10"/>
    <db_xref db="SCOP" dbkey="b.47.1.2"/>
    <db_xref db="SCOP" dbkey="d.92.1.11"/>
    <db_xref db="SCOP" dbkey="g.10.1.1"/>
    <db_xref db="SCOP" dbkey="g.14.1.1"/>
    <db_xref db="SCOP" dbkey="g.14.1.2"/>
    <db_xref db="SCOP" dbkey="g.3.11.1"/>
  </structure_db_links>
  <taxonomy_distribution>
    <taxon_data name="Eukaryota" proteins_count="923"/>
    <taxon_data name="Nematoda" proteins_count="6"/>
    <taxon_data name="Caenorhabditis elegans" proteins_count="6"/>
    <taxon_data name="Arthropoda" proteins_count="42"/>
    <taxon_data name="Fruit Fly" proteins_count="2"/>
    <taxon_data name="Chordata" proteins_count="775"/>
    <taxon_data name="Human" proteins_count="111"/>
    <taxon_data name="Mouse" proteins_count="84"/>
    <taxon_data name="Plastid Group" proteins_count="12"/>
    <taxon_data name="Green Plants" proteins_count="12"/>
    <taxon_data name="Metazoa" proteins_count="889"/>
    <taxon_data name="Plastid Group" proteins_count="16"/>
    <taxon_data name="Plastid Group" proteins_count="4"/>
  </taxonomy_distribution>
  <sec_list>
    <sec_ac acc="IPR000001"/>
    <sec_ac acc="IPR000562"/>
  </sec_list>
</interpro>
<deleted_entries>
  <del_ref id="IPR000000"/>
  <del_ref id="IPR000002"/>
</deleted_entries>
</interprodb>