File: sre_math.c

package info (click to toggle)
biosquid 1.9g%2Bcvs20050121-15.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,632 kB
  • sloc: ansic: 12,750; sh: 1,412; perl: 243; makefile: 231
file content (192 lines) | stat: -rw-r--r-- 4,293 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*****************************************************************
 * @LICENSE@
 *****************************************************************/

/* sre_math.c
 * 
 * Portability for and extensions to C math library.
 * RCS $Id: sre_math.c,v 1.16 2005/01/21 16:36:58 eddy Exp $
 */

#include "squidconf.h"

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "squid.h"

  
/* Function: Linefit()
 * 
 * Purpose:  Given points x[0..N-1] and y[0..N-1], fit to
 *           a straight line y = a + bx.
 *           a, b, and the linear correlation coefficient r
 *           are filled in for return.
 *           
 * Args:     x     - x values of data
 *           y     - y values of data               
 *           N     - number of data points
 *           ret_a - RETURN: intercept
 *           ret_b - RETURN: slope
 *           ret_r - RETURN: correlation coefficient  
 *           
 * Return:   1 on success, 0 on failure.
 */
int          
Linefit(float *x, float *y, int N, float *ret_a, float *ret_b, float *ret_r) 
{				
  float xavg, yavg;
  float sxx, syy, sxy;
  int   i;
  
  /* Calculate averages, xavg and yavg
   */
  xavg = yavg = 0.0;
  for (i = 0; i < N; i++)
    {
      xavg += x[i];
      yavg += y[i];
    }
  xavg /= (float) N;
  yavg /= (float) N;

  sxx = syy = sxy = 0.0;
  for (i = 0; i < N; i++)
    {
      sxx    += (x[i] - xavg) * (x[i] - xavg);
      syy    += (y[i] - yavg) * (y[i] - xavg);
      sxy    += (x[i] - xavg) * (y[i] - yavg);
    }
  *ret_b = sxy / sxx;
  *ret_a = yavg - xavg*(*ret_b);
  *ret_r = sxy / (sqrt(sxx) * sqrt(syy));
  return 1;
}


/* Function: WeightedLinefit()
 * 
 * Purpose:  Given points x[0..N-1] and y[0..N-1] with
 *           variances (measurement errors) var[0..N-1],  
 *           fit to a straight line y = mx + b.
 *           
 * Method:   Algorithm from Numerical Recipes in C, [Press88].
 *           
 * Return:   (void)
 *           ret_m contains slope; ret_b contains intercept 
 */                
void
WeightedLinefit(float *x, float *y, float *var, int N, float *ret_m, float *ret_b) 
{
  int    i;
  double s;
  double sx, sy;
  double sxx, sxy;
  double delta;
  double m, b;
  
  s = sx = sy = sxx = sxy = 0.;
  for (i = 0; i < N; i++)
    {
      s   += 1./var[i];
      sx  += x[i] / var[i];
      sy  += y[i] / var[i];
      sxx += x[i] * x[i] / var[i];
      sxy += x[i] * y[i] / var[i];
    }

  delta = s * sxx - (sx * sx);
  b = (sxx * sy - sx * sxy) / delta;
  m = (s * sxy - sx * sy) / delta;

  *ret_m = m;
  *ret_b = b;
}
  



/* 2D matrix operations
 */
float **
FMX2Alloc(int rows, int cols)
{
  float **mx;
  int     r;
  
  mx    = (float **) MallocOrDie(sizeof(float *) * rows);
  mx[0] = (float *)  MallocOrDie(sizeof(float) * rows * cols);
  for (r = 1; r < rows; r++)
    mx[r] = mx[0] + r*cols;
  return mx;
}
void
FMX2Free(float **mx)
{
  free(mx[0]);
  free(mx);
}
double **
DMX2Alloc(int rows, int cols)
{
  double **mx;
  int      r;
  
  mx    = (double **) MallocOrDie(sizeof(double *) * rows);
  mx[0] = (double *)  MallocOrDie(sizeof(double) * rows * cols);
  for (r = 1; r < rows; r++)
    mx[r] = mx[0] + r*cols;
  return mx;
}
void
DMX2Free(double **mx)
{
  free(mx[0]);
  free(mx);
}
/* Function: FMX2Multiply()
 * 
 * Purpose:  Matrix multiplication.
 *           Multiply an m x p matrix A by a p x n matrix B,
 *           giving an m x n matrix C.
 *           Matrix C must be a preallocated matrix of the right
 *           size.
 */
void
FMX2Multiply(float **A, float **B, float **C, int m, int p, int n)
{
  int i, j, k;

  for (i = 0; i < m; i++)
    for (j = 0; j < n; j++)
      {
	C[i][j] = 0.;
	for (k = 0; k < p; k++)
	  C[i][j] += A[i][k] * B[k][j];
      }
}


  
/* Function:  FMX2Copy()
 * Incept:    LSJ 14 Oct 2003
 *            incorp of HMMER eweights code;
 *            SRE, Thu May 20 11:27:05 2004 [St. Louis]
 *
 * Purpose:   Copy mx_src to mx_dest. 
 *            mx_src is m x n (rows x columns).
 *            mx_dest is too, and must already be allocated.
 *
 * Args:      mx_dest - new copy
 *            mx_src  - matrix to be copied
 *
 * Returns:   (void)
 */
void
FMX2Copy(float **mx_dest, float **mx_src, int m, int n)
{
  int row;
  for (row = 0; row < m; row++)
    FCopy(mx_dest[row], mx_src[row], n);
  return;
}