1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
|
/* Generate the nondeterministic finite state machine for bison,
Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
Bison is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Bison is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Bison; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* See comments in state.h for the data structures that represent it.
The entry point is generate_states. */
#include <stdio.h>
#include "system.h"
#include "machine.h"
#include "new.h"
#include "gram.h"
#include "state.h"
extern char *nullable;
extern short *itemset;
extern short *itemsetend;
int nstates;
int final_state;
core *first_state;
shifts *first_shift;
reductions *first_reduction;
int get_state(int);
core *new_state(int);
void new_itemsets();
void append_states();
void initialize_states();
void save_shifts();
void save_reductions();
void augment_automaton();
void insert_start_shift();
extern void initialize_closure(int);
extern void closure(short*,int);
extern void finalize_closure();
extern void toomany(char*);
static core *this_state;
static core *last_state;
static shifts *last_shift;
static reductions *last_reduction;
static int nshifts;
static short *shift_symbol;
static short *redset;
static short *shiftset;
static short **kernel_base;
static short **kernel_end;
static short *kernel_items;
/* hash table for states, to recognize equivalent ones. */
#define STATE_TABLE_SIZE 1009
static core **state_table;
void
allocate_itemsets()
{
register short *itemp;
register int symbol;
register int i;
register int count;
register short *symbol_count;
count = 0;
symbol_count = NEW2(nsyms, short);
itemp = ritem;
symbol = *itemp++;
while (symbol)
{
if (symbol > 0)
{
count++;
symbol_count[symbol]++;
}
symbol = *itemp++;
}
/* see comments before new_itemsets. All the vectors of items
live inside kernel_items. The number of active items after
some symbol cannot be more than the number of times that symbol
appears as an item, which is symbol_count[symbol].
We allocate that much space for each symbol. */
kernel_base = NEW2(nsyms, short *);
kernel_items = NEW2(count, short);
count = 0;
for (i = 0; i < nsyms; i++)
{
kernel_base[i] = kernel_items + count;
count += symbol_count[i];
}
shift_symbol = symbol_count;
kernel_end = NEW2(nsyms, short *);
}
void
allocate_storage()
{
allocate_itemsets();
shiftset = NEW2(nsyms, short);
redset = NEW2(nrules + 1, short);
state_table = NEW2(STATE_TABLE_SIZE, core *);
}
void
free_storage()
{
FREE(shift_symbol);
FREE(redset);
FREE(shiftset);
FREE(kernel_base);
FREE(kernel_end);
FREE(kernel_items);
FREE(state_table);
}
/* compute the nondeterministic finite state machine (see state.h for details)
from the grammar. */
void
generate_states()
{
allocate_storage();
initialize_closure(nitems);
initialize_states();
while (this_state)
{
/* Set up ruleset and itemset for the transitions out of this state.
ruleset gets a 1 bit for each rule that could reduce now.
itemset gets a vector of all the items that could be accepted next. */
closure(this_state->items, this_state->nitems);
/* record the reductions allowed out of this state */
save_reductions();
/* find the itemsets of the states that shifts can reach */
new_itemsets();
/* find or create the core structures for those states */
append_states();
/* create the shifts structures for the shifts to those states,
now that the state numbers transitioning to are known */
if (nshifts > 0)
save_shifts();
/* states are queued when they are created; process them all */
this_state = this_state->next;
}
/* discard various storage */
finalize_closure();
free_storage();
/* set up initial and final states as parser wants them */
augment_automaton();
}
/* Find which symbols can be shifted in the current state,
and for each one record which items would be active after that shift.
Uses the contents of itemset.
shift_symbol is set to a vector of the symbols that can be shifted.
For each symbol in the grammar, kernel_base[symbol] points to
a vector of item numbers activated if that symbol is shifted,
and kernel_end[symbol] points after the end of that vector. */
void
new_itemsets()
{
register int i;
register int shiftcount;
register short *isp;
register short *ksp;
register int symbol;
#ifdef TRACE
fprintf(stderr, "Entering new_itemsets\n");
#endif
for (i = 0; i < nsyms; i++)
kernel_end[i] = NULL;
shiftcount = 0;
isp = itemset;
while (isp < itemsetend)
{
i = *isp++;
symbol = ritem[i];
if (symbol > 0)
{
ksp = kernel_end[symbol];
if (!ksp)
{
shift_symbol[shiftcount++] = symbol;
ksp = kernel_base[symbol];
}
*ksp++ = i + 1;
kernel_end[symbol] = ksp;
}
}
nshifts = shiftcount;
}
/* Use the information computed by new_itemsets to find the state numbers
reached by each shift transition from the current state.
shiftset is set up as a vector of state numbers of those states. */
void
append_states()
{
register int i;
register int j;
register int symbol;
#ifdef TRACE
fprintf(stderr, "Entering append_states\n");
#endif
/* first sort shift_symbol into increasing order */
for (i = 1; i < nshifts; i++)
{
symbol = shift_symbol[i];
j = i;
while (j > 0 && shift_symbol[j - 1] > symbol)
{
shift_symbol[j] = shift_symbol[j - 1];
j--;
}
shift_symbol[j] = symbol;
}
for (i = 0; i < nshifts; i++)
{
symbol = shift_symbol[i];
shiftset[i] = get_state(symbol);
}
}
/* find the state number for the state we would get to
(from the current state) by shifting symbol.
Create a new state if no equivalent one exists already.
Used by append_states */
int
get_state(int symbol)
{
register int key;
register short *isp1;
register short *isp2;
register short *iend;
register core *sp;
register int found;
int n;
#ifdef TRACE
fprintf(stderr, "Entering get_state, symbol = %d\n", symbol);
#endif
isp1 = kernel_base[symbol];
iend = kernel_end[symbol];
n = iend - isp1;
/* add up the target state's active item numbers to get a hash key */
key = 0;
while (isp1 < iend)
key += *isp1++;
key = key % STATE_TABLE_SIZE;
sp = state_table[key];
if (sp)
{
found = 0;
while (!found)
{
if (sp->nitems == n)
{
found = 1;
isp1 = kernel_base[symbol];
isp2 = sp->items;
while (found && isp1 < iend)
{
if (*isp1++ != *isp2++)
found = 0;
}
}
if (!found)
{
if (sp->link)
{
sp = sp->link;
}
else /* bucket exhausted and no match */
{
sp = sp->link = new_state(symbol);
found = 1;
}
}
}
}
else /* bucket is empty */
{
state_table[key] = sp = new_state(symbol);
}
return (sp->number);
}
/* subroutine of get_state. create a new state for those items, if necessary. */
core *
new_state(int symbol)
{
register int n;
register core *p;
register short *isp1;
register short *isp2;
register short *iend;
#ifdef TRACE
fprintf(stderr, "Entering new_state, symbol = %d\n", symbol);
#endif
if (nstates >= MAXSHORT)
toomany("states");
isp1 = kernel_base[symbol];
iend = kernel_end[symbol];
n = iend - isp1;
p = (core *) xmalloc((unsigned) (sizeof(core) + (n - 1) * sizeof(short)));
p->accessing_symbol = symbol;
p->number = nstates;
p->nitems = n;
isp2 = p->items;
while (isp1 < iend)
*isp2++ = *isp1++;
last_state->next = p;
last_state = p;
nstates++;
return (p);
}
void
initialize_states()
{
register core *p;
/* register unsigned *rp1; JF unused */
/* register unsigned *rp2; JF unused */
/* register unsigned *rend; JF unused */
p = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
first_state = last_state = this_state = p;
nstates = 1;
}
void
save_shifts()
{
register shifts *p;
register short *sp1;
register short *sp2;
register short *send;
p = (shifts *) xmalloc((unsigned) (sizeof(shifts) +
(nshifts - 1) * sizeof(short)));
p->number = this_state->number;
p->nshifts = nshifts;
sp1 = shiftset;
sp2 = p->internalShifts;
send = shiftset + nshifts;
while (sp1 < send)
*sp2++ = *sp1++;
if (last_shift)
{
last_shift->next = p;
last_shift = p;
}
else
{
first_shift = p;
last_shift = p;
}
}
/* find which rules can be used for reduction transitions from the current state
and make a reductions structure for the state to record their rule numbers. */
void
save_reductions()
{
register short *isp;
register short *rp1;
register short *rp2;
register int item;
register int count;
register reductions *p;
short *rend;
/* find and count the active items that represent ends of rules */
count = 0;
for (isp = itemset; isp < itemsetend; isp++)
{
item = ritem[*isp];
if (item < 0)
{
redset[count++] = -item;
}
}
/* make a reductions structure and copy the data into it. */
if (count)
{
p = (reductions *) xmalloc((unsigned) (sizeof(reductions) +
(count - 1) * sizeof(short)));
p->number = this_state->number;
p->nreds = count;
rp1 = redset;
rp2 = p->rules;
rend = rp1 + count;
while (rp1 < rend)
*rp2++ = *rp1++;
if (last_reduction)
{
last_reduction->next = p;
last_reduction = p;
}
else
{
first_reduction = p;
last_reduction = p;
}
}
}
/* Make sure that the initial state has a shift that accepts the
grammar's start symbol and goes to the next-to-final state,
which has a shift going to the final state, which has a shift
to the termination state.
Create such states and shifts if they don't happen to exist already. */
void
augment_automaton()
{
register int i;
register int k;
/* register int found; JF unused */
register core *statep;
register shifts *sp;
register shifts *sp2;
register shifts *sp1;
sp = first_shift;
if (sp)
{
if (sp->number == 0)
{
k = sp->nshifts;
statep = first_state->next;
/* The states reached by shifts from first_state are numbered 1...K.
Look for one reached by start_symbol. */
while (statep->accessing_symbol < start_symbol
&& statep->number < k)
statep = statep->next;
if (statep->accessing_symbol == start_symbol)
{
/* We already have a next-to-final state.
Make sure it has a shift to what will be the final state. */
k = statep->number;
while (sp && sp->number < k)
{
sp1 = sp;
sp = sp->next;
}
if (sp && sp->number == k)
{
sp2 = (shifts *) xmalloc((unsigned) (sizeof(shifts)
+ sp->nshifts * sizeof(short)));
sp2->number = k;
sp2->nshifts = sp->nshifts + 1;
sp2->internalShifts[0] = nstates;
for (i = sp->nshifts; i > 0; i--)
sp2->internalShifts[i] = sp->internalShifts[i - 1];
/* Patch sp2 into the chain of shifts in place of sp,
following sp1. */
sp2->next = sp->next;
sp1->next = sp2;
if (sp == last_shift)
last_shift = sp2;
FREE(sp);
}
else
{
sp2 = NEW(shifts);
sp2->number = k;
sp2->nshifts = 1;
sp2->internalShifts[0] = nstates;
/* Patch sp2 into the chain of shifts between sp1 and sp. */
sp2->next = sp;
sp1->next = sp2;
if (sp == 0)
last_shift = sp2;
}
}
else
{
/* There is no next-to-final state as yet. */
/* Add one more shift in first_shift,
going to the next-to-final state (yet to be made). */
sp = first_shift;
sp2 = (shifts *) xmalloc(sizeof(shifts)
+ sp->nshifts * sizeof(short));
sp2->nshifts = sp->nshifts + 1;
/* Stick this shift into the vector at the proper place. */
statep = first_state->next;
for (k = 0, i = 0; i < sp->nshifts; k++, i++)
{
if (statep->accessing_symbol > start_symbol && i == k)
sp2->internalShifts[k++] = nstates;
sp2->internalShifts[k] = sp->internalShifts[i];
statep = statep->next;
}
if (i == k)
sp2->internalShifts[k++] = nstates;
/* Patch sp2 into the chain of shifts
in place of sp, at the beginning. */
sp2->next = sp->next;
first_shift = sp2;
if (last_shift == sp)
last_shift = sp2;
FREE(sp);
/* Create the next-to-final state, with shift to
what will be the final state. */
insert_start_shift();
}
}
else
{
/* The initial state didn't even have any shifts.
Give it one shift, to the next-to-final state. */
sp = NEW(shifts);
sp->nshifts = 1;
sp->internalShifts[0] = nstates;
/* Patch sp into the chain of shifts at the beginning. */
sp->next = first_shift;
first_shift = sp;
/* Create the next-to-final state, with shift to
what will be the final state. */
insert_start_shift();
}
}
else
{
/* There are no shifts for any state.
Make one shift, from the initial state to the next-to-final state. */
sp = NEW(shifts);
sp->nshifts = 1;
sp->internalShifts[0] = nstates;
/* Initialize the chain of shifts with sp. */
first_shift = sp;
last_shift = sp;
/* Create the next-to-final state, with shift to
what will be the final state. */
insert_start_shift();
}
/* Make the final state--the one that follows a shift from the
next-to-final state.
The symbol for that shift is 0 (end-of-file). */
statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
statep->number = nstates;
last_state->next = statep;
last_state = statep;
/* Make the shift from the final state to the termination state. */
sp = NEW(shifts);
sp->number = nstates++;
sp->nshifts = 1;
sp->internalShifts[0] = nstates;
last_shift->next = sp;
last_shift = sp;
/* Note that the variable `final_state' refers to what we sometimes call
the termination state. */
final_state = nstates;
/* Make the termination state. */
statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
statep->number = nstates++;
last_state->next = statep;
last_state = statep;
}
/* subroutine of augment_automaton.
Create the next-to-final state, to which a shift has already been made in
the initial state. */
void
insert_start_shift()
{
register core *statep;
register shifts *sp;
statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
statep->number = nstates;
statep->accessing_symbol = start_symbol;
last_state->next = statep;
last_state = statep;
/* Make a shift from this state to (what will be) the final state. */
sp = NEW(shifts);
sp->number = nstates++;
sp->nshifts = 1;
sp->internalShifts[0] = nstates;
last_shift->next = sp;
last_shift = sp;
}
|