1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680
|
\input texinfo @c -*-texinfo-*-
@comment %**start of header
@setfilename bison.info
@documentencoding UTF-8
@include version.texi
@settitle Bison @value{VERSION}
@xrefautomaticsectiontitle on
@c cite a reference in text. Could not find a means to have a single
@c definition that looks nice in all the output formats.
@iftex
@macro tcite{ref}
@ref{\ref\,,\ref\}
@end macro
@end iftex
@ifnottex
@macro tcite{ref}
@ref{\ref\}
@end macro
@end ifnottex
@c cite a reference in parentheses.
@iftex
@macro pcite{ref}
(@pxref{\ref\,,\ref\})
@end macro
@end iftex
@ifnottex
@macro pcite{ref}
(@pxref{\ref\})
@end macro
@end ifnottex
@c ## ---------------------- ##
@c ## Diagnostics in color. ##
@c ## ---------------------- ##
@tex
\gdef\rgbGreen{0 .80 0}
\gdef\colorGreen{%
\setcolor{\rgbGreen}%
}
\gdef\rgbYellow{1 .5 0}
\gdef\colorYellow{%
\setcolor{\rgbYellow}%
}
\gdef\rgbRed{1 0 0}
\gdef\colorRed{%
\setcolor{\rgbRed}%
}
\gdef\rgbBlue{0 0 1}
\gdef\colorBlue{%
\setcolor{\rgbBlue}%
}
\gdef\rgbPurple{0.50 0 0.50}
\gdef\colorPurple{%
\setcolor{\rgbPurple}%
}
\gdef\colorOff{%
\setcolor{\maincolor}%
}
\gdef\rgbError{0.80 0 0}
\gdef\diagError{%
\setcolor{\rgbError}%
}
\gdef\rgbNotice{0 0 0.80}
\gdef\diagNotice{%
\setcolor{\rgbNotice}%
}
\gdef\rgbWarning{0.50 0 0.50}
\gdef\diagWarning{%
\setcolor{\rgbWarning}%
}
\gdef\diagOff{%
\setcolor{\maincolor}%
}
@end tex
@ifnottex
@macro colorGreen
@inlineraw{html, <span style="color:green">}
@end macro
@macro colorYellow
@inlineraw{html, <span style="color:#ff8000">}
@end macro
@macro colorRed
@inlineraw{html, <span style="color:red">}
@end macro
@macro colorBlue
@inlineraw{html, <span style="color:blue">}
@end macro
@macro colorPurple
@inlineraw{html, <span style="color:darkviolet">}
@end macro
@macro colorOff
@inlineraw{html, </span>}
@end macro
@macro diagError
@inlineraw{html, <b style="color:red">}
@end macro
@macro diagNotice
@inlineraw{html, <b style="color:darkcyan">}
@end macro
@macro diagWarning
@inlineraw{html, <b style="color:darkviolet">}
@end macro
@macro diagOff
@inlineraw{html, </b>}
@end macro
@end ifnottex
@macro green{text}
@colorGreen{}\text\@colorOff{}
@end macro
@macro yellow{text}
@colorYellow{}\text\@colorOff{}
@end macro
@macro red{text}
@colorRed{}\text\@colorOff{}
@end macro
@macro blue{text}
@colorBlue{}\text\@colorOff{}
@end macro
@macro purple{text}
@colorPurple{}\text\@colorOff{}
@end macro
@macro dwarning{text}
@diagWarning{}\text\@diagOff{}
@end macro
@macro derror{text}
@diagError{}\text\@diagOff{}
@end macro
@macro dnotice{text}
@diagNotice{}\text\@diagOff{}
@end macro
@finalout
@c SMALL BOOK version
@c This edition has been formatted so that you can format and print it in
@c the smallbook format.
@c @smallbook
@c @setchapternewpage odd
@c Set following if you want to document %default-prec and %no-default-prec.
@c This feature is experimental and may change in future Bison versions.
@c @set defaultprec
@ifnotinfo
@syncodeindex fn cp
@syncodeindex vr cp
@syncodeindex tp cp
@end ifnotinfo
@ifinfo
@synindex fn cp
@synindex vr cp
@synindex tp cp
@end ifinfo
@comment %**end of header
@copying
This manual (@value{UPDATED}) is for GNU Bison (version @value{VERSION}),
the GNU parser generator.
Copyright @copyright{} 1988--1993, 1995, 1998--2015, 2018--2021 Free
Software Foundation, Inc.
@quotation
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant
Sections, with the Front-Cover texts being ``A GNU Manual,'' and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled ``GNU Free Documentation License.''
(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.''
@end quotation
@end copying
@dircategory Software development
@direntry
* bison: (bison). GNU parser generator (Yacc replacement).
@end direntry
@titlepage
@title Bison
@subtitle The Yacc-compatible Parser Generator
@subtitle @value{UPDATED}, Bison Version @value{VERSION}
@author by Charles Donnelly and Richard Stallman
@page
@vskip 0pt plus 1filll
@insertcopying
@sp 2
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor @*
Boston, MA 02110-1301 USA @*
Printed copies are available from the Free Software Foundation.@*
ISBN 1-882114-44-2
@sp 2
Cover art by Etienne Suvasa.
@end titlepage
@contents
@ifnottex
@node Top
@top Bison
@insertcopying
@end ifnottex
@menu
* Introduction:: What GNU Bison is.
* Conditions:: Conditions for using Bison and its output.
* Copying:: The GNU General Public License says
how you can copy and share Bison.
Tutorial sections:
* Concepts:: Basic concepts for understanding Bison.
* Examples:: Three simple explained examples of using Bison.
Reference sections:
* Grammar File:: Writing Bison declarations and rules.
* Interface:: C-language interface to the parser function @code{yyparse}.
* Algorithm:: How the Bison parser works at run-time.
* Error Recovery:: Writing rules for error recovery.
* Context Dependency:: What to do if your language syntax is too
messy for Bison to handle straightforwardly.
* Debugging:: Understanding or debugging Bison parsers.
* Invocation:: How to run Bison (to produce the parser implementation).
* Other Languages:: Creating C++, D and Java parsers.
* History:: How Bison came to be
* Versioning:: Dealing with Bison versioning
* FAQ:: Frequently Asked Questions
* Table of Symbols:: All the keywords of the Bison language are explained.
* Glossary:: Basic concepts are explained.
* GNU Free Documentation License:: Copying and sharing this manual
* Bibliography:: Publications cited in this manual.
* Index of Terms:: Cross-references to the text.
@detailmenu
--- The Detailed Node Listing ---
The Concepts of Bison
* Language and Grammar:: Languages and context-free grammars,
as mathematical ideas.
* Grammar in Bison:: How we represent grammars for Bison's sake.
* Semantic Values:: Each token or syntactic grouping can have
a semantic value (the value of an integer,
the name of an identifier, etc.).
* Semantic Actions:: Each rule can have an action containing C code.
* GLR Parsers:: Writing parsers for general context-free languages.
* Locations:: Overview of location tracking.
* Bison Parser:: What are Bison's input and output,
how is the output used?
* Stages:: Stages in writing and running Bison grammars.
* Grammar Layout:: Overall structure of a Bison grammar file.
Writing GLR Parsers
* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
* Semantic Predicates:: Controlling a parse with arbitrary computations.
Examples
* RPN Calc:: Reverse Polish Notation Calculator;
a first example with no operator precedence.
* Infix Calc:: Infix (algebraic) notation calculator.
Operator precedence is introduced.
* Simple Error Recovery:: Continuing after syntax errors.
* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
* Multi-function Calc:: Calculator with memory and trig functions.
It uses multiple data-types for semantic values.
* Exercises:: Ideas for improving the multi-function calculator.
Reverse Polish Notation Calculator
* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
* Rpcalc Lexer:: The lexical analyzer.
* Rpcalc Main:: The controlling function.
* Rpcalc Error:: The error reporting function.
* Rpcalc Generate:: Running Bison on the grammar file.
* Rpcalc Compile:: Run the C compiler on the output code.
Grammar Rules for @code{rpcalc}
* Rpcalc Input:: Explanation of the @code{input} nonterminal
* Rpcalc Line:: Explanation of the @code{line} nonterminal
* Rpcalc Exp:: Explanation of the @code{exp} nonterminal
Location Tracking Calculator: @code{ltcalc}
* Ltcalc Declarations:: Bison and C declarations for ltcalc.
* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
* Ltcalc Lexer:: The lexical analyzer.
Multi-Function Calculator: @code{mfcalc}
* Mfcalc Declarations:: Bison declarations for multi-function calculator.
* Mfcalc Rules:: Grammar rules for the calculator.
* Mfcalc Symbol Table:: Symbol table management subroutines.
* Mfcalc Lexer:: The lexical analyzer.
* Mfcalc Main:: The controlling function.
Bison Grammar Files
* Grammar Outline:: Overall layout of the grammar file.
* Symbols:: Terminal and nonterminal symbols.
* Rules:: How to write grammar rules.
* Semantics:: Semantic values and actions.
* Tracking Locations:: Locations and actions.
* Named References:: Using named references in actions.
* Declarations:: All kinds of Bison declarations are described here.
* Multiple Parsers:: Putting more than one Bison parser in one program.
Outline of a Bison Grammar
* Prologue:: Syntax and usage of the prologue.
* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
* Bison Declarations:: Syntax and usage of the Bison declarations section.
* Grammar Rules:: Syntax and usage of the grammar rules section.
* Epilogue:: Syntax and usage of the epilogue.
Grammar Rules
* Rules Syntax:: Syntax of the rules.
* Empty Rules:: Symbols that can match the empty string.
* Recursion:: Writing recursive rules.
Defining Language Semantics
* Value Type:: Specifying one data type for all semantic values.
* Multiple Types:: Specifying several alternative data types.
* Type Generation:: Generating the semantic value type.
* Union Decl:: Declaring the set of all semantic value types.
* Structured Value Type:: Providing a structured semantic value type.
* Actions:: An action is the semantic definition of a grammar rule.
* Action Types:: Specifying data types for actions to operate on.
* Midrule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
Actions in Midrule
* Using Midrule Actions:: Putting an action in the middle of a rule.
* Typed Midrule Actions:: Specifying the semantic type of their values.
* Midrule Action Translation:: How midrule actions are actually processed.
* Midrule Conflicts:: Midrule actions can cause conflicts.
Tracking Locations
* Location Type:: Specifying a data type for locations.
* Actions and Locations:: Using locations in actions.
* Printing Locations:: Defining how locations are printed.
* Location Default Action:: Defining a general way to compute locations.
Bison Declarations
* Require Decl:: Requiring a Bison version.
* Token Decl:: Declaring terminal symbols.
* Precedence Decl:: Declaring terminals with precedence and associativity.
* Type Decl:: Declaring the choice of type for a nonterminal symbol.
* Symbol Decls:: Summary of the Syntax of Symbol Declarations.
* Initial Action Decl:: Code run before parsing starts.
* Destructor Decl:: Declaring how symbols are freed.
* Printer Decl:: Declaring how symbol values are displayed.
* Expect Decl:: Suppressing warnings about parsing conflicts.
* Start Decl:: Specifying the start symbol.
* Pure Decl:: Requesting a reentrant parser.
* Push Decl:: Requesting a push parser.
* Decl Summary:: Table of all Bison declarations.
* %define Summary:: Defining variables to adjust Bison's behavior.
* %code Summary:: Inserting code into the parser source.
Parser C-Language Interface
* Parser Function:: How to call @code{yyparse} and what it returns.
* Push Parser Interface:: How to create, use, and destroy push parsers.
* Lexical:: You must supply a function @code{yylex}
which reads tokens.
* Error Reporting:: Passing error messages to the user.
* Action Features:: Special features for use in actions.
* Internationalization:: How to let the parser speak in the user's
native language.
The Lexical Analyzer Function @code{yylex}
* Calling Convention:: How @code{yyparse} calls @code{yylex}.
* Special Tokens:: Signaling end-of-file and errors to the parser.
* Tokens from Literals:: Finding token kinds from string aliases.
* Token Values:: How @code{yylex} must return the semantic value
of the token it has read.
* Token Locations:: How @code{yylex} must return the text location
(line number, etc.) of the token, if the
actions want that.
* Pure Calling:: How the calling convention differs in a pure parser
(@pxref{Pure Decl}).
Error Reporting
* Error Reporting Function:: You must supply a @code{yyerror} function.
* Syntax Error Reporting Function:: You can supply a @code{yyreport_syntax_error} function.
Parser Internationalization
* Enabling I18n:: Preparing your project to support internationalization.
* Token I18n:: Preparing tokens for internationalization in error messages.
The Bison Parser Algorithm
* Lookahead:: Parser looks one token ahead when deciding what to do.
* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
* Precedence:: Operator precedence works by resolving conflicts.
* Contextual Precedence:: When an operator's precedence depends on context.
* Parser States:: The parser is a finite-state-machine with stack.
* Reduce/Reduce:: When two rules are applicable in the same situation.
* Mysterious Conflicts:: Conflicts that look unjustified.
* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
* Memory Management:: What happens when memory is exhausted. How to avoid it.
Operator Precedence
* Why Precedence:: An example showing why precedence is needed.
* Using Precedence:: How to specify precedence and associativity.
* Precedence Only:: How to specify precedence only.
* Precedence Examples:: How these features are used in the previous example.
* How Precedence:: How they work.
* Non Operators:: Using precedence for general conflicts.
Tuning LR
* LR Table Construction:: Choose a different construction algorithm.
* Default Reductions:: Disable default reductions.
* LAC:: Correct lookahead sets in the parser states.
* Unreachable States:: Keep unreachable parser states for debugging.
Handling Context Dependencies
* Semantic Tokens:: Token parsing can depend on the semantic context.
* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
* Tie-in Recovery:: Lexical tie-ins have implications for how
error recovery rules must be written.
Debugging Your Parser
* Counterexamples:: Understanding conflicts.
* Understanding:: Understanding the structure of your parser.
* Graphviz:: Getting a visual representation of the parser.
* Xml:: Getting a markup representation of the parser.
* Tracing:: Tracing the execution of your parser.
Tracing Your Parser
* Enabling Traces:: Activating run-time trace support
* Mfcalc Traces:: Extending @code{mfcalc} to support traces
Invoking Bison
* Bison Options:: All the options described in detail,
in alphabetical order by short options.
* Option Cross Key:: Alphabetical list of long options.
* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
Bison Options
* Operation Modes:: Options controlling the global behavior of @command{bison}
* Diagnostics:: Options controlling the diagnostics
* Tuning the Parser:: Options changing the generated parsers
* Output Files:: Options controlling the output
Parsers Written In Other Languages
* C++ Parsers:: The interface to generate C++ parser classes
* D Parsers:: The interface to generate D parser classes
* Java Parsers:: The interface to generate Java parser classes
C++ Parsers
* A Simple C++ Example:: A short introduction to C++ parsers
* C++ Bison Interface:: Asking for C++ parser generation
* C++ Parser Interface:: Instantiating and running the parser
* C++ Semantic Values:: %union vs. C++
* C++ Location Values:: The position and location classes
* C++ Parser Context:: You can supply a @code{report_syntax_error} function.
* C++ Scanner Interface:: Exchanges between yylex and parse
* A Complete C++ Example:: Demonstrating their use
C++ Location Values
* C++ position:: One point in the source file
* C++ location:: Two points in the source file
* Exposing the Location Classes:: Using the Bison location class in your
project
* User Defined Location Type:: Required interface for locations
A Complete C++ Example
* Calc++ --- C++ Calculator:: The specifications
* Calc++ Parsing Driver:: An active parsing context
* Calc++ Parser:: A parser class
* Calc++ Scanner:: A pure C++ Flex scanner
* Calc++ Top Level:: Conducting the band
D Parsers
* D Bison Interface:: Asking for D parser generation
* D Semantic Values:: %token and %nterm vs. D
* D Location Values:: The position and location classes
* D Parser Interface:: Instantiating and running the parser
* D Parser Context Interface:: Circumstances of a syntax error
* D Scanner Interface:: Specifying the scanner for the parser
* D Action Features:: Special features for use in actions
* D Push Parser Interface:: Instantiating and running the push parser
* D Complete Symbols:: Using token constructors
Java Parsers
* Java Bison Interface:: Asking for Java parser generation
* Java Semantic Values:: %token and %nterm vs. Java
* Java Location Values:: The position and location classes
* Java Parser Interface:: Instantiating and running the parser
* Java Parser Context Interface:: Circumstances of a syntax error
* Java Scanner Interface:: Specifying the scanner for the parser
* Java Action Features:: Special features for use in actions
* Java Push Parser Interface:: Instantiating and running the push parser
* Java Differences:: Differences between C/C++ and Java Grammars
* Java Declarations Summary:: List of Bison declarations used with Java
A Brief History of the Greater Ungulates
* Yacc:: The original Yacc
* yacchack:: An obscure early implementation of reentrancy
* Byacc:: Berkeley Yacc
* Bison:: This program
* Other Ungulates:: Similar programs
Bison Version Compatibility
* Versioning:: Dealing with Bison versioning
Frequently Asked Questions
* Memory Exhausted:: Breaking the Stack Limits
* How Can I Reset the Parser:: @code{yyparse} Keeps some State
* Strings are Destroyed:: @code{yylval} Loses Track of Strings
* Implementing Gotos/Loops:: Control Flow in the Calculator
* Multiple start-symbols:: Factoring closely related grammars
* Enabling Relocatability:: Moving Bison/using it through network shares
* Secure? Conform?:: Is Bison POSIX safe?
* I can't build Bison:: Troubleshooting
* Where can I find help?:: Troubleshouting
* Bug Reports:: Troublereporting
* More Languages:: Parsers in C++, Java, and so on
* Beta Testing:: Experimenting development versions
* Mailing Lists:: Meeting other Bison users
Copying This Manual
* GNU Free Documentation License:: Copying and sharing this manual
@end detailmenu
@end menu
@node Introduction
@unnumbered Introduction
@cindex introduction
@dfn{Bison} is a general-purpose parser generator that converts an annotated
context-free grammar into a deterministic LR or generalized LR (GLR) parser
employing LALR(1), IELR(1) or canonical LR(1) parser tables. Once you are
proficient with Bison, you can use it to develop a wide range of language
parsers, from those used in simple desk calculators to complex programming
languages.
Bison is upward compatible with Yacc: all properly-written Yacc grammars
ought to work with Bison with no change. Anyone familiar with Yacc should
be able to use Bison with little trouble. You need to be fluent in C, C++,
D or Java programming in order to use Bison or to understand this manual.
We begin with tutorial chapters that explain the basic concepts of
using Bison and show three explained examples, each building on the
last. If you don't know Bison or Yacc, start by reading these
chapters. Reference chapters follow, which describe specific aspects
of Bison in detail.
Bison was written originally by Robert Corbett. Richard Stallman made
it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
added multi-character string literals and other features. Since then,
Bison has grown more robust and evolved many other new features thanks
to the hard work of a long list of volunteers. For details, see the
@file{THANKS} and @file{ChangeLog} files included in the Bison
distribution.
This edition corresponds to version @value{VERSION} of Bison.
@node Conditions
@unnumbered Conditions for Using Bison
The distribution terms for Bison-generated parsers permit using the parsers
in nonfree programs. Before Bison version 2.2, these extra permissions
applied only when Bison was generating LALR(1) parsers in C@. And before
Bison version 1.24, Bison-generated parsers could be used only in programs
that were free software.
The other GNU programming tools, such as the GNU C compiler, have never had
such a requirement. They could always be used for nonfree software. The
reason Bison was different was not due to a special policy decision; it
resulted from applying the usual General Public License to all of the Bison
source code.
The main output of the Bison utility---the Bison parser implementation
file---contains a verbatim copy of a sizable piece of Bison, which is the
code for the parser's implementation. (The actions from your grammar are
inserted into this implementation at one point, but most of the rest of the
implementation is not changed.) When we applied the GPL terms to the
skeleton code for the parser's implementation, the effect was to restrict
the use of Bison output to free software.
We didn't change the terms because of sympathy for people who want to make
software proprietary. @strong{Software should be free.} But we concluded
that limiting Bison's use to free software was doing little to encourage
people to make other software free. So we decided to make the practical
conditions for using Bison match the practical conditions for using the
other GNU tools.
This exception applies when Bison is generating code for a parser. You can
tell whether the exception applies to a Bison output file by inspecting the
file for text beginning with ``As a special exception@dots{}''. The text
spells out the exact terms of the exception.
@node Copying
@unnumbered GNU GENERAL PUBLIC LICENSE
@include gpl-3.0.texi
@node Concepts
@chapter The Concepts of Bison
This chapter introduces many of the basic concepts without which the details
of Bison will not make sense. If you do not already know how to use Bison
or Yacc, we suggest you start by reading this chapter carefully.
@menu
* Language and Grammar:: Languages and context-free grammars,
as mathematical ideas.
* Grammar in Bison:: How we represent grammars for Bison's sake.
* Semantic Values:: Each token or syntactic grouping can have
a semantic value (the value of an integer,
the name of an identifier, etc.).
* Semantic Actions:: Each rule can have an action containing C code.
* GLR Parsers:: Writing parsers for general context-free languages.
* Locations:: Overview of location tracking.
* Bison Parser:: What are Bison's input and output,
how is the output used?
* Stages:: Stages in writing and running Bison grammars.
* Grammar Layout:: Overall structure of a Bison grammar file.
@end menu
@node Language and Grammar
@section Languages and Context-Free Grammars
@cindex context-free grammar
@cindex grammar, context-free
In order for Bison to parse a language, it must be described by a
@dfn{context-free grammar}. This means that you specify one or more
@dfn{syntactic groupings} and give rules for constructing them from their
parts. For example, in the C language, one kind of grouping is called an
`expression'. One rule for making an expression might be, ``An expression
can be made of a minus sign and another expression''. Another would be,
``An expression can be an integer''. As you can see, rules are often
recursive, but there must be at least one rule which leads out of the
recursion.
@cindex BNF
@cindex Backus-Naur form
The most common formal system for presenting such rules for humans to read
is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
order to specify the language Algol 60. Any grammar expressed in
BNF is a context-free grammar. The input to Bison is
essentially machine-readable BNF.
@cindex LALR grammars
@cindex IELR grammars
@cindex LR grammars
There are various important subclasses of context-free grammars. Although
it can handle almost all context-free grammars, Bison is optimized for what
are called LR(1) grammars. In brief, in these grammars, it must be possible
to tell how to parse any portion of an input string with just a single token
of lookahead. For historical reasons, Bison by default is limited by the
additional restrictions of LALR(1), which is hard to explain simply.
@xref{Mysterious Conflicts}, for more information on this. You can escape
these additional restrictions by requesting IELR(1) or canonical LR(1)
parser tables. @xref{LR Table Construction}, to learn how.
@cindex GLR parsing
@cindex generalized LR (GLR) parsing
@cindex ambiguous grammars
@cindex nondeterministic parsing
Parsers for LR(1) grammars are @dfn{deterministic}, meaning
roughly that the next grammar rule to apply at any point in the input is
uniquely determined by the preceding input and a fixed, finite portion
(called a @dfn{lookahead}) of the remaining input. A context-free
grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
apply the grammar rules to get the same inputs. Even unambiguous
grammars can be @dfn{nondeterministic}, meaning that no fixed
lookahead always suffices to determine the next grammar rule to apply.
With the proper declarations, Bison is also able to parse these more
general context-free grammars, using a technique known as GLR
parsing (for Generalized LR). Bison's GLR parsers
are able to handle any context-free grammar for which the number of
possible parses of any given string is finite.
@cindex symbols (abstract)
@cindex token
@cindex syntactic grouping
@cindex grouping, syntactic
In the formal grammatical rules for a language, each kind of syntactic unit
or grouping is named by a @dfn{symbol}. Those which are built by grouping
smaller constructs according to grammatical rules are called
@dfn{nonterminal symbols}; those which can't be subdivided are called
@dfn{terminal symbols} or @dfn{token kinds}. We call a piece of input
corresponding to a single terminal symbol a @dfn{token}, and a piece
corresponding to a single nonterminal symbol a @dfn{grouping}.
We can use the C language as an example of what symbols, terminal and
nonterminal, mean. The tokens of C are identifiers, constants (numeric
and string), and the various keywords, arithmetic operators and
punctuation marks. So the terminal symbols of a grammar for C include
`identifier', `number', `string', plus one symbol for each keyword,
operator or punctuation mark: `if', `return', `const', `static', `int',
`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
(These tokens can be subdivided into characters, but that is a matter of
lexicography, not grammar.)
Here is a simple C function subdivided into tokens:
@example
int /* @r{keyword `int'} */
square (int x) /* @r{identifier, open-paren, keyword `int',}
@r{identifier, close-paren} */
@{ /* @r{open-brace} */
return x * x; /* @r{keyword `return', identifier, asterisk,}
@r{identifier, semicolon} */
@} /* @r{close-brace} */
@end example
The syntactic groupings of C include the expression, the statement, the
declaration, and the function definition. These are represented in the
grammar of C by nonterminal symbols `expression', `statement',
`declaration' and `function definition'. The full grammar uses dozens of
additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a
function definition; it contains one declaration, and one statement. In
the statement, each @samp{x} is an expression and so is @samp{x * x}.
Each nonterminal symbol must have grammatical rules showing how it is made
out of simpler constructs. For example, one kind of C statement is the
@code{return} statement; this would be described with a grammar rule which
reads informally as follows:
@quotation
A `statement' can be made of a `return' keyword, an `expression' and a
`semicolon'.
@end quotation
@noindent
There would be many other rules for `statement', one for each kind of
statement in C.
@cindex start symbol
One nonterminal symbol must be distinguished as the special one which
defines a complete utterance in the language. It is called the @dfn{start
symbol}. In a compiler, this means a complete input program. In the C
language, the nonterminal symbol `sequence of definitions and declarations'
plays this role.
For example, @samp{1 + 2} is a valid C expression---a valid part of a C
program---but it is not valid as an @emph{entire} C program. In the
context-free grammar of C, this follows from the fact that `expression' is
not the start symbol.
The Bison parser reads a sequence of tokens as its input, and groups the
tokens using the grammar rules. If the input is valid, the end result is
that the entire token sequence reduces to a single grouping whose symbol is
the grammar's start symbol. If we use a grammar for C, the entire input
must be a `sequence of definitions and declarations'. If not, the parser
reports a syntax error.
@node Grammar in Bison
@section From Formal Rules to Bison Input
@cindex Bison grammar
@cindex grammar, Bison
@cindex formal grammar
A formal grammar is a mathematical construct. To define the language
for Bison, you must write a file expressing the grammar in Bison syntax:
a @dfn{Bison grammar} file. @xref{Grammar File}.
A nonterminal symbol in the formal grammar is represented in Bison input
as an identifier, like an identifier in C@. By convention, it should be
in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
The Bison representation for a terminal symbol is also called a @dfn{token
kind}. Token kinds as well can be represented as C-like identifiers. By
convention, these identifiers should be upper case to distinguish them from
nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
@code{RETURN}. A terminal symbol that stands for a particular keyword in
the language should be named after that keyword converted to upper case.
The terminal symbol @code{error} is reserved for error recovery.
@xref{Symbols}.
A terminal symbol can also be represented as a character literal, just like
a C character constant. You should do this whenever a token is just a
single character (parenthesis, plus-sign, etc.): use that same character in
a literal as the terminal symbol for that token.
A third way to represent a terminal symbol is with a C string constant
containing several characters. @xref{Symbols}, for more information.
The grammar rules also have an expression in Bison syntax. For example,
here is the Bison rule for a C @code{return} statement. The semicolon in
quotes is a literal character token, representing part of the C syntax for
the statement; the naked semicolon, and the colon, are Bison punctuation
used in every rule.
@example
stmt: RETURN expr ';' ;
@end example
@noindent
@xref{Rules}.
@node Semantic Values
@section Semantic Values
@cindex semantic value
@cindex value, semantic
A formal grammar selects tokens only by their classifications: for example,
if a rule mentions the terminal symbol `integer constant', it means that
@emph{any} integer constant is grammatically valid in that position. The
precise value of the constant is irrelevant to how to parse the input: if
@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
grammatical.
But the precise value is very important for what the input means once it is
parsed. A compiler is useless if it fails to distinguish between 4, 1 and
3989 as constants in the program! Therefore, each token in a Bison grammar
has both a token kind and a @dfn{semantic value}. @xref{Semantics}, for
details.
The token kind is a terminal symbol defined in the grammar, such as
@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything you
need to know to decide where the token may validly appear and how to group
it with other tokens. The grammar rules know nothing about tokens except
their kinds.
The semantic value has all the rest of the information about the
meaning of the token, such as the value of an integer, or the name of an
identifier. (A token such as @code{','} which is just punctuation doesn't
need to have any semantic value.)
For example, an input token might be classified as token kind @code{INTEGER}
and have the semantic value 4. Another input token might have the same
token kind @code{INTEGER} but value 3989. When a grammar rule says that
@code{INTEGER} is allowed, either of these tokens is acceptable because each
is an @code{INTEGER}. When the parser accepts the token, it keeps track of
the token's semantic value.
Each grouping can also have a semantic value as well as its nonterminal
symbol. For example, in a calculator, an expression typically has a
semantic value that is a number. In a compiler for a programming
language, an expression typically has a semantic value that is a tree
structure describing the meaning of the expression.
@node Semantic Actions
@section Semantic Actions
@cindex semantic actions
@cindex actions, semantic
In order to be useful, a program must do more than parse input; it must
also produce some output based on the input. In a Bison grammar, a grammar
rule can have an @dfn{action} made up of C statements. Each time the
parser recognizes a match for that rule, the action is executed.
@xref{Actions}.
Most of the time, the purpose of an action is to compute the semantic value
of the whole construct from the semantic values of its parts. For example,
suppose we have a rule which says an expression can be the sum of two
expressions. When the parser recognizes such a sum, each of the
subexpressions has a semantic value which describes how it was built up.
The action for this rule should create a similar sort of value for the
newly recognized larger expression.
For example, here is a rule that says an expression can be the sum of
two subexpressions:
@example
expr: expr '+' expr @{ $$ = $1 + $3; @} ;
@end example
@noindent
The action says how to produce the semantic value of the sum expression
from the values of the two subexpressions.
@node GLR Parsers
@section Writing GLR Parsers
@cindex GLR parsing
@cindex generalized LR (GLR) parsing
@findex %glr-parser
@cindex conflicts
@cindex shift/reduce conflicts
@cindex reduce/reduce conflicts
In some grammars, Bison's deterministic
LR(1) parsing algorithm cannot decide whether to apply a
certain grammar rule at a given point. That is, it may not be able to
decide (on the basis of the input read so far) which of two possible
reductions (applications of a grammar rule) applies, or whether to apply
a reduction or read more of the input and apply a reduction later in the
input. These are known respectively as @dfn{reduce/reduce} conflicts
(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
(@pxref{Shift/Reduce}).
To use a grammar that is not easily modified to be LR(1), a more general
parsing algorithm is sometimes necessary. If you include @code{%glr-parser}
among the Bison declarations in your file (@pxref{Grammar Outline}), the
result is a Generalized LR (GLR) parser. These parsers handle Bison
grammars that contain no unresolved conflicts (i.e., after applying
precedence declarations) identically to deterministic parsers. However,
when faced with unresolved shift/reduce and reduce/reduce conflicts, GLR
parsers use the simple expedient of doing both, effectively cloning the
parser to follow both possibilities. Each of the resulting parsers can
again split, so that at any given time, there can be any number of possible
parses being explored. The parsers proceed in lockstep; that is, all of
them consume (shift) a given input symbol before any of them proceed to the
next. Each of the cloned parsers eventually meets one of two possible
fates: either it runs into a parsing error, in which case it simply
vanishes, or it merges with another parser, because the two of them have
reduced the input to an identical set of symbols.
During the time that there are multiple parsers, semantic actions are
recorded, but not performed. When a parser disappears, its recorded
semantic actions disappear as well, and are never performed. When a
reduction makes two parsers identical, causing them to merge, Bison records
both sets of semantic actions. Whenever the last two parsers merge,
reverting to the single-parser case, Bison resolves all the outstanding
actions either by precedences given to the grammar rules involved, or by
performing both actions, and then calling a designated user-defined function
on the resulting values to produce an arbitrary merged result.
@menu
* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
* Semantic Predicates:: Controlling a parse with arbitrary computations.
@end menu
@node Simple GLR Parsers
@subsection Using GLR on Unambiguous Grammars
@cindex GLR parsing, unambiguous grammars
@cindex generalized LR (GLR) parsing, unambiguous grammars
@findex %glr-parser
@findex %expect-rr
@cindex conflicts
@cindex reduce/reduce conflicts
@cindex shift/reduce conflicts
In the simplest cases, you can use the GLR algorithm
to parse grammars that are unambiguous but fail to be LR(1).
Such grammars typically require more than one symbol of lookahead.
Consider a problem that
arises in the declaration of enumerated and subrange types in the
programming language Pascal. Here are some examples:
@example
type subrange = lo .. hi;
type enum = (a, b, c);
@end example
@noindent
The original language standard allows only numeric literals and constant
identifiers for the subrange bounds (@samp{lo} and @samp{hi}), but Extended
Pascal (ISO/IEC 10206) and many other Pascal implementations allow arbitrary
expressions there. This gives rise to the following situation, containing a
superfluous pair of parentheses:
@example
type subrange = (a) .. b;
@end example
@noindent
Compare this to the following declaration of an enumerated
type with only one value:
@example
type enum = (a);
@end example
@noindent
(These declarations are contrived, but they are syntactically valid, and
more-complicated cases can come up in practical programs.)
These two declarations look identical until the @samp{..} token. With
normal LR(1) one-token lookahead it is not possible to decide between the
two forms when the identifier @samp{a} is parsed. It is, however, desirable
for a parser to decide this, since in the latter case @samp{a} must become a
new identifier to represent the enumeration value, while in the former case
@samp{a} must be evaluated with its current meaning, which may be a constant
or even a function call.
You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
to be resolved later, but this typically requires substantial contortions in
both semantic actions and large parts of the grammar, where the parentheses
are nested in the recursive rules for expressions.
You might think of using the lexer to distinguish between the two forms by
returning different tokens for currently defined and undefined identifiers.
But if these declarations occur in a local scope, and @samp{a} is defined in
an outer scope, then both forms are possible---either locally redefining
@samp{a}, or using the value of @samp{a} from the outer scope. So this
approach cannot work.
A simple solution to this problem is to declare the parser to use the GLR
algorithm. When the GLR parser reaches the critical state, it merely splits
into two branches and pursues both syntax rules simultaneously. Sooner or
later, one of them runs into a parsing error. If there is a @samp{..} token
before the next @samp{;}, the rule for enumerated types fails since it
cannot accept @samp{..} anywhere; otherwise, the subrange type rule fails
since it requires a @samp{..} token. So one of the branches fails silently,
and the other one continues normally, performing all the intermediate
actions that were postponed during the split.
If the input is syntactically incorrect, both branches fail and the parser
reports a syntax error as usual.
The effect of all this is that the parser seems to ``guess'' the correct
branch to take, or in other words, it seems to use more lookahead than the
underlying LR(1) algorithm actually allows for. In this example, LR(2)
would suffice, but also some cases that are not LR(@math{k}) for any
@math{k} can be handled this way.
In general, a GLR parser can take quadratic or cubic worst-case time, and
the current Bison parser even takes exponential time and space for some
grammars. In practice, this rarely happens, and for many grammars it is
possible to prove that it cannot happen. The present example contains only
one conflict between two rules, and the type-declaration context containing
the conflict cannot be nested. So the number of branches that can exist at
any time is limited by the constant 2, and the parsing time is still linear.
Here is a Bison grammar corresponding to the example above. It
parses a vastly simplified form of Pascal type declarations.
@example
%token TYPE DOTDOT ID
@group
%left '+' '-'
%left '*' '/'
@end group
%%
type_decl: TYPE ID '=' type ';' ;
@group
type:
'(' id_list ')'
| expr DOTDOT expr
;
@end group
@group
id_list:
ID
| id_list ',' ID
;
@end group
@group
expr:
'(' expr ')'
| expr '+' expr
| expr '-' expr
| expr '*' expr
| expr '/' expr
| ID
;
@end group
@end example
When used as a normal LR(1) grammar, Bison correctly complains
about one reduce/reduce conflict. In the conflicting situation the
parser chooses one of the alternatives, arbitrarily the one
declared first. Therefore the following correct input is not
recognized:
@example
type t = (a) .. b;
@end example
The parser can be turned into a GLR parser, while also telling Bison
to be silent about the one known reduce/reduce conflict, by adding
these two declarations to the Bison grammar file (before the first
@samp{%%}):
@example
%glr-parser
%expect-rr 1
@end example
@noindent
No change in the grammar itself is required. Now the parser recognizes all
valid declarations, according to the limited syntax above, transparently.
In fact, the user does not even notice when the parser splits.
So here we have a case where we can use the benefits of GLR, almost without
disadvantages. Even in simple cases like this, however, there are at least
two potential problems to beware. First, always analyze the conflicts
reported by Bison to make sure that GLR splitting is only done where it is
intended. A GLR parser splitting inadvertently may cause problems less
obvious than an LR parser statically choosing the wrong alternative in a
conflict. Second, consider interactions with the lexer (@pxref{Semantic
Tokens}) with great care. Since a split parser consumes tokens without
performing any actions during the split, the lexer cannot obtain information
via parser actions. Some cases of lexer interactions can be eliminated by
using GLR to shift the complications from the lexer to the parser. You must
check the remaining cases for correctness.
In our example, it would be safe for the lexer to return tokens based on
their current meanings in some symbol table, because no new symbols are
defined in the middle of a type declaration. Though it is possible for a
parser to define the enumeration constants as they are parsed, before the
type declaration is completed, it actually makes no difference since they
cannot be used within the same enumerated type declaration.
@node Merging GLR Parses
@subsection Using GLR to Resolve Ambiguities
@cindex GLR parsing, ambiguous grammars
@cindex generalized LR (GLR) parsing, ambiguous grammars
@findex %dprec
@findex %merge
@cindex conflicts
@cindex reduce/reduce conflicts
Let's consider an example, vastly simplified from a C++
grammar.@footnote{The sources of an extended version of this example are
available in C as @file{examples/c/glr}, and in C++ as
@file{examples/c++/glr}.}
@example
%@{
#include <stdio.h>
int yylex (void);
void yyerror (char const *);
%@}
%define api.value.type @{char const *@}
%token TYPENAME ID
%right '='
%left '+'
%glr-parser
%%
prog:
%empty
| prog stmt @{ printf ("\n"); @}
;
stmt:
expr ';' %dprec 1
| decl %dprec 2
;
expr:
ID @{ printf ("%s ", $$); @}
| TYPENAME '(' expr ')'
@{ printf ("%s <cast> ", $1); @}
| expr '+' expr @{ printf ("+ "); @}
| expr '=' expr @{ printf ("= "); @}
;
decl:
TYPENAME declarator ';'
@{ printf ("%s <declare> ", $1); @}
| TYPENAME declarator '=' expr ';'
@{ printf ("%s <init-declare> ", $1); @}
;
declarator:
ID @{ printf ("\"%s\" ", $1); @}
| '(' declarator ')'
;
@end example
@noindent
This models a problematic part of the C++ grammar---the ambiguity between
certain declarations and statements. For example,
@example
T (x) = y+z;
@end example
@noindent
parses as either an @code{expr} or a @code{stmt}
(assuming that @samp{T} is recognized as a @code{TYPENAME} and
@samp{x} as an @code{ID}).
Bison detects this as a reduce/reduce conflict between the rules
@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
time it encounters @code{x} in the example above. Since this is a
GLR parser, it therefore splits the problem into two parses, one for
each choice of resolving the reduce/reduce conflict.
Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
however, neither of these parses ``dies,'' because the grammar as it stands is
ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
the other reduces @code{stmt : decl}, after which both parsers are in an
identical state: they've seen @samp{prog stmt} and have the same unprocessed
input remaining. We say that these parses have @dfn{merged.}
At this point, the GLR parser requires a specification in the
grammar of how to choose between the competing parses.
In the example above, the two @code{%dprec}
declarations specify that Bison is to give precedence
to the parse that interprets the example as a
@code{decl}, which implies that @code{x} is a declarator.
The parser therefore prints
@example
"x" y z + T <init-declare>
@end example
The @code{%dprec} declarations only come into play when more than one
parse survives. Consider a different input string for this parser:
@example
T (x) + y;
@end example
@noindent
This is another example of using GLR to parse an unambiguous
construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
Here, there is no ambiguity (this cannot be parsed as a declaration).
However, at the time the Bison parser encounters @code{x}, it does not
have enough information to resolve the reduce/reduce conflict (again,
between @code{x} as an @code{expr} or a @code{declarator}). In this
case, no precedence declaration is used. Again, the parser splits
into two, one assuming that @code{x} is an @code{expr}, and the other
assuming @code{x} is a @code{declarator}. The second of these parsers
then vanishes when it sees @code{+}, and the parser prints
@example
x T <cast> y +
@end example
Suppose that instead of resolving the ambiguity, you wanted to see all
the possibilities. For this purpose, you must merge the semantic
actions of the two possible parsers, rather than choosing one over the
other. To do so, you could change the declaration of @code{stmt} as
follows:
@example
stmt:
expr ';' %merge <stmt_merge>
| decl %merge <stmt_merge>
;
@end example
@noindent
and define the @code{stmt_merge} function as:
@example
static YYSTYPE
stmt_merge (YYSTYPE x0, YYSTYPE x1)
@{
printf ("<OR> ");
return "";
@}
@end example
@noindent
with an accompanying forward declaration
in the C declarations at the beginning of the file:
@example
%@{
static YYSTYPE stmt_merge (YYSTYPE x0, YYSTYPE x1);
%@}
@end example
@noindent
With these declarations, the resulting parser parses the first example
as both an @code{expr} and a @code{decl}, and prints
@example
"x" y z + T <init-declare> x T <cast> y z + = <OR>
@end example
Bison requires that all of the
productions that participate in any particular merge have identical
@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
and the parser will report an error during any parse that results in
the offending merge.
@sp 1
The signature of the merger depends on the type of the symbol. In the
previous example, the merged-to symbol (@code{stmt}) does not have a
specific type, and the merger is
@example
YYSTYPE stmt_merge (YYSTYPE x0, YYSTYPE x1);
@end example
@noindent
However, if @code{stmt} had a declared type, e.g.,
@example
%type <Node *> stmt;
@end example
@noindent
or
@example
@group
%union @{
Node *node;
...
@};
@end group
%type <node> stmt;
@end example
@noindent
then the prototype of the merger must be:
@example
Node *stmt_merge (YYSTYPE x0, YYSTYPE x1);
@end example
@noindent
(This signature might be a mistake originally, and maybe it should have been
@samp{Node *stmt_merge (Node *x0, Node *x1)}. If you have an opinion about
it, please let us know.)
@node GLR Semantic Actions
@subsection GLR Semantic Actions
The nature of GLR parsing and the structure of the generated
parsers give rise to certain restrictions on semantic values and actions.
@subsubsection Deferred semantic actions
@cindex deferred semantic actions
By definition, a deferred semantic action is not performed at the same time as
the associated reduction.
This raises caveats for several Bison features you might use in a semantic
action in a GLR parser.
@vindex yychar
@cindex GLR parsers and @code{yychar}
@vindex yylval
@cindex GLR parsers and @code{yylval}
@vindex yylloc
@cindex GLR parsers and @code{yylloc}
In any semantic action, you can examine @code{yychar} to determine the kind
of the lookahead token present at the time of the associated reduction.
After checking that @code{yychar} is not set to @code{YYEMPTY} or
@code{YYEOF}, you can then examine @code{yylval} and @code{yylloc} to
determine the lookahead token's semantic value and location, if any. In a
nondeferred semantic action, you can also modify any of these variables to
influence syntax analysis. @xref{Lookahead}.
@findex yyclearin
@cindex GLR parsers and @code{yyclearin}
In a deferred semantic action, it's too late to influence syntax analysis.
In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
shallow copies of the values they had at the time of the associated reduction.
For this reason alone, modifying them is dangerous.
Moreover, the result of modifying them is undefined and subject to change with
future versions of Bison.
For example, if a semantic action might be deferred, you should never write it
to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
memory referenced by @code{yylval}.
@subsubsection YYERROR
@findex YYERROR
@cindex GLR parsers and @code{YYERROR}
Another Bison feature requiring special consideration is @code{YYERROR}
(@pxref{Action Features}), which you can invoke in a semantic action to
initiate error recovery.
During deterministic GLR operation, the effect of @code{YYERROR} is
the same as its effect in a deterministic parser.
The effect in a deferred action is similar, but the precise point of the
error is undefined; instead, the parser reverts to deterministic operation,
selecting an unspecified stack on which to continue with a syntax error.
In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
parsing, @code{YYERROR} silently prunes
the parse that invoked the test.
@subsubsection Restrictions on semantic values and locations
GLR parsers require that you use POD (Plain Old Data) types for
semantic values and location types when using the generated parsers as
C++ code.
@node Semantic Predicates
@subsection Controlling a Parse with Arbitrary Predicates
@findex %?
@cindex Semantic predicates in GLR parsers
In addition to the @code{%dprec} and @code{%merge} directives,
GLR parsers
allow you to reject parses on the basis of arbitrary computations executed
in user code, without having Bison treat this rejection as an error
if there are alternative parses. For example,
@example
widget:
%?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
;
@end example
@noindent
is one way to allow the same parser to handle two different syntaxes for
widgets. The clause preceded by @code{%?} is treated like an ordinary
midrule action, except that its text is handled as an expression and is always
evaluated immediately (even when in nondeterministic mode). If the
expression yields 0 (false), the clause is treated as a syntax error,
which, in a nondeterministic parser, causes the stack in which it is reduced
to die. In a deterministic parser, it acts like @code{YYERROR}.
As the example shows, predicates otherwise look like semantic actions, and
therefore you must take them into account when determining the numbers
to use for denoting the semantic values of right-hand side symbols.
Predicate actions, however, have no defined value, and may not be given
labels.
There is a subtle difference between semantic predicates and ordinary
actions in nondeterministic mode, since the latter are deferred.
For example, we could try to rewrite the previous example as
@example
widget:
@{ if (!new_syntax) YYERROR; @}
"widget" id new_args @{ $$ = f($3, $4); @}
| @{ if (new_syntax) YYERROR; @}
"widget" id old_args @{ $$ = f($3, $4); @}
;
@end example
@noindent
(reversing the sense of the predicate tests to cause an error when they are
false). However, this
does @emph{not} have the same effect if @code{new_args} and @code{old_args}
have overlapping syntax.
Since the midrule actions testing @code{new_syntax} are deferred,
a GLR parser first encounters the unresolved ambiguous reduction
for cases where @code{new_args} and @code{old_args} recognize the same string
@emph{before} performing the tests of @code{new_syntax}. It therefore
reports an error.
Finally, be careful in writing predicates: deferred actions have not been
evaluated, so that using them in a predicate will have undefined effects.
@node Locations
@section Locations
@cindex location
@cindex textual location
@cindex location, textual
Many applications, like interpreters or compilers, have to produce verbose
and useful error messages. To achieve this, one must be able to keep track of
the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
Bison provides a mechanism for handling these locations.
Each token has a semantic value. In a similar fashion, each token has an
associated location, but the type of locations is the same for all tokens
and groupings. Moreover, the output parser is equipped with a default data
structure for storing locations (@pxref{Tracking Locations}, for more
details).
Like semantic values, locations can be reached in actions using a dedicated
set of constructs. In the example above, the location of the whole grouping
is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
@code{@@3}.
When a rule is matched, a default action is used to compute the semantic value
of its left hand side (@pxref{Actions}). In the same way, another default
action is used for locations. However, the action for locations is general
enough for most cases, meaning there is usually no need to describe for each
rule how @code{@@$} should be formed. When building a new location for a given
grouping, the default behavior of the output parser is to take the beginning
of the first symbol, and the end of the last symbol.
@node Bison Parser
@section Bison Output: the Parser Implementation File
@cindex Bison parser
@cindex Bison utility
@cindex lexical analyzer, purpose
@cindex parser
When you run Bison, you give it a Bison grammar file as input. The
most important output is a C source file that implements a parser for
the language described by the grammar. This parser is called a
@dfn{Bison parser}, and this file is called a @dfn{Bison parser
implementation file}. Keep in mind that the Bison utility and the
Bison parser are two distinct programs: the Bison utility is a program
whose output is the Bison parser implementation file that becomes part
of your program.
The job of the Bison parser is to group tokens into groupings according to
the grammar rules---for example, to build identifiers and operators into
expressions. As it does this, it runs the actions for the grammar rules it
uses.
The tokens come from a function called the @dfn{lexical analyzer} that
you must supply in some fashion (such as by writing it in C). The Bison
parser calls the lexical analyzer each time it wants a new token. It
doesn't know what is ``inside'' the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by
parsing characters of text, but Bison does not depend on this.
@xref{Lexical}.
The Bison parser implementation file is C code which defines a
function named @code{yyparse} which implements that grammar. This
function does not make a complete C program: you must supply some
additional functions. One is the lexical analyzer. Another is an
error-reporting function which the parser calls to report an error.
In addition, a complete C program must start with a function called
@code{main}; you have to provide this, and arrange for it to call
@code{yyparse} or the parser will never run. @xref{Interface}.
Aside from the token kind names and the symbols in the actions you
write, all symbols defined in the Bison parser implementation file
itself begin with @samp{yy} or @samp{YY}. This includes interface
functions such as the lexical analyzer function @code{yylex}, the
error reporting function @code{yyerror} and the parser function
@code{yyparse} itself. This also includes numerous identifiers used
for internal purposes. Therefore, you should avoid using C
identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
file except for the ones defined in this manual. Also, you should
avoid using the C identifiers @samp{malloc} and @samp{free} for
anything other than their usual meanings.
In some cases the Bison parser implementation file includes system
headers, and in those cases your code should respect the identifiers
reserved by those headers. On some non-GNU hosts, @code{<limits.h>},
@code{<stddef.h>}, @code{<stdint.h>} (if available), and @code{<stdlib.h>}
are included to declare memory allocators and integer types and constants.
@code{<libintl.h>} is included if message translation is in use
(@pxref{Internationalization}). Other system headers may be included
if you define @code{YYDEBUG} (@pxref{Tracing}) or
@code{YYSTACK_USE_ALLOCA} (@pxref{Table of Symbols}) to a nonzero value.
@node Stages
@section Stages in Using Bison
@cindex stages in using Bison
@cindex using Bison
The actual language-design process using Bison, from grammar specification
to a working compiler or interpreter, has these parts:
@enumerate
@item
Formally specify the grammar in a form recognized by Bison
(@pxref{Grammar File}). For each grammatical rule
in the language, describe the action that is to be taken when an
instance of that rule is recognized. The action is described by a
sequence of C statements.
@item
Write a lexical analyzer to process input and pass tokens to the parser.
The lexical analyzer may be written by hand in C (@pxref{Lexical}). It
could also be produced using Lex, but the use of Lex is not discussed in
this manual.
@item
Write a controlling function that calls the Bison-produced parser.
@item
Write error-reporting routines.
@end enumerate
To turn this source code as written into a runnable program, you
must follow these steps:
@enumerate
@item
Run Bison on the grammar to produce the parser.
@item
Compile the code output by Bison, as well as any other source files.
@item
Link the object files to produce the finished product.
@end enumerate
@node Grammar Layout
@section The Overall Layout of a Bison Grammar
@cindex grammar file
@cindex file format
@cindex format of grammar file
@cindex layout of Bison grammar
The input file for the Bison utility is a @dfn{Bison grammar file}. The
general form of a Bison grammar file is as follows:
@example
%@{
@var{Prologue}
%@}
@var{Bison declarations}
%%
@var{Grammar rules}
%%
@var{Epilogue}
@end example
@noindent
The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
in every Bison grammar file to separate the sections.
The prologue may define types and variables used in the actions. You can
also use preprocessor commands to define macros used there, and use
@code{#include} to include header files that do any of these things.
You need to declare the lexical analyzer @code{yylex} and the error
printer @code{yyerror} here, along with any other global identifiers
used by the actions in the grammar rules.
The Bison declarations declare the names of the terminal and nonterminal
symbols, and may also describe operator precedence and the data types of
semantic values of various symbols.
The grammar rules define how to construct each nonterminal symbol from its
parts.
The epilogue can contain any code you want to use. Often the
definitions of functions declared in the prologue go here. In a
simple program, all the rest of the program can go here.
@node Examples
@chapter Examples
@cindex simple examples
@cindex examples, simple
Now we show and explain several sample programs written using Bison: a
Reverse Polish Notation calculator, an algebraic (infix) notation
calculator --- later extended to track ``locations'' ---
and a multi-function calculator. All
produce usable, though limited, interactive desk-top calculators.
These examples are simple, but Bison grammars for real programming
languages are written the same way. You can copy these examples into a
source file to try them.
@sp 1
Bison comes with several examples (including for the different target
languages). If this package is properly installed, you shall find them in
@file{@var{prefix}/share/doc/bison/examples}, where @var{prefix} is the root
of the installation, probably something like @file{/usr/local} or
@file{/usr}.
@menu
* RPN Calc:: Reverse Polish Notation Calculator;
a first example with no operator precedence.
* Infix Calc:: Infix (algebraic) notation calculator.
Operator precedence is introduced.
* Simple Error Recovery:: Continuing after syntax errors.
* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
* Multi-function Calc:: Calculator with memory and trig functions.
It uses multiple data-types for semantic values.
* Exercises:: Ideas for improving the multi-function calculator.
@end menu
@node RPN Calc
@section Reverse Polish Notation Calculator
@cindex Reverse Polish Notation
@cindex @code{rpcalc}
@cindex calculator, simple
The first example@footnote{The sources of @command{rpcalc} are available as
@file{examples/c/rpcalc}.} is that of a simple double-precision @dfn{Reverse
Polish
Notation} calculator (a calculator using postfix operators). This example
provides a good starting point, since operator precedence is not an issue.
The second example will illustrate how operator precedence is handled.
The source code for this calculator is named @file{rpcalc.y}. The
@samp{.y} extension is a convention used for Bison grammar files.
@menu
* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
* Rpcalc Lexer:: The lexical analyzer.
* Rpcalc Main:: The controlling function.
* Rpcalc Error:: The error reporting function.
* Rpcalc Generate:: Running Bison on the grammar file.
* Rpcalc Compile:: Run the C compiler on the output code.
@end menu
@node Rpcalc Declarations
@subsection Declarations for @code{rpcalc}
Here are the C and Bison declarations for the Reverse Polish Notation
calculator. As in C, comments are placed between @samp{/*@dots{}*/} or
after @samp{//}.
@ignore
@comment file: c/rpcalc/rpcalc.y
@example
/* Parser for rpcalc. -*- C -*-
Copyright (C) 1988-1993, 1995, 1998-2015, 2018-2021 Free Software
Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c/rpcalc/rpcalc.y
@example
/* Reverse Polish Notation calculator. */
@group
%@{
#include <stdio.h>
#include <math.h>
int yylex (void);
void yyerror (char const *);
%@}
@end group
%define api.value.type @{double@}
%token NUM
%% /* Grammar rules and actions follow. */
@end example
The declarations section (@pxref{Prologue}) contains two
preprocessor directives and two forward declarations.
The @code{#include} directive is used to declare the exponentiation
function @code{pow}.
The forward declarations for @code{yylex} and @code{yyerror} are
needed because the C language requires that functions be declared
before they are used. These functions will be defined in the
epilogue, but the parser calls them so they must be declared in the
prologue.
The second section, Bison declarations, provides information to Bison about
the tokens and their types (@pxref{Bison Declarations}).
The @code{%define} directive defines the variable @code{api.value.type},
thus specifying the C data type for semantic values of both tokens and
groupings (@pxref{Value Type}). The Bison
parser will use whatever type @code{api.value.type} is defined as; if you
don't define it, @code{int} is the default. Because we specify
@samp{@{double@}}, each token and each expression has an associated value,
which is a floating point number. C code can use @code{YYSTYPE} to refer to
the value @code{api.value.type}.
Each terminal symbol that is not a single-character literal must be
declared. (Single-character literals normally don't need to be declared.)
In this example, all the arithmetic operators are designated by
single-character literals, so the only terminal symbol that needs to be
declared is @code{NUM}, the token kind for numeric constants.
@node Rpcalc Rules
@subsection Grammar Rules for @code{rpcalc}
Here are the grammar rules for the Reverse Polish Notation calculator.
@comment file: c/rpcalc/rpcalc.y
@example
@group
input:
%empty
| input line
;
@end group
@group
line:
'\n'
| exp '\n' @{ printf ("%.10g\n", $1); @}
;
@end group
@group
exp:
NUM
| exp exp '+' @{ $$ = $1 + $2; @}
| exp exp '-' @{ $$ = $1 - $2; @}
| exp exp '*' @{ $$ = $1 * $2; @}
| exp exp '/' @{ $$ = $1 / $2; @}
| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
| exp 'n' @{ $$ = -$1; @} /* Unary minus */
;
@end group
%%
@end example
The groupings of the rpcalc ``language'' defined here are the expression
(given the name @code{exp}), the line of input (@code{line}), and the
complete input transcript (@code{input}). Each of these nonterminal
symbols has several alternate rules, joined by the vertical bar @samp{|}
which is read as ``or''. The following sections explain what these rules
mean.
The semantics of the language is determined by the actions taken when a
grouping is recognized. The actions are the C code that appears inside
braces. @xref{Actions}.
You must specify these actions in C, but Bison provides the means for
passing semantic values between the rules. In each action, the
pseudo-variable @code{$$} stands for the semantic value for the grouping
that the rule is going to construct. Assigning a value to @code{$$} is the
main job of most actions. The semantic values of the components of the
rule are referred to as @code{$1}, @code{$2}, and so on.
@menu
* Rpcalc Input:: Explanation of the @code{input} nonterminal
* Rpcalc Line:: Explanation of the @code{line} nonterminal
* Rpcalc Exp:: Explanation of the @code{exp} nonterminal
@end menu
@node Rpcalc Input
@subsubsection Explanation of @code{input}
Consider the definition of @code{input}:
@example
input:
%empty
| input line
;
@end example
This definition reads as follows: ``A complete input is either an empty
string, or a complete input followed by an input line''. Notice that
``complete input'' is defined in terms of itself. This definition is said
to be @dfn{left recursive} since @code{input} appears always as the
leftmost symbol in the sequence. @xref{Recursion}.
The first alternative is empty because there are no symbols between the
colon and the first @samp{|}; this means that @code{input} can match an
empty string of input (no tokens). We write the rules this way because it
is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
It's conventional to put an empty alternative first and to use the
(optional) @code{%empty} directive, or to write the comment @samp{/* empty
*/} in it (@pxref{Empty Rules}).
The second alternate rule (@code{input line}) handles all nontrivial input.
It means, ``After reading any number of lines, read one more line if
possible.'' The left recursion makes this rule into a loop. Since the
first alternative matches empty input, the loop can be executed zero or
more times.
The parser function @code{yyparse} continues to process input until a
grammatical error is seen or the lexical analyzer says there are no more
input tokens; we will arrange for the latter to happen at end-of-input.
@node Rpcalc Line
@subsubsection Explanation of @code{line}
Now consider the definition of @code{line}:
@example
line:
'\n'
| exp '\n' @{ printf ("%.10g\n", $1); @}
;
@end example
The first alternative is a token which is a newline character; this means
that rpcalc accepts a blank line (and ignores it, since there is no
action). The second alternative is an expression followed by a newline.
This is the alternative that makes rpcalc useful. The semantic value of
the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
question is the first symbol in the alternative. The action prints this
value, which is the result of the computation the user asked for.
This action is unusual because it does not assign a value to @code{$$}. As
a consequence, the semantic value associated with the @code{line} is
uninitialized (its value will be unpredictable). This would be a bug if
that value were ever used, but we don't use it: once rpcalc has printed the
value of the user's input line, that value is no longer needed.
@node Rpcalc Exp
@subsubsection Explanation of @code{exp}
The @code{exp} grouping has several rules, one for each kind of expression.
The first rule handles the simplest expressions: those that are just
numbers. The second handles an addition-expression, which looks like two
expressions followed by a plus-sign. The third handles subtraction, and so
on.
@example
exp:
NUM
| exp exp '+' @{ $$ = $1 + $2; @}
| exp exp '-' @{ $$ = $1 - $2; @}
@dots{}
;
@end example
We have used @samp{|} to join all the rules for @code{exp}, but we could
equally well have written them separately:
@example
exp: NUM;
exp: exp exp '+' @{ $$ = $1 + $2; @};
exp: exp exp '-' @{ $$ = $1 - $2; @};
@dots{}
@end example
Most of the rules have actions that compute the value of the expression in
terms of the value of its parts. For example, in the rule for addition,
@code{$1} refers to the first component @code{exp} and @code{$2} refers to
the second one. The third component, @code{'+'}, has no meaningful
associated semantic value, but if it had one you could refer to it as
@code{$3}. The first rule relies on the implicit default action: @samp{@{
$$ = $1; @}}.
When @code{yyparse} recognizes a sum expression using this rule, the sum of
the two subexpressions' values is produced as the value of the entire
expression. @xref{Actions}.
You don't have to give an action for every rule. When a rule has no action,
Bison by default copies the value of @code{$1} into @code{$$}. This is what
happens in the first rule (the one that uses @code{NUM}).
The formatting shown here is the recommended convention, but Bison does not
require it. You can add or change white space as much as you wish. For
example, this:
@example
exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
@end example
@noindent
means the same thing as this:
@example
exp:
NUM
| exp exp '+' @{ $$ = $1 + $2; @}
| @dots{}
;
@end example
@noindent
The latter, however, is much more readable.
@node Rpcalc Lexer
@subsection The @code{rpcalc} Lexical Analyzer
@cindex writing a lexical analyzer
@cindex lexical analyzer, writing
The lexical analyzer's job is low-level parsing: converting characters
or sequences of characters into tokens. The Bison parser gets its
tokens by calling the lexical analyzer. @xref{Lexical}.
Only a simple lexical analyzer is needed for the RPN
calculator. This
lexical analyzer skips blanks and tabs, then reads in numbers as
@code{double} and returns them as @code{NUM} tokens. Any other character
that isn't part of a number is a separate token. Note that the token-code
for such a single-character token is the character itself.
The return value of the lexical analyzer function is a numeric code which
represents a token kind. The same text used in Bison rules to stand for
this token kind is also a C expression for the numeric code of the kind.
This works in two ways. If the token kind is a character literal, then its
numeric code is that of the character; you can use the same character
literal in the lexical analyzer to express the number. If the token kind is
an identifier, that identifier is defined by Bison as a C enum whose
definition is the appropriate code. In this example, therefore, @code{NUM}
becomes an enum for @code{yylex} to use.
The semantic value of the token (if it has one) is stored into the global
variable @code{yylval}, which is where the Bison parser will look for it.
(The C data type of @code{yylval} is @code{YYSTYPE}, whose value was defined
at the beginning of the grammar via @samp{%define api.value.type
@{double@}}; @pxref{Rpcalc Declarations}.)
A token kind code of zero is returned if the end-of-input is encountered.
(Bison recognizes any nonpositive value as indicating end-of-input.)
Here is the code for the lexical analyzer:
@comment file: c/rpcalc/rpcalc.y
@example
@group
/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric code
of the character read if not a number. It skips all blanks
and tabs, and returns 0 for end-of-input. */
#include <ctype.h>
#include <stdlib.h>
@end group
@group
int
yylex (void)
@{
int c = getchar ();
/* Skip white space. */
while (c == ' ' || c == '\t')
c = getchar ();
@end group
@group
/* Process numbers. */
if (c == '.' || isdigit (c))
@{
ungetc (c, stdin);
if (scanf ("%lf", &yylval) != 1)
abort ();
return NUM;
@}
@end group
@group
/* Return end-of-input. */
else if (c == EOF)
return YYEOF;
/* Return a single char. */
else
return c;
@}
@end group
@end example
@node Rpcalc Main
@subsection The Controlling Function
@cindex controlling function
@cindex main function in simple example
In keeping with the spirit of this example, the controlling function is
kept to the bare minimum. The only requirement is that it call
@code{yyparse} to start the process of parsing.
@comment file: c/rpcalc/rpcalc.y
@example
@group
int
main (void)
@{
return yyparse ();
@}
@end group
@end example
@node Rpcalc Error
@subsection The Error Reporting Routine
@cindex error reporting routine
When @code{yyparse} detects a syntax error, it calls the error reporting
function @code{yyerror} to print an error message (usually but not
always @code{"syntax error"}). It is up to the programmer to supply
@code{yyerror} (@pxref{Interface}), so
here is the definition we will use:
@comment file: c/rpcalc/rpcalc.y
@example
#include <stdio.h>
@group
/* Called by yyparse on error. */
void
yyerror (char const *s)
@{
fprintf (stderr, "%s\n", s);
@}
@end group
@end example
After @code{yyerror} returns, the Bison parser may recover from the error
and continue parsing if the grammar contains a suitable error rule
(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
have not written any error rules in this example, so any invalid input will
cause the calculator program to exit. This is not clean behavior for a
real calculator, but it is adequate for the first example.
@node Rpcalc Generate
@subsection Running Bison to Make the Parser
@cindex running Bison (introduction)
Before running Bison to produce a parser, we need to decide how to
arrange all the source code in one or more source files. For such a
simple example, the easiest thing is to put everything in one file,
the grammar file. The definitions of @code{yylex}, @code{yyerror} and
@code{main} go at the end, in the epilogue of the grammar file
(@pxref{Grammar Layout}).
For a large project, you would probably have several source files, and use
@code{make} to arrange to recompile them.
With all the source in the grammar file, you use the following command
to convert it into a parser implementation file:
@example
$ @kbd{bison @var{file}.y}
@end example
@noindent
In this example, the grammar file is called @file{rpcalc.y} (for
``Reverse Polish @sc{calc}ulator''). Bison produces a parser
implementation file named @file{@var{file}.tab.c}, removing the
@samp{.y} from the grammar file name. The parser implementation file
contains the source code for @code{yyparse}. The additional functions
in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
copied verbatim to the parser implementation file.
@node Rpcalc Compile
@subsection Compiling the Parser Implementation File
@cindex compiling the parser
Here is how to compile and run the parser implementation file:
@example
@group
# @r{List files in current directory.}
$ @kbd{ls}
rpcalc.tab.c rpcalc.y
@end group
@group
# @r{Compile the Bison parser.}
# @r{@option{-lm} tells compiler to search math library for @code{pow}.}
$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
@end group
@group
# @r{List files again.}
$ @kbd{ls}
rpcalc rpcalc.tab.c rpcalc.y
@end group
@end example
The file @file{rpcalc} now contains the executable code. Here is an
example session using @code{rpcalc}.
@example
$ @kbd{rpcalc}
@kbd{4 9 +}
@result{} 13
@kbd{3 7 + 3 4 5 *+-}
@result{} -13
@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
@result{} 13
@kbd{5 6 / 4 n +}
@result{} -3.166666667
@kbd{3 4 ^} @r{Exponentiation}
@result{} 81
@kbd{^D} @r{End-of-file indicator}
$
@end example
@node Infix Calc
@section Infix Notation Calculator: @code{calc}
@cindex infix notation calculator
@cindex @code{calc}
@cindex calculator, infix notation
We now modify rpcalc to handle infix operators instead of
postfix.@footnote{A similar example, but using an unambiguous grammar rather
than precedence and associativity annotations, is available as
@file{examples/c/calc}.} Infix
notation involves the concept of operator precedence and the need for
parentheses nested to arbitrary depth. Here is the Bison code for
@file{calc.y}, an infix desk-top calculator.
@example
/* Infix notation calculator. */
@group
%@{
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);
%@}
@end group
@group
/* Bison declarations. */
%define api.value.type @{double@}
%token NUM
%left '-' '+'
%left '*' '/'
%precedence NEG /* negation--unary minus */
%right '^' /* exponentiation */
@end group
%% /* The grammar follows. */
@group
input:
%empty
| input line
;
@end group
@group
line:
'\n'
| exp '\n' @{ printf ("\t%.10g\n", $1); @}
;
@end group
@group
exp:
NUM
| exp '+' exp @{ $$ = $1 + $3; @}
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
| exp '/' exp @{ $$ = $1 / $3; @}
| '-' exp %prec NEG @{ $$ = -$2; @}
| exp '^' exp @{ $$ = pow ($1, $3); @}
| '(' exp ')' @{ $$ = $2; @}
;
@end group
%%
@end example
@noindent
The functions @code{yylex}, @code{yyerror} and @code{main} can be the
same as before.
There are two important new features shown in this code.
In the second section (Bison declarations), @code{%left} declares token
kinds and says they are left-associative operators. The declarations
@code{%left} and @code{%right} (right associativity) take the place of
@code{%token} which is used to declare a token kind name without
associativity/precedence. (These tokens are single-character literals,
which ordinarily don't need to be declared. We declare them here to specify
the associativity/precedence.)
Operator precedence is determined by the line ordering of the
declarations; the higher the line number of the declaration (lower on
the page or screen), the higher the precedence. Hence, exponentiation
has the highest precedence, unary minus (@code{NEG}) is next, followed
by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
only precedence matters (@code{%precedence}. @xref{Precedence}.
The other important new feature is the @code{%prec} in the grammar
section for the unary minus operator. The @code{%prec} simply instructs
Bison that the rule @samp{| '-' exp} has the same precedence as
@code{NEG}---in this case the next-to-highest. @xref{Contextual
Precedence}.
Here is a sample run of @file{calc.y}:
@need 500
@example
$ @kbd{calc}
@kbd{4 + 4.5 - (34/(8*3+-3))}
6.880952381
@kbd{-56 + 2}
-54
@kbd{3 ^ 2}
9
@end example
@node Simple Error Recovery
@section Simple Error Recovery
@cindex error recovery, simple
Up to this point, this manual has not addressed the issue of @dfn{error
recovery}---how to continue parsing after the parser detects a syntax
error. All we have handled is error reporting with @code{yyerror}.
Recall that by default @code{yyparse} returns after calling
@code{yyerror}. This means that an erroneous input line causes the
calculator program to exit. Now we show how to rectify this deficiency.
The Bison language itself includes the reserved word @code{error}, which
may be included in the grammar rules. In the example below it has
been added to one of the alternatives for @code{line}:
@example
@group
line:
'\n'
| exp '\n' @{ printf ("\t%.10g\n", $1); @}
| error '\n' @{ yyerrok; @}
;
@end group
@end example
This addition to the grammar allows for simple error recovery in the
event of a syntax error. If an expression that cannot be evaluated is
read, the error will be recognized by the third rule for @code{line},
and parsing will continue. (The @code{yyerror} function is still called
upon to print its message as well.) The action executes the statement
@code{yyerrok}, a macro defined automatically by Bison; its meaning is
that error recovery is complete (@pxref{Error Recovery}). Note the
difference between @code{yyerrok} and @code{yyerror}; neither one is a
misprint.
This form of error recovery deals with syntax errors. There are other
kinds of errors; for example, division by zero, which raises an exception
signal that is normally fatal. A real calculator program must handle this
signal and use @code{longjmp} to return to @code{main} and resume parsing
input lines; it would also have to discard the rest of the current line of
input. We won't discuss this issue further because it is not specific to
Bison programs.
@node Location Tracking Calc
@section Location Tracking Calculator: @code{ltcalc}
@cindex location tracking calculator
@cindex @code{ltcalc}
@cindex calculator, location tracking
This example extends the infix notation calculator with location
tracking. This feature will be used to improve the error messages. For
the sake of clarity, this example is a simple integer calculator, since
most of the work needed to use locations will be done in the lexical
analyzer.
@menu
* Ltcalc Declarations:: Bison and C declarations for ltcalc.
* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
* Ltcalc Lexer:: The lexical analyzer.
@end menu
@node Ltcalc Declarations
@subsection Declarations for @code{ltcalc}
The C and Bison declarations for the location tracking calculator are
the same as the declarations for the infix notation calculator.
@example
/* Location tracking calculator. */
%@{
#include <math.h>
int yylex (void);
void yyerror (char const *);
%@}
/* Bison declarations. */
%define api.value.type @{int@}
%token NUM
%left '-' '+'
%left '*' '/'
%precedence NEG
%right '^'
%% /* The grammar follows. */
@end example
@noindent
Note there are no declarations specific to locations. Defining a data type
for storing locations is not needed: we will use the type provided by
default (@pxref{Location Type}), which is a four member structure with the
following integer fields: @code{first_line}, @code{first_column},
@code{last_line} and @code{last_column}. By conventions, and in accordance
with the GNU Coding Standards and common practice, the line and column count
both start at 1.
@node Ltcalc Rules
@subsection Grammar Rules for @code{ltcalc}
Whether handling locations or not has no effect on the syntax of your
language. Therefore, grammar rules for this example will be very close
to those of the previous example: we will only modify them to benefit
from the new information.
Here, we will use locations to report divisions by zero, and locate the
wrong expressions or subexpressions.
@example
@group
input:
%empty
| input line
;
@end group
@group
line:
'\n'
| exp '\n' @{ printf ("%d\n", $1); @}
;
@end group
@group
exp:
NUM
| exp '+' exp @{ $$ = $1 + $3; @}
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
@end group
@group
| exp '/' exp
@{
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",
@@3.first_line, @@3.first_column,
@@3.last_line, @@3.last_column);
@}
@}
@end group
@group
| '-' exp %prec NEG @{ $$ = -$2; @}
| exp '^' exp @{ $$ = pow ($1, $3); @}
| '(' exp ')' @{ $$ = $2; @}
@end group
@end example
This code shows how to reach locations inside of semantic actions, by
using the pseudo-variables @code{@@@var{n}} for rule components, and the
pseudo-variable @code{@@$} for groupings.
We don't need to assign a value to @code{@@$}: the output parser does it
automatically. By default, before executing the C code of each action,
@code{@@$} is set to range from the beginning of @code{@@1} to the end of
@code{@@@var{n}}, for a rule with @var{n} components. This behavior can be
redefined (@pxref{Location Default Action}), and for very specific rules,
@code{@@$} can be computed by hand.
@node Ltcalc Lexer
@subsection The @code{ltcalc} Lexical Analyzer.
Until now, we relied on Bison's defaults to enable location
tracking. The next step is to rewrite the lexical analyzer, and make it
able to feed the parser with the token locations, as it already does for
semantic values.
To this end, we must take into account every single character of the
input text, to avoid the computed locations of being fuzzy or wrong:
@example
@group
int
yylex (void)
@{
int c;
@end group
@group
/* Skip white space. */
while ((c = getchar ()) == ' ' || c == '\t')
++yylloc.last_column;
@end group
@group
/* Step. */
yylloc.first_line = yylloc.last_line;
yylloc.first_column = yylloc.last_column;
@end group
@group
/* Process numbers. */
if (isdigit (c))
@{
yylval = c - '0';
++yylloc.last_column;
while (isdigit (c = getchar ()))
@{
++yylloc.last_column;
yylval = yylval * 10 + c - '0';
@}
ungetc (c, stdin);
return NUM;
@}
@end group
/* Return end-of-input. */
if (c == EOF)
return YYEOF;
@group
/* Return a single char, and update location. */
if (c == '\n')
@{
++yylloc.last_line;
yylloc.last_column = 0;
@}
else
++yylloc.last_column;
return c;
@}
@end group
@end example
Basically, the lexical analyzer performs the same processing as before: it
skips blanks and tabs, and reads numbers or single-character tokens. In
addition, it updates @code{yylloc}, the global variable (of type
@code{YYLTYPE}) containing the token's location.
Now, each time this function returns a token, the parser has its kind as
well as its semantic value, and its location in the text. The last needed
change is to initialize @code{yylloc}, for example in the controlling
function:
@example
@group
int
main (void)
@{
yylloc.first_line = yylloc.last_line = 1;
yylloc.first_column = yylloc.last_column = 0;
return yyparse ();
@}
@end group
@end example
Remember that computing locations is not a matter of syntax. Every
character must be associated to a location update, whether it is in
valid input, in comments, in literal strings, and so on.
@node Multi-function Calc
@section Multi-Function Calculator: @code{mfcalc}
@cindex multi-function calculator
@cindex @code{mfcalc}
@cindex calculator, multi-function
Now that the basics of Bison have been discussed, it is time to move on to a
more advanced problem.@footnote{The sources of @command{mfcalc} are
available as @file{examples/c/mfcalc}.} The above calculators provided only
five functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It
would be nice to have a calculator that provides other mathematical
functions such as @code{sin}, @code{cos}, etc.
It is easy to add new operators to the infix calculator as long as they are
only single-character literals. The lexical analyzer @code{yylex} passes
back all nonnumeric characters as tokens, so new grammar rules suffice for
adding a new operator. But we want something more flexible: built-in
functions whose syntax has this form:
@example
@var{function_name} (@var{argument})
@end example
@noindent
At the same time, we will add memory to the calculator, by allowing you
to create named variables, store values in them, and use them later.
Here is a sample session with the multi-function calculator:
@example
@group
$ @kbd{mfcalc}
@kbd{pi = 3.141592653589}
@result{} 3.1415926536
@end group
@group
@kbd{sin(pi)}
@result{} 0.0000000000
@end group
@kbd{alpha = beta1 = 2.3}
@result{} 2.3000000000
@kbd{alpha}
@result{} 2.3000000000
@kbd{ln(alpha)}
@result{} 0.8329091229
@kbd{exp(ln(beta1))}
@result{} 2.3000000000
$
@end example
Note that multiple assignment and nested function calls are permitted.
@menu
* Mfcalc Declarations:: Bison declarations for multi-function calculator.
* Mfcalc Rules:: Grammar rules for the calculator.
* Mfcalc Symbol Table:: Symbol table management subroutines.
* Mfcalc Lexer:: The lexical analyzer.
* Mfcalc Main:: The controlling function.
@end menu
@node Mfcalc Declarations
@subsection Declarations for @code{mfcalc}
Here are the C and Bison declarations for the multi-function
calculator.
@ignore
@comment file: c/mfcalc/mfcalc.y
@example
/* Parser for mfcalc. -*- C -*-
Copyright (C) 1988-1993, 1995, 1998-2015, 2018-2021 Free Software
Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c/mfcalc/mfcalc.y: 1
@example
@group
%@{
#include <stdio.h> /* For printf, etc. */
#include <math.h> /* For pow, used in the grammar. */
#include "calc.h" /* Contains definition of 'symrec'. */
int yylex (void);
void yyerror (char const *);
%@}
@end group
%define api.value.type union /* Generate YYSTYPE from these types: */
%token <double> NUM /* Double precision number. */
%token <symrec*> VAR FUN /* Symbol table pointer: variable/function. */
%nterm <double> exp
@group
%precedence '='
%left '-' '+'
%left '*' '/'
%precedence NEG /* negation--unary minus */
%right '^' /* exponentiation */
@end group
@end example
The above grammar introduces only two new features of the Bison language.
These features allow semantic values to have various data types
(@pxref{Multiple Types}).
The special @code{union} value assigned to the @code{%define} variable
@code{api.value.type} specifies that the symbols are defined with their data
types. Bison will generate an appropriate definition of @code{YYSTYPE} to
store these values.
Since values can now have various types, it is necessary to associate a type
with each grammar symbol whose semantic value is used. These symbols are
@code{NUM}, @code{VAR}, @code{FUN}, and @code{exp}. Their declarations are
augmented with their data type (placed between angle brackets). For
instance, values of @code{NUM} are stored in @code{double}.
The Bison construct @code{%nterm} is used for declaring nonterminal symbols,
just as @code{%token} is used for declaring token kinds. Previously we did
not use @code{%nterm} before because nonterminal symbols are normally
declared implicitly by the rules that define them. But @code{exp} must be
declared explicitly so we can specify its value type. @xref{Type Decl}.
@node Mfcalc Rules
@subsection Grammar Rules for @code{mfcalc}
Here are the grammar rules for the multi-function calculator.
Most of them are copied directly from @code{calc}; three rules,
those which mention @code{VAR} or @code{FUN}, are new.
@comment file: c/mfcalc/mfcalc.y: 3
@example
%% /* The grammar follows. */
@group
input:
%empty
| input line
;
@end group
@group
line:
'\n'
| exp '\n' @{ printf ("%.10g\n", $1); @}
| error '\n' @{ yyerrok; @}
;
@end group
@group
exp:
NUM
| VAR @{ $$ = $1->value.var; @}
| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
| FUN '(' exp ')' @{ $$ = $1->value.fun ($3); @}
| exp '+' exp @{ $$ = $1 + $3; @}
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
| exp '/' exp @{ $$ = $1 / $3; @}
| '-' exp %prec NEG @{ $$ = -$2; @}
| exp '^' exp @{ $$ = pow ($1, $3); @}
| '(' exp ')' @{ $$ = $2; @}
;
@end group
/* End of grammar. */
%%
@end example
@node Mfcalc Symbol Table
@subsection The @code{mfcalc} Symbol Table
@cindex symbol table example
The multi-function calculator requires a symbol table to keep track of the
names and meanings of variables and functions. This doesn't affect the
grammar rules (except for the actions) or the Bison declarations, but it
requires some additional C functions for support.
The symbol table itself consists of a linked list of records. Its
definition, which is kept in the header @file{calc.h}, is as follows. It
provides for either functions or variables to be placed in the table.
@ignore
@comment file: c/mfcalc/calc.h
@example
/* Functions for mfcalc. -*- C -*-
Copyright (C) 1988-1993, 1995, 1998-2015, 2018-2021 Free Software
Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c/mfcalc/calc.h
@example
@group
/* Function type. */
typedef double (func_t) (double);
@end group
@group
/* Data type for links in the chain of symbols. */
struct symrec
@{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FUN */
union
@{
double var; /* value of a VAR */
func_t *fun; /* value of a FUN */
@} value;
struct symrec *next; /* link field */
@};
@end group
@group
typedef struct symrec symrec;
/* The symbol table: a chain of 'struct symrec'. */
extern symrec *sym_table;
symrec *putsym (char const *name, int sym_type);
symrec *getsym (char const *name);
@end group
@end example
The new version of @code{main} will call @code{init_table} to initialize
the symbol table:
@comment file: c/mfcalc/mfcalc.y: 3
@example
@group
struct init
@{
char const *name;
func_t *fun;
@};
@end group
@group
struct init const funs[] =
@{
@{ "atan", atan @},
@{ "cos", cos @},
@{ "exp", exp @},
@{ "ln", log @},
@{ "sin", sin @},
@{ "sqrt", sqrt @},
@{ 0, 0 @},
@};
@end group
@group
/* The symbol table: a chain of 'struct symrec'. */
symrec *sym_table;
@end group
@group
/* Put functions in table. */
static void
init_table (void)
@end group
@group
@{
for (int i = 0; funs[i].name; i++)
@{
symrec *ptr = putsym (funs[i].name, FUN);
ptr->value.fun = funs[i].fun;
@}
@}
@end group
@end example
By simply editing the initialization list and adding the necessary include
files, you can add additional functions to the calculator.
Two important functions allow look-up and installation of symbols in the
symbol table. The function @code{putsym} is passed a name and the kind
(@code{VAR} or @code{FUN}) of the object to be installed. The object is
linked to the front of the list, and a pointer to the object is returned.
The function @code{getsym} is passed the name of the symbol to look up. If
found, a pointer to that symbol is returned; otherwise zero is returned.
@comment file: c/mfcalc/mfcalc.y: 3
@example
@group
/* The mfcalc code assumes that malloc and realloc
always succeed, and that integer calculations
never overflow. Production-quality code should
not make these assumptions. */
#include <assert.h>
#include <stdlib.h> /* malloc, realloc. */
#include <string.h> /* strlen. */
@end group
@group
symrec *
putsym (char const *name, int sym_type)
@{
symrec *res = (symrec *) malloc (sizeof (symrec));
res->name = strdup (name);
res->type = sym_type;
res->value.var = 0; /* Set value to 0 even if fun. */
res->next = sym_table;
sym_table = res;
return res;
@}
@end group
@group
symrec *
getsym (char const *name)
@{
for (symrec *p = sym_table; p; p = p->next)
if (strcmp (p->name, name) == 0)
return p;
return NULL;
@}
@end group
@end example
@node Mfcalc Lexer
@subsection The @code{mfcalc} Lexer
The function @code{yylex} must now recognize variables, numeric values, and
the single-character arithmetic operators. Strings of alphanumeric
characters with a leading letter are recognized as either variables or
functions depending on what the symbol table says about them.
The string is passed to @code{getsym} for look up in the symbol table. If
the name appears in the table, a pointer to its location and its type
(@code{VAR} or @code{FUN}) is returned to @code{yyparse}. If it is not
already in the table, then it is installed as a @code{VAR} using
@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
returned to @code{yyparse}.
No change is needed in the handling of numeric values and arithmetic
operators in @code{yylex}.
@comment file: c/mfcalc/mfcalc.y: 3
@example
#include <ctype.h>
#include <stddef.h>
@group
int
yylex (void)
@{
int c = getchar ();
/* Ignore white space, get first nonwhite character. */
while (c == ' ' || c == '\t')
c = getchar ();
if (c == EOF)
return YYEOF;
@end group
@group
/* Char starts a number => parse the number. */
if (c == '.' || isdigit (c))
@{
ungetc (c, stdin);
if (scanf ("%lf", &yylval.NUM) != 1)
abort ();
return NUM;
@}
@end group
@end example
@noindent
Bison generated a definition of @code{YYSTYPE} with a member named
@code{NUM} to store value of @code{NUM} symbols.
@comment file: c/mfcalc/mfcalc.y: 3
@example
@group
/* Char starts an identifier => read the name. */
if (isalpha (c))
@{
static ptrdiff_t bufsize = 0;
static char *symbuf = 0;
@end group
ptrdiff_t i = 0;
do
@group
@{
/* If buffer is full, make it bigger. */
if (bufsize <= i)
@{
bufsize = 2 * bufsize + 40;
symbuf = realloc (symbuf, (size_t) bufsize);
@}
/* Add this character to the buffer. */
symbuf[i++] = (char) c;
/* Get another character. */
c = getchar ();
@}
@end group
@group
while (isalnum (c));
ungetc (c, stdin);
symbuf[i] = '\0';
@end group
@group
symrec *s = getsym (symbuf);
if (!s)
s = putsym (symbuf, VAR);
yylval.VAR = s; /* or yylval.FUN = s. */
return s->type;
@}
/* Any other character is a token by itself. */
return c;
@}
@end group
@end example
@node Mfcalc Main
@subsection The @code{mfcalc} Main
The error reporting function is unchanged, and the new version of
@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
on user demand (@xref{Tracing}, for details):
@comment file: c/mfcalc/mfcalc.y: 3
@example
@group
/* Called by yyparse on error. */
void yyerror (char const *s)
@{
fprintf (stderr, "%s\n", s);
@}
@end group
@group
int main (int argc, char const* argv[])
@end group
@group
@{
/* Enable parse traces on option -p. */
if (argc == 2 && strcmp(argv[1], "-p") == 0)
yydebug = 1;
@end group
@group
init_table ();
return yyparse ();
@}
@end group
@end example
This program is both powerful and flexible. You may easily add new
functions, and it is a simple job to modify this code to install
predefined variables such as @code{pi} or @code{e} as well.
@node Exercises
@section Exercises
@cindex exercises
@enumerate
@item
Add some new functions from @file{math.h} to the initialization list.
@item
Add another array that contains constants and their values. Then modify
@code{init_table} to add these constants to the symbol table. It will be
easiest to give the constants type @code{VAR}.
@item
Make the program report an error if the user refers to an uninitialized
variable in any way except to store a value in it.
@end enumerate
@node Grammar File
@chapter Bison Grammar Files
Bison takes as input a context-free grammar specification and produces a
C-language function that recognizes correct instances of the grammar.
The Bison grammar file conventionally has a name ending in @samp{.y}.
@xref{Invocation}.
@menu
* Grammar Outline:: Overall layout of the grammar file.
* Symbols:: Terminal and nonterminal symbols.
* Rules:: How to write grammar rules.
* Semantics:: Semantic values and actions.
* Tracking Locations:: Locations and actions.
* Named References:: Using named references in actions.
* Declarations:: All kinds of Bison declarations are described here.
* Multiple Parsers:: Putting more than one Bison parser in one program.
@end menu
@node Grammar Outline
@section Outline of a Bison Grammar
@cindex comment
@findex // @dots{}
@findex /* @dots{} */
A Bison grammar file has four main sections, shown here with the
appropriate delimiters:
@example
%@{
@var{Prologue}
%@}
@var{Bison declarations}
%%
@var{Grammar rules}
%%
@var{Epilogue}
@end example
Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
As a GNU extension, @samp{//} introduces a comment that continues until end
of line.
@menu
* Prologue:: Syntax and usage of the prologue.
* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
* Bison Declarations:: Syntax and usage of the Bison declarations section.
* Grammar Rules:: Syntax and usage of the grammar rules section.
* Epilogue:: Syntax and usage of the epilogue.
@end menu
@node Prologue
@subsection The prologue
@cindex declarations section
@cindex Prologue
@cindex declarations
The @var{Prologue} section contains macro definitions and declarations of
functions and variables that are used in the actions in the grammar rules.
These are copied to the beginning of the parser implementation file so that
they precede the definition of @code{yyparse}. You can use @samp{#include}
to get the declarations from a header file. If you don't need any C
declarations, you may omit the @samp{%@{} and @samp{%@}} delimiters that
bracket this section.
The @var{Prologue} section is terminated by the first occurrence of
@samp{%@}} that is outside a comment, a string literal, or a character
constant.
You may have more than one @var{Prologue} section, intermixed with the
@var{Bison declarations}. This allows you to have C and Bison declarations
that refer to each other. For example, the @code{%union} declaration may
use types defined in a header file, and you may wish to prototype functions
that take arguments of type @code{YYSTYPE}. This can be done with two
@var{Prologue} blocks, one before and one after the @code{%union}
declaration.
@example
@group
%@{
#define _GNU_SOURCE
#include <stdio.h>
#include "ptypes.h"
%@}
@end group
@group
%union @{
long n;
tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
@}
@end group
@group
%@{
static void print_token (yytoken_kind_t token, YYSTYPE val);
%@}
@end group
@dots{}
@end example
When in doubt, it is usually safer to put prologue code before all Bison
declarations, rather than after. For example, any definitions of feature
test macros like @code{_GNU_SOURCE} or @code{_POSIX_C_SOURCE} should appear
before all Bison declarations, as feature test macros can affect the
behavior of Bison-generated @code{#include} directives.
@node Prologue Alternatives
@subsection Prologue Alternatives
@cindex Prologue Alternatives
@findex %code
@findex %code requires
@findex %code provides
@findex %code top
The functionality of @var{Prologue} sections can often be subtle and
inflexible. As an alternative, Bison provides a @code{%code} directive with
an explicit qualifier field, which identifies the purpose of the code and
thus the location(s) where Bison should generate it. For C/C++, the
qualifier can be omitted for the default location, or it can be one of
@code{requires}, @code{provides}, @code{top}. @xref{%code Summary}.
Look again at the example of the previous section:
@example
@group
%@{
#define _GNU_SOURCE
#include <stdio.h>
#include "ptypes.h"
%@}
@end group
@group
%union @{
long n;
tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
@}
@end group
@group
%@{
static void print_token (yytoken_kind_t token, YYSTYPE val);
%@}
@end group
@dots{}
@end example
@noindent
Notice that there are two @var{Prologue} sections here, but there's a subtle
distinction between their functionality. For example, if you decide to
override Bison's default definition for @code{YYLTYPE}, in which
@var{Prologue} section should you write your new
definition?@footnote{However, defining @code{YYLTYPE} via a C macro is not
the recommended way. @xref{Location Type}}
You should
write it in the first since Bison will insert that code into the parser
implementation file @emph{before} the default @code{YYLTYPE} definition. In
which @var{Prologue} section should you prototype an internal function,
@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytoken_kind_t} as
arguments? You should prototype it in the second since Bison will insert
that code @emph{after} the @code{YYLTYPE} and @code{yytoken_kind_t}
definitions.
This distinction in functionality between the two @var{Prologue} sections is
established by the appearance of the @code{%union} between them. This
behavior raises a few questions. First, why should the position of a
@code{%union} affect definitions related to @code{YYLTYPE} and
@code{yytoken_kind_t}? Second, what if there is no @code{%union}? In that
case, the second kind of @var{Prologue} section is not available. This
behavior is not intuitive.
To avoid this subtle @code{%union} dependency, rewrite the example using a
@code{%code top} and an unqualified @code{%code}. Let's go ahead and add
the new @code{YYLTYPE} definition and the @code{trace_token} prototype at
the same time:
@example
%code top @{
#define _GNU_SOURCE
#include <stdio.h>
/* WARNING: The following code really belongs
* in a '%code requires'; see below. */
#include "ptypes.h"
#define YYLTYPE YYLTYPE
typedef struct YYLTYPE
@{
int first_line;
int first_column;
int last_line;
int last_column;
char *filename;
@} YYLTYPE;
@}
@group
%union @{
long n;
tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
@}
@end group
@group
%code @{
static void print_token (yytoken_kind_t token, YYSTYPE val);
static void trace_token (yytoken_kind_t token, YYLTYPE loc);
@}
@end group
@dots{}
@end example
@noindent
In this way, @code{%code top} and the unqualified @code{%code} achieve the
same functionality as the two kinds of @var{Prologue} sections, but it's
always explicit which kind you intend. Moreover, both kinds are always
available even in the absence of @code{%union}.
The @code{%code top} block above logically contains two parts. The first
two lines before the warning need to appear near the top of the parser
implementation file. The first line after the warning is required by
@code{YYSTYPE} and thus also needs to appear in the parser implementation
file. However, if you've instructed Bison to generate a parser header file
(@pxref{Decl Summary}), you probably want that line to appear
before the @code{YYSTYPE} definition in that header file as well. The
@code{YYLTYPE} definition should also appear in the parser header file to
override the default @code{YYLTYPE} definition there.
In other words, in the @code{%code top} block above, all but the first two
lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
definitions.
Thus, they belong in one or more @code{%code requires}:
@example
@group
%code top @{
#define _GNU_SOURCE
#include <stdio.h>
@}
@end group
@group
%code requires @{
#include "ptypes.h"
@}
@end group
@group
%union @{
long n;
tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
@}
@end group
@group
%code requires @{
#define YYLTYPE YYLTYPE
typedef struct YYLTYPE
@{
int first_line;
int first_column;
int last_line;
int last_column;
char *filename;
@} YYLTYPE;
@}
@end group
@group
%code @{
static void print_token (yytoken_kind_t token, YYSTYPE val);
static void trace_token (yytoken_kind_t token, YYLTYPE loc);
@}
@end group
@dots{}
@end example
@noindent
Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
definitions in both the parser implementation file and the parser header
file. (By the same reasoning, @code{%code requires} would also be the
appropriate place to write your own definition for @code{YYSTYPE}.)
When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE},
you should prefer @code{%code requires} over @code{%code top} regardless of
whether you instruct Bison to generate a parser header file. When you are
writing code that you need Bison to insert only into the parser
implementation file and that has no special need to appear at the top of
that file, you should prefer the unqualified @code{%code} over @code{%code
top}. These practices will make the purpose of each block of your code
explicit to Bison and to other developers reading your grammar file.
Following these practices, we expect the unqualified @code{%code} and
@code{%code requires} to be the most important of the four @var{Prologue}
alternatives.
At some point while developing your parser, you might decide to provide
@code{trace_token} to modules that are external to your parser. Thus, you
might wish for Bison to insert the prototype into both the parser header
file and the parser implementation file. Since this function is not a
dependency required by @code{YYSTYPE} or @code{YYLTYPE}, it doesn't make
sense to move its prototype to a @code{%code requires}. More importantly,
since it depends upon @code{YYLTYPE} and @code{yytoken_kind_t}, @code{%code
requires} is not sufficient. Instead, move its prototype from the
unqualified @code{%code} to a @code{%code provides}:
@example
@group
%code top @{
#define _GNU_SOURCE
#include <stdio.h>
@}
@end group
@group
%code requires @{
#include "ptypes.h"
@}
@end group
@group
%union @{
long n;
tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
@}
@end group
@group
%code requires @{
#define YYLTYPE YYLTYPE
typedef struct YYLTYPE
@{
int first_line;
int first_column;
int last_line;
int last_column;
char *filename;
@} YYLTYPE;
@}
@end group
@group
%code provides @{
void trace_token (yytoken_kind_t token, YYLTYPE loc);
@}
@end group
@group
%code @{
static void print_token (FILE *file, int token, YYSTYPE val);
@}
@end group
@dots{}
@end example
@noindent
Bison will insert the @code{trace_token} prototype into both the parser
header file and the parser implementation file after the definitions for
@code{yytoken_kind_t}, @code{YYLTYPE}, and @code{YYSTYPE}.
The above examples are careful to write directives in an order that reflects
the layout of the generated parser implementation and header files:
@code{%code top}, @code{%code requires}, @code{%code provides}, and then
@code{%code}. While your grammar files may generally be easier to read if
you also follow this order, Bison does not require it. Instead, Bison lets
you choose an organization that makes sense to you.
You may declare any of these directives multiple times in the grammar file.
In that case, Bison concatenates the contained code in declaration order.
This is the only way in which the position of one of these directives within
the grammar file affects its functionality.
The result of the previous two properties is greater flexibility in how you may
organize your grammar file.
For example, you may organize semantic-type-related directives by semantic
type:
@example
@group
%code requires @{ #include "type1.h" @}
%union @{ type1 field1; @}
%destructor @{ type1_free ($$); @} <field1>
%printer @{ type1_print (yyo, $$); @} <field1>
@end group
@group
%code requires @{ #include "type2.h" @}
%union @{ type2 field2; @}
%destructor @{ type2_free ($$); @} <field2>
%printer @{ type2_print (yyo, $$); @} <field2>
@end group
@end example
@noindent
You could even place each of the above directive groups in the rules section of
the grammar file next to the set of rules that uses the associated semantic
type.
(In the rules section, you must terminate each of those directives with a
semicolon.)
And you don't have to worry that some directive (like a @code{%union}) in the
definitions section is going to adversely affect their functionality in some
counter-intuitive manner just because it comes first.
Such an organization is not possible using @var{Prologue} sections.
This section has been concerned with explaining the advantages of the four
@var{Prologue} alternatives over the original Yacc @var{Prologue}.
However, in most cases when using these directives, you shouldn't need to
think about all the low-level ordering issues discussed here.
Instead, you should simply use these directives to label each block of your
code according to its purpose and let Bison handle the ordering.
@code{%code} is the most generic label.
Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
as needed.
@node Bison Declarations
@subsection The Bison Declarations Section
@cindex Bison declarations (introduction)
@cindex declarations, Bison (introduction)
The @var{Bison declarations} section contains declarations that define
terminal and nonterminal symbols, specify precedence, and so on.
In some simple grammars you may not need any declarations.
@xref{Declarations}.
@node Grammar Rules
@subsection The Grammar Rules Section
@cindex grammar rules section
@cindex rules section for grammar
The @dfn{grammar rules} section contains one or more Bison grammar
rules, and nothing else. @xref{Rules}.
There must always be at least one grammar rule, and the first
@samp{%%} (which precedes the grammar rules) may never be omitted even
if it is the first thing in the file.
@node Epilogue
@subsection The epilogue
@cindex additional C code section
@cindex epilogue
@cindex C code, section for additional
The @var{Epilogue} is copied verbatim to the end of the parser
implementation file, just as the @var{Prologue} is copied to the
beginning. This is the most convenient place to put anything that you
want to have in the parser implementation file but which need not come
before the definition of @code{yyparse}. For example, the definitions
of @code{yylex} and @code{yyerror} often go here. Because C requires
functions to be declared before being used, you often need to declare
functions like @code{yylex} and @code{yyerror} in the Prologue, even
if you define them in the Epilogue. @xref{Interface}.
If the last section is empty, you may omit the @samp{%%} that separates it
from the grammar rules.
The Bison parser itself contains many macros and identifiers whose names
start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
any such names (except those documented in this manual) in the epilogue
of the grammar file.
@node Symbols
@section Symbols, Terminal and Nonterminal
@cindex nonterminal symbol
@cindex terminal symbol
@cindex token kind
@cindex symbol
@dfn{Symbols} in Bison grammars represent the grammatical classifications
of the language.
A @dfn{terminal symbol} (also known as a @dfn{token kind}) represents a
class of syntactically equivalent tokens. You use the symbol in grammar
rules to mean that a token in that class is allowed. The symbol is
represented in the Bison parser by a numeric code, and the @code{yylex}
function returns a token kind code to indicate what kind of token has been
read. You don't need to know what the code value is; you can use the symbol
to stand for it.
A @dfn{nonterminal symbol} stands for a class of syntactically
equivalent groupings. The symbol name is used in writing grammar rules.
By convention, it should be all lower case.
Symbol names can contain letters, underscores, periods, and non-initial
digits and dashes. Dashes in symbol names are a GNU extension, incompatible
with POSIX Yacc. Periods and dashes make symbol names less convenient to
use with named references, which require brackets around such names
(@pxref{Named References}). Terminal symbols that contain periods or dashes
make little sense: since they are not valid symbols (in most programming
languages) they are not exported as token names.
There are three ways of writing terminal symbols in the grammar:
@itemize @bullet
@item
A @dfn{named token kind} is written with an identifier, like an identifier
in C@. By convention, it should be all upper case. Each such name must be
defined with a Bison declaration such as @code{%token}. @xref{Token Decl}.
@item
@cindex character token
@cindex literal token
@cindex single-character literal
A @dfn{character token kind} (or @dfn{literal character token}) is written
in the grammar using the same syntax used in C for character constants; for
example, @code{'+'} is a character token kind. A character token kind
doesn't need to be declared unless you need to specify its semantic value
data type (@pxref{Value Type}), associativity, or precedence
(@pxref{Precedence}).
By convention, a character token kind is used only to represent a token that
consists of that particular character. Thus, the token kind @code{'+'} is
used to represent the character @samp{+} as a token. Nothing enforces this
convention, but if you depart from it, your program will confuse other
readers.
All the usual escape sequences used in character literals in C can be used
in Bison as well, but you must not use the null character as a character
literal because its numeric code, zero, signifies end-of-input
(@pxref{Calling Convention}). Also, unlike standard C, trigraphs have no
special meaning in Bison character literals, nor is backslash-newline
allowed.
@item
@cindex string token
@cindex literal string token
@cindex multicharacter literal
A @dfn{literal string token} is written like a C string constant; for
example, @code{"<="} is a literal string token. A literal string token
doesn't need to be declared unless you need to specify its semantic
value data type (@pxref{Value Type}), associativity, or precedence
(@pxref{Precedence}).
You can associate the literal string token with a symbolic name as an alias,
using the @code{%token} declaration (@pxref{Token Decl}). If you don't do
that, the lexical analyzer has to retrieve the token code for the literal
string token from the @code{yytname} table (@pxref{Calling Convention}).
@strong{Warning}: literal string tokens do not work in Yacc.
By convention, a literal string token is used only to represent a token
that consists of that particular string. Thus, you should use the token
kind @code{"<="} to represent the string @samp{<=} as a token. Bison
does not enforce this convention, but if you depart from it, people who
read your program will be confused.
All the escape sequences used in string literals in C can be used in
Bison as well, except that you must not use a null character within a
string literal. Also, unlike Standard C, trigraphs have no special
meaning in Bison string literals, nor is backslash-newline allowed. A
literal string token must contain two or more characters; for a token
containing just one character, use a character token (see above).
@end itemize
How you choose to write a terminal symbol has no effect on its
grammatical meaning. That depends only on where it appears in rules and
on when the parser function returns that symbol.
The value returned by @code{yylex} is always one of the terminal
symbols, except that a zero or negative value signifies end-of-input.
Whichever way you write the token kind in the grammar rules, you write
it the same way in the definition of @code{yylex}. The numeric code
for a character token kind is simply the positive numeric code of the
character, so @code{yylex} can use the identical value to generate the
requisite code, though you may need to convert it to @code{unsigned
char} to avoid sign-extension on hosts where @code{char} is signed.
Each named token kind becomes a C macro in the parser implementation
file, so @code{yylex} can use the name to stand for the code. (This
is why periods don't make sense in terminal symbols.) @xref{Calling
Convention}.
If @code{yylex} is defined in a separate file, you need to arrange for the
token-kind definitions to be available there. Use the @option{-d} option
when you run Bison, so that it will write these definitions into a separate
header file @file{@var{name}.tab.h} which you can include in the other
source files that need it. @xref{Invocation}.
If you want to write a grammar that is portable to any Standard C
host, you must use only nonnull character tokens taken from the basic
execution character set of Standard C@. This set consists of the ten
digits, the 52 lower- and upper-case English letters, and the
characters in the following C-language string:
@example
"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
@end example
The @code{yylex} function and Bison must use a consistent character set
and encoding for character tokens. For example, if you run Bison in an
ASCII environment, but then compile and run the resulting
program in an environment that uses an incompatible character set like
EBCDIC, the resulting program may not work because the tables
generated by Bison will assume ASCII numeric values for
character tokens. It is standard practice for software distributions to
contain C source files that were generated by Bison in an
ASCII environment, so installers on platforms that are
incompatible with ASCII must rebuild those files before
compiling them.
The symbol @code{error} is a terminal symbol reserved for error recovery
(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
In particular, @code{yylex} should never return this value. The default
value of the error token is 256, unless you explicitly assigned 256 to
one of your tokens with a @code{%token} declaration.
@node Rules
@section Grammar Rules
A Bison grammar is a list of rules.
@menu
* Rules Syntax:: Syntax of the rules.
* Empty Rules:: Symbols that can match the empty string.
* Recursion:: Writing recursive rules.
@end menu
@node Rules Syntax
@subsection Syntax of Grammar Rules
@cindex rule syntax
@cindex grammar rule syntax
@cindex syntax of grammar rules
A Bison grammar rule has the following general form:
@example
@var{result}: @var{components}@dots{};
@end example
@noindent
where @var{result} is the nonterminal symbol that this rule describes,
and @var{components} are various terminal and nonterminal symbols that
are put together by this rule (@pxref{Symbols}).
For example,
@example
exp: exp '+' exp;
@end example
@noindent
says that two groupings of type @code{exp}, with a @samp{+} token in between,
can be combined into a larger grouping of type @code{exp}.
White space in rules is significant only to separate symbols. You can add
extra white space as you wish.
Scattered among the components can be @var{actions} that determine
the semantics of the rule. An action looks like this:
@example
@{@var{C statements}@}
@end example
@noindent
@cindex braced code
This is an example of @dfn{braced code}, that is, C code surrounded by
braces, much like a compound statement in C@. Braced code can contain
any sequence of C tokens, so long as its braces are balanced. Bison
does not check the braced code for correctness directly; it merely
copies the code to the parser implementation file, where the C
compiler can check it.
Within braced code, the balanced-brace count is not affected by braces
within comments, string literals, or character constants, but it is
affected by the C digraphs @samp{<%} and @samp{%>} that represent
braces. At the top level braced code must be terminated by @samp{@}}
and not by a digraph. Bison does not look for trigraphs, so if braced
code uses trigraphs you should ensure that they do not affect the
nesting of braces or the boundaries of comments, string literals, or
character constants.
Usually there is only one action and it follows the components.
@xref{Actions}.
@findex |
Multiple rules for the same @var{result} can be written separately or can
be joined with the vertical-bar character @samp{|} as follows:
@example
@group
@var{result}:
@var{rule1-components}@dots{}
| @var{rule2-components}@dots{}
@dots{}
;
@end group
@end example
@noindent
They are still considered distinct rules even when joined in this way.
@node Empty Rules
@subsection Empty Rules
@cindex empty rule
@cindex rule, empty
@findex %empty
A rule is said to be @dfn{empty} if its right-hand side (@var{components})
is empty. It means that @var{result} in the previous example can match the
empty string. As another example, here is how to define an optional
semicolon:
@example
semicolon.opt: | ";";
@end example
@noindent
It is easy not to see an empty rule, especially when @code{|} is used. The
@code{%empty} directive allows to make explicit that a rule is empty on
purpose:
@example
@group
semicolon.opt:
%empty
| ";"
;
@end group
@end example
Flagging a non-empty rule with @code{%empty} is an error. If run with
@option{-Wempty-rule}, @command{bison} will report empty rules without
@code{%empty}. Using @code{%empty} enables this warning, unless
@option{-Wno-empty-rule} was specified.
The @code{%empty} directive is a Bison extension, it does not work with
Yacc. To remain compatible with POSIX Yacc, it is customary to write a
comment @samp{/* empty */} in each rule with no components:
@example
@group
semicolon.opt:
/* empty */
| ";"
;
@end group
@end example
@node Recursion
@subsection Recursive Rules
@cindex recursive rule
@cindex rule, recursive
A rule is called @dfn{recursive} when its @var{result} nonterminal
appears also on its right hand side. Nearly all Bison grammars need to
use recursion, because that is the only way to define a sequence of any
number of a particular thing. Consider this recursive definition of a
comma-separated sequence of one or more expressions:
@example
@group
expseq1:
exp
| expseq1 ',' exp
;
@end group
@end example
@cindex left recursion
@cindex right recursion
@noindent
Since the recursive use of @code{expseq1} is the leftmost symbol in the
right hand side, we call this @dfn{left recursion}. By contrast, here
the same construct is defined using @dfn{right recursion}:
@example
@group
expseq1:
exp
| exp ',' expseq1
;
@end group
@end example
@noindent
Any kind of sequence can be defined using either left recursion or right
recursion, but you should always use left recursion, because it can
parse a sequence of any number of elements with bounded stack space.
Right recursion uses up space on the Bison stack in proportion to the
number of elements in the sequence, because all the elements must be
shifted onto the stack before the rule can be applied even once.
@xref{Algorithm}, for further explanation
of this.
@cindex mutual recursion
@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
rule does not appear directly on its right hand side, but does appear
in rules for other nonterminals which do appear on its right hand
side.
For example:
@example
@group
expr:
primary
| primary '+' primary
;
@end group
@group
primary:
constant
| '(' expr ')'
;
@end group
@end example
@noindent
defines two mutually-recursive nonterminals, since each refers to the
other.
@node Semantics
@section Defining Language Semantics
@cindex defining language semantics
@cindex language semantics, defining
The grammar rules for a language determine only the syntax. The semantics
are determined by the semantic values associated with various tokens and
groupings, and by the actions taken when various groupings are recognized.
For example, the calculator calculates properly because the value
associated with each expression is the proper number; it adds properly
because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
the numbers associated with @var{x} and @var{y}.
@menu
* Value Type:: Specifying one data type for all semantic values.
* Multiple Types:: Specifying several alternative data types.
* Type Generation:: Generating the semantic value type.
* Union Decl:: Declaring the set of all semantic value types.
* Structured Value Type:: Providing a structured semantic value type.
* Actions:: An action is the semantic definition of a grammar rule.
* Action Types:: Specifying data types for actions to operate on.
* Midrule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
@end menu
@node Value Type
@subsection Data Types of Semantic Values
@cindex semantic value type
@cindex value type, semantic
@cindex data types of semantic values
@cindex default data type
In a simple program it may be sufficient to use the same data type for
the semantic values of all language constructs. This was true in the
RPN and infix calculator examples (@pxref{RPN Calc}).
Bison normally uses the type @code{int} for semantic values if your program
uses the same data type for all language constructs. To specify some other
type, define the @code{%define} variable @code{api.value.type} like this:
@example
%define api.value.type @{double@}
@end example
@noindent
or
@example
%define api.value.type @{struct semantic_value_type@}
@end example
The value of @code{api.value.type} should be a type name that does not
contain parentheses or square brackets.
Alternatively in C, instead of relying of Bison's @code{%define} support,
you may rely on the C preprocessor and define @code{YYSTYPE} as a macro:
@example
#define YYSTYPE double
@end example
@noindent
This macro definition must go in the prologue of the grammar file
(@pxref{Grammar Outline}). If compatibility with POSIX Yacc matters to you,
use this. Note however that Bison cannot know @code{YYSTYPE}'s value, not
even whether it is defined, so there are services it cannot provide.
Besides this works only for C.
@node Multiple Types
@subsection More Than One Value Type
In most programs, you will need different data types for different kinds
of tokens and groupings. For example, a numeric constant may need type
@code{int} or @code{long}, while a string constant needs type
@code{char *}, and an identifier might need a pointer to an entry in the
symbol table.
To use more than one data type for semantic values in one parser, Bison
requires you to do two things:
@itemize @bullet
@item
Specify the entire collection of possible data types. There are several
options:
@itemize @bullet
@item
let Bison compute the union type from the tags you assign to symbols;
@item
use the @code{%union} Bison declaration (@pxref{Union Decl});
@item
define the @code{%define} variable @code{api.value.type} to be a union type
whose members are the type tags (@pxref{Structured Value Type});
@item
use a @code{typedef} or a @code{#define} to define @code{YYSTYPE} to be a
union type whose member names are the type tags.
@end itemize
@item
Choose one of those types for each symbol (terminal or nonterminal) for
which semantic values are used. This is done for tokens with the
@code{%token} Bison declaration (@pxref{Token Decl}) and
for groupings with the @code{%nterm}/@code{%type} Bison declarations
(@pxref{Type Decl}).
@end itemize
@node Type Generation
@subsection Generating the Semantic Value Type
@cindex declaring value types
@cindex value types, declaring
@findex %define api.value.type union
The special value @code{union} of the @code{%define} variable
@code{api.value.type} instructs Bison that the type tags (used with the
@code{%token}, @code{%nterm} and @code{%type} directives) are genuine types,
not names of members of @code{YYSTYPE}.
For example:
@example
%define api.value.type union
%token <int> INT "integer"
%token <int> 'n'
%nterm <int> expr
%token <char const *> ID "identifier"
@end example
@noindent
generates an appropriate value of @code{YYSTYPE} to support each symbol
type. The name of the member of @code{YYSTYPE} for tokens than have a
declared identifier @var{id} (such as @code{INT} and @code{ID} above, but
not @code{'n'}) is @code{@var{id}}. The other symbols have unspecified
names on which you should not depend; instead, relying on C casts to access
the semantic value with the appropriate type:
@example
/* For an "integer". */
yylval.INT = 42;
return INT;
/* For an 'n', also declared as int. */
*((int*)&yylval) = 42;
return 'n';
/* For an "identifier". */
yylval.ID = "42";
return ID;
@end example
If the @code{%define} variable @code{api.token.prefix} is defined
(@pxref{%define Summary}), then it is also used to prefix
the union member names. For instance, with @samp{%define api.token.prefix
@{TOK_@}}:
@example
/* For an "integer". */
yylval.TOK_INT = 42;
return TOK_INT;
@end example
This Bison extension cannot work if @code{%yacc} (or
@option{-y}/@option{--yacc}) is enabled, as POSIX mandates that Yacc
generate tokens as macros (e.g., @samp{#define INT 258}, or @samp{#define
TOK_INT 258}).
A similar feature is provided for C++ that in addition overcomes C++
limitations (that forbid non-trivial objects to be part of a @code{union}):
@samp{%define api.value.type variant}, see @ref{C++ Variants}.
@node Union Decl
@subsection The Union Declaration
@cindex declaring value types
@cindex value types, declaring
@findex %union
The @code{%union} declaration specifies the entire collection of possible
data types for semantic values. The keyword @code{%union} is followed by
braced code containing the same thing that goes inside a @code{union} in C@.
For example:
@example
@group
%union @{
double val;
symrec *tptr;
@}
@end group
@end example
@noindent
This says that the two alternative types are @code{double} and @code{symrec
*}. They are given names @code{val} and @code{tptr}; these names are used
in the @code{%token}, @code{%nterm} and @code{%type} declarations to pick
one of the types for a terminal or nonterminal symbol (@pxref{Type Decl}).
As an extension to POSIX, a tag is allowed after the @code{%union}. For
example:
@example
@group
%union value @{
double val;
symrec *tptr;
@}
@end group
@end example
@noindent
specifies the union tag @code{value}, so the corresponding C type is
@code{union value}. If you do not specify a tag, it defaults to
@code{YYSTYPE} (@pxref{%define Summary}).
As another extension to POSIX, you may specify multiple @code{%union}
declarations; their contents are concatenated. However, only the first
@code{%union} declaration can specify a tag.
Note that, unlike making a @code{union} declaration in C, you need not write
a semicolon after the closing brace.
@node Structured Value Type
@subsection Providing a Structured Semantic Value Type
@cindex declaring value types
@cindex value types, declaring
@findex %union
Instead of @code{%union}, you can define and use your own union type
@code{YYSTYPE} if your grammar contains at least one @samp{<@var{type}>}
tag. For example, you can put the following into a header file
@file{parser.h}:
@example
@group
union YYSTYPE @{
double val;
symrec *tptr;
@};
@end group
@end example
@noindent
and then your grammar can use the following instead of @code{%union}:
@example
@group
%@{
#include "parser.h"
%@}
%define api.value.type @{union YYSTYPE@}
%nterm <val> expr
%token <tptr> ID
@end group
@end example
Actually, you may also provide a @code{struct} rather that a @code{union},
which may be handy if you want to track information for every symbol (such
as preceding comments).
The type you provide may even be structured and include pointers, in which
case the type tags you provide may be composite, with @samp{.} and @samp{->}
operators.
@node Actions
@subsection Actions
@cindex action
@vindex $$
@vindex $@var{n}
@vindex $@var{name}
@vindex $[@var{name}]
An action accompanies a syntactic rule and contains C code to be executed
each time an instance of that rule is recognized. The task of most actions
is to compute a semantic value for the grouping built by the rule from the
semantic values associated with tokens or smaller groupings.
An action consists of braced code containing C statements, and can be
placed at any position in the rule;
it is executed at that position. Most rules have just one action at the
end of the rule, following all the components. Actions in the middle of
a rule are tricky and used only for special purposes (@pxref{Midrule
Actions}).
The C code in an action can refer to the semantic values of the
components matched by the rule with the construct @code{$@var{n}},
which stands for the value of the @var{n}th component. The semantic
value for the grouping being constructed is @code{$$}. In addition,
the semantic values of symbols can be accessed with the named
references construct @code{$@var{name}} or @code{$[@var{name}]}.
Bison translates both of these constructs into expressions of the
appropriate type when it copies the actions into the parser
implementation file. @code{$$} (or @code{$@var{name}}, when it stands
for the current grouping) is translated to a modifiable lvalue, so it
can be assigned to.
Here is a typical example:
@example
@group
exp:
@dots{}
| exp '+' exp @{ $$ = $1 + $3; @}
@end group
@end example
Or, in terms of named references:
@example
@group
exp[result]:
@dots{}
| exp[left] '+' exp[right] @{ $result = $left + $right; @}
@end group
@end example
@noindent
This rule constructs an @code{exp} from two smaller @code{exp} groupings
connected by a plus-sign token. In the action, @code{$1} and @code{$3}
(@code{$left} and @code{$right})
refer to the semantic values of the two component @code{exp} groupings,
which are the first and third symbols on the right hand side of the rule.
The sum is stored into @code{$$} (@code{$result}) so that it becomes the
semantic value of
the addition-expression just recognized by the rule. If there were a
useful semantic value associated with the @samp{+} token, it could be
referred to as @code{$2}.
@xref{Named References}, for more information about using the named
references construct.
Note that the vertical-bar character @samp{|} is really a rule
separator, and actions are attached to a single rule. This is a
difference with tools like Flex, for which @samp{|} stands for either
``or'', or ``the same action as that of the next rule''. In the
following example, the action is triggered only when @samp{b} is found:
@example
a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
@end example
@cindex default action
If you don't specify an action for a rule, Bison supplies a default:
@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
becomes the value of the whole rule. Of course, the default action is
valid only if the two data types match. There is no meaningful default
action for an empty rule; every empty rule must have an explicit action
unless the rule's value does not matter.
@code{$@var{n}} with @var{n} zero or negative is allowed for reference
to tokens and groupings on the stack @emph{before} those that match the
current rule. This is a very risky practice, and to use it reliably
you must be certain of the context in which the rule is applied. Here
is a case in which you can use this reliably:
@example
@group
foo:
expr bar '+' expr @{ @dots{} @}
| expr bar '-' expr @{ @dots{} @}
;
@end group
@group
bar:
%empty @{ previous_expr = $0; @}
;
@end group
@end example
As long as @code{bar} is used only in the fashion shown here, @code{$0}
always refers to the @code{expr} which precedes @code{bar} in the
definition of @code{foo}.
@vindex yylval
It is also possible to access the semantic value of the lookahead token, if
any, from a semantic action.
This semantic value is stored in @code{yylval}.
@xref{Action Features}.
@node Action Types
@subsection Data Types of Values in Actions
@cindex action data types
@cindex data types in actions
If you have chosen a single data type for semantic values, the @code{$$}
and @code{$@var{n}} constructs always have that data type.
If you have used @code{%union} to specify a variety of data types, then you
must declare a choice among these types for each terminal or nonterminal
symbol that can have a semantic value. Then each time you use @code{$$} or
@code{$@var{n}}, its data type is determined by which symbol it refers to
in the rule. In this example,
@example
@group
exp:
@dots{}
| exp '+' exp @{ $$ = $1 + $3; @}
@end group
@end example
@noindent
@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
have the data type declared for the nonterminal symbol @code{exp}. If
@code{$2} were used, it would have the data type declared for the
terminal symbol @code{'+'}, whatever that might be.
Alternatively, you can specify the data type when you refer to the value,
by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
reference. For example, if you have defined types as shown here:
@example
@group
%union @{
int itype;
double dtype;
@}
@end group
@end example
@noindent
then you can write @code{$<itype>1} to refer to the first subunit of the
rule as an integer, or @code{$<dtype>1} to refer to it as a double.
@node Midrule Actions
@subsection Actions in Midrule
@cindex actions in midrule
@cindex midrule actions
Occasionally it is useful to put an action in the middle of a rule.
These actions are written just like usual end-of-rule actions, but they
are executed before the parser even recognizes the following components.
@menu
* Using Midrule Actions:: Putting an action in the middle of a rule.
* Typed Midrule Actions:: Specifying the semantic type of their values.
* Midrule Action Translation:: How midrule actions are actually processed.
* Midrule Conflicts:: Midrule actions can cause conflicts.
@end menu
@node Using Midrule Actions
@subsubsection Using Midrule Actions
A midrule action may refer to the components preceding it using
@code{$@var{n}}, but it may not refer to subsequent components because
it is run before they are parsed.
The midrule action itself counts as one of the components of the rule.
This makes a difference when there is another action later in the same rule
(and usually there is another at the end): you have to count the actions
along with the symbols when working out which number @var{n} to use in
@code{$@var{n}}.
The midrule action can also have a semantic value. The action can set
its value with an assignment to @code{$$}, and actions later in the rule
can refer to the value using @code{$@var{n}}. Since there is no symbol
to name the action, there is no way to declare a data type for the value
in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
specify a data type each time you refer to this value.
There is no way to set the value of the entire rule with a midrule
action, because assignments to @code{$$} do not have that effect. The
only way to set the value for the entire rule is with an ordinary action
at the end of the rule.
Here is an example from a hypothetical compiler, handling a @code{let}
statement that looks like @samp{let (@var{variable}) @var{statement}} and
serves to create a variable named @var{variable} temporarily for the
duration of @var{statement}. To parse this construct, we must put
@var{variable} into the symbol table while @var{statement} is parsed, then
remove it afterward. Here is how it is done:
@example
@group
stmt:
"let" '(' var ')'
@{
$<context>$ = push_context ();
declare_variable ($3);
@}
stmt
@{
$$ = $6;
pop_context ($<context>5);
@}
@end group
@end example
@noindent
As soon as @samp{let (@var{variable})} has been recognized, the first
action is run. It saves a copy of the current semantic context (the
list of accessible variables) as its semantic value, using alternative
@code{context} in the data-type union. Then it calls
@code{declare_variable} to add the new variable to that list. Once the
first action is finished, the embedded statement @code{stmt} can be
parsed.
Note that the midrule action is component number 5, so the @samp{stmt} is
component number 6. Named references can be used to improve the readability
and maintainability (@pxref{Named References}):
@example
@group
stmt:
"let" '(' var ')'
@{
$<context>let = push_context ();
declare_variable ($3);
@}[let]
stmt
@{
$$ = $6;
pop_context ($<context>let);
@}
@end group
@end example
After the embedded statement is parsed, its semantic value becomes the
value of the entire @code{let}-statement. Then the semantic value from the
earlier action is used to restore the prior list of variables. This
removes the temporary @code{let}-variable from the list so that it won't
appear to exist while the rest of the program is parsed.
Because the types of the semantic values of midrule actions are unknown to
Bison, type-based features (e.g., @samp{%printer}, @samp{%destructor}) do
not work, which could result in memory leaks. They also forbid the use of
the @code{variant} implementation of the @code{api.value.type} in C++
(@pxref{C++ Variants}).
@xref{Typed Midrule Actions}, for one way to address this issue, and
@ref{Midrule Action Translation}, for another: turning mid-action actions
into regular actions.
@node Typed Midrule Actions
@subsubsection Typed Midrule Actions
@findex %destructor
@cindex discarded symbols, midrule actions
@cindex error recovery, midrule actions
In the above example, if the parser initiates error recovery (@pxref{Error
Recovery}) while parsing the tokens in the embedded statement @code{stmt},
it might discard the previous semantic context @code{$<context>5} without
restoring it. Thus, @code{$<context>5} needs a destructor
(@pxref{Destructor Decl}), and Bison needs the
type of the semantic value (@code{context}) to select the right destructor.
As an extension to Yacc's midrule actions, Bison offers a means to type
their semantic value: specify its type tag (@samp{<...>} before the midrule
action.
Consider the previous example, with an untyped midrule action:
@example
@group
stmt:
"let" '(' var ')'
@{
$<context>$ = push_context (); // ***
declare_variable ($3);
@}
stmt
@{
$$ = $6;
pop_context ($<context>5); // ***
@}
@end group
@end example
@noindent
If instead you write:
@example
@group
stmt:
"let" '(' var ')'
<context>@{ // ***
$$ = push_context (); // ***
declare_variable ($3);
@}
stmt
@{
$$ = $6;
pop_context ($5); // ***
@}
@end group
@end example
@noindent
then @code{%printer} and @code{%destructor} work properly (no more leaks!),
C++ @code{variant}s can be used, and redundancy is reduced (@code{<context>}
is specified once).
@node Midrule Action Translation
@subsubsection Midrule Action Translation
@vindex $@@@var{n}
@vindex @@@var{n}
Midrule actions are actually transformed into regular rules and actions.
The various reports generated by Bison (textual, graphical, etc., see
@ref{Understanding}) reveal this translation,
best explained by means of an example. The following rule:
@example
exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
@end example
@noindent
is translated into:
@example
$@@1: %empty @{ a(); @};
$@@2: %empty @{ c(); @};
$@@3: %empty @{ d(); @};
exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
@end example
@noindent
with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
A midrule action is expected to generate a value if it uses @code{$$}, or
the (final) action uses @code{$@var{n}} where @var{n} denote the midrule
action. In that case its nonterminal is rather named @code{@@@var{n}}:
@example
exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
@end example
@noindent
is translated into
@example
@@1: %empty @{ a(); @};
@@2: %empty @{ $$ = c(); @};
$@@3: %empty @{ d(); @};
exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
@end example
There are probably two errors in the above example: the first midrule action
does not generate a value (it does not use @code{$$} although the final
action uses it), and the value of the second one is not used (the final
action does not use @code{$3}). Bison reports these errors when the
@code{midrule-value} warnings are enabled (@pxref{Invocation}):
@example
$ @kbd{bison -Wmidrule-value mid.y}
@group
mid.y:2.6-13: @dwarning{warning}: unset value: $$
2 | exp: @dwarning{@{ a(); @}} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
| @dwarning{^~~~~~~~}
@end group
@group
mid.y:2.19-31: @dwarning{warning}: unused value: $3
2 | exp: @{ a(); @} "b" @dwarning{@{ $$ = c(); @}} @{ d(); @} "e" @{ f = $1; @};
| @dwarning{^~~~~~~~~~~~~}
@end group
@end example
@sp 1
It is sometimes useful to turn midrule actions into regular actions, e.g.,
to factor them, or to escape from their limitations. For instance, as an
alternative to @emph{typed} midrule action, you may bury the midrule action
inside a nonterminal symbol and to declare a printer and a destructor for
that symbol:
@example
@group
%nterm <context> let
%destructor @{ pop_context ($$); @} let
%printer @{ print_context (yyo, $$); @} let
@end group
%%
@group
stmt:
let stmt
@{
$$ = $2;
pop_context ($let);
@};
@end group
@group
let:
"let" '(' var ')'
@{
$let = push_context ();
declare_variable ($var);
@};
@end group
@end example
@node Midrule Conflicts
@subsubsection Conflicts due to Midrule Actions
Taking action before a rule is completely recognized often leads to
conflicts since the parser must commit to a parse in order to execute the
action. For example, the following two rules, without midrule actions,
can coexist in a working parser because the parser can shift the open-brace
token and look at what follows before deciding whether there is a
declaration or not:
@example
@group
compound:
'@{' declarations statements '@}'
| '@{' statements '@}'
;
@end group
@end example
@noindent
But when we add a midrule action as follows, the rules become nonfunctional:
@example
@group
compound:
@{ prepare_for_local_variables (); @}
'@{' declarations statements '@}'
@end group
@group
| '@{' statements '@}'
;
@end group
@end example
@noindent
Now the parser is forced to decide whether to run the midrule action
when it has read no farther than the open-brace. In other words, it
must commit to using one rule or the other, without sufficient
information to do it correctly. (The open-brace token is what is called
the @dfn{lookahead} token at this time, since the parser is still
deciding what to do about it. @xref{Lookahead}.)
You might think that you could correct the problem by putting identical
actions into the two rules, like this:
@example
@group
compound:
@{ prepare_for_local_variables (); @}
'@{' declarations statements '@}'
| @{ prepare_for_local_variables (); @}
'@{' statements '@}'
;
@end group
@end example
@noindent
But this does not help, because Bison does not realize that the two actions
are identical. (Bison never tries to understand the C code in an action.)
If the grammar is such that a declaration can be distinguished from a
statement by the first token (which is true in C), then one solution which
does work is to put the action after the open-brace, like this:
@example
@group
compound:
'@{' @{ prepare_for_local_variables (); @}
declarations statements '@}'
| '@{' statements '@}'
;
@end group
@end example
@noindent
Now the first token of the following declaration or statement,
which would in any case tell Bison which rule to use, can still do so.
Another solution is to bury the action inside a nonterminal symbol which
serves as a subroutine:
@example
@group
subroutine:
%empty @{ prepare_for_local_variables (); @}
;
@end group
@group
compound:
subroutine '@{' declarations statements '@}'
| subroutine '@{' statements '@}'
;
@end group
@end example
@noindent
Now Bison can execute the action in the rule for @code{subroutine} without
deciding which rule for @code{compound} it will eventually use.
@node Tracking Locations
@section Tracking Locations
@cindex location
@cindex textual location
@cindex location, textual
Though grammar rules and semantic actions are enough to write a fully
functional parser, it can be useful to process some additional information,
especially symbol locations.
The way locations are handled is defined by providing a data type, and
actions to take when rules are matched.
@menu
* Location Type:: Specifying a data type for locations.
* Actions and Locations:: Using locations in actions.
* Printing Locations:: Defining how locations are printed.
* Location Default Action:: Defining a general way to compute locations.
@end menu
@node Location Type
@subsection Data Type of Locations
@cindex data type of locations
@cindex default location type
Defining a data type for locations is much simpler than for semantic values,
since all tokens and groupings always use the same type. The location type
is specified using @samp{%define api.location.type}:
@example
%define api.location.type @{location_t@}
@end example
This defines, in the C generated code, the @code{YYLTYPE} type name. When
@code{YYLTYPE} is not defined, Bison uses a default structure type with four
members:
@example
typedef struct YYLTYPE
@{
int first_line;
int first_column;
int last_line;
int last_column;
@} YYLTYPE;
@end example
In C, you may also specify the type of locations by defining a macro called
@code{YYLTYPE}, just as you can specify the semantic value type by defining
a @code{YYSTYPE} macro (@pxref{Value Type}). However, rather than using
macros, we recommend the @code{api.value.type} and @code{api.location.type}
@code{%define} variables.
Default locations represent a range in the source file(s), but this is not a
requirement. It could be a single point or just a line number, or even more
complex structures.
When the default location type is used, Bison initializes all these fields
to 1 for @code{yylloc} at the beginning of the parsing. To initialize
@code{yylloc} with a custom location type (or to chose a different
initialization), use the @code{%initial-action} directive. @xref{Initial
Action Decl}.
@node Actions and Locations
@subsection Actions and Locations
@cindex location actions
@cindex actions, location
@vindex @@$
@vindex @@@var{n}
@vindex @@@var{name}
@vindex @@[@var{name}]
Actions are not only useful for defining language semantics, but also for
describing the behavior of the output parser with locations.
The most obvious way for building locations of syntactic groupings is very
similar to the way semantic values are computed. In a given rule, several
constructs can be used to access the locations of the elements being matched.
The location of the @var{n}th component of the right hand side is
@code{@@@var{n}}, while the location of the left hand side grouping is
@code{@@$}.
In addition, the named references construct @code{@@@var{name}} and
@code{@@[@var{name}]} may also be used to address the symbol locations.
@xref{Named References}, for more information about using the named
references construct.
Here is a basic example using the default data type for locations:
@example
@group
exp:
@dots{}
| exp '/' exp
@{
@@$.first_column = @@1.first_column;
@@$.first_line = @@1.first_line;
@@$.last_column = @@3.last_column;
@@$.last_line = @@3.last_line;
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",
@@3.first_line, @@3.first_column,
@@3.last_line, @@3.last_column);
@}
@}
@end group
@end example
As for semantic values, there is a default action for locations that is
run each time a rule is matched. It sets the beginning of @code{@@$} to the
beginning of the first symbol, and the end of @code{@@$} to the end of the
last symbol.
With this default action, the location tracking can be fully automatic. The
example above simply rewrites this way:
@example
@group
exp:
@dots{}
| exp '/' exp
@{
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",
@@3.first_line, @@3.first_column,
@@3.last_line, @@3.last_column);
@}
@}
@end group
@end example
@vindex yylloc
It is also possible to access the location of the lookahead token, if any,
from a semantic action.
This location is stored in @code{yylloc}.
@xref{Action Features}.
@node Printing Locations
@subsection Printing Locations
@vindex YYLOCATION_PRINT
When using the default location type, the debug traces report the symbols'
location. The generated parser does so using the @code{YYLOCATION_PRINT}
macro.
@deffn {Macro} YYLOCATION_PRINT (@var{file}, @var{loc})@code{;}
When traces are enabled, print @var{loc} (of type @samp{YYLTYPE const *}) on
@var{file} (of type @samp{FILE *}). Do nothing when traces are disabled, or
if the location type is user defined.
@end deffn
To get locations in the debug traces with your user-defined location types,
define the @code{YYLOCATION_PRINT} macro. For instance:
@example
#define YYLOCATION_PRINT location_print
@end example
@node Location Default Action
@subsection Default Action for Locations
@vindex YYLLOC_DEFAULT
@cindex GLR parsers and @code{YYLLOC_DEFAULT}
Actually, actions are not the best place to compute locations. Since
locations are much more general than semantic values, there is room in
the output parser to redefine the default action to take for each
rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
matched, before the associated action is run. It is also invoked
while processing a syntax error, to compute the error's location.
Before reporting an unresolvable syntactic ambiguity, a GLR
parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
of that ambiguity.
Most of the time, this macro is general enough to suppress location
dedicated code from semantic actions.
The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
the location of the grouping (the result of the computation). When a
rule is matched, the second parameter identifies locations of
all right hand side elements of the rule being matched, and the third
parameter is the size of the rule's right hand side.
When a GLR parser reports an ambiguity, which of multiple candidate
right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
When processing a syntax error, the second parameter identifies locations
of the symbols that were discarded during error processing, and the third
parameter is the number of discarded symbols.
By default, @code{YYLLOC_DEFAULT} is defined this way:
@example
@group
# define YYLLOC_DEFAULT(Cur, Rhs, N) \
do \
if (N) \
@{ \
(Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
(Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
(Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
(Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
@} \
else \
@{ \
(Cur).first_line = (Cur).last_line = \
YYRHSLOC(Rhs, 0).last_line; \
(Cur).first_column = (Cur).last_column = \
YYRHSLOC(Rhs, 0).last_column; \
@} \
while (0)
@end group
@end example
@noindent
where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
in @var{rhs} when @var{k} is positive, and the location of the symbol
just before the reduction when @var{k} and @var{n} are both zero.
When defining @code{YYLLOC_DEFAULT}, you should consider that:
@itemize @bullet
@item
All arguments are free of side-effects. However, only the first one (the
result) should be modified by @code{YYLLOC_DEFAULT}.
@item
For consistency with semantic actions, valid indexes within the
right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
valid index, and it refers to the symbol just before the reduction.
During error processing @var{n} is always positive.
@item
Your macro should parenthesize its arguments, if need be, since the
actual arguments may not be surrounded by parentheses. Also, your
macro should expand to something that can be used as a single
statement when it is followed by a semicolon.
@end itemize
@node Named References
@section Named References
@cindex named references
As described in the preceding sections, the traditional way to refer to any
semantic value or location is a @dfn{positional reference}, which takes the
form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
such a reference is not very descriptive. Moreover, if you later decide to
insert or remove symbols in the right-hand side of a grammar rule, the need
to renumber such references can be tedious and error-prone.
To avoid these issues, you can also refer to a semantic value or location
using a @dfn{named reference}. First of all, original symbol names may be
used as named references. For example:
@example
@group
invocation: op '(' args ')'
@{ $invocation = new_invocation ($op, $args, @@invocation); @}
@end group
@end example
@noindent
Positional and named references can be mixed arbitrarily. For example:
@example
@group
invocation: op '(' args ')'
@{ $$ = new_invocation ($op, $args, @@$); @}
@end group
@end example
@noindent
However, sometimes regular symbol names are not sufficient due to
ambiguities:
@example
@group
exp: exp '/' exp
@{ $exp = $exp / $exp; @} // $exp is ambiguous.
exp: exp '/' exp
@{ $$ = $1 / $exp; @} // One usage is ambiguous.
exp: exp '/' exp
@{ $$ = $1 / $3; @} // No error.
@end group
@end example
@noindent
When ambiguity occurs, explicitly declared names may be used for values and
locations. Explicit names are declared as a bracketed name after a symbol
appearance in rule definitions. For example:
@example
@group
exp[result]: exp[left] '/' exp[right]
@{ $result = $left / $right; @}
@end group
@end example
@noindent
In order to access a semantic value generated by a midrule action, an
explicit name may also be declared by putting a bracketed name after the
closing brace of the midrule action code:
@example
@group
exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
@{ $res = $left + $right; @}
@end group
@end example
@noindent
In references, in order to specify names containing dots and dashes, an explicit
bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
@example
@group
if-stmt: "if" '(' expr ')' "then" then.stmt ';'
@{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
@end group
@end example
It often happens that named references are followed by a dot, dash or other
C punctuation marks and operators. By default, Bison will read
@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
value. In order to force Bison to recognize @samp{name.suffix} in its
entirety as the name of a semantic value, the bracketed syntax
@samp{$[name.suffix]} must be used.
@node Declarations
@section Bison Declarations
@cindex declarations, Bison
@cindex Bison declarations
The @dfn{Bison declarations} section of a Bison grammar defines the symbols
used in formulating the grammar and the data types of semantic values.
@xref{Symbols}.
All token kind names (but not single-character literal tokens such as
@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
declared if you need to specify which data type to use for the semantic
value (@pxref{Multiple Types}).
The first rule in the grammar file also specifies the start symbol, by
default. If you want some other symbol to be the start symbol, you
must declare it explicitly (@pxref{Language and Grammar}).
@menu
* Require Decl:: Requiring a Bison version.
* Token Decl:: Declaring terminal symbols.
* Precedence Decl:: Declaring terminals with precedence and associativity.
* Type Decl:: Declaring the choice of type for a nonterminal symbol.
* Symbol Decls:: Summary of the Syntax of Symbol Declarations.
* Initial Action Decl:: Code run before parsing starts.
* Destructor Decl:: Declaring how symbols are freed.
* Printer Decl:: Declaring how symbol values are displayed.
* Expect Decl:: Suppressing warnings about parsing conflicts.
* Start Decl:: Specifying the start symbol.
* Pure Decl:: Requesting a reentrant parser.
* Push Decl:: Requesting a push parser.
* Decl Summary:: Table of all Bison declarations.
* %define Summary:: Defining variables to adjust Bison's behavior.
* %code Summary:: Inserting code into the parser source.
@end menu
@node Require Decl
@subsection Require a Version of Bison
@cindex version requirement
@cindex requiring a version of Bison
@findex %require
You may require the minimum version of Bison to process the grammar. If
the requirement is not met, @command{bison} exits with an error (exit
status 63).
@example
%require "@var{version}"
@end example
Some deprecated behaviors are disabled for some required @var{version}:
@table @asis
@item @code{"3.2"} (or better)
The C++ deprecated files @file{position.hh} and @file{stack.hh} are no
longer generated.
@end table
@node Token Decl
@subsection Token Kind Names
@cindex declaring token kind names
@cindex token kind names, declaring
@cindex declaring literal string tokens
@findex %token
The basic way to declare a token kind name (terminal symbol) is as follows:
@example
%token @var{name}
@end example
Bison will convert this into a definition in the parser, so that the
function @code{yylex} (if it is in this file) can use the name @var{name} to
stand for this token kind's code.
Alternatively, you can use @code{%left}, @code{%right}, @code{%precedence},
or @code{%nonassoc} instead of @code{%token}, if you wish to specify
associativity and precedence. @xref{Precedence Decl}. However, for
clarity, we recommend to use these directives only to declare associativity
and precedence, and not to add string aliases, semantic types, etc.
You can explicitly specify the numeric code for a token kind by appending a
nonnegative decimal or hexadecimal integer value in the field immediately
following the token name:
@example
%token NUM 300
%token XNUM 0x12d // a GNU extension
@end example
@noindent
It is generally best, however, to let Bison choose the numeric codes for all
token kinds. Bison will automatically select codes that don't conflict with
each other or with normal characters.
In the event that the stack type is a union, you must augment the
@code{%token} or other token declaration to include the data type
alternative delimited by angle-brackets (@pxref{Multiple Types}).
For example:
@example
@group
%union @{ /* define stack type */
double val;
symrec *tptr;
@}
%token <val> NUM /* define token NUM and its type */
@end group
@end example
You can associate a literal string token with a token kind name by writing
the literal string at the end of a @code{%token} declaration which declares
the name. For example:
@example
%token ARROW "=>"
@end example
@noindent
For example, a grammar for the C language might specify these names with
equivalent literal string tokens:
@example
%token <operator> OR "||"
%token <operator> LE 134 "<="
%left OR "<="
@end example
@noindent
Once you equate the literal string and the token kind name, you can use them
interchangeably in further declarations or the grammar rules. The
@code{yylex} function can use the token name or the literal string to obtain
the token kind code (@pxref{Calling Convention}).
String aliases allow for better error messages using the literal strings
instead of the token names, such as @samp{syntax error, unexpected ||,
expecting number or (} rather than @samp{syntax error, unexpected OR,
expecting NUM or LPAREN}.
String aliases may also be marked for internationalization (@pxref{Token
I18n}):
@example
%token
OR "||"
LPAREN "("
RPAREN ")"
'\n' _("end of line")
<double>
NUM _("number")
@end example
@noindent
would produce in French @samp{erreur de syntaxe, || inattendu, attendait
nombre ou (} rather than @samp{erreur de syntaxe, || inattendu, attendait
number ou (}.
@node Precedence Decl
@subsection Operator Precedence
@cindex precedence declarations
@cindex declaring operator precedence
@cindex operator precedence, declaring
Use the @code{%left}, @code{%right}, @code{%nonassoc}, or @code{%precedence}
declaration to declare a token and specify its precedence and associativity,
all at once. These are called @dfn{precedence declarations}.
@xref{Precedence}, for general information on operator
precedence.
The syntax of a precedence declaration is nearly the same as that of
@code{%token}: either
@example
%left @var{symbols}@dots{}
@end example
@noindent
or
@example
%left <@var{type}> @var{symbols}@dots{}
@end example
And indeed any of these declarations serves the purposes of @code{%token}.
But in addition, they specify the associativity and relative precedence for
all the @var{symbols}:
@itemize @bullet
@item
The associativity of an operator @var{op} determines how repeated uses of
the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op} @var{z}}
is parsed by grouping @var{x} with @var{y} first or by grouping @var{y} with
@var{z} first. @code{%left} specifies left-associativity (grouping @var{x}
with @var{y} first) and @code{%right} specifies right-associativity
(grouping @var{y} with @var{z} first). @code{%nonassoc} specifies no
associativity, which means that @samp{@var{x} @var{op} @var{y} @var{op}
@var{z}} is considered a syntax error.
@code{%precedence} gives only precedence to the @var{symbols}, and defines
no associativity at all. Use this to define precedence only, and leave any
potential conflict due to associativity enabled.
@item
The precedence of an operator determines how it nests with other operators.
All the tokens declared in a single precedence declaration have equal
precedence and nest together according to their associativity. When two
tokens declared in different precedence declarations associate, the one
declared later has the higher precedence and is grouped first.
@end itemize
For backward compatibility, there is a confusing difference between the
argument lists of @code{%token} and precedence declarations. Only a
@code{%token} can associate a literal string with a token kind name. A
precedence declaration always interprets a literal string as a reference to
a separate token. For example:
@example
%left OR "<=" // Does not declare an alias.
%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
@end example
@node Type Decl
@subsection Nonterminal Symbols
@cindex declaring value types, nonterminals
@cindex value types, nonterminals, declaring
@findex %nterm
@findex %type
@noindent
When you use @code{%union} to specify multiple value types, you must
declare the value type of each nonterminal symbol for which values are
used. This is done with a @code{%type} declaration, like this:
@example
%type <@var{type}> @var{nonterminal}@dots{}
@end example
@noindent
Here @var{nonterminal} is the name of a nonterminal symbol, and @var{type}
is the name given in the @code{%union} to the alternative that you want
(@pxref{Union Decl}). You can give any number of nonterminal symbols in the
same @code{%type} declaration, if they have the same value type. Use spaces
to separate the symbol names.
While POSIX Yacc allows @code{%type} only for nonterminals, Bison accepts
that this directive be also applied to terminal symbols. To declare
exclusively nonterminal symbols, use the safer @code{%nterm}:
@example
%nterm <@var{type}> @var{nonterminal}@dots{}
@end example
@node Symbol Decls
@subsection Syntax of Symbol Declarations
@findex %left
@findex %nterm
@findex %token
@findex %type
The syntax of the various directives to declare symbols is as follows.
@example
%token @var{tag}? ( @var{id} @var{number}? @var{string}? )+ ( @var{tag} ( @var{id} @var{number}? @var{string}? )+ )*
%left @var{tag}? ( @var{id} @var{number}?)+ ( @var{tag} ( @var{id} @var{number}? )+ )*
%type @var{tag}? ( @var{id} | @var{char} | @var{string} )+ ( @var{tag} ( @var{id} | @var{char} | @var{string} )+ )*
%nterm @var{tag}? @var{id}+ ( @var{tag} @var{id}+ )*
@end example
@noindent
where @var{tag} denotes a type tag such as @samp{<ival>}, @var{id} denotes
an identifier such as @samp{NUM}, @var{number} a decimal or hexadecimal
integer such as @samp{300} or @samp{0x12d}, @var{char} a character literal
such as @samp{'+'}, and @var{string} a string literal such as
@samp{"number"}. The postfix quantifiers are @samp{?} (zero or one),
@samp{*} (zero or more) and @samp{+} (one or more).
The directives @code{%precedence}, @code{%right} and @code{%nonassoc} behave
like @code{%left}.
@node Initial Action Decl
@subsection Performing Actions before Parsing
@findex %initial-action
Sometimes your parser needs to perform some initializations before parsing.
The @code{%initial-action} directive allows for such arbitrary code.
@deffn {Directive} %initial-action @{ @var{code} @}
@findex %initial-action
Declare that the braced @var{code} must be invoked before parsing each time
@code{yyparse} is called. The @var{code} may use @code{$$} (or
@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
lookahead --- and the @code{%parse-param}.
@end deffn
For instance, if your locations use a file name, you may use
@example
%parse-param @{ char const *file_name @};
%initial-action
@{
@@$.initialize (file_name);
@};
@end example
@node Destructor Decl
@subsection Freeing Discarded Symbols
@cindex freeing discarded symbols
@findex %destructor
@findex <*>
@findex <>
During error recovery (@pxref{Error Recovery}), symbols already pushed on
the stack and tokens coming from the rest of the file are discarded until
the parser falls on its feet. If the parser runs out of memory, or if it
returns via @code{YYABORT}, @code{YYACCEPT} or @code{YYNOMEM}, all the
symbols on the stack must be discarded. Even if the parser succeeds, it
must discard the start symbol.
When discarded symbols convey heap based information, this memory is
lost. While this behavior can be tolerable for batch parsers, such as
in traditional compilers, it is unacceptable for programs like shells or
protocol implementations that may parse and execute indefinitely.
The @code{%destructor} directive defines code that is called when a
symbol is automatically discarded.
@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
@findex %destructor
Invoke the braced @var{code} whenever the parser discards one of the
@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
designates the semantic value associated with the discarded symbol, and
@code{@@$} designates its location. The additional parser parameters are
also available (@pxref{Parser Function}).
When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
per-symbol @code{%destructor}.
You may also define a per-type @code{%destructor} by listing a semantic type
tag among @var{symbols}.
In that case, the parser will invoke this @var{code} whenever it discards any
grammar symbol that has that semantic type tag unless that symbol has its own
per-symbol @code{%destructor}.
Finally, you can define two different kinds of default @code{%destructor}s.
You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
exactly one @code{%destructor} declaration in your grammar file.
The parser will invoke the @var{code} associated with one of these whenever it
discards any user-defined grammar symbol that has no per-symbol and no per-type
@code{%destructor}.
The parser uses the @var{code} for @code{<*>} in the case of such a grammar
symbol for which you have formally declared a semantic type tag (@code{%token},
@code{%nterm}, and @code{%type}
count as such a declaration, but @code{$<tag>$} does not).
The parser uses the @var{code} for @code{<>} in the case of such a grammar
symbol that has no declared semantic type tag.
@end deffn
@noindent
For example:
@example
%union @{ char *string; @}
%token <string> STRING1 STRING2
%nterm <string> string1 string2
%union @{ char character; @}
%token <character> CHR
%nterm <character> chr
%token TAGLESS
%destructor @{ @} <character>
%destructor @{ free ($$); @} <*>
%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
@end example
@noindent
guarantees that, when the parser discards any user-defined symbol that has a
semantic type tag other than @code{<character>}, it passes its semantic value
to @code{free} by default.
However, when the parser discards a @code{STRING1} or a @code{string1},
it uses the third @code{%destructor}, which frees it and
prints its line number to @code{stdout} (@code{free} is invoked only once).
Finally, the parser merely prints a message whenever it discards any symbol,
such as @code{TAGLESS}, that has no semantic type tag.
A Bison-generated parser invokes the default @code{%destructor}s only for
user-defined as opposed to Bison-defined symbols.
For example, the parser will not invoke either kind of default
@code{%destructor} for the special Bison-defined symbols @code{$accept},
@code{$undefined}, or @code{$end} (@pxref{Table of Symbols}),
none of which you can reference in your grammar.
It also will not invoke either for the @code{error} token (@pxref{Table of
Symbols}), which is always defined by Bison regardless of whether you
reference it in your grammar.
However, it may invoke one of them for the end token (token 0) if you
redefine it from @code{$end} to, for example, @code{END}:
@example
%token END 0
@end example
@cindex actions in midrule
@cindex midrule actions
Finally, Bison will never invoke a @code{%destructor} for an unreferenced
midrule semantic value (@pxref{Midrule Actions}).
That is, Bison does not consider a midrule to have a semantic value if you
do not reference @code{$$} in the midrule's action or @code{$@var{n}}
(where @var{n} is the right-hand side symbol position of the midrule) in
any later action in that rule. However, if you do reference either, the
Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
it discards the midrule symbol.
@ignore
@noindent
In the future, it may be possible to redefine the @code{error} token as a
nonterminal that captures the discarded symbols.
In that case, the parser will invoke the default destructor for it as well.
@end ignore
@sp 1
@cindex discarded symbols
@dfn{Discarded symbols} are the following:
@itemize
@item
stacked symbols popped during the first phase of error recovery,
@item
incoming terminals during the second phase of error recovery,
@item
the current lookahead and the entire stack (except the current
right-hand side symbols) when the parser returns immediately, and
@item
the current lookahead and the entire stack (including the current right-hand
side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
@code{parse},
@item
the start symbol, when the parser succeeds.
@end itemize
The parser can @dfn{return immediately} because of an explicit call to
@code{YYABORT}, @code{YYACCEPT} or @code{YYNOMEM}, or failed error recovery,
or memory exhaustion.
Right-hand side symbols of a rule that explicitly triggers a syntax
error via @code{YYERROR} are not discarded automatically. As a rule
of thumb, destructors are invoked only when user actions cannot manage
the memory.
@node Printer Decl
@subsection Printing Semantic Values
@cindex printing semantic values
@findex %printer
@findex <*>
@findex <>
When run-time traces are enabled (@pxref{Tracing}),
the parser reports its actions, such as reductions. When a symbol involved
in an action is reported, only its kind is displayed, as the parser cannot
know how semantic values should be formatted.
The @code{%printer} directive defines code that is called when a symbol is
reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
Decl}).
@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
@findex %printer
@vindex yyo
@c This is the same text as for %destructor.
Invoke the braced @var{code} whenever the parser displays one of the
@var{symbols}. Within @var{code}, @code{yyo} denotes the output stream (a
@code{FILE*} in C, an @code{std::ostream&} in C++, and @code{stdout} in D), @code{$$} (or
@code{$<@var{tag}>$}) designates the semantic value associated with the
symbol, and @code{@@$} its location. The additional parser parameters are
also available (@pxref{Parser Function}).
The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
Decl}.): they can be per-type (e.g.,
@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
@samp{<>}).
@end deffn
@noindent
For example:
@example
%union @{ char *string; @}
%token <string> STRING1 STRING2
%nterm <string> string1 string2
%union @{ char character; @}
%token <character> CHR
%nterm <character> chr
%token TAGLESS
%printer @{ fprintf (yyo, "'%c'", $$); @} <character>
%printer @{ fprintf (yyo, "&%p", $$); @} <*>
%printer @{ fprintf (yyo, "\"%s\"", $$); @} STRING1 string1
%printer @{ fprintf (yyo, "<>"); @} <>
@end example
@noindent
guarantees that, when the parser print any symbol that has a semantic type
tag other than @code{<character>}, it display the address of the semantic
value by default. However, when the parser displays a @code{STRING1} or a
@code{string1}, it formats it as a string in double quotes. It performs
only the second @code{%printer} in this case, so it prints only once.
Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
that has no semantic type tag. @xref{Mfcalc Traces}, for a complete example.
@node Expect Decl
@subsection Suppressing Conflict Warnings
@cindex suppressing conflict warnings
@cindex preventing warnings about conflicts
@cindex warnings, preventing
@cindex conflicts, suppressing warnings of
@findex %expect
@findex %expect-rr
Bison normally warns if there are any conflicts in the grammar
(@pxref{Shift/Reduce}), but most real grammars
have harmless shift/reduce conflicts which are resolved in a predictable
way and would be difficult to eliminate. It is desirable to suppress
the warning about these conflicts unless the number of conflicts
changes. You can do this with the @code{%expect} declaration.
The declaration looks like this:
@example
%expect @var{n}
@end example
Here @var{n} is a decimal integer. The declaration says there should
be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
Bison reports an error if the number of shift/reduce conflicts differs
from @var{n}, or if there are any reduce/reduce conflicts.
For deterministic parsers, reduce/reduce conflicts are more
serious, and should be eliminated entirely. Bison will always report
reduce/reduce conflicts for these parsers. With GLR
parsers, however, both kinds of conflicts are routine; otherwise,
there would be no need to use GLR parsing. Therefore, it is
also possible to specify an expected number of reduce/reduce conflicts
in GLR parsers, using the declaration:
@example
%expect-rr @var{n}
@end example
You may wish to be more specific in your
specification of expected conflicts. To this end, you can also attach
@code{%expect} and @code{%expect-rr} modifiers to individual rules.
The interpretation of these modifiers differs from their use as
declarations. When attached to rules, they indicate the number of states
in which the rule is involved in a conflict. You will need to consult the
output resulting from @option{-v} to determine appropriate numbers to use.
For example, for the following grammar fragment, the first rule for
@code{empty_dims} appears in two states in which the @samp{[} token is a
lookahead. Having determined that, you can document this fact with an
@code{%expect} modifier as follows:
@example
dims:
empty_dims
| '[' expr ']' dims
;
empty_dims:
%empty %expect 2
| empty_dims '[' ']'
;
@end example
Mid-rule actions generate implicit rules that are also subject to conflicts
(@pxref{Midrule Conflicts}). To attach
an @code{%expect} or @code{%expect-rr} annotation to an implicit
mid-rule action's rule, put it before the action. For example,
@example
%glr-parser
%expect-rr 1
%%
clause:
"condition" %expect-rr 1 @{ value_mode(); @} '(' exprs ')'
| "condition" %expect-rr 1 @{ class_mode(); @} '(' types ')'
;
@end example
@noindent
Here, the appropriate mid-rule action will not be determined until after
the @samp{(} token is shifted. Thus,
the two actions will clash with each other, and we should expect one
reduce/reduce conflict for each.
In general, using @code{%expect} involves these steps:
@itemize @bullet
@item
Compile your grammar without @code{%expect}. Use the @option{-v} option
to get a verbose list of where the conflicts occur. Bison will also
print the number of conflicts.
@item
Check each of the conflicts to make sure that Bison's default
resolution is what you really want. If not, rewrite the grammar and
go back to the beginning.
@item
Add an @code{%expect} declaration, copying the number @var{n} from the
number that Bison printed. With GLR parsers, add an
@code{%expect-rr} declaration as well.
@item
Optionally, count up the number of states in which one or more
conflicted reductions for particular rules appear and add these numbers
to the affected rules as @code{%expect-rr} or @code{%expect} modifiers
as appropriate. Rules that are in conflict appear in the output listing
surrounded by square brackets or, in the case of reduce/reduce conflicts,
as reductions having the same lookahead symbol as a square-bracketed
reduction in the same state.
@end itemize
Now Bison will report an error if you introduce an unexpected conflict,
but will keep silent otherwise.
@node Start Decl
@subsection The Start-Symbol
@cindex declaring the start symbol
@cindex start symbol, declaring
@cindex default start symbol
@findex %start
Bison assumes by default that the start symbol for the grammar is the first
nonterminal specified in the grammar specification section. The programmer
may override this restriction with the @code{%start} declaration as follows:
@example
%start @var{symbol}
@end example
@node Pure Decl
@subsection A Pure (Reentrant) Parser
@cindex reentrant parser
@cindex pure parser
@findex %define api.pure
A @dfn{reentrant} program is one which does not alter in the course of
execution; in other words, it consists entirely of @dfn{pure} (read-only)
code. Reentrancy is important whenever asynchronous execution is possible;
for example, a nonreentrant program may not be safe to call from a signal
handler. In systems with multiple threads of control, a nonreentrant
program must be called only within interlocks.
Normally, Bison generates a parser which is not reentrant. This is
suitable for most uses, and it permits compatibility with Yacc. (The
standard Yacc interfaces are inherently nonreentrant, because they use
statically allocated variables for communication with @code{yylex},
including @code{yylval} and @code{yylloc}.)
Alternatively, you can generate a pure, reentrant parser. The Bison
declaration @samp{%define api.pure} says that you want the parser to be
reentrant. It looks like this:
@example
%define api.pure full
@end example
The result is that the communication variables @code{yylval} and
@code{yylloc} become local variables in @code{yyparse}, and a different
calling convention is used for the lexical analyzer function @code{yylex}.
@xref{Pure Calling}, for the details of this. The variable @code{yynerrs}
becomes local in @code{yyparse} in pull mode but it becomes a member of
@code{yypstate} in push mode. (@pxref{Error Reporting Function}). The
convention for calling @code{yyparse} itself is unchanged.
Whether the parser is pure has nothing to do with the grammar rules.
You can generate either a pure parser or a nonreentrant parser from any
valid grammar.
@node Push Decl
@subsection A Push Parser
@cindex push parser
@cindex push parser
@findex %define api.push-pull
A pull parser is called once and it takes control until all its input
is completely parsed. A push parser, on the other hand, is called
each time a new token is made available.
A push parser is typically useful when the parser is part of a
main event loop in the client's application. This is typically
a requirement of a GUI, when the main event loop needs to be triggered
within a certain time period.
Normally, Bison generates a pull parser.
The following Bison declaration says that you want the parser to be a push
parser (@pxref{%define Summary}):
@example
%define api.push-pull push
@end example
In almost all cases, you want to ensure that your push parser is also
a pure parser (@pxref{Pure Decl}). The only
time you should create an impure push parser is to have backwards
compatibility with the impure Yacc pull mode interface. Unless you know
what you are doing, your declarations should look like this:
@example
%define api.pure full
%define api.push-pull push
@end example
There is a major notable functional difference between the pure push parser
and the impure push parser. It is acceptable for a pure push parser to have
many parser instances, of the same type of parser, in memory at the same time.
An impure push parser should only use one parser at a time.
When a push parser is selected, Bison will generate some new symbols in
the generated parser. @code{yypstate} is a structure that the generated
parser uses to store the parser's state. @code{yypstate_new} is the
function that will create a new parser instance. @code{yypstate_delete}
will free the resources associated with the corresponding parser instance.
Finally, @code{yypush_parse} is the function that should be called whenever a
token is available to provide the parser. A trivial example
of using a pure push parser would look like this:
@example
int status;
yypstate *ps = yypstate_new ();
do @{
status = yypush_parse (ps, yylex (), NULL);
@} while (status == YYPUSH_MORE);
yypstate_delete (ps);
@end example
If the user decided to use an impure push parser, a few things about the
generated parser will change. The @code{yychar} variable becomes a global
variable instead of a local one in the @code{yypush_parse} function. For
this reason, the signature of the @code{yypush_parse} function is changed to
remove the token as a parameter. A nonreentrant push parser example would
thus look like this:
@example
extern int yychar;
int status;
yypstate *ps = yypstate_new ();
do @{
yychar = yylex ();
status = yypush_parse (ps);
@} while (status == YYPUSH_MORE);
yypstate_delete (ps);
@end example
That's it. Notice the next token is put into the global variable @code{yychar}
for use by the next invocation of the @code{yypush_parse} function.
Bison also supports both the push parser interface along with the pull parser
interface in the same generated parser. In order to get this functionality,
you should replace the @samp{%define api.push-pull push} declaration with the
@samp{%define api.push-pull both} declaration. Doing this will create all of
the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
would be used. However, the user should note that it is implemented in the
generated parser by calling @code{yypull_parse}.
This makes the @code{yyparse} function that is generated with the
@samp{%define api.push-pull both} declaration slower than the normal
@code{yyparse} function. If the user
calls the @code{yypull_parse} function it will parse the rest of the input
stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
and then @code{yypull_parse} the rest of the input stream. If you would like
to switch back and forth between between parsing styles, you would have to
write your own @code{yypull_parse} function that knows when to quit looking
for input. An example of using the @code{yypull_parse} function would look
like this:
@example
yypstate *ps = yypstate_new ();
yypull_parse (ps); /* Will call the lexer */
yypstate_delete (ps);
@end example
Adding the @samp{%define api.pure} declaration does exactly the same thing to
the generated parser with @samp{%define api.push-pull both} as it did for
@samp{%define api.push-pull push}.
@node Decl Summary
@subsection Bison Declaration Summary
@cindex Bison declaration summary
@cindex declaration summary
@cindex summary, Bison declaration
Here is a summary of the declarations used to define a grammar:
@deffn {Directive} %union
Declare the collection of data types that semantic values may have
(@pxref{Union Decl}).
@end deffn
@deffn {Directive} %token
Declare a terminal symbol (token kind name) with no precedence
or associativity specified (@pxref{Token Decl}).
@end deffn
@deffn {Directive} %right
Declare a terminal symbol (token kind name) that is right-associative
(@pxref{Precedence Decl}).
@end deffn
@deffn {Directive} %left
Declare a terminal symbol (token kind name) that is left-associative
(@pxref{Precedence Decl}).
@end deffn
@deffn {Directive} %nonassoc
Declare a terminal symbol (token kind name) that is nonassociative
(@pxref{Precedence Decl}).
Using it in a way that would be associative is a syntax error.
@end deffn
@ifset defaultprec
@deffn {Directive} %default-prec
Assign a precedence to rules lacking an explicit @code{%prec} modifier
(@pxref{Contextual Precedence}).
@end deffn
@end ifset
@deffn {Directive} %nterm
Declare the type of semantic values for a nonterminal symbol (@pxref{Type
Decl}).
@end deffn
@deffn {Directive} %type
Declare the type of semantic values for a symbol (@pxref{Type Decl}).
@end deffn
@deffn {Directive} %start
Specify the grammar's start symbol (@pxref{Start Decl}).
@end deffn
@deffn {Directive} %expect
Declare the expected number of shift/reduce conflicts, either overall or
for a given rule
(@pxref{Expect Decl}).
@end deffn
@deffn {Directive} %expect-rr
Declare the expected number of reduce/reduce conflicts, either overall or
for a given rule
(@pxref{Expect Decl}).
@end deffn
@sp 1
@noindent
In order to change the behavior of @command{bison}, use the following
directives:
@deffn {Directive} %code @{@var{code}@}
@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
@findex %code
Insert @var{code} verbatim into the output parser source at the
default location or at the location specified by @var{qualifier}.
@xref{%code Summary}.
@end deffn
@deffn {Directive} %debug
Instrument the parser for traces. Obsoleted by @samp{%define
parse.trace}.
@xref{Tracing}.
@end deffn
@deffn {Directive} %define @var{variable}
@deffnx {Directive} %define @var{variable} @var{value}
@deffnx {Directive} %define @var{variable} @{@var{value}@}
@deffnx {Directive} %define @var{variable} "@var{value}"
Define a variable to adjust Bison's behavior. @xref{%define Summary}.
@end deffn
@deffn {Directive} %defines
@deffnx {Directive} %defines @var{defines-file}
Historical name for @code{%header}. @xref{%header,,@code{%header}}.
@end deffn
@deffn {Directive} %destructor
Specify how the parser should reclaim the memory associated to
discarded symbols. @xref{Destructor Decl}.
@end deffn
@deffn {Directive} %file-prefix "@var{prefix}"
Specify a prefix to use for all Bison output file names. The names
are chosen as if the grammar file were named @file{@var{prefix}.y}.
@end deffn
@anchor{%header}
@deffn {Directive} %header
Write a parser header file containing definitions for the token kind names
defined in the grammar as well as a few other declarations. If the parser
implementation file is named @file{@var{name}.c} then the parser header file
is named @file{@var{name}.h}.
For C parsers, the parser header file declares @code{YYSTYPE} unless
@code{YYSTYPE} is already defined as a macro or you have used a
@code{<@var{type}>} tag without using @code{%union}. Therefore, if you are
using a @code{%union} (@pxref{Multiple Types}) with components that require
other definitions, or if you have defined a @code{YYSTYPE} macro or type
definition (@pxref{Value Type}), you need to arrange for these definitions
to be propagated to all modules, e.g., by putting them in a prerequisite
header that is included both by your parser and by any other module that
needs @code{YYSTYPE}.
Unless your parser is pure, the parser header file declares
@code{yylval} as an external variable. @xref{Pure Decl}.
If you have also used locations, the parser header file declares
@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
This parser header file is normally essential if you wish to put the
definition of @code{yylex} in a separate source file, because
@code{yylex} typically needs to be able to refer to the
above-mentioned declarations and to the token kind codes. @xref{Token
Values}.
@findex %code requires
@findex %code provides
If you have declared @code{%code requires} or @code{%code provides}, the output
header also contains their code.
@xref{%code Summary}.
@cindex Header guard
The generated header is protected against multiple inclusions with a C
preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers}) and
generated file name turned uppercase, with each series of non alphanumerical
characters converted to a single underscore.
For instance with @samp{%define api.prefix @{calc@}} and @samp{%header
"lib/parse.h"}, the header will be guarded as follows.
@example
#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
# define YY_CALC_LIB_PARSE_H_INCLUDED
...
#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
@end example
Introduced in Bison 3.8.
@end deffn
@deffn {Directive} %header @var{header-file}
Same as above, but save in the file @file{@var{header-file}}.
@end deffn
@deffn {Directive} %language "@var{language}"
Specify the programming language for the generated parser. Currently
supported languages include C, C++, D and Java. @var{language} is
case-insensitive.
@end deffn
@deffn {Directive} %locations
Generate the code processing the locations (@pxref{Action Features}). This
mode is enabled as soon as the grammar uses the special @samp{@@@var{n}}
tokens, but if your grammar does not use it, using @samp{%locations} allows
for more accurate syntax error messages.
@end deffn
@deffn {Directive} %name-prefix "@var{prefix}"
Obsoleted by @samp{%define api.prefix @{@var{prefix}@}}. @xref{Multiple
Parsers}. For C++ parsers, see the
@samp{%define api.namespace} documentation in this section.
Rename the external symbols used in the parser so that they start with
@var{prefix} instead of @samp{yy}. The precise list of symbols renamed in C
parsers is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
@code{yylval}, @code{yychar}, @code{yydebug}, and (if locations are used)
@code{yylloc}. If you use a push parser, @code{yypush_parse},
@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
@code{yypstate_delete} will also be renamed. For example, if you use
@samp{%name-prefix "c_"}, the names become @code{c_parse}, @code{c_lex}, and
so on.
Contrary to defining @code{api.prefix}, some symbols are @emph{not} renamed
by @code{%name-prefix}, for instance @code{YYDEBUG}, @code{YYTOKENTYPE},
@code{yytoken_kind_t}, @code{YYSTYPE}, @code{YYLTYPE}.
@end deffn
@ifset defaultprec
@deffn {Directive} %no-default-prec
Do not assign a precedence to rules lacking an explicit @code{%prec}
modifier (@pxref{Contextual Precedence}).
@end deffn
@end ifset
@deffn {Directive} %no-lines
Don't generate any @code{#line} preprocessor commands in the parser
implementation file. Ordinarily Bison writes these commands in the parser
implementation file so that the C compiler and debuggers will associate
errors and object code with your source file (the grammar file). This
directive causes them to associate errors with the parser implementation
file, treating it as an independent source file in its own right.
@end deffn
@deffn {Directive} %output "@var{file}"
Generate the parser implementation in @file{@var{file}}.
@end deffn
@deffn {Directive} %pure-parser
Deprecated version of @samp{%define api.pure} (@pxref{%define
Summary}), for which Bison is more careful to warn about
unreasonable usage.
@end deffn
@deffn {Directive} %require "@var{version}"
Require version @var{version} or higher of Bison. @xref{Require Decl}.
@end deffn
@deffn {Directive} %skeleton "@var{file}"
Specify the skeleton to use.
@c You probably don't need this option unless you are developing Bison.
@c You should use @code{%language} if you want to specify the skeleton for a
@c different language, because it is clearer and because it will always choose the
@c correct skeleton for non-deterministic or push parsers.
If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
file in the Bison installation directory.
If it does, @var{file} is an absolute file name or a file name relative to the
directory of the grammar file.
This is similar to how most shells resolve commands.
@end deffn
@deffn {Directive} %token-table
This feature is obsolescent, avoid it in new projects.
Generate an array of token names in the parser implementation file. The
name of the array is @code{yytname}; @code{yytname[@var{i}]} is the name of
the token whose internal Bison token code is @var{i}. The first three
elements of @code{yytname} correspond to the predefined tokens
@code{"$end"}, @code{"error"}, and @code{"$undefined"}; after these come the
symbols defined in the grammar file.
The name in the table includes all the characters needed to represent the
token in Bison. For single-character literals and literal strings, this
includes the surrounding quoting characters and any escape sequences. For
example, the Bison single-character literal @code{'+'} corresponds to a
three-character name, represented in C as @code{"'+'"}; and the Bison
two-character literal string @code{"\\/"} corresponds to a five-character
name, represented in C as @code{"\"\\\\/\""}.
When you specify @code{%token-table}, Bison also generates macro definitions
for macros @code{YYNTOKENS}, @code{YYNNTS}, and @code{YYNRULES}, and
@code{YYNSTATES}:
@table @code
@item YYNTOKENS
The number of terminal symbols, i.e., the highest token code, plus one.
@item YYNNTS
The number of nonterminal symbols.
@item YYNRULES
The number of grammar rules,
@item YYNSTATES
The number of parser states (@pxref{Parser States}).
@end table
Here's code for looking up a multicharacter token in @code{yytname},
assuming that the characters of the token are stored in @code{token_buffer},
and assuming that the token does not contain any characters like @samp{"}
that require escaping.
@example
for (int i = 0; i < YYNTOKENS; i++)
if (yytname[i]
&& yytname[i][0] == '"'
&& ! strncmp (yytname[i] + 1, token_buffer,
strlen (token_buffer))
&& yytname[i][strlen (token_buffer) + 1] == '"'
&& yytname[i][strlen (token_buffer) + 2] == 0)
break;
@end example
This method is discouraged: the primary purpose of string aliases is forging
good error messages, not describing the spelling of keywords. In addition,
looking for the token kind at runtime incurs a (small but noticeable) cost.
Finally, @code{%token-table} is incompatible with the @code{custom} and
@code{detailed} values of the @code{parse.error} @code{%define} variable.
@end deffn
@deffn {Directive} %verbose
Write an extra output file containing verbose descriptions of the parser
states and what is done for each type of lookahead token in that state.
@xref{Understanding}, for more information.
@end deffn
@deffn {Directive} %yacc
Pretend the option @option{--yacc} was given
(@pxref{option-yacc,,@option{--yacc}}), i.e., imitate Yacc, including its
naming conventions. Only makes sense with the @file{yacc.c}
skeleton. @xref{Tuning the Parser}, for more.
Of course, being a Bison extension, @code{%yacc} is somewhat
self-contradictory@dots{}
@end deffn
@node %define Summary
@subsection %define Summary
There are many features of Bison's behavior that can be controlled by
assigning the feature a single value. For historical reasons, some such
features are assigned values by dedicated directives, such as @code{%start},
which assigns the start symbol. However, newer such features are associated
with variables, which are assigned by the @code{%define} directive:
@deffn {Directive} %define @var{variable}
@deffnx {Directive} %define @var{variable} @var{value}
@deffnx {Directive} %define @var{variable} @{@var{value}@}
@deffnx {Directive} %define @var{variable} "@var{value}"
Define @var{variable} to @var{value}.
The type of the values depend on the syntax. Braces denote value in the
target language (e.g., a namespace, a type, etc.). Keyword values (no
delimiters) denote finite choice (e.g., a variation of a feature). String
values denote remaining cases (e.g., a file name).
It is an error if a @var{variable} is defined by @code{%define} multiple
times, but see @ref{Tuning the Parser,,@option{-D @var{name}[=@var{value}]}}.
@end deffn
The rest of this section summarizes variables and values that @code{%define}
accepts.
Some @var{variable}s take Boolean values. In this case, Bison will complain
if the variable definition does not meet one of the following four
conditions:
@enumerate
@item @code{@var{value}} is @code{true}
@item @code{@var{value}} is omitted (or @code{""} is specified).
This is equivalent to @code{true}.
@item @code{@var{value}} is @code{false}.
@item @var{variable} is never defined.
In this case, Bison selects a default value.
@end enumerate
What @var{variable}s are accepted, as well as their meanings and default
values, depend on the selected target language and/or the parser skeleton
(@pxref{Decl Summary}, @pxref{Decl Summary}).
Unaccepted @var{variable}s produce an error. Some of the accepted
@var{variable}s are described below.
@c ================================================== api.filename.file
@anchor{api-filename-type}
@deffn {Directive} {%define api.filename.type} @{@var{type}@}
@itemize @bullet
@item Language(s): C++
@item Purpose:
Define the type of file names in Bison's default location and position
types. @xref{Exposing the Location Classes}.
@item Accepted Values:
Any type that is printable (via streams) and comparable (with @code{==} and
@code{!=}).
@item Default Value: @code{const std::string}.
@item History:
Introduced in Bison 2.0 as @code{filename_type} (with @code{std::string} as
default), renamed as @code{api.filename.type} in Bison 3.7 (with @code{const
std::string} as default).
@end itemize
@end deffn
@c ================================================== api.header.include
@deffn Directive {%define api.header.include} @{"header.h"@}
@deffnx Directive {%define api.header.include} @{<header.h>@}
@itemize
@item Languages(s): C (@file{yacc.c})
@item Purpose: Specify how the generated parser should include the generated header.
Historically, when option @option{-d} or @option{--header} was used,
@command{bison} generated a header and pasted an exact copy of it into the
generated parser implementation file. Since Bison 3.6, it is
@code{#include}d as @samp{"@var{basename}.h"}, instead of duplicated, unless
@var{file} is @samp{y.tab}, see below.
The @code{api.header.include} variable allows to control how the generated
parser @code{#include}s the generated header. For instance:
@example
%define api.header.include @{"parse.h"@}
@end example
@noindent
or
@example
%define api.header.include @{<parser/parse.h>@}
@end example
Using @code{api.header.include} does not change the name of the generated
header, only how it is included.
To work around limitations of Automake's @command{ylwrap} (which runs
@command{bison} with @option{--yacc}), @code{api.header.include} is
@emph{not} predefined when the output file is @file{y.tab.c}. Define it to
avoid the duplication.
@item Accepted Values:
An argument for @code{#include}.
@item Default Value:
@samp{"@var{header-basename}"}, unless the header file is @file{y.tab.h},
where @var{header-basename} is the name of the generated header, without
directory part. For instance with @samp{bison -d calc/parse.y},
@code{api.header.include} defaults to @samp{"parse.h"}, not
@samp{"calc/parse.h"}.
@item History:
Introduced in Bison 3.4. Defaults to @samp{"@var{basename}.h"} since Bison
3.7, unless the header file is @file{y.tab.h}.
@end itemize
@end deffn
@c api.header.include
@c ================================================== api.location.file
@deffn {Directive} {%define api.location.file} "@var{file}"
@deffnx {Directive} {%define api.location.file} @code{none}
@itemize @bullet
@item Language(s): C++
@item Purpose:
Define the name of the file in which Bison's default location and position
types are generated. @xref{Exposing the Location Classes}.
@item Accepted Values:
@table @asis
@item @code{none}
If locations are enabled, generate the definition of the @code{position} and
@code{location} classes in the header file if @code{%header}, otherwise in
the parser implementation.
@item "@var{file}"
Generate the definition of the @code{position} and @code{location} classes
in @var{file}. This file name can be relative (to where the parser file is
output) or absolute.
@end table
@item Default Value:
Not applicable if locations are not enabled, or if a user location type is
specified (see @code{api.location.type}). Otherwise, Bison's
@code{location} is generated in @file{location.hh} (@pxref{C++ location}).
@item History:
Introduced in Bison 3.2.
@end itemize
@end deffn
@c ================================================== api.location.file
@deffn {Directive} {%define api.location.include} @{"@var{file}"@}
@deffnx {Directive} {%define api.location.include} @{<@var{file}>@}
@itemize @bullet
@item Language(s): C++
@item Purpose:
Specify how the generated file that defines the @code{position} and
@code{location} classes is included. This makes sense when the
@code{location} class is exposed to the rest of your application/library in
another directory. @xref{Exposing the Location Classes}.
@item Accepted Values: Argument for @code{#include}.
@item Default Value:
@samp{"@var{dir}/location.hh"} where @var{dir} is the directory part of the
output. For instance @file{src/parse} if
@option{--output=src/parse/parser.cc} was given.
@item History:
Introduced in Bison 3.2.
@end itemize
@end deffn
@c ================================================== api.location.type
@deffn {Directive} {%define api.location.type} @{@var{type}@}
@itemize @bullet
@item Language(s): C, C++, Java
@item Purpose: Define the location type.
@xref{Location Type}, and @ref{User Defined Location Type}.
@item Accepted Values: String
@item Default Value: none
@item History:
Introduced in Bison 2.7 for C++ and Java, in Bison 3.4 for C. Was
originally named @code{location_type} in Bison 2.5 and 2.6.
@end itemize
@end deffn
@c ================================================== api.namespace
@deffn Directive {%define api.namespace} @{@var{namespace}@}
@itemize
@item Languages(s): C++
@item Purpose: Specify the namespace for the parser class.
For example, if you specify:
@example
%define api.namespace @{foo::bar@}
@end example
Bison uses @code{foo::bar} verbatim in references such as:
@example
foo::bar::parser::value_type
@end example
However, to open a namespace, Bison removes any leading @code{::} and then
splits on any remaining occurrences:
@example
namespace foo @{ namespace bar @{
class position;
class location;
@} @}
@end example
@item Accepted Values:
Any absolute or relative C++ namespace reference without a trailing
@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
@item Default Value:
@code{yy}, unless you used the obsolete @samp{%name-prefix "@var{prefix}"}
directive.
@end itemize
@end deffn
@c api.namespace
@c ================================================== api.parser.class
@deffn Directive {%define api.parser.class} @{@var{name}@}
@itemize @bullet
@item Language(s):
C++, Java, D
@item Purpose:
The name of the parser class.
@item Accepted Values:
Any valid identifier.
@item Default Value:
In C++, @code{parser}. In D and Java, @code{YYParser} or
@code{@var{api.prefix}Parser} (@pxref{Java Bison Interface}).
@item History:
Introduced in Bison 3.3 to replace @code{parser_class_name}.
@end itemize
@end deffn
@c api.parser.class
@c ================================================== api.prefix
@deffn {Directive} {%define api.prefix} @{@var{prefix}@}
@itemize @bullet
@item Language(s): C, C++, Java
@item Purpose: Rename exported symbols.
@xref{Multiple Parsers}.
@item Accepted Values: String
@item Default Value: @code{YY} for Java, @code{yy} otherwise.
@item History:
introduced in Bison 2.6, with its argument in double quotes. Uses braces
since Bison 3.0 (double quotes are still supported for backward
compatibility).
@end itemize
@end deffn
@c ================================================== api.pure
@deffn Directive {%define api.pure} @var{purity}
@itemize @bullet
@item Language(s): C
@item Purpose: Request a pure (reentrant) parser program.
@xref{Pure Decl}.
@item Accepted Values: @code{true}, @code{false}, @code{full}
The value may be omitted: this is equivalent to specifying @code{true}, as is
the case for Boolean values.
When @code{%define api.pure full} is used, the parser is made reentrant. This
changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
@code{yyerror} when the tracking of locations has been activated, as shown
below.
The @code{true} value is very similar to the @code{full} value, the only
difference is in the signature of @code{yyerror} on Yacc parsers without
@code{%parse-param}, for historical reasons.
I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
@code{yyerror} are:
@example
void yyerror (char const *msg); // Yacc parsers.
void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
@end example
But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
used, then both parsers have the same signature:
@example
void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
@end example
(@pxref{Error Reporting Function})
@item Default Value: @code{false}
@item History:
the @code{full} value was introduced in Bison 2.7
@end itemize
@end deffn
@c api.pure
@c ================================================== api.push-pull
@deffn Directive {%define api.push-pull} @var{kind}
@itemize @bullet
@item Language(s): C (deterministic parsers only), D, Java
@item Purpose: Request a pull parser, a push parser, or both.
@xref{Push Decl}.
@item Accepted Values: @code{pull}, @code{push}, @code{both}
@item Default Value: @code{pull}
@end itemize
@end deffn
@c api.push-pull
@c ================================================== api.symbol.prefix
@deffn Directive {%define api.symbol.prefix} @{@var{prefix}@}
@itemize
@item Languages(s): all
@item Purpose:
Add a prefix to the name of the symbol kinds. For instance
@example
%define api.symbol.prefix @{S_@}
%token FILE for ERROR
%%
start: FILE for ERROR;
@end example
@noindent
generates this definition in C:
@example
/* Symbol kind. */
enum yysymbol_kind_t
@{
S_YYEMPTY = -2, /* No symbol. */
S_YYEOF = 0, /* $end */
S_YYERROR = 1, /* error */
S_YYUNDEF = 2, /* $undefined */
S_FILE = 3, /* FILE */
S_for = 4, /* for */
S_ERROR = 5, /* ERROR */
S_YYACCEPT = 6, /* $accept */
S_start = 7 /* start */
@};
@end example
@item Accepted Values:
Any non empty string. Must be a valid identifier in the target language
(typically a non empty sequence of letters, underscores, and ---not at the
beginning--- digits).
The empty prefix is (generally) invalid:
@itemize
@item
in C it would create collision with the @code{YYERROR} macro, and
potentially token kind definitions and symbol kind definitions would
collide;
@item
unnamed symbols (such as @samp{'+'}) have a name which starts with a digit;
@item
even in languages with scoped enumerations such as Java, an empty prefix is
dangerous: symbol names may collide with the target language keywords, or
with other members of the @code{SymbolKind} class.
@end itemize
@item Default Value:
@code{YYSYMBOL_} in C, @code{S_} in C++ and Java, empty in D.
@item History:
introduced in Bison 3.6.
@end itemize
@end deffn
@c api.symbol.prefix
@c ================================================== api.token.constructor
@deffn Directive {%define api.token.constructor}
@itemize @bullet
@item Language(s):
C++, D
@item Purpose:
Request that symbols be handled as a whole (type, value, and possibly
location) in the scanner. In the case of C++, it works only when
variant-based semantic values are enabled (@pxref{C++ Variants}), see
@ref{Complete Symbols}, for details. In D, token constructors work with both
@samp{%union} and @samp{%define api.value.type union}.
@item Accepted Values:
Boolean.
@item Default Value:
@code{false}
@item History:
introduced in Bison 3.0.
@end itemize
@end deffn
@c api.token.constructor
@c ================================================== api.token.prefix
@anchor{api-token-prefix}
@deffn Directive {%define api.token.prefix} @{@var{prefix}@}
@itemize
@item Languages(s): all
@item Purpose:
Add a prefix to the token names when generating their definition in the
target language. For instance
@example
%define api.token.prefix @{TOK_@}
%token FILE for ERROR
%%
start: FILE for ERROR;
@end example
@noindent
generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for}, and
@code{TOK_ERROR} in the generated source files. In particular, the scanner
must use these prefixed token names, while the grammar itself may still use
the short names (as in the sample rule given above). The generated
informational files (@file{*.output}, @file{*.xml}, @file{*.gv}) are not
modified by this prefix.
Bison also prefixes the generated member names of the semantic value union.
@xref{Type Generation}, for more
details.
See @ref{Calc++ Parser} and @ref{Calc++ Scanner}, for a complete example.
@item Accepted Values:
Any string. Must be a valid identifier prefix in the target language
(typically, a possibly empty sequence of letters, underscores, and ---not at
the beginning--- digits).
@item Default Value:
empty
@item History:
introduced in Bison 3.0.
@end itemize
@end deffn
@c api.token.prefix
@c ================================================== api.token.raw
@deffn Directive {%define api.token.raw}
@itemize @bullet
@item Language(s):
all
@item Purpose:
The output files normally define the enumeration of the @emph{token kinds}
with Yacc-compatible token codes: sequential numbers starting at 257 except
for single character tokens which stand for themselves (e.g., in ASCII,
@samp{'a'} is numbered 65). The parser however uses @emph{symbol kinds}
which are assigned numbers sequentially starting at 0. Therefore each time
the scanner returns an (external) token kind, it must be mapped to the
(internal) symbol kind.
When @code{api.token.raw} is set, the code of the token kinds are forced to
coincide with the symbol kind. This saves one table lookup per token to map
them from the token kind to the symbol kind, and also saves the generation
of the mapping table. The gain is typically moderate, but in extreme cases
(very simple user actions), a 10% improvement can be observed.
When @code{api.token.raw} is set, the grammar cannot use character literals
(such as @samp{'a'}).
@item Accepted Values: Boolean.
@item Default Value:
@code{true} in D, @code{false} otherwise
@item History:
introduced in Bison 3.5. Was initially introduced in Bison 1.25 as
@samp{%raw}, but never worked and was removed in Bison 1.29.
@end itemize
@end deffn
@c api.token.raw
@c ================================================== api.value.automove
@deffn Directive {%define api.value.automove}
@itemize @bullet
@item Language(s):
C++
@item Purpose:
Let occurrences of semantic values of the right-hand sides of a rule be
implicitly turned in rvalues. When enabled, a grammar such as:
@example
exp:
"number" @{ $$ = make_number ($1); @}
| exp "+" exp @{ $$ = make_binary (add, $1, $3); @}
| "(" exp ")" @{ $$ = $2; @}
@end example
@noindent
is actually compiled as if you had written:
@example
exp:
"number" @{ $$ = make_number (std::move ($1)); @}
| exp "+" exp @{ $$ = make_binary (add,
std::move ($1),
std::move ($3)); @}
| "(" exp ")" @{ $$ = std::move ($2); @}
@end example
Using a value several times with automove enabled is typically an error.
For instance, instead of:
@example
exp: "twice" exp @{ $$ = make_binary (add, $2, $2); @}
@end example
@noindent
write:
@example
exp: "twice" exp @{ auto v = $2; $$ = make_binary (add, v, v); @}
@end example
@noindent
It is tempting to use @code{std::move} on one of the @code{v}, but the
argument evaluation order in C++ is unspecified.
@item Accepted Values:
Boolean.
@item Default Value:
@code{false}
@item History:
introduced in Bison 3.2
@end itemize
@end deffn
@c api.value.automove
@c ================================================== api.value.type
@deffn Directive {%define api.value.type} @var{support}
@deffnx Directive {%define api.value.type} @{@var{type}@}
@itemize @bullet
@item Language(s):
all
@item Purpose:
The type for semantic values.
@item Accepted Values:
@table @asis
@item @samp{@{@}}
This grammar has no semantic value at all. This is not properly supported
yet.
@item @samp{union-directive} (C, C++, D)
The type is defined thanks to the @code{%union} directive. You don't have
to define @code{api.value.type} in that case, using @code{%union} suffices.
@xref{Union Decl}.
For instance:
@example
%define api.value.type union-directive
%union
@{
int ival;
char *sval;
@}
%token <ival> INT "integer"
%token <sval> STR "string"
@end example
@item @samp{union} (C, C++)
The symbols are defined with type names, from which Bison will generate a
@code{union}. For instance:
@example
%define api.value.type union
%token <int> INT "integer"
%token <char *> STR "string"
@end example
Most C++ objects cannot be stored in a @code{union}, use @samp{variant}
instead.
@item @samp{variant} (C++)
This is similar to @code{union}, but special storage techniques are used to
allow any kind of C++ object to be used. For instance:
@example
%define api.value.type variant
%token <int> INT "integer"
%token <std::string> STR "string"
@end example
@xref{C++ Variants}.
@item @samp{@{@var{type}@}}
Use this @var{type} as semantic value.
@example
%code requires
@{
struct my_value
@{
enum
@{
is_int, is_str
@} kind;
union
@{
int ival;
char *sval;
@} u;
@};
@}
%define api.value.type @{struct my_value@}
%token <u.ival> INT "integer"
%token <u.sval> STR "string"
@end example
@end table
@item Default Value:
@itemize @minus
@item
@code{union-directive} if @code{%union} is used, otherwise @dots{}
@item
@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
@samp{%nterm <@var{type}>@dots{}} is used), otherwise @dots{}
@item
undefined.
@end itemize
@item History:
introduced in Bison 3.0. Was introduced for Java only in 2.3b as
@code{stype}.
@end itemize
@end deffn
@c api.value.type
@c ================================================== api.value.union.name
@deffn Directive {%define api.value.union.name} @var{name}
@itemize @bullet
@item Language(s):
C
@item Purpose:
The tag of the generated @code{union} (@emph{not} the name of the
@code{typedef}). This variable is set to @code{@var{id}} when @samp{%union
@var{id}} is used. There is no clear reason to give this union a name.
@item Accepted Values:
Any valid identifier.
@item Default Value:
@code{YYSTYPE}.
@item History:
Introduced in Bison 3.0.3.
@end itemize
@end deffn
@c api.value.union.name
@c ================================================== lr.default-reduction
@deffn Directive {%define lr.default-reduction} @var{when}
@itemize @bullet
@item Language(s): all
@item Purpose: Specify the kind of states that are permitted to
contain default reductions. @xref{Default Reductions}.
@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
@item Default Value:
@itemize
@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
@item @code{most} otherwise.
@end itemize
@item History:
introduced as @code{lr.default-reductions} in 2.5, renamed as
@code{lr.default-reduction} in 3.0.
@end itemize
@end deffn
@c ============================================ lr.keep-unreachable-state
@deffn Directive {%define lr.keep-unreachable-state}
@itemize @bullet
@item Language(s): all
@item Purpose: Request that Bison allow unreachable parser states to
remain in the parser tables. @xref{Unreachable States}.
@item Accepted Values: Boolean
@item Default Value: @code{false}
@item History:
introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
@code{lr.keep-unreachable-states} in 2.5, and as
@code{lr.keep-unreachable-state} in 3.0.
@end itemize
@end deffn
@c lr.keep-unreachable-state
@c ================================================== lr.type
@deffn Directive {%define lr.type} @var{type}
@itemize @bullet
@item Language(s): all
@item Purpose: Specify the type of parser tables within the
LR(1) family. @xref{LR Table Construction}.
@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
@item Default Value: @code{lalr}
@end itemize
@end deffn
@c ================================================== namespace
@deffn Directive %define namespace @{@var{namespace}@}
Obsoleted by @code{api.namespace}
@end deffn
@c namespace
@c ================================================== parse.assert
@deffn Directive {%define parse.assert}
@itemize
@item Languages(s): C, C++
@item Purpose: Issue runtime assertions to catch invalid uses.
In C, some important invariants in the implementation of the parser are
checked when this option is enabled.
In C++, when variants are used (@pxref{C++ Variants}), symbols must be
constructed and destroyed properly. This option checks these constraints
using runtime type information (RTTI). Therefore the generated code cannot
be compiled with RTTI disabled (via compiler options such as
@option{-fno-rtti}).
@item Accepted Values: Boolean
@item Default Value: @code{false}
@end itemize
@end deffn
@c parse.assert
@c ================================================== parse.error
@deffn Directive {%define parse.error} @var{verbosity}
@itemize
@item Languages(s):
all
@item Purpose:
Control the generation of syntax error messages. @xref{Error Reporting}.
@item Accepted Values:
@itemize
@item @code{simple}
Error messages passed to @code{yyerror} are simply @w{@code{"syntax
error"}}.
@item @code{detailed}
Error messages report the unexpected token, and possibly the expected ones.
However, this report can often be incorrect when LAC is not enabled
(@pxref{LAC}). Token name internationalization is supported.
@item @code{verbose}
Similar (but inferior) to @code{detailed}. The D parser does not support this value.
Error messages report the unexpected token, and possibly the expected ones.
However, this report can often be incorrect when LAC is not enabled
(@pxref{LAC}).
Does not support token internationalization. Using non-ASCII characters in
token aliases is not portable.
@item @code{custom}
The user is in charge of generating the syntax error message by defining the
@code{yyreport_syntax_error} function. @xref{Syntax Error Reporting
Function}.
@end itemize
@item Default Value:
@code{simple}
@item History:
introduced in 3.0 with support for @code{simple} and @code{verbose}. Values
@code{custom} and @code{detailed} were introduced in 3.6.
@end itemize
@end deffn
@c parse.error
@c ================================================== parse.lac
@deffn Directive {%define parse.lac} @var{when}
@itemize
@item Languages(s): C/C++ (deterministic parsers only), D and Java.
@item Purpose: Enable LAC (lookahead correction) to improve
syntax error handling. @xref{LAC}.
@item Accepted Values: @code{none}, @code{full}
@item Default Value: @code{none}
@end itemize
@end deffn
@c parse.lac
@c ================================================== parse.trace
@deffn Directive {%define parse.trace}
@itemize
@item Languages(s): C, C++, D, Java
@item Purpose: Require parser instrumentation for tracing.
@xref{Tracing}.
In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
@samp{%define api.prefix @{@var{prefix}@}}), see @ref{Multiple Parsers}) to
1 (if it is not already defined) so that the debugging facilities are
compiled.
@item Accepted Values: Boolean
@item Default Value: @code{false}
@end itemize
@end deffn
@c parse.trace
@c ================================================== parser_class_name
@deffn Directive %define parser_class_name @{@var{name}@}
Obsoleted by @code{api.parser.class}
@end deffn
@c parser_class_name
@node %code Summary
@subsection %code Summary
@findex %code
@cindex Prologue
The @code{%code} directive inserts code verbatim into the output
parser source at any of a predefined set of locations. It thus serves
as a flexible and user-friendly alternative to the traditional Yacc
prologue, @code{%@{@var{code}%@}}. This section summarizes the
functionality of @code{%code} for the various target languages
supported by Bison. For a detailed discussion of how to use
@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
is advantageous to do so, @pxref{Prologue Alternatives}.
@deffn {Directive} %code @{@var{code}@}
This is the unqualified form of the @code{%code} directive. It
inserts @var{code} verbatim at a language-dependent default location
in the parser implementation.
For C/C++, the default location is the parser implementation file
after the usual contents of the parser header file. Thus, the
unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
For D and Java, the default location is inside the parser class.
@end deffn
@deffn {Directive} %code @var{qualifier} @{@var{code}@}
This is the qualified form of the @code{%code} directive.
@var{qualifier} identifies the purpose of @var{code} and thus the
location(s) where Bison should insert it. That is, if you need to
specify location-sensitive @var{code} that does not belong at the
default location selected by the unqualified @code{%code} form, use
this form instead.
@end deffn
For any particular qualifier or for the unqualified form, if there are
multiple occurrences of the @code{%code} directive, Bison concatenates
the specified code in the order in which it appears in the grammar
file.
Not all qualifiers are accepted for all target languages. Unaccepted
qualifiers produce an error. Some of the accepted qualifiers are:
@table @code
@item requires
@findex %code requires
@itemize @bullet
@item Language(s): C, C++
@item Purpose:
This is the best place to write dependency code required for the value and
location types (@code{YYSTYPE} and @code{YYLTYPE} in C). In other words,
it's the best place to define types referenced in @code{%union} directives.
In C, if you use @code{#define} to override Bison's default @code{YYSTYPE}
and @code{YYLTYPE} definitions, then it is also the best place. However you
should rather @code{%define} @code{api.value.type} and
@code{api.location.type}.
@item Location(s):
The parser header file and the parser implementation file before the
Bison-generated definitions of the value and location types (@code{YYSTYPE}
and @code{YYLTYPE} in C).
@end itemize
@item provides
@findex %code provides
@itemize @bullet
@item Language(s): C, C++
@item Purpose: This is the best place to write additional definitions and
declarations that should be provided to other modules.
@item Location(s):
The parser header file and the parser implementation file after the
Bison-generated value and location types (@code{YYSTYPE} and @code{YYLTYPE}
in C), and token definitions.
@end itemize
@item top
@findex %code top
@itemize @bullet
@item Language(s): C, C++
@item Purpose: The unqualified @code{%code} or @code{%code requires}
should usually be more appropriate than @code{%code top}. However,
occasionally it is necessary to insert code much nearer the top of the
parser implementation file. For example:
@example
%code top @{
#define _GNU_SOURCE
#include <stdio.h>
@}
@end example
@item Location(s): Near the top of the parser implementation file.
@end itemize
@item imports
@findex %code imports
@itemize @bullet
@item Language(s): D, Java
@item Purpose: This is the best place to write Java import directives. D syntax
allows for import statements all throughout the code.
@item Location(s): The parser Java file after any Java package directive and
before any class definitions. The parser D file before any class definitions.
@end itemize
@end table
Though we say the insertion locations are language-dependent, they are
technically skeleton-dependent. Writers of non-standard skeletons
however should choose their locations consistently with the behavior
of the standard Bison skeletons.
@node Multiple Parsers
@section Multiple Parsers in the Same Program
Most programs that use Bison parse only one language and therefore contain
only one Bison parser. But what if you want to parse more than one language
with the same program? Then you need to avoid name conflicts between
different definitions of functions and variables such as @code{yyparse},
@code{yylval}. To use different parsers from the same compilation unit, you
also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
exported in the generated header.
The easy way to do this is to define the @code{%define} variable
@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
headers do not conflict when included together, and that compiled objects
can be linked together too. Specifying @samp{%define api.prefix
@{@var{prefix}@}} (or passing the option @option{-Dapi.prefix=@{@var{prefix}@}}, see
@ref{Invocation}) renames the interface functions and
variables of the Bison parser to start with @var{prefix} instead of
@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
upper-cased) instead of @samp{YY}.
The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
@code{yydebug}. If you use a push parser, @code{yypush_parse},
@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
@code{yypstate_delete} will also be renamed. The renamed macros include
@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
specifically --- more about this below.
For example, if you use @samp{%define api.prefix @{c@}}, the names become
@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
on.
Users of Flex must update the signature of the generated @code{yylex}
function. Since the Flex scanner usually includes the generated header of
the parser (to get the definitions of the tokens, etc.), the most convenient
way is to insert the declaration of @code{yylex} in the @code{provides}
section:
@example
%define api.prefix @{c@}
// Emitted in the header file, after the definition of YYSTYPE.
%code provides
@{
// Tell Flex the expected prototype of yylex.
#define YY_DECL \
int clex (CSTYPE *yylval, CLTYPE *yylloc)
// Declare the scanner.
YY_DECL;
@}
@end example
@sp 1
The @code{%define} variable @code{api.prefix} works in two different ways.
In the implementation file, it works by adding macro definitions to the
beginning of the parser implementation file, defining @code{yyparse} as
@code{@var{prefix}parse}, and so on:
@example
#define YYSTYPE CTYPE
#define yyparse cparse
#define yylval clval
...
YYSTYPE yylval;
int yyparse (void);
@end example
This effectively substitutes one name for the other in the entire parser
implementation file, thus the ``original'' names (@code{yylex},
@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
However, in the parser header file, the symbols are defined renamed, for
instance:
@example
extern CSTYPE clval;
int cparse (void);
@end example
The macro @code{YYDEBUG} is commonly used to enable the tracing support in
parsers. To comply with this tradition, when @code{api.prefix} is used,
@code{YYDEBUG} (not renamed) is used as a default value:
@example
/* Debug traces. */
#ifndef CDEBUG
# if defined YYDEBUG
# if YYDEBUG
# define CDEBUG 1
# else
# define CDEBUG 0
# endif
# else
# define CDEBUG 0
# endif
#endif
#if CDEBUG
extern int cdebug;
#endif
@end example
@sp 2
Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols}) and
the option @option{--name-prefix} (@pxref{Output Files}).
@node Interface
@chapter Parser C-Language Interface
@cindex C-language interface
@cindex interface
The Bison parser is actually a C function named @code{yyparse}. Here we
describe the interface conventions of @code{yyparse} and the other
functions that it needs to use.
Keep in mind that the parser uses many C identifiers starting with
@samp{yy} and @samp{YY} for internal purposes. If you use such an
identifier (aside from those in this manual) in an action or in epilogue
in the grammar file, you are likely to run into trouble.
@menu
* Parser Function:: How to call @code{yyparse} and what it returns.
* Push Parser Interface:: How to create, use, and destroy push parsers.
* Lexical:: You must supply a function @code{yylex}
which reads tokens.
* Error Reporting:: Passing error messages to the user.
* Action Features:: Special features for use in actions.
* Internationalization:: How to let the parser speak in the user's
native language.
@end menu
@node Parser Function
@section The Parser Function @code{yyparse}
@findex yyparse
You call the function @code{yyparse} to cause parsing to occur. This
function reads tokens, executes actions, and ultimately returns when it
encounters end-of-input or an unrecoverable syntax error. You can also
write an action which directs @code{yyparse} to return immediately
without reading further.
@deftypefun int yyparse (@code{void})
The value returned by @code{yyparse} is 0 if parsing was successful (return
is due to end-of-input).
The value is 1 if parsing failed because of invalid input, i.e., input
that contains a syntax error or that causes @code{YYABORT} to be
invoked.
The value is 2 if parsing failed due to memory exhaustion.
@end deftypefun
In an action, you can cause immediate return from @code{yyparse} by using
these macros:
@defmac YYACCEPT
@findex YYACCEPT
Return immediately with value 0 (to report success).
@end defmac
@defmac YYABORT
@findex YYABORT
Return immediately with value 1 (to report failure).
@end defmac
@defmac YYNOMEM
@findex YYNOMEM
Return immediately with value 2 (to report memory exhaustion).
@end defmac
If you use a reentrant parser, you can optionally pass additional
parameter information to it in a reentrant way. To do so, use the
declaration @code{%parse-param}:
@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
@findex %parse-param
Declare that one or more
@var{argument-declaration} are additional @code{yyparse} arguments.
The @var{argument-declaration} is used when declaring
functions or prototypes. The last identifier in
@var{argument-declaration} must be the argument name.
@end deffn
Here's an example. Write this in the parser:
@example
%parse-param @{int *nastiness@} @{int *randomness@}
@end example
@noindent
Then call the parser like this:
@example
@{
int nastiness, randomness;
@dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
value = yyparse (&nastiness, &randomness);
@dots{}
@}
@end example
@noindent
In the grammar actions, use expressions like this to refer to the data:
@example
exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
@end example
@noindent
Using the following:
@example
%parse-param @{int *randomness@}
@end example
Results in these signatures:
@example
void yyerror (int *randomness, const char *msg);
int yyparse (int *randomness);
@end example
@noindent
Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
and @code{%locations} are used:
@example
void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
int yyparse (int *randomness);
@end example
@node Push Parser Interface
@section Push Parser Interface
@findex yypstate_new
You call the function @code{yypstate_new} to create a new parser instance.
This function is available if either the @samp{%define api.push-pull push}
or @samp{%define api.push-pull both} declaration is used. @xref{Push Decl}.
@anchor{yypstate_new}
@deftypefun {yypstate*} yypstate_new (@code{void})
Return a valid parser instance if there is memory available, 0 otherwise.
In impure mode, it will also return 0 if a parser instance is currently
allocated.
@end deftypefun
@findex yypstate_delete
You call the function @code{yypstate_delete} to delete a parser instance.
function is available if either the @samp{%define api.push-pull push} or
@samp{%define api.push-pull both} declaration is used.
@xref{Push Decl}.
@anchor{yypstate_delete}
@deftypefun void yypstate_delete (@code{yypstate *}@var{yyps})
Reclaim the memory associated with a parser instance. After this call, you
should no longer attempt to use the parser instance.
@end deftypefun
@findex yypush_parse
You call the function @code{yypush_parse} to parse a single token. This
function is available if either the @samp{%define api.push-pull push} or
@samp{%define api.push-pull both} declaration is used. @xref{Push Decl}.
@anchor{yypush_parse}
@deftypefun int yypush_parse (@code{yypstate *}@var{yyps})
The value returned by @code{yypush_parse} is the same as for @code{yyparse}
with the following exception: it returns @code{YYPUSH_MORE} if more input is
required to finish parsing the grammar.
After @code{yypush_parse} returned, the instance may be consulted. For
instance check @code{yynerrs} to see whether there were (possibly recovered)
syntax errors.
After @code{yypush_parse} returns a status other than @code{YYPUSH_MORE},
the parser instance @code{yyps} may be reused for a new parse.
@end deftypefun
The fact that the parser state is reusable even after an error simplifies
reuse. For example, a calculator application which parses each input line
as an expression can just keep reusing the same @code{yyps} even if an input
was invalid.
You call the function @code{yypull_parse} to parse the rest of the input
stream. This function is available if the @samp{%define api.push-pull both}
declaration is used. @xref{Push Decl}.
@anchor{yypull_parse}
@deftypefun int yypull_parse (@code{yypstate *}@var{yyps})
The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
The parser instance @code{yyps} may be reused for new parses.
@end deftypefun
@deftypefun int yypstate_expected_tokens (@code{const yypstate *}yyps, @code{yysymbol_kind_t} @var{argv}@code{[]}, @code{int} @var{argc})
Fill @var{argv} with the expected tokens, which never includes
@code{YYSYMBOL_YYEMPTY}, @code{YYSYMBOL_YYerror}, or
@code{YYSYMBOL_YYUNDEF}.
Never put more than @var{argc} elements into @var{argv}, and on success
return the number of tokens stored in @var{argv}. If there are more
expected tokens than @var{argc}, fill @var{argv} up to @var{argc} and return
0. If there are no expected tokens, also return 0, but set @code{argv[0]}
to @code{YYSYMBOL_YYEMPTY}.
When LAC is enabled, may return a negative number on errors,
such as @code{YYENOMEM} on memory exhaustion.
If @var{argv} is null, return the size needed to store all the possible
values, which is always less than @code{YYNTOKENS}.
@end deftypefun
@node Lexical
@section The Lexical Analyzer Function @code{yylex}
@findex yylex
@cindex lexical analyzer
The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
the input stream and returns them to the parser. Bison does not create
this function automatically; you must write it so that @code{yyparse} can
call it. The function is sometimes referred to as a lexical scanner.
In simple programs, @code{yylex} is often defined at the end of the Bison
grammar file. If @code{yylex} is defined in a separate source file, you
need to arrange for the token-kind definitions to be available there. To do
this, use the @option{-d} option when you run Bison, so that it will write
these definitions into the separate parser header file,
@file{@var{name}.tab.h}, which you can include in the other source files
that need it. @xref{Invocation}.
@menu
* Calling Convention:: How @code{yyparse} calls @code{yylex}.
* Special Tokens:: Signaling end-of-file and errors to the parser.
* Tokens from Literals:: Finding token kinds from string aliases.
* Token Values:: How @code{yylex} must return the semantic value
of the token it has read.
* Token Locations:: How @code{yylex} must return the text location
(line number, etc.) of the token, if the
actions want that.
* Pure Calling:: How the calling convention differs in a pure parser
(@pxref{Pure Decl}).
@end menu
@node Calling Convention
@subsection Calling Convention for @code{yylex}
The value that @code{yylex} returns must be the positive numeric code for
the kind of token it has just found; a zero or negative value signifies
end-of-input.
When a token kind is referred to in the grammar rules by a name, that name
in the parser implementation file becomes an enumerator of the enum
@code{yytoken_kind_t} whose definition is the proper numeric code for that
token kind. So @code{yylex} should use the name to indicate that type.
@xref{Symbols}.
When a token is referred to in the grammar rules by a character literal, the
numeric code for that character is also the code for the token kind. So
@code{yylex} can simply return that character code, possibly converted to
@code{unsigned char} to avoid sign-extension. The null character must not
be used this way, because its code is zero and that signifies end-of-input.
Here is an example showing these things:
@example
int
yylex (void)
@{
@dots{}
if (c == EOF) /* Detect end-of-input. */
return YYEOF;
@dots{}
else if (c == '+' || c == '-')
return c; /* Assume token kind for '+' is '+'. */
@dots{}
else
return INT; /* Return the kind of the token. */
@dots{}
@}
@end example
@noindent
This interface has been designed so that the output from the @code{lex}
utility can be used without change as the definition of @code{yylex}.
@node Special Tokens
@subsection Special Tokens
In addition to the user defined tokens, Bison generates a few special tokens
that @code{yylex} may return.
The @code{YYEOF} token denotes the end of file, and signals to the parser
that there is nothing left afterwards. @xref{Calling Convention}, for an
example.
Returning @code{YYUNDEF} tells the parser that some lexical error was found.
It will emit an error message about an ``invalid token'', and enter
error-recovery (@pxref{Error Recovery}). Returning an unknown token kind
results in the exact same behavior.
Returning @code{YYerror} requires the parser to enter error-recovery
@emph{without} emitting an error message. This way the lexical analyzer can
produce an accurate error messages about the invalid input (something the
parser cannot do), and yet benefit from the error-recovery features of the
parser.
@example
int
yylex (void)
@{
@dots{}
switch (c)
@{
@dots{}
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
@dots{}
return TOK_NUM;
@dots{}
case EOF:
return YYEOF;
default:
yyerror ("syntax error: invalid character: %c", c);
return YYerror;
@}
@}
@end example
@node Tokens from Literals
@subsection Finding Tokens by String Literals
If the grammar uses literal string tokens, there are two ways that
@code{yylex} can determine the token kind codes for them:
@itemize @bullet
@item
If the grammar defines symbolic token names as aliases for the literal
string tokens, @code{yylex} can use these symbolic names like all others.
In this case, the use of the literal string tokens in the grammar file has
no effect on @code{yylex}.
This is the preferred approach.
@item
@code{yylex} can search for the multicharacter token in the @code{yytname}
table. This method is discouraged: the primary purpose of string aliases is
forging good error messages, not describing the spelling of keywords. In
addition, looking for the token kind at runtime incurs a (small but
noticeable) cost.
The @code{yytname} table is generated only if you use the
@code{%token-table} declaration. @xref{Decl Summary}.
@end itemize
@node Token Values
@subsection Semantic Values of Tokens
@vindex yylval
In an ordinary (nonreentrant) parser, the semantic value of the token must
be stored into the global variable @code{yylval}. When you are using just
one data type for semantic values, @code{yylval} has that type. Thus, if
the type is @code{int} (the default), you might write this in @code{yylex}:
@example
@group
@dots{}
yylval = value; /* Put value onto Bison stack. */
return INT; /* Return the kind of the token. */
@dots{}
@end group
@end example
When you are using multiple data types, @code{yylval}'s type is a union made
from the @code{%union} declaration (@pxref{Union Decl}). So when you store
a token's value, you must use the proper member of the union. If the
@code{%union} declaration looks like this:
@example
@group
%union @{
int intval;
double val;
symrec *tptr;
@}
@end group
@end example
@noindent
then the code in @code{yylex} might look like this:
@example
@group
@dots{}
yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the kind of the token. */
@dots{}
@end group
@end example
@node Token Locations
@subsection Textual Locations of Tokens
@vindex yylloc
If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
in actions to keep track of the textual locations of tokens and groupings,
then you must provide this information in @code{yylex}. The function
@code{yyparse} expects to find the textual location of a token just parsed
in the global variable @code{yylloc}. So @code{yylex} must store the proper
data in that variable.
By default, the value of @code{yylloc} is a structure and you need only
initialize the members that are going to be used by the actions. The
four members are called @code{first_line}, @code{first_column},
@code{last_line} and @code{last_column}. Note that the use of this
feature makes the parser noticeably slower.
@tindex YYLTYPE
The data type of @code{yylloc} has the name @code{YYLTYPE}.
@node Pure Calling
@subsection Calling Conventions for Pure Parsers
When you use the Bison declaration @code{%define api.pure full} to request a
pure, reentrant parser, the global communication variables @code{yylval} and
@code{yylloc} cannot be used. (@xref{Pure Decl}.) In such parsers the two
global variables are replaced by pointers passed as arguments to
@code{yylex}. You must declare them as shown here, and pass the information
back by storing it through those pointers.
@example
int
yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
@{
@dots{}
*lvalp = value; /* Put value onto Bison stack. */
return INT; /* Return the kind of the token. */
@dots{}
@}
@end example
If the grammar file does not use the @samp{@@} constructs to refer to
textual locations, then the type @code{YYLTYPE} will not be defined. In
this case, omit the second argument; @code{yylex} will be called with
only one argument.
If you wish to pass additional arguments to @code{yylex}, use
@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
Function}). To pass additional arguments to both @code{yylex} and
@code{yyparse}, use @code{%param}.
@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
@findex %lex-param
Specify that @var{argument-declaration} are additional @code{yylex} argument
declarations. You may pass one or more such declarations, which is
equivalent to repeating @code{%lex-param}.
@end deffn
@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
@findex %param
Specify that @var{argument-declaration} are additional
@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
@{@var{argument-declaration}@} @dots{}}. You may pass one or more
declarations, which is equivalent to repeating @code{%param}.
@end deffn
@noindent
For instance:
@example
%lex-param @{scanner_mode *mode@}
%parse-param @{parser_mode *mode@}
%param @{environment_type *env@}
@end example
@noindent
results in the following signatures:
@example
int yylex (scanner_mode *mode, environment_type *env);
int yyparse (parser_mode *mode, environment_type *env);
@end example
If @samp{%define api.pure full} is added:
@example
int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
int yyparse (parser_mode *mode, environment_type *env);
@end example
@noindent
and finally, if both @samp{%define api.pure full} and @code{%locations} are
used:
@example
int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
scanner_mode *mode, environment_type *env);
int yyparse (parser_mode *mode, environment_type *env);
@end example
@node Error Reporting
@section Error Reporting
During its execution the parser may have error messages to pass to the user,
such as syntax error, or memory exhaustion. How this message is delivered
to the user must be specified by the developer.
@menu
* Error Reporting Function:: You must supply a @code{yyerror} function.
* Syntax Error Reporting Function:: You can supply a @code{yyreport_syntax_error} function.
@end menu
@node Error Reporting Function
@subsection The Error Reporting Function @code{yyerror}
@cindex error reporting function
@findex yyerror
@cindex parse error
@cindex syntax error
The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
whenever it reads a token which cannot satisfy any syntax rule. An
action in the grammar can also explicitly proclaim an error, using the
macro @code{YYERROR} (@pxref{Action Features}).
The Bison parser expects to report the error by calling an error
reporting function named @code{yyerror}, which you must supply. It is
called by @code{yyparse} whenever a syntax error is found, and it
receives one argument. For a syntax error, the string is normally
@w{@code{"syntax error"}}.
@findex %define parse.error detailed
@findex %define parse.error verbose
If you invoke @samp{%define parse.error detailed} (or @samp{custom}) in the
Bison declarations section (@pxref{Bison Declarations}), then Bison provides
a more verbose and specific error message string instead of just plain
@w{@code{"syntax error"}}. However, that message sometimes contains
incorrect information if LAC is not enabled (@pxref{LAC}).
The parser can detect one other kind of error: memory exhaustion. This
can happen when the input contains constructions that are very deeply
nested. It isn't likely you will encounter this, since the Bison
parser normally extends its stack automatically up to a very large limit. But
if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
fashion, except that the argument string is @w{@code{"memory exhausted"}}.
In some cases diagnostics like @w{@code{"syntax error"}} are
translated automatically from English to some other language before
they are passed to @code{yyerror}. @xref{Internationalization}.
The following definition suffices in simple programs:
@example
@group
void
yyerror (char const *s)
@{
@end group
@group
fprintf (stderr, "%s\n", s);
@}
@end group
@end example
After @code{yyerror} returns to @code{yyparse}, the latter will attempt
error recovery if you have written suitable error recovery grammar rules
(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
immediately return 1.
Obviously, in location tracking pure parsers, @code{yyerror} should have
an access to the current location. With @code{%define api.pure}, this is
indeed the case for the GLR parsers, but not for the Yacc parser, for
historical reasons, and this is the why @code{%define api.pure full} should be
preferred over @code{%define api.pure}.
When @code{%locations %define api.pure full} is used, @code{yyerror} has the
following signature:
@example
void yyerror (YYLTYPE *locp, char const *msg);
@end example
@noindent
The prototypes are only indications of how the code produced by Bison
uses @code{yyerror}. Bison-generated code always ignores the returned
value, so @code{yyerror} can return any type, including @code{void}.
Also, @code{yyerror} can be a variadic function; that is why the
message is always passed last.
Traditionally @code{yyerror} returns an @code{int} that is always
ignored, but this is purely for historical reasons, and @code{void} is
preferable since it more accurately describes the return type for
@code{yyerror}.
@vindex yynerrs
The variable @code{yynerrs} contains the number of syntax errors
reported so far. Normally this variable is global; but if you
request a pure parser (@pxref{Pure Decl})
then it is a local variable which only the actions can access.
@node Syntax Error Reporting Function
@subsection The Syntax Error Reporting Function @code{yyreport_syntax_error}
@findex %define parse.error custom
If you invoke @samp{%define parse.error custom} (@pxref{Bison
Declarations}), then the parser no longer passes syntax error messages to
@code{yyerror}, rather it delegates that task to the user by calling the
@code{yyreport_syntax_error} function.
The following functions and types are ``@code{static}'': they are defined in
the implementation file (@file{*.c}) and available only from there. They
are meant to be used from the grammar's epilogue.
@deftypefun {static int} yyreport_syntax_error (@code{const yypcontext_t *}@var{ctx})
Report a syntax error to the user. Return 0 on success, @code{YYENOMEM} on
memory exhaustion. Whether it uses @code{yyerror} is up to the user.
@end deftypefun
Use the following types and functions to build the error message.
@deffn {Type} yypcontext_t
An opaque type that captures the circumstances of the syntax error.
@end deffn
@deffn {Type} yysymbol_kind_t
An enum of all the grammar symbols, tokens and nonterminals. Its
enumerators are forged from the symbol names:
@example
enum yysymbol_kind_t
@{
YYSYMBOL_YYEMPTY = -2, /* No symbol. */
YYSYMBOL_YYEOF = 0, /* "end of file" */
YYSYMBOL_YYerror = 1, /* error */
YYSYMBOL_YYUNDEF = 2, /* "invalid token" */
YYSYMBOL_PLUS = 3, /* "+" */
YYSYMBOL_MINUS = 4, /* "-" */
[...]
YYSYMBOL_VAR = 14, /* "variable" */
YYSYMBOL_NEG = 15, /* NEG */
YYSYMBOL_YYACCEPT = 16, /* $accept */
YYSYMBOL_exp = 17, /* exp */
YYSYMBOL_input = 18 /* input */
@};
typedef enum yysymbol_kind_t yysymbol_kind_t;
@end example
@end deffn
@deftypefun {static yysymbol_kind_t} yypcontext_token (@code{const yypcontext_t *}@var{ctx})
The ``unexpected'' token: the symbol kind of the lookahead token that caused
the syntax error. Returns @code{YYSYMBOL_YYEMPTY} if there is no lookahead.
@end deftypefun
@deftypefun {static YYLTYPE *} yypcontext_location (@code{const yypcontext_t *}@var{ctx})
The location of the syntax error (that of the unexpected token).
@end deftypefun
@deftypefun {static int} yypcontext_expected_tokens (@code{const yypcontext_t *}ctx, @code{yysymbol_kind_t} @var{argv}@code{[]}, @code{int} @var{argc})
Fill @var{argv} with the expected tokens, which never includes
@code{YYSYMBOL_YYEMPTY}, @code{YYSYMBOL_YYerror}, or
@code{YYSYMBOL_YYUNDEF}.
Never put more than @var{argc} elements into @var{argv}, and on success
return the number of tokens stored in @var{argv}. If there are more
expected tokens than @var{argc}, fill @var{argv} up to @var{argc} and return
0. If there are no expected tokens, also return 0, but set @code{argv[0]}
to @code{YYSYMBOL_YYEMPTY}.
When LAC is enabled, may return a negative number on errors,
such as @code{YYENOMEM} on memory exhaustion.
If @var{argv} is null, return the size needed to store all the possible
values, which is always less than @code{YYNTOKENS}.
@end deftypefun
@deftypefun {static const char *} yysymbol_name (@code{symbol_kind_t} @var{symbol})
The name of the symbol whose kind is @var{symbol}, possibly translated.
@end deftypefun
A custom syntax error function looks as follows. This implementation is
inappropriate for internationalization, see the @file{c/bistromathic}
example for a better alternative.
@example
static int
yyreport_syntax_error (const yypcontext_t *ctx)
@{
int res = 0;
YYLOCATION_PRINT (stderr, *yypcontext_location (ctx));
fprintf (stderr, ": syntax error");
// Report the tokens expected at this point.
@{
enum @{ TOKENMAX = 5 @};
yysymbol_kind_t expected[TOKENMAX];
int n = yypcontext_expected_tokens (ctx, expected, TOKENMAX);
if (n < 0)
// Forward errors to yyparse.
res = n;
else
for (int i = 0; i < n; ++i)
fprintf (stderr, "%s %s",
i == 0 ? ": expected" : " or", yysymbol_name (expected[i]));
@}
// Report the unexpected token.
@{
yysymbol_kind_t lookahead = yypcontext_token (ctx);
if (lookahead != YYSYMBOL_YYEMPTY)
fprintf (stderr, " before %s", yysymbol_name (lookahead));
@}
fprintf (stderr, "\n");
return res;
@}
@end example
You still must provide a @code{yyerror} function, used for instance to
report memory exhaustion.
@node Action Features
@section Special Features for Use in Actions
@cindex summary, action features
@cindex action features summary
Here is a table of Bison constructs, variables and macros that are useful in
actions.
@deffn {Variable} $$
Acts like a variable that contains the semantic value for the
grouping made by the current rule. @xref{Actions}.
@end deffn
@deffn {Variable} $@var{n}
Acts like a variable that contains the semantic value for the
@var{n}th component of the current rule. @xref{Actions}.
@end deffn
@deffn {Variable} $<@var{typealt}>$
Like @code{$$} but specifies alternative @var{typealt} in the union
specified by the @code{%union} declaration. @xref{Action Types}.
@end deffn
@deffn {Variable} $<@var{typealt}>@var{n}
Like @code{$@var{n}} but specifies alternative @var{typealt} in the
union specified by the @code{%union} declaration.
@xref{Action Types}.
@end deffn
@deffn {Macro} YYABORT @code{;}
Return immediately from @code{yyparse}, indicating failure.
@xref{Parser Function}.
@end deffn
@deffn {Macro} YYACCEPT @code{;}
Return immediately from @code{yyparse}, indicating success.
@xref{Parser Function}.
@end deffn
@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
@findex YYBACKUP
Unshift a token. This macro is allowed only for rules that reduce
a single value, and only when there is no lookahead token.
It is also disallowed in GLR parsers.
It installs a lookahead token with token kind @var{token} and
semantic value @var{value}; then it discards the value that was
going to be reduced by this rule.
If the macro is used when it is not valid, such as when there is
a lookahead token already, then it reports a syntax error with
a message @samp{cannot back up} and performs ordinary error
recovery.
In either case, the rest of the action is not executed.
@end deffn
@deffn {Value} YYEMPTY
Value stored in @code{yychar} when there is no lookahead token.
@end deffn
@deffn {Value} YYEOF
Value stored in @code{yychar} when the lookahead is the end of the input
stream.
@end deffn
@deffn {Macro} YYERROR @code{;}
Cause an immediate syntax error. This statement initiates error
recovery just as if the parser itself had detected an error; however, it
does not call @code{yyerror}, and does not print any message. If you
want to print an error message, call @code{yyerror} explicitly before
the @samp{YYERROR;} statement. @xref{Error Recovery}.
@end deffn
@deffn {Macro} YYNOMEM @code{;}
Return immediately from @code{yyparse}, indicating memory exhaustion.
@xref{Parser Function}.
@end deffn
@deffn {Macro} YYRECOVERING
@findex YYRECOVERING
The expression @code{YYRECOVERING ()} yields 1 when the parser
is recovering from a syntax error, and 0 otherwise.
@xref{Error Recovery}.
@end deffn
@deffn {Variable} yychar
Variable containing either the lookahead token, or @code{YYEOF} when the
lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
has been performed so the next token is not yet known.
Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
Actions}).
@xref{Lookahead}.
@end deffn
@deffn {Macro} yyclearin @code{;}
Discard the current lookahead token. This is useful primarily in
error rules.
Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
Semantic Actions}).
@xref{Error Recovery}.
@end deffn
@deffn {Macro} yyerrok @code{;}
Resume generating error messages immediately for subsequent syntax
errors. This is useful primarily in error rules.
@xref{Error Recovery}.
@end deffn
@deffn {Variable} yylloc
Variable containing the lookahead token location when @code{yychar} is not set
to @code{YYEMPTY} or @code{YYEOF}.
Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
Actions}).
@xref{Actions and Locations}.
@end deffn
@deffn {Variable} yylval
Variable containing the lookahead token semantic value when @code{yychar} is
not set to @code{YYEMPTY} or @code{YYEOF}.
Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
Actions}).
@xref{Actions}.
@end deffn
@deffn {Value} @@$
Acts like a structure variable containing information on the textual
location of the grouping made by the current rule. @xref{Tracking
Locations}.
@c Check if those paragraphs are still useful or not.
@c @example
@c struct @{
@c int first_line, last_line;
@c int first_column, last_column;
@c @};
@c @end example
@c Thus, to get the starting line number of the third component, you would
@c use @samp{@@3.first_line}.
@c In order for the members of this structure to contain valid information,
@c you must make @code{yylex} supply this information about each token.
@c If you need only certain members, then @code{yylex} need only fill in
@c those members.
@c The use of this feature makes the parser noticeably slower.
@end deffn
@deffn {Value} @@@var{n}
@findex @@@var{n}
Acts like a structure variable containing information on the textual
location of the @var{n}th component of the current rule. @xref{Tracking
Locations}.
@end deffn
@node Internationalization
@section Parser Internationalization
@cindex internationalization
@cindex i18n
@cindex NLS
@cindex gettext
@cindex bison-po
A Bison-generated parser can print diagnostics, including error and
tracing messages. By default, they appear in English. However, Bison
also supports outputting diagnostics in the user's native language. To
make this work, the user should set the usual environment variables.
@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
set the user's locale to French Canadian using the UTF-8
encoding. The exact set of available locales depends on the user's
installation.
@menu
* Enabling I18n:: Preparing your project to support internationalization.
* Token I18n:: Preparing tokens for internationalization in error messages.
@end menu
@node Enabling I18n
@subsection Enabling Internationalization
The maintainer of a package that uses a Bison-generated parser enables
the internationalization of the parser's output through the following
steps. Here we assume a package that uses GNU Autoconf and
GNU Automake.
@enumerate
@item
@cindex bison-i18n.m4
Into the directory containing the GNU Autoconf macros used
by the package ---often called @file{m4}--- copy the
@file{bison-i18n.m4} file installed by Bison under
@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
For example:
@example
cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
@end example
@item
@findex BISON_I18N
@vindex BISON_LOCALEDIR
@vindex YYENABLE_NLS
In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
invocation, add an invocation of @code{BISON_I18N}. This macro is
defined in the file @file{bison-i18n.m4} that you copied earlier. It
causes @code{configure} to find the value of the
@code{BISON_LOCALEDIR} variable, and it defines the source-language
symbol @code{YYENABLE_NLS} to enable translations in the
Bison-generated parser.
@item
In the @code{main} function of your program, designate the directory
containing Bison's runtime message catalog, through a call to
@samp{bindtextdomain} with domain name @samp{bison-runtime}.
For example:
@example
bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
@end example
Typically this appears after any other call @code{bindtextdomain
(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
@samp{BISON_LOCALEDIR} to be defined as a string through the
@file{Makefile}.
@item
In the @file{Makefile.am} that controls the compilation of the @code{main}
function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
@example
DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
@end example
or:
@example
AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
@end example
@item
Finally, invoke the command @command{autoreconf} to generate the build
infrastructure.
@end enumerate
@node Token I18n
@subsection Token Internationalization
When the @code{%define} variable @code{parse.error} is set to @code{custom}
or @code{detailed}, token aliases can be internationalized:
@example
%token
'\n' _("end of line")
<double>
NUM _("number")
<symrec*>
FUN _("function")
VAR _("variable")
@end example
The remainder of the grammar may freely use either the token symbol
(@code{FUN}) or its alias (@code{"function"}), but not with the
internationalization marker (@code{_("function")}).
If at least one token alias is internationalized, then the generated parser
will use both @code{N_} and @code{_}, that must be defined
(@pxref{Programmers, , The Programmer’s View, gettext, GNU @code{gettext}
utilities}). They are used only on string aliases marked for translation.
In other words, even if your catalog features a translation for
``function'', then with
@example
%token
<symrec*>
FUN "function"
VAR _("variable")
@end example
@noindent
``function'' will appear untranslated in debug traces and error messages.
Unless defined by the user, the end-of-file token, @code{YYEOF}, is provided
``end of file'' as an alias. It is also internationalized if the user
internationalized tokens. To map it to another string, use:
@example
%token END 0 _("end of input")
@end example
@node Algorithm
@chapter The Bison Parser Algorithm
@cindex Bison parser algorithm
@cindex algorithm of parser
@cindex shifting
@cindex reduction
@cindex parser stack
@cindex stack, parser
As Bison reads tokens, it pushes them onto a stack along with their
semantic values. The stack is called the @dfn{parser stack}. Pushing a
token is traditionally called @dfn{shifting}.
For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
@samp{3} to come. The stack will have four elements, one for each token
that was shifted.
But the stack does not always have an element for each token read. When
the last @var{n} tokens and groupings shifted match the components of a
grammar rule, they can be combined according to that rule. This is called
@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
single grouping whose symbol is the result (left hand side) of that rule.
Running the rule's action is part of the process of reduction, because this
is what computes the semantic value of the resulting grouping.
For example, if the infix calculator's parser stack contains this:
@example
1 + 5 * 3
@end example
@noindent
and the next input token is a newline character, then the last three
elements can be reduced to 15 via the rule:
@example
expr: expr '*' expr;
@end example
@noindent
Then the stack contains just these three elements:
@example
1 + 15
@end example
@noindent
At this point, another reduction can be made, resulting in the single value
16. Then the newline token can be shifted.
The parser tries, by shifts and reductions, to reduce the entire input down
to a single grouping whose symbol is the grammar's start-symbol
(@pxref{Language and Grammar}).
This kind of parser is known in the literature as a bottom-up parser.
@menu
* Lookahead:: Parser looks one token ahead when deciding what to do.
* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
* Precedence:: Operator precedence works by resolving conflicts.
* Contextual Precedence:: When an operator's precedence depends on context.
* Parser States:: The parser is a finite-state-machine with stack.
* Reduce/Reduce:: When two rules are applicable in the same situation.
* Mysterious Conflicts:: Conflicts that look unjustified.
* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
* Memory Management:: What happens when memory is exhausted. How to avoid it.
@end menu
@node Lookahead
@section Lookahead Tokens
@cindex lookahead token
The Bison parser does @emph{not} always reduce immediately as soon as the
last @var{n} tokens and groupings match a rule. This is because such a
simple strategy is inadequate to handle most languages. Instead, when a
reduction is possible, the parser sometimes ``looks ahead'' at the next
token in order to decide what to do.
When a token is read, it is not immediately shifted; first it becomes the
@dfn{lookahead token}, which is not on the stack. Now the parser can
perform one or more reductions of tokens and groupings on the stack, while
the lookahead token remains off to the side. When no more reductions
should take place, the lookahead token is shifted onto the stack. This
does not mean that all possible reductions have been done; depending on the
token kind of the lookahead token, some rules may choose to delay their
application.
Here is a simple case where lookahead is needed. These three rules define
expressions which contain binary addition operators and postfix unary
factorial operators (@samp{!}), and allow parentheses for grouping.
@example
@group
expr:
term '+' expr
| term
;
@end group
@group
term:
'(' expr ')'
| term '!'
| "number"
;
@end group
@end example
Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
should be done? If the following token is @samp{)}, then the first three
tokens must be reduced to form an @code{expr}. This is the only valid
course, because shifting the @samp{)} would produce a sequence of symbols
@w{@code{term ')'}}, and no rule allows this.
If the following token is @samp{!}, then it must be shifted immediately so
that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
@code{expr}. It would then be impossible to shift the @samp{!} because
doing so would produce on the stack the sequence of symbols @code{expr
'!'}. No rule allows that sequence.
@vindex yychar
@vindex yylval
@vindex yylloc
The lookahead token is stored in the variable @code{yychar}. Its semantic
value and location, if any, are stored in the variables @code{yylval} and
@code{yylloc}. @xref{Action Features}.
@node Shift/Reduce
@section Shift/Reduce Conflicts
@cindex conflicts
@cindex shift/reduce conflicts
@cindex dangling @code{else}
@cindex @code{else}, dangling
Suppose we are parsing a language which has if-then and if-then-else
statements, with a pair of rules like this:
@example
@group
if_stmt:
"if" expr "then" stmt
| "if" expr "then" stmt "else" stmt
;
@end group
@end example
@noindent
Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
specific keyword tokens.
When the @code{"else"} token is read and becomes the lookahead token, the
contents of the stack (assuming the input is valid) are just right for
reduction by the first rule. But it is also legitimate to shift the
@code{"else"}, because that would lead to eventual reduction by the second
rule.
This situation, where either a shift or a reduction would be valid, is
called a @dfn{shift/reduce conflict}. Bison is designed to resolve
these conflicts by choosing to shift, unless otherwise directed by
operator precedence declarations. To see the reason for this, let's
contrast it with the other alternative.
Since the parser prefers to shift the @code{"else"}, the result is to attach
the else-clause to the innermost if-statement, making these two inputs
equivalent:
@example
if x then if y then win; else lose;
if x then do; if y then win; else lose; end;
@end example
But if the parser chose to reduce when possible rather than shift, the
result would be to attach the else-clause to the outermost if-statement,
making these two inputs equivalent:
@example
if x then if y then win; else lose;
if x then do; if y then win; end; else lose;
@end example
The conflict exists because the grammar as written is ambiguous: either
parsing of the simple nested if-statement is legitimate. The established
convention is that these ambiguities are resolved by attaching the
else-clause to the innermost if-statement; this is what Bison accomplishes
by choosing to shift rather than reduce. (It would ideally be cleaner to
write an unambiguous grammar, but that is very hard to do in this case.)
This particular ambiguity was first encountered in the specifications of
Algol 60 and is called the ``dangling @code{else}'' ambiguity.
To assist the grammar author in understanding the nature of each conflict,
Bison can be asked to generate ``counterexamples''. In the present case it
actually even proves that the grammar is ambiguous by exhibiting a string
with two different parses:
@macro danglingElseCex
@group
@ifnottex
Example: @yellow{"if" expr "then"} @blue{"if" expr "then" stmt} @red{•} @blue{"else" stmt}
Shift derivation
@yellow{if_stmt}
@yellow{↳ 3: "if" expr "then"} @green{stmt}
@green{↳ 2:} @blue{if_stmt}
@blue{↳ 4: "if" expr "then" stmt} @red{•} @blue{"else" stmt}
Example: @yellow{"if" expr "then"} @blue{"if" expr "then" stmt} @red{•} @yellow{"else" stmt}
Reduce derivation
@yellow{if_stmt}
@yellow{↳ 4: "if" expr "then"} @green{stmt} @yellow{"else" stmt}
@green{↳ 2:} @blue{if_stmt}
@blue{↳ 3: "if" expr "then" stmt} @red{•}
@end ifnottex
@iftex
Example: @yellow{"if" expr "then"} @blue{"if" expr "then" stmt} @red{•} @blue{"else" stmt}
Shift derivation
@yellow{if_stmt}
@yellow{@arrow{} 3: "if" expr "then"} @green{stmt}
@green{@arrow{} 2:} @blue{if_stmt}
@blue{@arrow{} 4: "if" expr "then" stmt} @red{•} @blue{"else" stmt}
Example: @yellow{"if" expr "then"} @blue{"if" expr "then" stmt} @red{•} @yellow{"else" stmt}
Reduce derivation
@yellow{if_stmt}
@yellow{@arrow{} 4: "if" expr "then"} @green{stmt} @yellow{"else" stmt}
@green{@arrow{} 2:} @blue{if_stmt}
@blue{@arrow{} 3: "if" expr "then" stmt} @red{•}
@end iftex
@end group
@end macro
@example
@danglingElseCex
@end example
@noindent
@xref{Counterexamples}, for more details.
@sp 1
To avoid warnings from Bison about predictable, @emph{legitimate} shift/reduce
conflicts, you can use the @code{%expect @var{n}} declaration.
There will be no warning as long as the number of shift/reduce conflicts
is exactly @var{n}, and Bison will report an error if there is a
different number.
@xref{Expect Decl}. However, we don't
recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
number of conflicts does not mean that they are the @emph{same}. When
possible, you should rather use precedence directives to @emph{fix} the
conflicts explicitly (@pxref{Non Operators}).
The definition of @code{if_stmt} above is solely to blame for the
conflict, but the conflict does not actually appear without additional
rules. Here is a complete Bison grammar file that actually manifests
the conflict:
@example
%%
@group
stmt:
expr
| if_stmt
;
@end group
@group
if_stmt:
"if" expr "then" stmt
| "if" expr "then" stmt "else" stmt
;
@end group
expr:
"identifier"
;
@end example
@node Precedence
@section Operator Precedence
@cindex operator precedence
@cindex precedence of operators
Another situation where shift/reduce conflicts appear is in arithmetic
expressions. Here shifting is not always the preferred resolution; the
Bison declarations for operator precedence allow you to specify when to
shift and when to reduce.
@menu
* Why Precedence:: An example showing why precedence is needed.
* Using Precedence:: How to specify precedence and associativity.
* Precedence Only:: How to specify precedence only.
* Precedence Examples:: How these features are used in the previous example.
* How Precedence:: How they work.
* Non Operators:: Using precedence for general conflicts.
@end menu
@node Why Precedence
@subsection When Precedence is Needed
Consider the following ambiguous grammar fragment (ambiguous because the
input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
@example
@group
expr:
expr '-' expr
| expr '*' expr
| expr '<' expr
| '(' expr ')'
@dots{}
;
@end group
@end example
@noindent
Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
should it reduce them via the rule for the subtraction operator? It
depends on the next token. Of course, if the next token is @samp{)}, we
must reduce; shifting is invalid because no single rule can reduce the
token sequence @w{@samp{- 2 )}} or anything starting with that. But if
the next token is @samp{*} or @samp{<}, we have a choice: either
shifting or reduction would allow the parse to complete, but with
different results.
To decide which one Bison should do, we must consider the results. If
the next operator token @var{op} is shifted, then it must be reduced
first in order to permit another opportunity to reduce the difference.
The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
hand, if the subtraction is reduced before shifting @var{op}, the result
is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
reduce should depend on the relative precedence of the operators
@samp{-} and @var{op}: @samp{*} should be shifted first, but not
@samp{<}.
@cindex associativity
What about input such as @w{@samp{1 - 2 - 5}}; should this be
@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
operators we prefer the former, which is called @dfn{left association}.
The latter alternative, @dfn{right association}, is desirable for
assignment operators. The choice of left or right association is a
matter of whether the parser chooses to shift or reduce when the stack
contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
makes right-associativity.
@node Using Precedence
@subsection Specifying Operator Precedence
@findex %left
@findex %nonassoc
@findex %precedence
@findex %right
Bison allows you to specify these choices with the operator precedence
declarations @code{%left} and @code{%right}. Each such declaration
contains a list of tokens, which are operators whose precedence and
associativity is being declared. The @code{%left} declaration makes all
those operators left-associative and the @code{%right} declaration makes
them right-associative. A third alternative is @code{%nonassoc}, which
declares that it is a syntax error to find the same operator twice ``in a
row''.
The last alternative, @code{%precedence}, allows to define only
precedence and no associativity at all. As a result, any
associativity-related conflict that remains will be reported as an
compile-time error. The directive @code{%nonassoc} creates run-time
error: using the operator in a associative way is a syntax error. The
directive @code{%precedence} creates compile-time errors: an operator
@emph{can} be involved in an associativity-related conflict, contrary to
what expected the grammar author.
The relative precedence of different operators is controlled by the
order in which they are declared. The first precedence/associativity
declaration in the file declares the operators whose
precedence is lowest, the next such declaration declares the operators
whose precedence is a little higher, and so on.
@node Precedence Only
@subsection Specifying Precedence Only
@findex %precedence
Since POSIX Yacc defines only @code{%left}, @code{%right}, and
@code{%nonassoc}, which all defines precedence and associativity, little
attention is paid to the fact that precedence cannot be defined without
defining associativity. Yet, sometimes, when trying to solve a
conflict, precedence suffices. In such a case, using @code{%left},
@code{%right}, or @code{%nonassoc} might hide future (associativity
related) conflicts that would remain hidden.
The dangling @code{else} ambiguity (@pxref{Shift/Reduce}) can be solved
explicitly. This shift/reduce conflicts occurs in the following situation,
where the period denotes the current parsing state:
@example
if @var{e1} then if @var{e2} then @var{s1} • else @var{s2}
@end example
The conflict involves the reduction of the rule @samp{IF expr THEN
stmt}, which precedence is by default that of its last token
(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
disambiguation (attach the @code{else} to the closest @code{if}),
shifting must be preferred, i.e., the precedence of @code{ELSE} must be
higher than that of @code{THEN}. But neither is expected to be involved
in an associativity related conflict, which can be specified as follows.
@example
%precedence THEN
%precedence ELSE
@end example
The unary-minus is another typical example where associativity is usually
over-specified, see @ref{Infix Calc}. The @code{%left} directive is
traditionally used to declare the precedence of @code{NEG}, which is more
than needed since it also defines its associativity. While this is harmless
in the traditional example, who knows how @code{NEG} might be used in future
evolutions of the grammar@dots{}
@node Precedence Examples
@subsection Precedence Examples
In our example, we would want the following declarations:
@example
%left '<'
%left '-'
%left '*'
@end example
In a more complete example, which supports other operators as well, we
would declare them in groups of equal precedence. For example, @code{'+'} is
declared with @code{'-'}:
@example
%left '<' '>' '=' "!=" "<=" ">="
%left '+' '-'
%left '*' '/'
@end example
@node How Precedence
@subsection How Precedence Works
The first effect of the precedence declarations is to assign precedence
levels to the terminal symbols declared. The second effect is to assign
precedence levels to certain rules: each rule gets its precedence from
the last terminal symbol mentioned in the components. (You can also
specify explicitly the precedence of a rule. @xref{Contextual
Precedence}.)
Finally, the resolution of conflicts works by comparing the precedence
of the rule being considered with that of the lookahead token. If the
token's precedence is higher, the choice is to shift. If the rule's
precedence is higher, the choice is to reduce. If they have equal
precedence, the choice is made based on the associativity of that
precedence level. The verbose output file made by @option{-v}
(@pxref{Invocation}) says how each conflict was
resolved.
Not all rules and not all tokens have precedence. If either the rule or
the lookahead token has no precedence, then the default is to shift.
@node Non Operators
@subsection Using Precedence For Non Operators
Using properly precedence and associativity directives can help fixing
shift/reduce conflicts that do not involve arithmetic-like operators. For
instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce}) can be
solved elegantly in two different ways.
In the present case, the conflict is between the token @code{"else"} willing
to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
for reduction. By default, the precedence of a rule is that of its last
token, here @code{"then"}, so the conflict will be solved appropriately
by giving @code{"else"} a precedence higher than that of @code{"then"}, for
instance as follows:
@example
@group
%precedence "then"
%precedence "else"
@end group
@end example
Alternatively, you may give both tokens the same precedence, in which case
associativity is used to solve the conflict. To preserve the shift action,
use right associativity:
@example
%right "then" "else"
@end example
Neither solution is perfect however. Since Bison does not provide, so far,
``scoped'' precedence, both force you to declare the precedence
of these keywords with respect to the other operators your grammar.
Therefore, instead of being warned about new conflicts you would be unaware
of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
else 2) + 3}?), the conflict will be already ``fixed''.
@node Contextual Precedence
@section Context-Dependent Precedence
@cindex context-dependent precedence
@cindex unary operator precedence
@cindex precedence, context-dependent
@cindex precedence, unary operator
@findex %prec
Often the precedence of an operator depends on the context. This sounds
outlandish at first, but it is really very common. For example, a minus
sign typically has a very high precedence as a unary operator, and a
somewhat lower precedence (lower than multiplication) as a binary operator.
The Bison precedence declarations
can only be used once for a given token; so a token has
only one precedence declared in this way. For context-dependent
precedence, you need to use an additional mechanism: the @code{%prec}
modifier for rules.
The @code{%prec} modifier declares the precedence of a particular rule by
specifying a terminal symbol whose precedence should be used for that rule.
It's not necessary for that symbol to appear otherwise in the rule. The
modifier's syntax is:
@example
%prec @var{terminal-symbol}
@end example
@noindent
and it is written after the components of the rule. Its effect is to
assign the rule the precedence of @var{terminal-symbol}, overriding
the precedence that would be deduced for it in the ordinary way. The
altered rule precedence then affects how conflicts involving that rule
are resolved (@pxref{Precedence}).
Here is how @code{%prec} solves the problem of unary minus. First, declare
a precedence for a fictitious terminal symbol named @code{UMINUS}. There
are no tokens of this type, but the symbol serves to stand for its
precedence:
@example
@dots{}
%left '+' '-'
%left '*'
%left UMINUS
@end example
Now the precedence of @code{UMINUS} can be used in specific rules:
@example
@group
exp:
@dots{}
| exp '-' exp
@dots{}
| '-' exp %prec UMINUS
@end group
@end example
@ifset defaultprec
If you forget to append @code{%prec UMINUS} to the rule for unary
minus, Bison silently assumes that minus has its usual precedence.
This kind of problem can be tricky to debug, since one typically
discovers the mistake only by testing the code.
The @code{%no-default-prec;} declaration makes it easier to discover
this kind of problem systematically. It causes rules that lack a
@code{%prec} modifier to have no precedence, even if the last terminal
symbol mentioned in their components has a declared precedence.
If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
for all rules that participate in precedence conflict resolution.
Then you will see any shift/reduce conflict until you tell Bison how
to resolve it, either by changing your grammar or by adding an
explicit precedence. This will probably add declarations to the
grammar, but it helps to protect against incorrect rule precedences.
The effect of @code{%no-default-prec;} can be reversed by giving
@code{%default-prec;}, which is the default.
@end ifset
@node Parser States
@section Parser States
@cindex finite-state machine
@cindex parser state
@cindex state (of parser)
The function @code{yyparse} is implemented using a finite-state machine.
The values pushed on the parser stack are not simply token kind codes; they
represent the entire sequence of terminal and nonterminal symbols at or
near the top of the stack. The current state collects all the information
about previous input which is relevant to deciding what to do next.
Each time a lookahead token is read, the current parser state together with
the kind of lookahead token are looked up in a table. This table entry can
say, ``Shift the lookahead token.'' In this case, it also specifies the new
parser state, which is pushed onto the top of the parser stack. Or it can
say, ``Reduce using rule number @var{n}.'' This means that a certain number
of tokens or groupings are taken off the top of the stack, and replaced by
one grouping. In other words, that number of states are popped from the
stack, and one new state is pushed.
There is one other alternative: the table can say that the lookahead token
is erroneous in the current state. This causes error processing to begin
(@pxref{Error Recovery}).
@node Reduce/Reduce
@section Reduce/Reduce Conflicts
@cindex reduce/reduce conflict
@cindex conflicts, reduce/reduce
A reduce/reduce conflict occurs if there are two or more rules that apply
to the same sequence of input. This usually indicates a serious error
in the grammar.
For example, here is an erroneous attempt to define a sequence
of zero or more @code{word} groupings.
@example
@group
sequence:
%empty @{ printf ("empty sequence\n"); @}
| maybeword
| sequence word @{ printf ("added word %s\n", $2); @}
;
@end group
@group
maybeword:
%empty @{ printf ("empty maybeword\n"); @}
| word @{ printf ("single word %s\n", $1); @}
;
@end group
@end example
@noindent
The error is an ambiguity: as counterexample generation would demonstrate
(@pxref{Counterexamples}), there is more than one way to parse a single
@code{word} into a @code{sequence}. It could be reduced to a
@code{maybeword} and then into a @code{sequence} via the second rule.
Alternatively, nothing-at-all could be reduced into a @code{sequence}
via the first rule, and this could be combined with the @code{word}
using the third rule for @code{sequence}.
There is also more than one way to reduce nothing-at-all into a
@code{sequence}. This can be done directly via the first rule,
or indirectly via @code{maybeword} and then the second rule.
You might think that this is a distinction without a difference, because it
does not change whether any particular input is valid or not. But it does
affect which actions are run. One parsing order runs the second rule's
action; the other runs the first rule's action and the third rule's action.
In this example, the output of the program changes.
Bison resolves a reduce/reduce conflict by choosing to use the rule that
appears first in the grammar, but it is very risky to rely on this. Every
reduce/reduce conflict must be studied and usually eliminated. Here is the
proper way to define @code{sequence}:
@example
@group
sequence:
%empty @{ printf ("empty sequence\n"); @}
| sequence word @{ printf ("added word %s\n", $2); @}
;
@end group
@end example
Here is another common error that yields a reduce/reduce conflict:
@example
@group
sequence:
%empty
| sequence words
| sequence redirects
;
@end group
@group
words:
%empty
| words word
;
@end group
@group
redirects:
%empty
| redirects redirect
;
@end group
@end example
@noindent
The intention here is to define a sequence which can contain either
@code{word} or @code{redirect} groupings. The individual definitions of
@code{sequence}, @code{words} and @code{redirects} are error-free, but the
three together make a subtle ambiguity: even an empty input can be parsed
in infinitely many ways!
Consider: nothing-at-all could be a @code{words}. Or it could be two
@code{words} in a row, or three, or any number. It could equally well be a
@code{redirects}, or two, or any number. Or it could be a @code{words}
followed by three @code{redirects} and another @code{words}. And so on.
Here are two ways to correct these rules. First, to make it a single level
of sequence:
@example
sequence:
%empty
| sequence word
| sequence redirect
;
@end example
Second, to prevent either a @code{words} or a @code{redirects}
from being empty:
@example
@group
sequence:
%empty
| sequence words
| sequence redirects
;
@end group
@group
words:
word
| words word
;
@end group
@group
redirects:
redirect
| redirects redirect
;
@end group
@end example
Yet this proposal introduces another kind of ambiguity! The input
@samp{word word} can be parsed as a single @code{words} composed of two
@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
@code{redirect}/@code{redirects}). However this ambiguity is now a
shift/reduce conflict, and therefore it can now be addressed with precedence
directives.
To simplify the matter, we will proceed with @code{word} and @code{redirect}
being tokens: @code{"word"} and @code{"redirect"}.
To prefer the longest @code{words}, the conflict between the token
@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
as a shift. To this end, we use the same techniques as exposed above, see
@ref{Non Operators}. One solution
relies on precedences: use @code{%prec} to give a lower precedence to the
rule:
@example
%precedence "word"
%precedence "sequence"
%%
@group
sequence:
%empty
| sequence word %prec "sequence"
| sequence redirect %prec "sequence"
;
@end group
@group
words:
word
| words "word"
;
@end group
@end example
Another solution relies on associativity: provide both the token and the
rule with the same precedence, but make them right-associative:
@example
%right "word" "redirect"
%%
@group
sequence:
%empty
| sequence word %prec "word"
| sequence redirect %prec "redirect"
;
@end group
@end example
@node Mysterious Conflicts
@section Mysterious Conflicts
@cindex Mysterious Conflicts
Sometimes reduce/reduce conflicts can occur that don't look warranted.
Here is an example:
@example
@group
%%
def: param_spec return_spec ',';
param_spec:
type
| name_list ':' type
;
@end group
@group
return_spec:
type
| name ':' type
;
@end group
type: "id";
@group
name: "id";
name_list:
name
| name ',' name_list
;
@end group
@end example
It would seem that this grammar can be parsed with only a single token of
lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
@code{name} if a comma or colon follows, or a @code{type} if another
@code{"id"} follows. In other words, this grammar is LR(1). Yet Bison
finds one reduce/reduce conflict, for which counterexample generation
(@pxref{Counterexamples}) would find a @emph{nonunifying} example.
@cindex LR
@cindex LALR
This is because Bison does not handle all LR(1) grammars @emph{by default},
for historical reasons.
In this grammar, two contexts, that after an @code{"id"} at the beginning
of a @code{param_spec} and likewise at the beginning of a
@code{return_spec}, are similar enough that Bison assumes they are the
same.
They appear similar because the same set of rules would be
active---the rule for reducing to a @code{name} and that for reducing to
a @code{type}. Bison is unable to determine at that stage of processing
that the rules would require different lookahead tokens in the two
contexts, so it makes a single parser state for them both. Combining
the two contexts causes a conflict later. In parser terminology, this
occurrence means that the grammar is not LALR(1).
@cindex IELR
@cindex canonical LR
For many practical grammars (specifically those that fall into the non-LR(1)
class), the limitations of LALR(1) result in difficulties beyond just
mysterious reduce/reduce conflicts. The best way to fix all these problems
is to select a different parser table construction algorithm. Either
IELR(1) or canonical LR(1) would suffice, but the former is more efficient
and easier to debug during development. @xref{LR Table Construction}, for
details.
If you instead wish to work around LALR(1)'s limitations, you
can often fix a mysterious conflict by identifying the two parser states
that are being confused, and adding something to make them look
distinct. In the above example, adding one rule to
@code{return_spec} as follows makes the problem go away:
@example
@group
@dots{}
return_spec:
type
| name ':' type
| "id" "bogus" /* This rule is never used. */
;
@end group
@end example
This corrects the problem because it introduces the possibility of an
additional active rule in the context after the @code{"id"} at the beginning of
@code{return_spec}. This rule is not active in the corresponding context
in a @code{param_spec}, so the two contexts receive distinct parser states.
As long as the token @code{"bogus"} is never generated by @code{yylex},
the added rule cannot alter the way actual input is parsed.
In this particular example, there is another way to solve the problem:
rewrite the rule for @code{return_spec} to use @code{"id"} directly
instead of via @code{name}. This also causes the two confusing
contexts to have different sets of active rules, because the one for
@code{return_spec} activates the altered rule for @code{return_spec}
rather than the one for @code{name}.
@example
@group
param_spec:
type
| name_list ':' type
;
@end group
@group
return_spec:
type
| "id" ':' type
;
@end group
@end example
For a more detailed exposition of LALR(1) parsers and parser generators, see
@tcite{DeRemer 1982}.
@node Tuning LR
@section Tuning LR
The default behavior of Bison's LR-based parsers is chosen mostly for
historical reasons, but that behavior is often not robust. For example, in
the previous section, we discussed the mysterious conflicts that can be
produced by LALR(1), Bison's default parser table construction algorithm.
Another example is Bison's @code{%define parse.error verbose} directive,
which instructs the generated parser to produce verbose syntax error
messages, which can sometimes contain incorrect information.
In this section, we explore several modern features of Bison that allow you
to tune fundamental aspects of the generated LR-based parsers. Some of
these features easily eliminate shortcomings like those mentioned above.
Others can be helpful purely for understanding your parser.
@menu
* LR Table Construction:: Choose a different construction algorithm.
* Default Reductions:: Disable default reductions.
* LAC:: Correct lookahead sets in the parser states.
* Unreachable States:: Keep unreachable parser states for debugging.
@end menu
@node LR Table Construction
@subsection LR Table Construction
@cindex Mysterious Conflict
@cindex LALR
@cindex IELR
@cindex canonical LR
@findex %define lr.type
For historical reasons, Bison constructs LALR(1) parser tables by default.
However, LALR does not possess the full language-recognition power of LR.
As a result, the behavior of parsers employing LALR parser tables is often
mysterious. We presented a simple example of this effect in @ref{Mysterious
Conflicts}.
As we also demonstrated in that example, the traditional approach to
eliminating such mysterious behavior is to restructure the grammar.
Unfortunately, doing so correctly is often difficult. Moreover, merely
discovering that LALR causes mysterious behavior in your parser can be
difficult as well.
Fortunately, Bison provides an easy way to eliminate the possibility of such
mysterious behavior altogether. You simply need to activate a more powerful
parser table construction algorithm by using the @code{%define lr.type}
directive.
@deffn {Directive} {%define lr.type} @var{type}
Specify the type of parser tables within the LR(1) family. The accepted
values for @var{type} are:
@itemize
@item @code{lalr} (default)
@item @code{ielr}
@item @code{canonical-lr}
@end itemize
@end deffn
For example, to activate IELR, you might add the following directive to you
grammar file:
@example
%define lr.type ielr
@end example
@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
conflict is then eliminated, so there is no need to invest time in
comprehending the conflict or restructuring the grammar to fix it. If,
during future development, the grammar evolves such that all mysterious
behavior would have disappeared using just LALR, you need not fear that
continuing to use IELR will result in unnecessarily large parser tables.
That is, IELR generates LALR tables when LALR (using a deterministic parsing
algorithm) is sufficient to support the full language-recognition power of
LR. Thus, by enabling IELR at the start of grammar development, you can
safely and completely eliminate the need to consider LALR's shortcomings.
While IELR is almost always preferable, there are circumstances where LALR
or the canonical LR parser tables described by Knuth @pcite{Knuth 1965} can
be useful. Here we summarize the relative advantages of each parser table
construction algorithm within Bison:
@itemize
@item LALR
There are at least two scenarios where LALR can be worthwhile:
@itemize
@item GLR without static conflict resolution.
@cindex GLR with LALR
When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
conflicts statically (for example, with @code{%left} or @code{%precedence}),
then
the parser explores all potential parses of any given input. In this case,
the choice of parser table construction algorithm is guaranteed not to alter
the language accepted by the parser. LALR parser tables are the smallest
parser tables Bison can currently construct, so they may then be preferable.
Nevertheless, once you begin to resolve conflicts statically, GLR behaves
more like a deterministic parser in the syntactic contexts where those
conflicts appear, and so either IELR or canonical LR can then be helpful to
avoid LALR's mysterious behavior.
@item Malformed grammars.
Occasionally during development, an especially malformed grammar with a
major recurring flaw may severely impede the IELR or canonical LR parser
table construction algorithm. LALR can be a quick way to construct parser
tables in order to investigate such problems while ignoring the more subtle
differences from IELR and canonical LR.
@end itemize
@item IELR
IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
always accept exactly the same set of sentences. However, like LALR, IELR
merges parser states during parser table construction so that the number of
parser states is often an order of magnitude less than for canonical LR.
More importantly, because canonical LR's extra parser states may contain
duplicate conflicts in the case of non-LR grammars, the number of conflicts
for IELR is often an order of magnitude less as well. This effect can
significantly reduce the complexity of developing a grammar.
@item Canonical LR
@cindex delayed syntax error detection
@cindex LAC
@findex %nonassoc
While inefficient, canonical LR parser tables can be an interesting means to
explore a grammar because they possess a property that IELR and LALR tables
do not. That is, if @code{%nonassoc} is not used and default reductions are
left disabled (@pxref{Default Reductions}), then, for every left context of
every canonical LR state, the set of tokens accepted by that state is
guaranteed to be the exact set of tokens that is syntactically acceptable in
that left context. It might then seem that an advantage of canonical LR
parsers in production is that, under the above constraints, they are
guaranteed to detect a syntax error as soon as possible without performing
any unnecessary reductions. However, IELR parsers that use LAC are also
able to achieve this behavior without sacrificing @code{%nonassoc} or
default reductions. For details and a few caveats of LAC, @pxref{LAC}.
@end itemize
For a more detailed exposition of the mysterious behavior in LALR parsers
and the benefits of IELR, see @tcite{Denny 2008}, and @tcite{Denny 2010
November}.
@node Default Reductions
@subsection Default Reductions
@cindex default reductions
@findex %define lr.default-reduction
@findex %nonassoc
After parser table construction, Bison identifies the reduction with the
largest lookahead set in each parser state. To reduce the size of the
parser state, traditional Bison behavior is to remove that lookahead set and
to assign that reduction to be the default parser action. Such a reduction
is known as a @dfn{default reduction}.
Default reductions affect more than the size of the parser tables. They
also affect the behavior of the parser:
@itemize
@item Delayed @code{yylex} invocations.
@cindex delayed yylex invocations
@cindex consistent states
@cindex defaulted states
A @dfn{consistent state} is a state that has only one possible parser
action. If that action is a reduction and is encoded as a default
reduction, then that consistent state is called a @dfn{defaulted state}.
Upon reaching a defaulted state, a Bison-generated parser does not bother to
invoke @code{yylex} to fetch the next token before performing the reduction.
In other words, whether default reductions are enabled in consistent states
determines how soon a Bison-generated parser invokes @code{yylex} for a
token: immediately when it @emph{reaches} that token in the input or when it
eventually @emph{needs} that token as a lookahead to determine the next
parser action. Traditionally, default reductions are enabled, and so the
parser exhibits the latter behavior.
The presence of defaulted states is an important consideration when
designing @code{yylex} and the grammar file. That is, if the behavior of
@code{yylex} can influence or be influenced by the semantic actions
associated with the reductions in defaulted states, then the delay of the
next @code{yylex} invocation until after those reductions is significant.
For example, the semantic actions might pop a scope stack that @code{yylex}
uses to determine what token to return. Thus, the delay might be necessary
to ensure that @code{yylex} does not look up the next token in a scope that
should already be considered closed.
@item Delayed syntax error detection.
@cindex delayed syntax error detection
When the parser fetches a new token by invoking @code{yylex}, it checks
whether there is an action for that token in the current parser state. The
parser detects a syntax error if and only if either (1) there is no action
for that token or (2) the action for that token is the error action (due to
the use of @code{%nonassoc}). However, if there is a default reduction in
that state (which might or might not be a defaulted state), then it is
impossible for condition 1 to exist. That is, all tokens have an action.
Thus, the parser sometimes fails to detect the syntax error until it reaches
a later state.
@cindex LAC
@c If there's an infinite loop, default reductions can prevent an incorrect
@c sentence from being rejected.
While default reductions never cause the parser to accept syntactically
incorrect sentences, the delay of syntax error detection can have unexpected
effects on the behavior of the parser. However, the delay can be caused
anyway by parser state merging and the use of @code{%nonassoc}, and it can
be fixed by another Bison feature, LAC. We discuss the effects of delayed
syntax error detection and LAC more in the next section (@pxref{LAC}).
@end itemize
For canonical LR, the only default reduction that Bison enables by default
is the accept action, which appears only in the accepting state, which has
no other action and is thus a defaulted state. However, the default accept
action does not delay any @code{yylex} invocation or syntax error detection
because the accept action ends the parse.
For LALR and IELR, Bison enables default reductions in nearly all states by
default. There are only two exceptions. First, states that have a shift
action on the @code{error} token do not have default reductions because
delayed syntax error detection could then prevent the @code{error} token
from ever being shifted in that state. However, parser state merging can
cause the same effect anyway, and LAC fixes it in both cases, so future
versions of Bison might drop this exception when LAC is activated. Second,
GLR parsers do not record the default reduction as the action on a lookahead
token for which there is a conflict. The correct action in this case is to
split the parse instead.
To adjust which states have default reductions enabled, use the
@code{%define lr.default-reduction} directive.
@deffn {Directive} {%define lr.default-reduction} @var{where}
Specify the kind of states that are permitted to contain default reductions.
The accepted values of @var{where} are:
@itemize
@item @code{most} (default for LALR and IELR)
@item @code{consistent}
@item @code{accepting} (default for canonical LR)
@end itemize
@end deffn
@node LAC
@subsection LAC
@findex %define parse.lac
@cindex LAC
@cindex lookahead correction
Canonical LR, IELR, and LALR can suffer from a couple of problems upon
encountering a syntax error. First, the parser might perform additional
parser stack reductions before discovering the syntax error. Such
reductions can perform user semantic actions that are unexpected because
they are based on an invalid token, and they cause error recovery to begin
in a different syntactic context than the one in which the invalid token was
encountered. Second, when verbose error messages are enabled (@pxref{Error
Reporting}), the expected token list in the syntax error message can both
contain invalid tokens and omit valid tokens.
The culprits for the above problems are @code{%nonassoc}, default reductions
in inconsistent states (@pxref{Default Reductions}), and parser state
merging. Because IELR and LALR merge parser states, they suffer the most.
Canonical LR can suffer only if @code{%nonassoc} is used or if default
reductions are enabled for inconsistent states.
LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
that solves these problems for canonical LR, IELR, and LALR without
sacrificing @code{%nonassoc}, default reductions, or state merging. You can
enable LAC with the @code{%define parse.lac} directive.
@deffn {Directive} {%define parse.lac} @var{value}
Enable LAC to improve syntax error handling.
@itemize
@item @code{none} (default)
@item @code{full}
@end itemize
This feature is currently only available for deterministic parsers in C and C++.
@end deffn
Conceptually, the LAC mechanism is straight-forward. Whenever the parser
fetches a new token from the scanner so that it can determine the next
parser action, it immediately suspends normal parsing and performs an
exploratory parse using a temporary copy of the normal parser state stack.
During this exploratory parse, the parser does not perform user semantic
actions. If the exploratory parse reaches a shift action, normal parsing
then resumes on the normal parser stacks. If the exploratory parse reaches
an error instead, the parser reports a syntax error. If verbose syntax
error messages are enabled, the parser must then discover the list of
expected tokens, so it performs a separate exploratory parse for each token
in the grammar.
There is one subtlety about the use of LAC. That is, when in a consistent
parser state with a default reduction, the parser will not attempt to fetch
a token from the scanner because no lookahead is needed to determine the
next parser action. Thus, whether default reductions are enabled in
consistent states (@pxref{Default Reductions}) affects how soon the parser
detects a syntax error: immediately when it @emph{reaches} an erroneous
token or when it eventually @emph{needs} that token as a lookahead to
determine the next parser action. The latter behavior is probably more
intuitive, so Bison currently provides no way to achieve the former behavior
while default reductions are enabled in consistent states.
Thus, when LAC is in use, for some fixed decision of whether to enable
default reductions in consistent states, canonical LR and IELR behave almost
exactly the same for both syntactically acceptable and syntactically
unacceptable input. While LALR still does not support the full
language-recognition power of canonical LR and IELR, LAC at least enables
LALR's syntax error handling to correctly reflect LALR's
language-recognition power.
There are a few caveats to consider when using LAC:
@itemize
@item Infinite parsing loops.
IELR plus LAC does have one shortcoming relative to canonical LR. Some
parsers generated by Bison can loop infinitely. LAC does not fix infinite
parsing loops that occur between encountering a syntax error and detecting
it, but enabling canonical LR or disabling default reductions sometimes
does.
@item Verbose error message limitations.
Because of internationalization considerations, Bison-generated parsers
limit the size of the expected token list they are willing to report in a
verbose syntax error message. If the number of expected tokens exceeds that
limit, the list is simply dropped from the message. Enabling LAC can
increase the size of the list and thus cause the parser to drop it. Of
course, dropping the list is better than reporting an incorrect list.
@item Performance.
Because LAC requires many parse actions to be performed twice, it can have a
performance penalty. However, not all parse actions must be performed
twice. Specifically, during a series of default reductions in consistent
states and shift actions, the parser never has to initiate an exploratory
parse. Moreover, the most time-consuming tasks in a parse are often the
file I/O, the lexical analysis performed by the scanner, and the user's
semantic actions, but none of these are performed during the exploratory
parse. Finally, the base of the temporary stack used during an exploratory
parse is a pointer into the normal parser state stack so that the stack is
never physically copied. In our experience, the performance penalty of LAC
has proved insignificant for practical grammars.
@end itemize
While the LAC algorithm shares techniques that have been recognized in the
parser community for years, for the publication that introduces LAC, see
@tcite{Denny 2010 May}.
@node Unreachable States
@subsection Unreachable States
@findex %define lr.keep-unreachable-state
@cindex unreachable states
If there exists no sequence of transitions from the parser's start state to
some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
state}. A state can become unreachable during conflict resolution if Bison
disables a shift action leading to it from a predecessor state.
By default, Bison removes unreachable states from the parser after conflict
resolution because they are useless in the generated parser. However,
keeping unreachable states is sometimes useful when trying to understand the
relationship between the parser and the grammar.
@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
Request that Bison allow unreachable states to remain in the parser tables.
@var{value} must be a Boolean. The default is @code{false}.
@end deffn
There are a few caveats to consider:
@itemize @bullet
@item Missing or extraneous warnings.
Unreachable states may contain conflicts and may use rules not used in any
other state. Thus, keeping unreachable states may induce warnings that are
irrelevant to your parser's behavior, and it may eliminate warnings that are
relevant. Of course, the change in warnings may actually be relevant to a
parser table analysis that wants to keep unreachable states, so this
behavior will likely remain in future Bison releases.
@item Other useless states.
While Bison is able to remove unreachable states, it is not guaranteed to
remove other kinds of useless states. Specifically, when Bison disables
reduce actions during conflict resolution, some goto actions may become
useless, and thus some additional states may become useless. If Bison were
to compute which goto actions were useless and then disable those actions,
it could identify such states as unreachable and then remove those states.
However, Bison does not compute which goto actions are useless.
@end itemize
@node Generalized LR Parsing
@section Generalized LR (GLR) Parsing
@cindex GLR parsing
@cindex generalized LR (GLR) parsing
@cindex ambiguous grammars
@cindex nondeterministic parsing
Bison produces @emph{deterministic} parsers that choose uniquely
when to reduce and which reduction to apply
based on a summary of the preceding input and on one extra token of lookahead.
As a result, normal Bison handles a proper subset of the family of
context-free languages.
Ambiguous grammars, since they have strings with more than one possible
sequence of reductions cannot have deterministic parsers in this sense.
The same is true of languages that require more than one symbol of
lookahead, since the parser lacks the information necessary to make a
decision at the point it must be made in a shift/reduce parser.
Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
there are languages where Bison's default choice of how to
summarize the input seen so far loses necessary information.
When you use the @samp{%glr-parser} declaration in your grammar file,
Bison generates a parser that uses a different algorithm, called
Generalized LR (or GLR). A Bison GLR
parser uses the same basic
algorithm for parsing as an ordinary Bison parser, but behaves
differently in cases where there is a shift/reduce conflict that has not
been resolved by precedence rules (@pxref{Precedence}) or a
reduce/reduce conflict. When a GLR parser encounters such a
situation, it
effectively @emph{splits} into a several parsers, one for each possible
shift or reduction. These parsers then proceed as usual, consuming
tokens in lock-step. Some of the stacks may encounter other conflicts
and split further, with the result that instead of a sequence of states,
a Bison GLR parsing stack is what is in effect a tree of states.
In effect, each stack represents a guess as to what the proper parse
is. Additional input may indicate that a guess was wrong, in which case
the appropriate stack silently disappears. Otherwise, the semantics
actions generated in each stack are saved, rather than being executed
immediately. When a stack disappears, its saved semantic actions never
get executed. When a reduction causes two stacks to become equivalent,
their sets of semantic actions are both saved with the state that
results from the reduction. We say that two stacks are equivalent
when they both represent the same sequence of states,
and each pair of corresponding states represents a
grammar symbol that produces the same segment of the input token
stream.
Whenever the parser makes a transition from having multiple
states to having one, it reverts to the normal deterministic parsing
algorithm, after resolving and executing the saved-up actions.
At this transition, some of the states on the stack will have semantic
values that are sets (actually multisets) of possible actions. The
parser tries to pick one of the actions by first finding one whose rule
has the highest dynamic precedence, as set by the @samp{%dprec}
declaration. Otherwise, if the alternative actions are not ordered by
precedence, but there the same merging function is declared for both
rules by the @samp{%merge} declaration,
Bison resolves and evaluates both and then calls the merge function on
the result. Otherwise, it reports an ambiguity.
It is possible to use a data structure for the GLR parsing tree that
permits the processing of any LR(1) grammar in linear time (in the
size of the input), any unambiguous (not necessarily
LR(1)) grammar in
quadratic worst-case time, and any general (possibly ambiguous)
context-free grammar in cubic worst-case time. However, Bison currently
uses a simpler data structure that requires time proportional to the
length of the input times the maximum number of stacks required for any
prefix of the input. Thus, really ambiguous or nondeterministic
grammars can require exponential time and space to process. Such badly
behaving examples, however, are not generally of practical interest.
Usually, nondeterminism in a grammar is local---the parser is ``in
doubt'' only for a few tokens at a time. Therefore, the current data
structure should generally be adequate. On LR(1) portions of a
grammar, in particular, it is only slightly slower than with the
deterministic LR(1) Bison parser.
For a more detailed exposition of GLR parsers, see @tcite{Scott 2000}.
@node Memory Management
@section Memory Management, and How to Avoid Memory Exhaustion
@cindex memory exhaustion
@cindex memory management
@cindex stack overflow
@cindex parser stack overflow
@cindex overflow of parser stack
The Bison parser stack can run out of memory if too many tokens are shifted and
not reduced. When this happens, the parser function @code{yyparse}
calls @code{yyerror} and then returns 2.
Because Bison parsers have growing stacks, hitting the upper limit
usually results from using a right recursion instead of a left
recursion, see @ref{Recursion}.
@vindex YYMAXDEPTH
By defining the macro @code{YYMAXDEPTH}, you can control how deep the
parser stack can become before memory is exhausted. Define the
macro with a value that is an integer. This value is the maximum number
of tokens that can be shifted (and not reduced) before overflow.
The stack space allowed is not necessarily allocated. If you specify a
large value for @code{YYMAXDEPTH}, the parser normally allocates a small
stack at first, and then makes it bigger by stages as needed. This
increasing allocation happens automatically and silently. Therefore,
you do not need to make @code{YYMAXDEPTH} painfully small merely to save
space for ordinary inputs that do not need much stack.
However, do not allow @code{YYMAXDEPTH} to be a value so large that
arithmetic overflow could occur when calculating the size of the stack
space. Also, do not allow @code{YYMAXDEPTH} to be less than
@code{YYINITDEPTH}.
@cindex default stack limit
The default value of @code{YYMAXDEPTH}, if you do not define it, is
10000.
@vindex YYINITDEPTH
You can control how much stack is allocated initially by defining the
macro @code{YYINITDEPTH} to a positive integer. For the deterministic
parser in C, this value must be a compile-time constant
unless you are assuming C99 or some other target language or compiler
that allows variable-length arrays. The default is 200.
Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
You can generate a deterministic parser containing C++ user code from the
default (C) skeleton, as well as from the C++ skeleton (@pxref{C++
Parsers}). However, if you do use the default skeleton and want to allow
the parsing stack to grow, be careful not to use semantic types or location
types that require non-trivial copy constructors. The C skeleton bypasses
these constructors when copying data to new, larger stacks.
@node Error Recovery
@chapter Error Recovery
@cindex error recovery
@cindex recovery from errors
It is not usually acceptable to have a program terminate on a syntax
error. For example, a compiler should recover sufficiently to parse the
rest of the input file and check it for errors; a calculator should accept
another expression.
In a simple interactive command parser where each input is one line, it may
be sufficient to allow @code{yyparse} to return 1 on error and have the
caller ignore the rest of the input line when that happens (and then call
@code{yyparse} again). But this is inadequate for a compiler, because it
forgets all the syntactic context leading up to the error. A syntax error
deep within a function in the compiler input should not cause the compiler
to treat the following line like the beginning of a source file.
@findex error
You can define how to recover from a syntax error by writing rules to
recognize the special token @code{error}. This is a terminal symbol that
is always defined (you need not declare it) and reserved for error
handling. The Bison parser generates an @code{error} token whenever a
syntax error happens; if you have provided a rule to recognize this token
in the current context, the parse can continue.
For example:
@example
stmts:
%empty
| stmts '\n'
| stmts exp '\n'
| stmts error '\n'
@end example
The fourth rule in this example says that an error followed by a newline
makes a valid addition to any @code{stmts}.
What happens if a syntax error occurs in the middle of an @code{exp}? The
error recovery rule, interpreted strictly, applies to the precise sequence
of a @code{stmts}, an @code{error} and a newline. If an error occurs in
the middle of an @code{exp}, there will probably be some additional tokens
and subexpressions on the stack after the last @code{stmts}, and there
will be tokens to read before the next newline. So the rule is not
applicable in the ordinary way.
But Bison can force the situation to fit the rule, by discarding part of the
semantic context and part of the input. First it discards states and
objects from the stack until it gets back to a state in which the
@code{error} token is acceptable. (This means that the subexpressions
already parsed are discarded, back to the last complete @code{stmts}.) At
this point the @code{error} token can be shifted. Then, if the old
lookahead token is not acceptable to be shifted next, the parser reads
tokens and discards them until it finds a token which is acceptable. In
this example, Bison reads and discards input until the next newline so that
the fourth rule can apply. Note that discarded symbols are possible sources
of memory leaks, see @ref{Destructor Decl}, for a means to reclaim this
memory.
The choice of error rules in the grammar is a choice of strategies for
error recovery. A simple and useful strategy is simply to skip the rest of
the current input line or current statement if an error is detected:
@example
stmt: error ';' /* On error, skip until ';' is read. */
@end example
It is also useful to recover to the matching close-delimiter of an
opening-delimiter that has already been parsed. Otherwise the
close-delimiter will probably appear to be unmatched, and generate another,
spurious error message:
@example
primary:
'(' expr ')'
| '(' error ')'
@dots{}
;
@end example
Error recovery strategies are necessarily guesses. When they guess wrong,
one syntax error often leads to another. In the above example, the error
recovery rule guesses that an error is due to bad input within one
@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
middle of a valid @code{stmt}. After the error recovery rule recovers from
the first error, another syntax error will be found straight away, since the
text following the spurious semicolon is also an invalid @code{stmt}.
To prevent an outpouring of error messages, the parser will output no error
message for another syntax error that happens shortly after the first; only
after three consecutive input tokens have been successfully shifted will
error messages resume.
Note that rules which accept the @code{error} token may have actions, just
as any other rules can.
@findex yyerrok
You can make error messages resume immediately by using the macro
@code{yyerrok} in an action. If you do this in the error rule's action, no
error messages will be suppressed. This macro requires no arguments;
@samp{yyerrok;} is a valid C statement.
@findex yyclearin
The previous lookahead token is reanalyzed immediately after an error. If
this is unacceptable, then the macro @code{yyclearin} may be used to clear
this token. Write the statement @samp{yyclearin;} in the error rule's
action.
@xref{Action Features}.
For example, suppose that on a syntax error, an error handling routine is
called that advances the input stream to some point where parsing should
once again commence. The next symbol returned by the lexical scanner is
probably correct. The previous lookahead token ought to be discarded
with @samp{yyclearin;}.
@vindex YYRECOVERING
The expression @code{YYRECOVERING ()} yields 1 when the parser
is recovering from a syntax error, and 0 otherwise.
Syntax error diagnostics are suppressed while recovering from a syntax
error.
@node Context Dependency
@chapter Handling Context Dependencies
The Bison paradigm is to parse tokens first, then group them into larger
syntactic units. In many languages, the meaning of a token is affected by
its context. Although this violates the Bison paradigm, certain techniques
(known as @dfn{kludges}) may enable you to write Bison parsers for such
languages.
@menu
* Semantic Tokens:: Token parsing can depend on the semantic context.
* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
* Tie-in Recovery:: Lexical tie-ins have implications for how
error recovery rules must be written.
@end menu
(Actually, ``kludge'' means any technique that gets its job done but is
neither clean nor robust.)
@node Semantic Tokens
@section Semantic Info in Token Kinds
The C language has a context dependency: the way an identifier is used
depends on what its current meaning is. For example, consider this:
@example
foo (x);
@end example
This looks like a function call statement, but if @code{foo} is a typedef
name, then this is actually a declaration of @code{x}. How can a Bison
parser for C decide how to parse this input?
The method used in GNU C is to have two different token kinds,
@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
identifier, it looks up the current declaration of the identifier in order
to decide which token kind to return: @code{TYPENAME} if the identifier is
declared as a typedef, @code{IDENTIFIER} otherwise.
The grammar rules can then express the context dependency by the choice of
token kind to recognize. @code{IDENTIFIER} is accepted as an expression,
but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
is @emph{not} significant, such as in declarations that can shadow a
typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
accepted---there is one rule for each of the two token kinds.
This technique is simple to use if the decision of which kinds of
identifiers to allow is made at a place close to where the identifier is
parsed. But in C this is not always so: C allows a declaration to
redeclare a typedef name provided an explicit type has been specified
earlier:
@example
typedef int foo, bar;
int baz (void)
@group
@{
static bar (bar); /* @r{redeclare @code{bar} as static variable} */
extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
return foo (bar);
@}
@end group
@end example
Unfortunately, the name being declared is separated from the declaration
construct itself by a complicated syntactic structure---the ``declarator''.
As a result, part of the Bison parser for C needs to be duplicated, with
all the nonterminal names changed: once for parsing a declaration in
which a typedef name can be redefined, and once for parsing a
declaration in which that can't be done. Here is a part of the
duplication, with actions omitted for brevity:
@example
@group
initdcl:
declarator maybeasm '=' init
| declarator maybeasm
;
@end group
@group
notype_initdcl:
notype_declarator maybeasm '=' init
| notype_declarator maybeasm
;
@end group
@end example
@noindent
Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
cannot. The distinction between @code{declarator} and
@code{notype_declarator} is the same sort of thing.
There is some similarity between this technique and a lexical tie-in
(described next), in that information which alters the lexical analysis is
changed during parsing by other parts of the program. The difference is
here the information is global, and is used for other purposes in the
program. A true lexical tie-in has a special-purpose flag controlled by
the syntactic context.
@node Lexical Tie-ins
@section Lexical Tie-ins
@cindex lexical tie-in
One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
which is set by Bison actions, whose purpose is to alter the way tokens are
parsed.
For example, suppose we have a language vaguely like C, but with a special
construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
an expression in parentheses in which all integers are hexadecimal. In
particular, the token @samp{a1b} must be treated as an integer rather than
as an identifier if it appears in that context. Here is how you can do it:
@example
@group
%@{
int hexflag;
int yylex (void);
void yyerror (char const *);
%@}
%%
@dots{}
@end group
@group
expr:
IDENTIFIER
| constant
| HEX '(' @{ hexflag = 1; @}
expr ')' @{ hexflag = 0; $$ = $4; @}
| expr '+' expr @{ $$ = make_sum ($1, $3); @}
@dots{}
;
@end group
@group
constant:
INTEGER
| STRING
;
@end group
@end example
@noindent
Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
it is nonzero, all integers are parsed in hexadecimal, and tokens starting
with letters are parsed as integers if possible.
The declaration of @code{hexflag} shown in the prologue of the grammar file
is needed to make it accessible to the actions (@pxref{Prologue}). You must
also write the code in @code{yylex} to obey the flag.
@node Tie-in Recovery
@section Lexical Tie-ins and Error Recovery
Lexical tie-ins make strict demands on any error recovery rules you have.
@xref{Error Recovery}.
The reason for this is that the purpose of an error recovery rule is to
abort the parsing of one construct and resume in some larger construct.
For example, in C-like languages, a typical error recovery rule is to skip
tokens until the next semicolon, and then start a new statement, like this:
@example
stmt:
expr ';'
| IF '(' expr ')' stmt @{ @dots{} @}
@dots{}
| error ';' @{ hexflag = 0; @}
;
@end example
If there is a syntax error in the middle of a @samp{hex (@var{expr})}
construct, this error rule will apply, and then the action for the
completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
remain set for the entire rest of the input, or until the next @code{hex}
keyword, causing identifiers to be misinterpreted as integers.
To avoid this problem the error recovery rule itself clears @code{hexflag}.
There may also be an error recovery rule that works within expressions.
For example, there could be a rule which applies within parentheses
and skips to the close-parenthesis:
@example
@group
expr:
@dots{}
| '(' expr ')' @{ $$ = $2; @}
| '(' error ')'
@dots{}
@end group
@end example
If this rule acts within the @code{hex} construct, it is not going to abort
that construct (since it applies to an inner level of parentheses within
the construct). Therefore, it should not clear the flag: the rest of
the @code{hex} construct should be parsed with the flag still in effect.
What if there is an error recovery rule which might abort out of the
@code{hex} construct or might not, depending on circumstances? There is no
way you can write the action to determine whether a @code{hex} construct is
being aborted or not. So if you are using a lexical tie-in, you had better
make sure your error recovery rules are not of this kind. Each rule must
be such that you can be sure that it always will, or always won't, have to
clear the flag.
@c ================================================== Debugging Your Parser
@node Debugging
@chapter Debugging Your Parser
Developing a parser can be a challenge, especially if you don't understand
the algorithm (@pxref{Algorithm}). This chapter explains how to understand
and debug a parser.
The most frequent issue users face is solving their conflicts. To fix them,
the first step is understanding how they arise in a given grammar. This is
made much easier by automated generation of counterexamples, cover in the
first section (@pxref{Counterexamples}).
In most cases though, looking at the structure of the automaton is still
needed. The following sections explain how to generate and read the
detailed structural description of the automaton. There are several formats
available:
@itemize @minus
@item
as text, see @ref{Understanding};
@item
as a graph, see @ref{Graphviz};
@item
or as a markup report that can be turned, for instance, into HTML, see
@ref{Xml}.
@end itemize
The last section focuses on the dynamic part of the parser: how to enable
and understand the parser run-time traces (@pxref{Tracing}).
@menu
* Counterexamples:: Understanding conflicts.
* Understanding:: Understanding the structure of your parser.
* Graphviz:: Getting a visual representation of the parser.
* Xml:: Getting a markup representation of the parser.
* Tracing:: Tracing the execution of your parser.
@end menu
@node Counterexamples
@section Generation of Counterexamples
@cindex cex
@cindex counterexamples
@cindex conflict counterexamples
Solving conflicts is probably the most delicate part of the design of an LR
parser, as demonstrated by the number of sections devoted to them in this
very documentation. To solve a conflict, one must understand it: when does
it occur? Is it because of a flaw in the grammar? Is it rather because
LR(1) cannot cope with this grammar?
One difficulty is that conflicts occur in the @emph{automaton}, and it can
be tricky to relate them to issues in the @emph{grammar} itself. With
experience and patience, analysis of the detailed description of the
automaton (@pxref{Understanding}) allows one to find example strings that
reach these conflicts.
That task is made much easier thanks to the generation of counterexamples,
initially developed by Chinawat Isradisaikul and Andrew Myers
@pcite{Isradisaikul 2015}.
As a first example, see the grammar of @ref{Shift/Reduce}, which features
one shift/reduce conflict:
@c see doc/else.y
@example
$ @kbd{bison else.y}
else.y: @dwarning{warning}: 1 shift/reduce conflict [@dwarning{-Wconflicts-sr}]
else.y: @dnotice{note}: rerun with option '-Wcounterexamples' to generate conflict counterexamples
@end example
@noindent
Let's rerun @command{bison} with the option
@option{-Wcex}/@option{-Wcounterexamples}@inlinefmt{info, (the following
output is actually in color)}:
@example
else.y: @dwarning{warning}: 1 shift/reduce conflict [@dwarning{-Wconflicts-sr}]
else.y: @dwarning{warning}: shift/reduce conflict on token "else" [@dwarning{-Wcounterexamples}]
@danglingElseCex
@end example
This shows two different derivations for one single expression, which proves
that the grammar is ambiguous.
@sp 1
As a more delicate example, consider the example grammar of
@ref{Reduce/Reduce}, which features a reduce/reduce conflict:
@c doc/sequence.y
@example
%%
sequence:
%empty
| maybeword
| sequence "word"
;
maybeword:
%empty
| "word"
;
@end example
Bison generates the following counterexamples:
@example
@group
$ @kbd{bison -Wcex sequence.y}
sequence.y: @dwarning{warning}: 1 shift/reduce conflict [@dwarning{-Wconflicts-sr}]
sequence.y: @dwarning{warning}: 2 reduce/reduce conflicts [@dwarning{-Wconflicts-rr}]
@end group
@ifnottex
@group
sequence.y: @dwarning{warning}: shift/reduce conflict on token "word" [@dwarning{-Wcounterexamples}]
Example: @red{•} @green{"word"}
Shift derivation
@yellow{sequence}
@yellow{↳ 2:} @green{maybeword}
@green{↳ 5:} @red{•} @green{"word"}
Example: @red{•} @yellow{"word"}
Reduce derivation
@yellow{sequence}
@yellow{↳ 3:} @green{sequence} @yellow{"word"}
@green{↳ 1:} @red{•}
@end group
@group
sequence.y: @dwarning{warning}: reduce/reduce conflict on tokens $end, "word" [@dwarning{-Wcounterexamples}]
Example: @red{•}
First reduce derivation
@yellow{sequence}
@yellow{↳ 1:} @red{•}
Example: @red{•}
Second reduce derivation
@yellow{sequence}
@yellow{↳ 2:} @green{maybeword}
@green{↳ 4:} @red{•}
@end group
@group
sequence.y: @dwarning{warning}: shift/reduce conflict on token "word" [@dwarning{-Wcounterexamples}]
Example: @red{•} @green{"word"}
Shift derivation
@yellow{sequence}
@yellow{↳ 2:} @green{maybeword}
@green{↳ 5:} @red{•} @green{"word"}
Example: @red{•} @yellow{"word"}
Reduce derivation
@yellow{sequence}
@yellow{↳ 3:} @green{sequence} @yellow{"word"}
@green{↳ 2:} @blue{maybeword}
@blue{↳ 4:} @red{•}
@end group
@group
sequence.y:8.3-45: @dwarning{warning}: rule useless in parser due to conflicts [@dwarning{-Wother}]
8 | @dwarning{%empty @{ printf ("empty maybeword\n"); @}}
| @dwarning{^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
@end group
@end ifnottex
@iftex
@group
sequence.y: @dwarning{warning}: shift/reduce conflict on token "word" [@dwarning{-Wcounterexamples}]
Example: @red{•} @green{"word"}
Shift derivation
@yellow{sequence}
@yellow{@arrow{} 2:} @green{maybeword}
@green{@arrow{} 5:} @red{•} @green{"word"}
Example: @red{•} @yellow{"word"}
Reduce derivation
@yellow{sequence}
@yellow{@arrow{} 3:} @green{sequence} @yellow{"word"}
@green{@arrow{} 1:} @red{•}
@end group
@group
sequence.y: @dwarning{warning}: reduce/reduce conflict on tokens $end, "word" [@dwarning{-Wcounterexamples}]
Example: @red{•}
First reduce derivation
@yellow{sequence}
@yellow{@arrow{} 1:} @red{•}
Example: @red{•}
Second reduce derivation
@yellow{sequence}
@yellow{@arrow{} 2:} @green{maybeword}
@green{@arrow{}: 4} @red{•}
@end group
@group
sequence.y: @dwarning{warning}: shift/reduce conflict on token "word" [@dwarning{-Wcounterexamples}]
Example: @red{•} @green{"word"}
Shift derivation
@yellow{sequence}
@yellow{@arrow{} 2:} @green{maybeword}
@green{@arrow{} 5:} @red{•} @green{"word"}
Example: @red{•} @yellow{"word"}
Reduce derivation
@yellow{sequence}
@yellow{@arrow{} 3:} @green{sequence} @yellow{"word"}
@green{@arrow{} 2:} @blue{maybeword}
@blue{@arrow{} 4:} @red{•}
@end group
@group
sequence.y:8.3-45: @dwarning{warning}: rule useless in parser due to conflicts [@dwarning{-Wother}]
8 | @dwarning{%empty @{ printf ("empty maybeword\n"); @}}
| @dwarning{^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
@end group
@end iftex
@end example
Each of these three conflicts, again, prove that the grammar is ambiguous.
For instance, the second conflict (the reduce/reduce one) shows that the
grammar accepts the empty input in two different ways.
@sp 1
Sometimes, the search will not find an example that can be derived in two
ways. In these cases, counterexample generation will provide two examples
that are the same up until the dot. Most notably, this will happen when
your grammar requires a stronger parser (more lookahead, LR instead of
LALR). The following example isn't LR(1):
@c doc/ids.y
@example
%token ID
%%
s: a ID
a: expr
expr: %empty | expr ID ','
@end example
@command{bison} reports:
@example
ids.y: @dwarning{warning}: 1 shift/reduce conflict [@dwarning{-Wconflicts-sr}]
ids.y: @dwarning{warning}: shift/reduce conflict on token ID [@dwarning{-Wcounterexamples}]
@ifnottex
@group
First example: @purple{expr} @red{•} @purple{ID ','} @green{ID} @yellow{$end}
Shift derivation
@yellow{$accept}
@yellow{↳ 0:} @green{s} @yellow{$end}
@green{↳ 1:} @blue{a} @green{ID}
@blue{↳ 2:} @purple{expr}
@purple{↳ 4: expr} @red{•} @purple{ID ','}
Second example: @blue{expr} @red{•} @green{ID} @yellow{$end}
Reduce derivation
@yellow{$accept}
@yellow{↳ 0:} @green{s} @yellow{$end}
@green{↳ 1:} @blue{a} @green{ID}
@blue{↳ 2: expr} @red{•}
@end group
@group
ids.y:4.4-7: @dwarning{warning}: rule useless in parser due to conflicts [@dwarning{-Wother}]
4 | a: expr
| ^~~~
@end group
@end ifnottex
@iftex
@group
First example: @purple{expr} @red{•} @purple{ID ','} @green{ID} @yellow{$end}
Shift derivation
@yellow{$accept}
@yellow{@arrow{} 0:} @green{s} @yellow{$end}
@green{@arrow{} 1:} @blue{a} @green{ID}
@blue{@arrow{} 2:} @purple{expr}
@purple{@arrow{} 4: expr} @red{•} @purple{ID ','}
Second example: @blue{expr} @red{•} @green{ID} @yellow{$end}
Reduce derivation
@yellow{$accept}
@yellow{@arrow{} 0:} @green{s} @yellow{$end}
@green{@arrow{} 1:} @blue{a} @green{ID}
@blue{@arrow{} 2: expr} @red{•}
@end group
@group
ids.y:4.4-7: @dwarning{warning}: rule useless in parser due to conflicts [@dwarning{-Wother}]
4 | a: expr
| ^~~~
@end group
@end iftex
@end example
This conflict is caused by the parser not having enough information to know
the difference between these two examples. The parser would need an
additional lookahead token to know whether or not a comma follows the
@code{ID} after @code{expr}. These types of conflicts tend to be more
difficult to fix, and usually need a rework of the grammar. In this case,
it can be fixed by changing around the recursion: @code{expr: ID | ',' expr
ID}.
Alternatively, you might also want to consider using a GLR parser
(@pxref{GLR Parsers}).
@sp 1
On occasions, it is useful to look at counterexamples @emph{in situ}: with
the automaton report (@xref{Understanding}, in particular @ref{state-8,,
State 8}).
@node Understanding
@section Understanding Your Parser
Bison parsers are @dfn{shift/reduce automata} (@pxref{Algorithm}). In some
cases (much more frequent than one would hope), looking at this automaton is
required to tune or simply fix a parser.
The textual file is generated when the options @option{--report} or
@option{--verbose} are specified, see @ref{Invocation}. Its name is made by
removing @samp{.tab.c} or @samp{.c} from the parser implementation file
name, and adding @samp{.output} instead. Therefore, if the grammar file is
@file{foo.y}, then the parser implementation file is called @file{foo.tab.c}
by default. As a consequence, the verbose output file is called
@file{foo.output}.
The following grammar file, @file{calc.y}, will be used in the sequel:
@c doc/calc.y
@example
@group
%union
@{
int ival;
const char *sval;
@}
@end group
@group
%token <ival> NUM
%nterm <ival> exp
@end group
@group
%token <sval> STR
%nterm <sval> useless
@end group
@group
%left '+' '-'
%left '*'
@end group
%%
@group
exp:
exp '+' exp
| exp '-' exp
| exp '*' exp
| exp '/' exp
| NUM
;
@end group
useless: STR;
%%
@end example
@command{bison} reports:
@smallexample
calc.y: @dwarning{warning}: 1 nonterminal useless in grammar [@dwarning{-Wother}]
calc.y: @dwarning{warning}: 1 rule useless in grammar [@dwarning{-Wother}]
calc.y:19.1-7: @dwarning{warning}: nonterminal useless in grammar: useless [@dwarning{-Wother}]
19 | @dwarning{useless: STR;}
| @dwarning{^~~~~~~}
calc.y: @dwarning{warning}: 7 shift/reduce conflicts [@dwarning{-Wconflicts-sr}]
calc.y: @dnotice{note}: rerun with option '-Wcounterexamples' to generate conflict counterexamples
@end smallexample
Going back to the calc example, when given @option{--report=state},
in addition to @file{calc.tab.c}, it creates a file @file{calc.output}
with contents detailed below. The order of the output and the exact
presentation might vary, but the interpretation is the same.
@noindent
@cindex token, useless
@cindex useless token
@cindex nonterminal, useless
@cindex useless nonterminal
@cindex rule, useless
@cindex useless rule
The first section reports useless tokens, nonterminals and rules. Useless
nonterminals and rules are removed in order to produce a smaller parser, but
useless tokens are preserved, since they might be used by the scanner (note
the difference between ``useless'' and ``unused'' below):
@example
Nonterminals useless in grammar
useless
Terminals unused in grammar
STR
Rules useless in grammar
6 useless: STR
@end example
@noindent
The next section lists states that still have conflicts.
@example
State 8 conflicts: 1 shift/reduce
State 9 conflicts: 1 shift/reduce
State 10 conflicts: 1 shift/reduce
State 11 conflicts: 4 shift/reduce
@end example
@noindent
Then Bison reproduces the exact grammar it used:
@example
Grammar
0 $accept: exp $end
1 exp: exp '+' exp
2 | exp '-' exp
3 | exp '*' exp
4 | exp '/' exp
5 | NUM
@end example
@noindent
and reports the uses of the symbols:
@example
@group
Terminals, with rules where they appear
$end (0) 0
'*' (42) 3
'+' (43) 1
'-' (45) 2
'/' (47) 4
error (256)
NUM <ival> (258) 5
STR <sval> (259)
@end group
@group
Nonterminals, with rules where they appear
$accept (9)
on left: 0
exp <ival> (10)
on left: 1 2 3 4 5
on right: 0 1 2 3 4
@end group
@end example
@noindent
@cindex item
@cindex dotted rule
@cindex rule, dotted
Bison then proceeds onto the automaton itself, describing each state with
its set of @dfn{items}, also known as @dfn{dotted rules}. Each item is a
production rule together with a point (@samp{.}) marking the location of the
input cursor.
@example
State 0
0 $accept: • exp $end
NUM shift, and go to state 1
exp go to state 2
@end example
This reads as follows: ``state 0 corresponds to being at the very
beginning of the parsing, in the initial rule, right before the start
symbol (here, @code{exp}). When the parser returns to this state right
after having reduced a rule that produced an @code{exp}, the control
flow jumps to state 2. If there is no such transition on a nonterminal
symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
the parse stack, and the control flow jumps to state 1. Any other
lookahead triggers a syntax error.''
@cindex core, item set
@cindex item set core
@cindex kernel, item set
@cindex item set core
Even though the only active rule in state 0 seems to be rule 0, the
report lists @code{NUM} as a lookahead token because @code{NUM} can be
at the beginning of any rule deriving an @code{exp}. By default Bison
reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
you want to see more detail you can invoke @command{bison} with
@option{--report=itemset} to list the derived items as well:
@example
State 0
0 $accept: • exp $end
1 exp: • exp '+' exp
2 | • exp '-' exp
3 | • exp '*' exp
4 | • exp '/' exp
5 | • NUM
NUM shift, and go to state 1
exp go to state 2
@end example
@noindent
In the state 1@dots{}
@example
State 1
5 exp: NUM •
$default reduce using rule 5 (exp)
@end example
@noindent
the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
(@samp{$default}), the parser will reduce it. If it was coming from State
0, then, after this reduction it will return to state 0, and will jump to
state 2 (@samp{exp: go to state 2}).
@example
State 2
0 $accept: exp • $end
1 exp: exp • '+' exp
2 | exp • '-' exp
3 | exp • '*' exp
4 | exp • '/' exp
$end shift, and go to state 3
'+' shift, and go to state 4
'-' shift, and go to state 5
'*' shift, and go to state 6
'/' shift, and go to state 7
@end example
@noindent
In state 2, the automaton can only shift a symbol. For instance, because of
the item @samp{exp: exp • '+' exp}, if the lookahead is @samp{+} it is
shifted onto the parse stack, and the automaton jumps to state 4,
corresponding to the item @samp{exp: exp '+' • exp}. Since there is no
default action, any lookahead not listed triggers a syntax error.
@cindex accepting state
The state 3 is named the @dfn{final state}, or the @dfn{accepting
state}:
@example
State 3
0 $accept: exp $end •
$default accept
@end example
@noindent
the initial rule is completed (the start symbol and the end-of-input were
read), the parsing exits successfully.
The interpretation of states 4 to 7 is straightforward, and is left to
the reader.
@example
State 4
1 exp: exp '+' • exp
NUM shift, and go to state 1
exp go to state 8
State 5
2 exp: exp '-' • exp
NUM shift, and go to state 1
exp go to state 9
State 6
3 exp: exp '*' • exp
NUM shift, and go to state 1
exp go to state 10
State 7
4 exp: exp '/' • exp
NUM shift, and go to state 1
exp go to state 11
@end example
@anchor{state-8}
As was announced in beginning of the report, @samp{State 8 conflicts:
1 shift/reduce}:
@example
State 8
1 exp: exp • '+' exp
1 | exp '+' exp •
2 | exp • '-' exp
3 | exp • '*' exp
4 | exp • '/' exp
'*' shift, and go to state 6
'/' shift, and go to state 7
'/' [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)
@end example
Indeed, there are two actions associated to the lookahead @samp{/}:
either shifting (and going to state 7), or reducing rule 1. The
conflict means that either the grammar is ambiguous, or the parser lacks
information to make the right decision. Indeed the grammar is
ambiguous, as, since we did not specify the precedence of @samp{/}, the
sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
NUM}, which corresponds to reducing rule 1.
Because in deterministic parsing a single decision can be made, Bison
arbitrarily chose to disable the reduction, see @ref{Shift/Reduce}.
Discarded actions are reported between square brackets.
Note that all the previous states had a single possible action: either
shifting the next token and going to the corresponding state, or
reducing a single rule. In the other cases, i.e., when shifting
@emph{and} reducing is possible or when @emph{several} reductions are
possible, the lookahead is required to select the action. State 8 is
one such state: if the lookahead is @samp{*} or @samp{/} then the action
is shifting, otherwise the action is reducing rule 1. In other words,
the first two items, corresponding to rule 1, are not eligible when the
lookahead token is @samp{*}, since we specified that @samp{*} has higher
precedence than @samp{+}. More generally, some items are eligible only
with some set of possible lookahead tokens. When run with
@option{--report=lookahead}, Bison specifies these lookahead tokens:
@example
State 8
1 exp: exp • '+' exp
1 | exp '+' exp • [$end, '+', '-', '/']
2 | exp • '-' exp
3 | exp • '*' exp
4 | exp • '/' exp
'*' shift, and go to state 6
'/' shift, and go to state 7
'/' [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)
@end example
Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
solved thanks to associativity and precedence directives. If invoked with
@option{--report=solved}, Bison includes information about the solved
conflicts in the report:
@example
Conflict between rule 1 and token '+' resolved as reduce (%left '+').
Conflict between rule 1 and token '-' resolved as reduce (%left '-').
Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
@end example
When given @option{--report=counterexamples}, @command{bison} will generate
counterexamples within the report, augmented with the corresponding items
(@pxref{Counterexamples}).
@ifnottex
@example
shift/reduce conflict on token '/':
1 exp: exp '+' exp •
4 exp: exp • '/' exp
@group
Example: exp '+' exp • '/' exp
Shift derivation
exp
↳ 1: exp '+' exp
↳ 4: exp • '/' exp
Example: exp '+' exp • '/' exp
Reduce derivation
exp
↳ 4: exp '/' exp
↳ 1: exp '+' exp •
@end group
@end example
@end ifnottex
@iftex
@example
shift/reduce conflict on token '/':
1 exp: exp '+' exp •
4 exp: exp • '/' exp
@group
Example: exp '+' exp • '/' exp
Shift derivation
exp
@arrow{} 1: exp '+' exp
@arrow{} 4: exp • '/' exp
Example: exp '+' exp • '/' exp
Reduce derivation
exp
@arrow{} 4: exp '/' exp
@arrow{} 1: exp '+' exp •
@end group
@end example
@end iftex
This shows two separate derivations in the grammar for the same @code{exp}:
@samp{e1 + e2 / e3}. The derivations show how your rules would parse the
given example. Here, the first derivation completes a reduction when seeing
@samp{/}, causing @samp{e1 + e2} to be grouped as an @code{exp}. The second
derivation shifts on @samp{/}, resulting in @samp{e2 / e3} being grouped as
an @code{exp}. Therefore, it is easy to see that adding
precedence/associativity directives would fix this conflict.
The remaining states are similar:
@example
@group
State 9
1 exp: exp • '+' exp
2 | exp • '-' exp
2 | exp '-' exp •
3 | exp • '*' exp
4 | exp • '/' exp
'*' shift, and go to state 6
'/' shift, and go to state 7
'/' [reduce using rule 2 (exp)]
$default reduce using rule 2 (exp)
@end group
@group
State 10
1 exp: exp • '+' exp
2 | exp • '-' exp
3 | exp • '*' exp
3 | exp '*' exp •
4 | exp • '/' exp
'/' shift, and go to state 7
'/' [reduce using rule 3 (exp)]
$default reduce using rule 3 (exp)
@end group
@group
State 11
1 exp: exp • '+' exp
2 | exp • '-' exp
3 | exp • '*' exp
4 | exp • '/' exp
4 | exp '/' exp •
'+' shift, and go to state 4
'-' shift, and go to state 5
'*' shift, and go to state 6
'/' shift, and go to state 7
'+' [reduce using rule 4 (exp)]
'-' [reduce using rule 4 (exp)]
'*' [reduce using rule 4 (exp)]
'/' [reduce using rule 4 (exp)]
$default reduce using rule 4 (exp)
@end group
@end example
@noindent
Observe that state 11 contains conflicts not only due to the lack of
precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
also because the associativity of @samp{/} is not specified.
Bison may also produce an HTML version of this output, via an XML file and
XSLT processing (@pxref{Xml}).
@c ================================================= Graphical Representation
@node Graphviz
@section Visualizing Your Parser
@cindex dot
As another means to gain better understanding of the shift/reduce
automaton corresponding to the Bison parser, a DOT file can be generated. Note
that debugging a real grammar with this is tedious at best, and impractical
most of the times, because the generated files are huge (the generation of
a PDF or PNG file from it will take very long, and more often than not it will
fail due to memory exhaustion). This option was rather designed for beginners,
to help them understand LR parsers.
This file is generated when the @option{--graph} option is specified
(@pxref{Invocation}). Its name is made by removing
@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
adding @samp{.gv} instead. If the grammar file is @file{foo.y}, the
Graphviz output file is called @file{foo.gv}. A DOT file may also be
produced via an XML file and XSLT processing (@pxref{Xml}).
The following grammar file, @file{rr.y}, will be used in the sequel:
@example
%%
@group
exp: a ";" | b ".";
a: "0";
b: "0";
@end group
@end example
The graphical output
@ifnotinfo
(see @ref{fig:graph})
@end ifnotinfo
is very similar to the textual one, and as such it is easier understood by
making direct comparisons between them. @xref{Debugging}, for a detailed
analysis of the textual report.
@ifnotinfo
@float Figure,fig:graph
@center @image{figs/example, 430pt,,,.svg}
@caption{A graphical rendering of the parser.}
@end float
@end ifnotinfo
@subheading Graphical Representation of States
The items (dotted rules) for each state are grouped together in graph nodes.
Their numbering is the same as in the verbose file. See the following
points, about transitions, for examples
When invoked with @option{--report=lookaheads}, the lookahead tokens, when
needed, are shown next to the relevant rule between square brackets as a
comma separated list. This is the case in the figure for the representation of
reductions, below.
@sp 1
The transitions are represented as directed edges between the current and
the target states.
@subheading Graphical Representation of Shifts
Shifts are shown as solid arrows, labeled with the lookahead token for that
shift. The following describes a reduction in the @file{rr.output} file:
@example
@group
State 3
1 exp: a • ";"
";" shift, and go to state 6
@end group
@end example
A Graphviz rendering of this portion of the graph could be:
@center @image{figs/example-shift, 100pt,,,.svg}
@subheading Graphical Representation of Reductions
Reductions are shown as solid arrows, leading to a diamond-shaped node
bearing the number of the reduction rule. The arrow is labeled with the
appropriate comma separated lookahead tokens. If the reduction is the default
action for the given state, there is no such label.
This is how reductions are represented in the verbose file @file{rr.output}:
@example
State 1
3 a: "0" • [";"]
4 b: "0" • ["."]
"." reduce using rule 4 (b)
$default reduce using rule 3 (a)
@end example
A Graphviz rendering of this portion of the graph could be:
@center @image{figs/example-reduce, 120pt,,,.svg}
When unresolved conflicts are present, because in deterministic parsing
a single decision can be made, Bison can arbitrarily choose to disable a
reduction, see @ref{Shift/Reduce}. Discarded actions
are distinguished by a red filling color on these nodes, just like how they are
reported between square brackets in the verbose file.
The reduction corresponding to the rule number 0 is the acceptation
state. It is shown as a blue diamond, labeled ``Acc''.
@subheading Graphical Representation of Gotos
The @samp{go to} jump transitions are represented as dotted lines bearing
the name of the rule being jumped to.
@c ================================================= XML
@node Xml
@section Visualizing your parser in multiple formats
@cindex xml
Bison supports two major report formats: textual output
(@pxref{Understanding}) when invoked
with option @option{--verbose}, and DOT
(@pxref{Graphviz}) when invoked with
option @option{--graph}. However,
another alternative is to output an XML file that may then be, with
@command{xsltproc}, rendered as either a raw text format equivalent to the
verbose file, or as an HTML version of the same file, with clickable
transitions, or even as a DOT. The @file{.output} and DOT files obtained via
XSLT have no difference whatsoever with those obtained by invoking
@command{bison} with options @option{--verbose} or @option{--graph}.
The XML file is generated when the options @option{-x} or
@option{--xml[=FILE]} are specified, see @ref{Invocation}.
If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
from the parser implementation file name, and adding @samp{.xml} instead.
For instance, if the grammar file is @file{foo.y}, the default XML output
file is @file{foo.xml}.
Bison ships with a @file{data/xslt} directory, containing XSL Transformation
files to apply to the XML file. Their names are non-ambiguous:
@table @file
@item xml2dot.xsl
Used to output a copy of the DOT visualization of the automaton.
@item xml2text.xsl
Used to output a copy of the @samp{.output} file.
@item xml2xhtml.xsl
Used to output an xhtml enhancement of the @samp{.output} file.
@end table
Sample usage (requires @command{xsltproc}):
@example
$ @kbd{bison -x gr.y}
@group
$ @kbd{bison --print-datadir}
/usr/local/share/bison
@end group
$ @kbd{xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html}
@end example
@c ================================================= Tracing
@node Tracing
@section Tracing Your Parser
@findex yydebug
@cindex debugging
@cindex tracing the parser
When a Bison grammar compiles properly but parses ``incorrectly'', the
@code{yydebug} parser-trace feature helps figuring out why.
@menu
* Enabling Traces:: Activating run-time trace support
* Mfcalc Traces:: Extending @code{mfcalc} to support traces
@end menu
@node Enabling Traces
@subsection Enabling Traces
There are several means to enable compilation of trace facilities, in
decreasing order of preference:
@table @asis
@item the variable @samp{parse.trace}
@findex %define parse.trace
Add the @samp{%define parse.trace} directive (@pxref{%define
Summary}), or pass the @option{-Dparse.trace} option
(@pxref{Tuning the Parser}). This is a Bison extension. Unless POSIX and
Yacc portability matter to you, this is the preferred solution.
@item the option @option{-t} (POSIX Yacc compliant)
@itemx the option @option{--debug} (Bison extension)
Use the @option{-t} option when you run Bison (@pxref{Invocation}). With
@samp{%define api.prefix @{c@}}, it defines @code{CDEBUG} to 1, otherwise it
defines @code{YYDEBUG} to 1.
@item the directive @samp{%debug} (deprecated)
@findex %debug
Add the @code{%debug} directive (@pxref{Decl Summary}). This Bison
extension is maintained for backward compatibility; use @code{%define
parse.trace} instead.
@item the macro @code{YYDEBUG} (C/C++ only)
@findex YYDEBUG
Define the macro @code{YYDEBUG} to a nonzero value when you compile the
parser. This is compliant with POSIX Yacc. You could use
@option{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue}).
If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
Parsers}), for instance @samp{%define
api.prefix @{c@}}, then if @code{CDEBUG} is defined, its value controls the
tracing feature (enabled if and only if nonzero); otherwise tracing is
enabled if and only if @code{YYDEBUG} is nonzero.
In C++, where POSIX compliance makes no sense, avoid this option, and prefer
@samp{%define parse.trace}. If you @code{#define} the @code{YYDEBUG} macro
at the wrong place (e.g., in @samp{%code top} instead of @samp{%code
require}), the parser class will have two different definitions, thus
leading to ODR violations and happy debugging times.
@end table
We suggest that you always enable the trace option so that debugging is
always possible.
@findex YYFPRINTF
In C the trace facility outputs messages with macro calls of the form
@code{YYFPRINTF (stderr, @var{format}, @var{args})} where @var{format} and
@var{args} are the usual @code{printf} format and variadic arguments. If
you define @code{YYDEBUG} to a nonzero value but do not define
@code{YYFPRINTF}, @code{<stdio.h>} is automatically included and
@code{YYFPRINTF} is defined to @code{fprintf}.
Once you have compiled the program with trace facilities, the way to request
a trace is to store a nonzero value in the variable @code{yydebug}. You can
do this by making the C code do it (in @code{main}, perhaps), or you can
alter the value with a C debugger.
Each step taken by the parser when @code{yydebug} is nonzero produces a line
or two of trace information, written on @code{stderr}. The trace messages
tell you these things:
@itemize @bullet
@item
Each time the parser calls @code{yylex}, what kind of token was read.
@item
Each time a token is shifted, the depth and complete contents of the state
stack (@pxref{Parser States}).
@item
Each time a rule is reduced, which rule it is, and the complete contents of
the state stack afterward.
@end itemize
To make sense of this information, it helps to refer to the automaton
description file (@pxref{Understanding}). This
file shows the meaning of each state in terms of positions in various rules,
and also what each state will do with each possible input token. As you
read the successive trace messages, you can see that the parser is
functioning according to its specification in the listing file. Eventually
you will arrive at the place where something undesirable happens, and you
will see which parts of the grammar are to blame.
The parser implementation file is a C/C++/D/Java program and you can use
debuggers on it, but it's not easy to interpret what it is doing. The
parser function is a finite-state machine interpreter, and aside from the
actions it executes the same code over and over. Only the values of
variables show where in the grammar it is working.
@node Mfcalc Traces
@subsection Enabling Debug Traces for @code{mfcalc}
The debugging information normally gives the token kind of each token read,
but not its semantic value. The @code{%printer} directive allows specify
how semantic values are reported, see @ref{Printer Decl}.
As a demonstration of @code{%printer}, consider the multi-function
calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
traces, and semantic value reports, insert the following directives in its
prologue:
@comment file: c/mfcalc/mfcalc.y: 2
@example
/* Generate the parser description file. */
%verbose
/* Enable run-time traces (yydebug). */
%define parse.trace
/* Formatting semantic values. */
%printer @{ fprintf (yyo, "%s", $$->name); @} VAR;
%printer @{ fprintf (yyo, "%s()", $$->name); @} FUN;
%printer @{ fprintf (yyo, "%g", $$); @} <double>;
@end example
The @code{%define} directive instructs Bison to generate run-time trace
support. Then, activation of these traces is controlled at run-time by the
@code{yydebug} variable, which is disabled by default. Because these traces
will refer to the ``states'' of the parser, it is helpful to ask for the
creation of a description of that parser; this is the purpose of (admittedly
ill-named) @code{%verbose} directive.
The set of @code{%printer} directives demonstrates how to format the
semantic value in the traces. Note that the specification can be done
either on the symbol type (e.g., @code{VAR} or @code{FUN}), or on the type
tag: since @code{<double>} is the type for both @code{NUM} and @code{exp},
this printer will be used for them.
Here is a sample of the information provided by run-time traces. The traces
are sent onto standard error.
@example
$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
Starting parse
Entering state 0
Reducing stack by rule 1 (line 34):
-> $$ = nterm input ()
Stack now 0
Entering state 1
@end example
@noindent
This first batch shows a specific feature of this grammar: the first rule
(which is in line 34 of @file{mfcalc.y} can be reduced without even having
to look for the first token. The resulting left-hand symbol (@code{$$}) is
a valueless (@samp{()}) @code{input} nonterminal (@code{nterm}).
Then the parser calls the scanner.
@example
Reading a token
Next token is token FUN (sin())
Shifting token FUN (sin())
Entering state 6
@end example
@noindent
That token (@code{token}) is a function (@code{FUN}) whose value is
@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
The parser stores (@code{Shifting}) that token, and others, until it can do
something about it.
@example
Reading a token
Next token is token '(' ()
Shifting token '(' ()
Entering state 14
Reading a token
Next token is token NUM (1.000000)
Shifting token NUM (1.000000)
Entering state 4
Reducing stack by rule 6 (line 44):
$1 = token NUM (1.000000)
-> $$ = nterm exp (1.000000)
Stack now 0 1 6 14
Entering state 24
@end example
@noindent
The previous reduction demonstrates the @code{%printer} directive for
@code{<double>}: both the token @code{NUM} and the resulting nonterminal
@code{exp} have @samp{1} as value.
@example
Reading a token
Next token is token '-' ()
Shifting token '-' ()
Entering state 17
Reading a token
Next token is token NUM (1.000000)
Shifting token NUM (1.000000)
Entering state 4
Reducing stack by rule 6 (line 44):
$1 = token NUM (1.000000)
-> $$ = nterm exp (1.000000)
Stack now 0 1 6 14 24 17
Entering state 26
Reading a token
Next token is token ')' ()
Reducing stack by rule 11 (line 49):
$1 = nterm exp (1.000000)
$2 = token '-' ()
$3 = nterm exp (1.000000)
-> $$ = nterm exp (0.000000)
Stack now 0 1 6 14
Entering state 24
@end example
@noindent
The rule for the subtraction was just reduced. The parser is about to
discover the end of the call to @code{sin}.
@example
Next token is token ')' ()
Shifting token ')' ()
Entering state 31
Reducing stack by rule 9 (line 47):
$1 = token FUN (sin())
$2 = token '(' ()
$3 = nterm exp (0.000000)
$4 = token ')' ()
-> $$ = nterm exp (0.000000)
Stack now 0 1
Entering state 11
@end example
@noindent
Finally, the end-of-line allow the parser to complete the computation, and
display its result.
@example
Reading a token
Next token is token '\n' ()
Shifting token '\n' ()
Entering state 22
Reducing stack by rule 4 (line 40):
$1 = nterm exp (0.000000)
$2 = token '\n' ()
@result{} 0
-> $$ = nterm line ()
Stack now 0 1
Entering state 10
Reducing stack by rule 2 (line 35):
$1 = nterm input ()
$2 = nterm line ()
-> $$ = nterm input ()
Stack now 0
Entering state 1
@end example
The parser has returned into state 1, in which it is waiting for the next
expression to evaluate, or for the end-of-file token, which causes the
completion of the parsing.
@example
Reading a token
Now at end of input.
Shifting token $end ()
Entering state 2
Stack now 0 1 2
Cleanup: popping token $end ()
Cleanup: popping nterm input ()
@end example
@c ================================================= Invoking Bison
@node Invocation
@chapter Invoking Bison
@cindex invoking Bison
@cindex Bison invocation
@cindex options for invoking Bison
The usual way to invoke Bison is as follows:
@example
$ @kbd{bison @var{file}}
@end example
Here @var{file} is the grammar file name, which usually ends in @samp{.y}.
The parser implementation file's name is made by replacing the @samp{.y}
with @samp{.tab.c} and removing any leading directory. Thus, the
@samp{bison foo.y} file name yields @file{foo.tab.c}, and the @samp{bison
hack/foo.y} file name yields @file{foo.tab.c}. It's also possible, in case
you are writing C++ code instead of C in your grammar file, to name it
@file{foo.ypp} or @file{foo.y++}. Then, the output files will take an
extension like the given one as input (respectively @file{foo.tab.cpp} and
@file{foo.tab.c++}). This feature takes effect with all options that
manipulate file names like @option{-o} or @option{-d}.
For example:
@example
$ @kbd{bison -d @var{file.yxx}}
@end example
@noindent
will produce @file{file.tab.cxx} and @file{file.tab.hxx}, and
@example
$ @kbd{bison -d -o @var{output.c++} @var{file.y}}
@end example
@noindent
will produce @file{output.c++} and @file{output.h++}.
For compatibility with POSIX, the standard Bison distribution also contains
a shell script called @command{yacc} that invokes Bison with the @option{-y}
option.
@sp 1
The exit status of @command{bison} is:
@table @asis
@item 0 (success)
when there were no errors. Warnings, which are diagnostics about dubious
constructs, do not change the exit status, unless they are turned into
errors (@pxref{Werror,,@option{-Werror}}).
@item 1 (failure)
when there were errors. No file was generated (except the reports generated
by @option{--verbose}, etc.). In particular, the output files that possibly
existed were not changed.
@item 63 (mismatch)
when @command{bison} does not meet the version requirements of the grammar
file. @xref{Require Decl}. No file was generated or changed.
@end table
@menu
* Bison Options:: All the options described in detail,
in alphabetical order by short options.
* Option Cross Key:: Alphabetical list of long options.
* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
@end menu
@node Bison Options
@section Bison Options
Bison supports both traditional single-letter options and mnemonic long
option names. Long option names are indicated with @option{--} instead of
@option{-}. Abbreviations for option names are allowed as long as they
are unique. When a long option takes an argument, like
@option{--file-prefix}, connect the option name and the argument with
@samp{=}.
Here is a list of options that can be used with Bison. It is followed by a
cross key alphabetized by long option.
@menu
* Operation Modes:: Options controlling the global behavior of @command{bison}
* Diagnostics:: Options controlling the diagnostics
* Tuning the Parser:: Options changing the generated parsers
* Output Files:: Options controlling the output
@end menu
@node Operation Modes
@subsection Operation Modes
Options controlling the global behavior of @command{bison}.
@c Please, keep this ordered as in 'bison --help'.
@table @option
@item -h
@itemx --help
Print a summary of the command-line options to Bison and exit.
@item -V
@itemx --version
Print the version number of Bison and exit.
@item --print-localedir
Print the name of the directory containing locale-dependent data.
@item --print-datadir
Print the name of the directory containing skeletons, CSS and XSLT.
@item -u
@item --update
Update the grammar file (remove duplicates, update deprecated directives,
etc.) and exit (i.e., do not generate any of the output files). Leaves a
backup of the original file with a @code{~} appended. For instance:
@example
@group
$ @kbd{cat foo.y}
%error-verbose
%define parse.error verbose
%%
exp:;
@end group
@group
$ @kbd{bison -u foo.y}
foo.y:1.1-14: @dwarning{warning}: deprecated directive, use '%define parse.error verbose' [@dwarning{-Wdeprecated}]
1 | @dwarning{%error-verbose}
| @dwarning{^~~~~~~~~~~~~~}
foo.y:2.1-27: @dwarning{warning}: %define variable 'parse.error' redefined [@dwarning{-Wother}]
2 | @dwarning{%define parse.error verbose}
| @dwarning{^~~~~~~~~~~~~~~~~~~~~~~~~~~}
foo.y:1.1-14: previous definition
1 | @dnotice{%error-verbose}
| @dnotice{^~~~~~~~~~~~~~}
bison: file 'foo.y' was updated (backup: 'foo.y~')
@end group
@group
$ @kbd{cat foo.y}
%define parse.error verbose
%%
exp:;
@end group
@end example
See the documentation of @option{--feature=fixit} below for more details.
@item -f [@var{feature}]
@itemx --feature[=@var{feature}]
Activate miscellaneous @var{feature}s. @var{Feature} can be one of:
@table @code
@item caret
@itemx diagnostics-show-caret
Show caret errors, in a manner similar to GCC's
@option{-fdiagnostics-show-caret}, or Clang's
@option{-fcaret-diagnostics}. The location provided with the message is used
to quote the corresponding line of the source file, underlining the
important part of it with carets (@samp{^}). Here is an example, using the
following file @file{in.y}:
@example
%nterm <ival> exp
%%
exp: exp '+' exp @{ $exp = $1 + $2; @};
@end example
When invoked with @option{-fcaret} (or nothing), Bison will report:
@example
@group
in.y:3.20-23: @derror{error}: ambiguous reference: '$exp'
3 | exp: exp '+' exp @{ @derror{$exp} = $1 + $2; @};
| @derror{^~~~}
@end group
@group
in.y:3.1-3: refers to: $exp at $$
3 | @dnotice{exp}: exp '+' exp @{ $exp = $1 + $2; @};
| @dnotice{^~~}
@end group
@group
in.y:3.6-8: refers to: $exp at $1
3 | exp: @dnotice{exp} '+' exp @{ $exp = $1 + $2; @};
| @dnotice{^~~}
@end group
@group
in.y:3.14-16: refers to: $exp at $3
3 | exp: exp '+' @dnotice{exp} @{ $exp = $1 + $2; @};
| @dnotice{^~~}
@end group
@group
in.y:3.32-33: @derror{error}: $2 of 'exp' has no declared type
3 | exp: exp '+' exp @{ $exp = $1 + @derror{$2}; @};
| @derror{^~}
@end group
@end example
Whereas, when invoked with @option{-fno-caret}, Bison will only report:
@example
@group
in.y:3.20-23: @derror{error}: ambiguous reference: '$exp'
in.y:3.1-3: refers to: $exp at $$
in.y:3.6-8: refers to: $exp at $1
in.y:3.14-16: refers to: $exp at $3
in.y:3.32-33: @derror{error}: $2 of 'exp' has no declared type
@end group
@end example
This option is activated by default.
@item fixit
@itemx diagnostics-parseable-fixits
Show machine-readable fixes, in a manner similar to GCC's and Clang's
@option{-fdiagnostics-parseable-fixits}.
Fix-its are generated for duplicate directives:
@example
@group
$ @kbd{cat foo.y}
%define api.prefix @{foo@}
%define api.prefix @{bar@}
%%
exp:;
@end group
@group
$ @kbd{bison -ffixit foo.y}
foo.y:2.1-24: @derror{error}: %define variable 'api.prefix' redefined
2 | @derror{%define api.prefix @{bar@}}
| @derror{^~~~~~~~~~~~~~~~~~~~~~~~}
foo.y:1.1-24: previous definition
1 | @dnotice{%define api.prefix @{foo@}}
| @dnotice{^~~~~~~~~~~~~~~~~~~~~~~~}
fix-it:"foo.y":@{2:1-2:25@}:""
foo.y: @dwarning{warning}: fix-its can be applied. Rerun with option '--update'. [@dwarning{-Wother}]
@end group
@end example
They are also generated to update deprecated directives, unless
@option{-Wno-deprecated} was given:
@example
@group
$ @kbd{cat /tmp/foo.yy}
%error-verbose
%name-prefix "foo"
%%
exp:;
@end group
@group
$ @kbd{bison foo.y}
foo.y:1.1-14: @dwarning{warning}: deprecated directive, use '%define parse.error verbose' [@dwarning{-Wdeprecated}]
1 | @dwarning{%error-verbose}
| @dwarning{^~~~~~~~~~~~~~}
foo.y:2.1-18: @dwarning{warning}: deprecated directive, use '%define api.prefix @{foo@}' [@dwarning{-Wdeprecated}]
2 | @dwarning{%name-prefix "foo"}
| @dwarning{^~~~~~~~~~~~~~~~~~}
foo.y: @dwarning{warning}: fix-its can be applied. Rerun with option '--update'. [@dwarning{-Wother}]
@end group
@end example
The fix-its are applied by @command{bison} itself when given the option
@option{-u}/@option{--update}. See its documentation above.
@item syntax-only
Do not generate the output files. The name of this feature is somewhat
misleading as more than just checking the syntax is done: every stage is run
(including checking for conflicts for instance), except the generation of
the output files.
@end table
@end table
@node Diagnostics
@subsection Diagnostics
Options controlling the diagnostics.
@c Please, keep this ordered as in 'bison --help'.
@table @code
@item -W [@var{category}]
@itemx --warnings[=@var{category}]
Output warnings falling in @var{category}. @var{category} can be one
of:
@table @code
@item @anchor{Wconflicts-sr}conflicts-sr
@itemx @anchor{Wconflicts-rr}conflicts-rr
S/R and R/R conflicts. These warnings are enabled by default. However, if
the @code{%expect} or @code{%expect-rr} directive is specified, an
unexpected number of conflicts is an error, and an expected number of
conflicts is not reported, so @option{-W} and @option{--warning} then have
no effect on the conflict report.
@item @anchor{Wcounterexamples}counterexamples
@itemx cex
Provide counterexamples for conflicts. @xref{Counterexamples}.
Counterexamples take time to compute. The option @option{-Wcex} should be
used by the developer when working on the grammar; it hardly makes sense to
use it in a CI.
@item @anchor{Wdangling-alias}dangling-alias
Report string literals that are not bound to a token symbol.
String literals, which allow for better error messages, are (too) liberally
accepted by Bison, which might result in silent errors. For instance
@example
%type <exVal> cond "condition"
@end example
@noindent
does not define ``condition'' as a string alias to @code{cond}---nonterminal
symbols do not have string aliases. It is rather equivalent to
@example
%nterm <exVal> cond
%token <exVal> "condition"
@end example
@noindent
i.e., it gives the @samp{"condition"} token the type @code{exVal}.
Also, because string aliases do not need to be defined, typos such as
@samp{"baz"} instead of @samp{"bar"} will be not reported.
The option @option{-Wdangling-alias} catches these situations. On
@example
%token BAR "bar"
%type <ival> foo "foo"
%%
foo: "baz" @{@}
@end example
@noindent
@samp{bison -Wdangling-alias} reports
@example
@dwarning{warning}: string literal not attached to a symbol
| %type <ival> foo @dwarning{"foo"}
| @dwarning{^~~~~}
@dwarning{warning}: string literal not attached to a symbol
| foo: @dwarning{"baz"} @{@}
| @dwarning{^~~~~}
@end example
@item @anchor{Wdeprecated}deprecated
Deprecated constructs whose support will be removed in future versions of
Bison.
@item @anchor{Wempty-rule}empty-rule
Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
default, but enabled by uses of @code{%empty}, unless
@option{-Wno-empty-rule} was specified.
@item @anchor{Wmidrule-values}midrule-values
Warn about midrule values that are set but not used within any of the actions
of the parent rule.
For example, warn about unused @code{$2} in:
@example
exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
@end example
Also warn about midrule values that are used but not set.
For example, warn about unset @code{$$} in the midrule action in:
@example
exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
@end example
These warnings are not enabled by default since they sometimes prove to
be false alarms in existing grammars employing the Yacc constructs
@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
@item @anchor{Wprecedence}precedence
Useless precedence and associativity directives. Disabled by default.
Consider for instance the following grammar:
@example
@group
%nonassoc "="
%left "+"
%left "*"
%precedence "("
@end group
%%
@group
stmt:
exp
| "var" "=" exp
;
@end group
@group
exp:
exp "+" exp
| exp "*" "number"
| "(" exp ")"
| "number"
;
@end group
@end example
Bison reports:
@c cannot leave the location and the [-Wprecedence] for lack of
@c width in PDF.
@example
@group
@dwarning{warning}: useless precedence and associativity for "="
| %nonassoc @dwarning{"="}
| @dwarning{^~~}
@end group
@group
@dwarning{warning}: useless associativity for "*", use %precedence
| %left @dwarning{"*"}
| @dwarning{^~~}
@end group
@group
@dwarning{warning}: useless precedence for "("
| %precedence @dwarning{"("}
| @dwarning{^~~}
@end group
@end example
One would get the exact same parser with the following directives instead:
@example
@group
%left "+"
%precedence "*"
@end group
@end example
@item @anchor{Wyacc}yacc
Incompatibilities with POSIX Yacc.
@item @anchor{Wother}other
All warnings not categorized above. These warnings are enabled by default.
This category is provided merely for the sake of completeness. Future
releases of Bison may move warnings from this category to new, more specific
categories.
@item @anchor{Wall}all
All the warnings except @code{counterexamples}, @code{dangling-alias} and
@code{yacc}.
@item @anchor{Wnone}none
Turn off all the warnings.
@item error
See @option{-Werror}, below.
@end table
A category can be turned off by prefixing its name with @samp{no-}. For
instance, @option{-Wno-yacc} will hide the warnings about
POSIX Yacc incompatibilities.
@item @anchor{Werror}-Werror
Turn enabled warnings for every @var{category} into errors, unless they are
explicitly disabled by @option{-Wno-error=@var{category}}.
@item -Werror=@var{category}
Enable warnings falling in @var{category}, and treat them as errors.
@var{category} is the same as for @option{--warnings}, with the exception that
it may not be prefixed with @samp{no-} (see above).
Note that the precedence of the @samp{=} and @samp{,} operators is such that
the following commands are @emph{not} equivalent, as the first will not treat
S/R conflicts as errors.
@example
$ @kbd{bison -Werror=yacc,conflicts-sr input.y}
$ @kbd{bison -Werror=yacc,error=conflicts-sr input.y}
@end example
@item -Wno-error
Do not turn enabled warnings for every @var{category} into errors, unless
they are explicitly enabled by @option{-Werror=@var{category}}.
@item -Wno-error=@var{category}
Deactivate the error treatment for this @var{category}. However, the warning
itself won't be disabled, or enabled, by this option.
@item --color
Equivalent to @option{--color=always}.
@item --color=@var{when}
Control whether diagnostics are colorized, depending on @var{when}:
@table @code
@item always
@itemx yes
Enable colorized diagnostics.
@item never
@itemx no
Disable colorized diagnostics.
@item auto @r{(default)}
@itemx tty
Diagnostics will be colorized if the output device is a tty, i.e. when the
output goes directly to a text screen or terminal emulator window.
@end table
@item --style=@var{file}
Specifies the CSS style @var{file} to use when colorizing. It has an effect
only when the @option{--color} option is effective. The
@file{bison-default.css} file provide a good example from which to define
your own style file. See the documentation of libtextstyle for more
details.
@end table
@node Tuning the Parser
@subsection Tuning the Parser
Options changing the generated parsers.
@c Please, keep this ordered as in 'bison --help'.
@table @option
@item -t
@itemx --debug
In the parser implementation file, define the macro @code{YYDEBUG} to 1 if
it is not already defined, so that the debugging facilities are compiled.
@xref{Tracing}.
@item -D @var{name}[=@var{value}]
@itemx --define=@var{name}[=@var{value}]
@itemx -F @var{name}[=@var{value}]
@itemx --force-define=@var{name}[=@var{value}]
Each of these is equivalent to @samp{%define @var{name} @var{value}}
(@pxref{%define Summary}). Note that the delimiters are part of
@var{value}: @option{-Dapi.value.type=union},
@option{-Dapi.value.type=@{union@}} and @option{-Dapi.value.type="union"}
correspond to @samp{%define api.value.type union}, @samp{%define
api.value.type @{union@}} and @samp{%define api.value.type "union"}.
Bison processes multiple definitions for the same @var{name} as follows:
@itemize
@item
Bison quietly ignores all command-line definitions for @var{name} except
the last.
@item
If that command-line definition is specified by a @option{-D} or
@option{--define}, Bison reports an error for any @code{%define} definition
for @var{name}.
@item
If that command-line definition is specified by a @option{-F} or
@option{--force-define} instead, Bison quietly ignores all @code{%define}
definitions for @var{name}.
@item
Otherwise, Bison reports an error if there are multiple @code{%define}
definitions for @var{name}.
@end itemize
You should avoid using @option{-F} and @option{--force-define} in your
make files unless you are confident that it is safe to quietly ignore
any conflicting @code{%define} that may be added to the grammar file.
@item -L @var{language}
@itemx --language=@var{language}
Specify the programming language for the generated parser, as if
@code{%language} was specified (@pxref{Decl Summary}). Currently supported
languages include C, C++, D and Java. @var{language} is case-insensitive.
@item --locations
Pretend that @code{%locations} was specified. @xref{Decl Summary}.
@item -p @var{prefix}
@itemx --name-prefix=@var{prefix}
Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
Summary}). The option @option{-p} is specified by POSIX. When POSIX
compatibility is not a requirement, @option{-Dapi.prefix=@var{prefix}} is a
better option (@pxref{Multiple Parsers}).
@item -l
@itemx --no-lines
Don't put any @code{#line} preprocessor commands in the parser
implementation file. Ordinarily Bison puts them in the parser
implementation file so that the C compiler and debuggers will
associate errors with your source file, the grammar file. This option
causes them to associate errors with the parser implementation file,
treating it as an independent source file in its own right.
@item -S @var{file}
@itemx --skeleton=@var{file}
Specify the skeleton to use, similar to @code{%skeleton}
(@pxref{Decl Summary}).
@c You probably don't need this option unless you are developing Bison.
@c You should use @option{--language} if you want to specify the skeleton for a
@c different language, because it is clearer and because it will always
@c choose the correct skeleton for non-deterministic or push parsers.
If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
file in the Bison installation directory.
If it does, @var{file} is an absolute file name or a file name relative to the
current working directory.
This is similar to how most shells resolve commands.
@item -k
@itemx --token-table
Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
@item -y
@itemx @anchor{option-yacc} --yacc
Act more like the traditional @command{yacc} command:
@itemize
@item
Generate different diagnostics (it implies @option{-Wyacc}).
@item
Generate @code{#define} statements in addition to an @code{enum} to
associate token codes with token kind names.
@item
If the @code{POSIXLY_CORRECT} environment variable is defined, generate
prototypes for @code{yyerror} and @code{yylex}@footnote{See
@url{https://austingroupbugs.net/view.php?id=1388#c5220}.} (since Bison
3.8):
@example
int yylex (void);
void yyerror (const char *);
@end example
As a Bison extension, additional arguments required by @code{%pure-parser},
@code{%locations}, @code{%lex-param} and @code{%parse-param} are taken into
account. You may disable @code{yyerror}'s prototype with @samp{#define
yyerror yyerror} (as specified by POSIX), or with @samp{#define
YYERROR_IS_DECLARED} (a Bison extension). Likewise for @code{yylex}.
@item
Imitate Yacc's output file name conventions, so that the parser
implementation file is called @file{y.tab.c}, and the other outputs are
called @file{y.output} and @file{y.tab.h}. Do not use @option{--yacc} just
to change the output file names since it also triggers all the
aforementioned behavior changes; rather use @samp{-o y.tab.c}.
@end itemize
The @option{-y}/@option{--yacc} option is intended for use with traditional
Yacc grammars. This option only makes sense for the default C skeleton,
@file{yacc.c}. If your grammar uses Bison extensions Bison cannot be
Yacc-compatible, even if this option is specified.
Thus, the following shell script can substitute for Yacc, and the Bison
distribution contains such a @command{yacc} script for compatibility with
POSIX:
@example
#! /bin/sh
bison -y "$@@"
@end example
@end table
@node Output Files
@subsection Output Files
Options controlling the output.
@c Please, keep this ordered as in 'bison --help'.
@table @option
@item -H [@var{file}]
@itemx --header=[@var{file}]
Pretend that @code{%header} was specified, i.e., write an extra output file
containing definitions for the token kind names defined in the grammar, as
well as a few other declarations. @xref{Decl Summary}.
@item --defines[=@var{file}]
Historical name for option @option{--header} before Bison 3.8.
@item -d
This is the same as @option{--header} except @option{-d} does not accept a
@var{file} argument since POSIX Yacc requires that @option{-d} can be
bundled with other short options.
@item -b @var{file-prefix}
@itemx --file-prefix=@var{prefix}
Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
for all Bison output file names. @xref{Decl Summary}.
@item -r @var{things}
@itemx --report=@var{things}
Write an extra output file containing verbose description of the comma
separated list of @var{things} among:
@table @code
@item state
Description of the grammar, conflicts (resolved and unresolved), and
parser's automaton.
@item itemset
Implies @code{state} and augments the description of the automaton with
the full set of items for each state, instead of its core only.
@item lookahead
Implies @code{state} and augments the description of the automaton with
each rule's lookahead set.
@item solved
Implies @code{state}. Explain how conflicts were solved thanks to
precedence and associativity directives.
@item counterexamples
@itemx cex
Look for counterexamples for the conflicts. @xref{Counterexamples}.
Counterexamples take time to compute. The option @option{-rcex} should be
used by the developer when working on the grammar; it hardly makes sense to
use it in a CI.
@item all
Enable all the items.
@item none
Do not generate the report.
@end table
@item --report-file=@var{file}
Specify the @var{file} for the verbose description.
@item -v
@itemx --verbose
Pretend that @code{%verbose} was specified, i.e., write an extra output
file containing verbose descriptions of the grammar and
parser. @xref{Decl Summary}.
@item -o @var{file}
@itemx --output=@var{file}
Specify the @var{file} for the parser implementation file.
The names of the other output files are constructed from @var{file} as
described under the @option{-v} and @option{-d} options.
@item -g [@var{file}]
@itemx --graph[=@var{file}]
Output a graphical representation of the parser's automaton computed by
Bison, in @uref{https://www.graphviz.org/, Graphviz}
@uref{https://www.graphviz.org/doc/info/lang.html, DOT} format.
@code{@var{file}} is optional. If omitted and the grammar file is
@file{foo.y}, the output file will be @file{foo.gv}.
@item -x [@var{file}]
@itemx --xml[=@var{file}]
Output an XML report of the parser's automaton computed by Bison.
@code{@var{file}} is optional.
If omitted and the grammar file is @file{foo.y}, the output file will be
@file{foo.xml}.
@item -M @var{old}=@var{new}
@itemx --file-prefix-map=@var{old}=@var{new}
Replace prefix @var{old} with @var{new} when writing file paths in output
files.
@end table
@node Option Cross Key
@section Option Cross Key
Here is a list of options, alphabetized by long option, to help you find
the corresponding short option and directive.
@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
@headitem Long Option @tab Short Option @tab Bison Directive
@include cross-options.texi
@end multitable
@node Yacc Library
@section Yacc Library
The Yacc library contains default implementations of the @code{yyerror} and
@code{main} functions. These default implementations are normally not
useful, but POSIX requires them. To use the Yacc library, link your program
with the @option{-ly} option. Note that Bison's implementation of the Yacc
library is distributed under the terms of the GNU General Public License
(@pxref{Copying}).
If you use the Yacc library's @code{yyerror} function, you should declare
@code{yyerror} as follows:
@example
int yyerror (char const *);
@end example
@noindent
The @code{int} value returned by this @code{yyerror} is ignored.
The implementation of Yacc library's @code{main} function is:
@example
int main (void)
@{
setlocale (LC_ALL, "");
return yyparse ();
@}
@end example
@noindent
so if you use it, the internationalization support is enabled (e.g., error
messages are translated), and your @code{yyparse} function should have the
following type signature:
@example
int yyparse (void);
@end example
@c ================================================= C++ Bison
@node Other Languages
@chapter Parsers Written In Other Languages
In addition to C, Bison can generate parsers in C++, D and Java. This chapter
is devoted to these languages. The reader is expected to understand how
Bison works; read the introductory chapters first if you don't.
@menu
* C++ Parsers:: The interface to generate C++ parser classes
* D Parsers:: The interface to generate D parser classes
* Java Parsers:: The interface to generate Java parser classes
@end menu
@node C++ Parsers
@section C++ Parsers
The Bison parser in C++ is an object, an instance of the class
@code{yy::parser}.
@menu
* A Simple C++ Example:: A short introduction to C++ parsers
* C++ Bison Interface:: Asking for C++ parser generation
* C++ Parser Interface:: Instantiating and running the parser
* C++ Semantic Values:: %union vs. C++
* C++ Location Values:: The position and location classes
* C++ Parser Context:: You can supply a @code{report_syntax_error} function.
* C++ Scanner Interface:: Exchanges between yylex and parse
* A Complete C++ Example:: Demonstrating their use
@end menu
@node A Simple C++ Example
@subsection A Simple C++ Example
This tutorial about C++ parsers is based on a simple, self contained
example.@footnote{The sources of this example are available as
@file{examples/c++/simple.yy}.} The following sections are the reference
manual for Bison with C++, the last one showing a fully blown example
(@pxref{A Complete C++ Example}).
To look nicer, our example will be in C++14. It is not required: Bison
supports the original C++98 standard.
A Bison file has three parts. In the first part, the prologue, we start by
making sure we run a version of Bison which is recent enough, and that we
generate C++.
@ignore
@comment file: c++/simple.yy: 1
@example
/* Simple variant-based parser. -*- C++ -*-
Copyright (C) 2018-2021 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c++/simple.yy: 1
@example
%require "3.2"
%language "c++"
@end example
Let's dive directly into the middle part: the grammar. Our input is a
simple list of strings, that we display once the parsing is done.
@comment file: c++/simple.yy: 2
@example
%%
@group
result:
list @{ std::cout << $1 << '\n'; @}
;
@end group
%nterm <std::vector<std::string>> list;
@group
list:
%empty @{ /* Generates an empty string list */ @}
| list item @{ $$ = $1; $$.push_back ($2); @}
;
@end group
@end example
We used a vector of strings as a semantic value! To use genuine C++ objects
as semantic values---not just PODs---we cannot rely on the union that Bison
uses by default to store them, we need @emph{variants} (@pxref{C++
Variants}):
@comment file: c++/simple.yy: 1
@example
%define api.value.type variant
@end example
Obviously, the rule for @code{result} needs to print a vector of strings.
In the prologue, we add:
@comment file: c++/simple.yy: 1
@example
%code
@{
// Print a list of strings.
auto
operator<< (std::ostream& o, const std::vector<std::string>& ss)
-> std::ostream&
@{
o << '@{';
const char *sep = "";
@group
for (const auto& s: ss)
@{
o << sep << s;
sep = ", ";
@}
@end group
return o << '@}';
@}
@}
@end example
@noindent
You may want to move it into the @code{yy} namespace to avoid leaking it in
your default namespace. We recommend that you keep the actions simple, and
move details into auxiliary functions, as we did with @code{operator<<}.
Our list of strings will be built from two types of items: numbers and
strings:
@comment file: c++/simple.yy: 2
@example
%nterm <std::string> item;
%token <std::string> TEXT;
%token <int> NUMBER;
@group
item:
TEXT
| NUMBER @{ $$ = std::to_string ($1); @}
;
@end group
@end example
In the case of @code{TEXT}, the implicit default action applies: @w{@code{$$
= $1}.}
@sp 1
Our scanner deserves some attention. The traditional interface of
@code{yylex} is not type safe: since the token kind and the token value are
not correlated, you may return a @code{NUMBER} with a string as semantic
value. To avoid this, we use @emph{token constructors} (@pxref{Complete
Symbols}). This directive:
@comment file: c++/simple.yy: 1
@example
%define api.token.constructor
@end example
@noindent
requests that Bison generates the functions @code{make_TEXT} and
@code{make_NUMBER}, but also @code{make_YYEOF}, for the end of input.
Everything is in place for our scanner:
@comment file: c++/simple.yy: 1
@example
%code
@{
namespace yy
@{
// Return the next token.
auto yylex () -> parser::symbol_type
@{
static int count = 0;
switch (int stage = count++)
@{
@group
case 0:
return parser::make_TEXT ("I have three numbers for you.");
@end group
@group
case 1: case 2: case 3:
return parser::make_NUMBER (stage);
@end group
@group
case 4:
return parser::make_TEXT ("And that's all!");
@end group
@group
default:
return parser::make_YYEOF ();
@end group
@}
@}
@}
@}
@end example
In the epilogue, the third part of a Bison grammar file, we leave simple
details: the error reporting function, and the main function.
@comment file: c++/simple.yy: 3
@example
%%
namespace yy
@{
// Report an error to the user.
auto parser::error (const std::string& msg) -> void
@{
std::cerr << msg << '\n';
@}
@}
int main ()
@{
yy::parser parse;
return parse ();
@}
@end example
Compile, and run!
@example
$ @kbd{bison simple.yy -o simple.cc}
$ @kbd{g++ -std=c++14 simple.cc -o simple}
@group
$ @kbd{./simple}
@{I have three numbers for you., 1, 2, 3, And that's all!@}
@end group
@end example
@node C++ Bison Interface
@subsection C++ Bison Interface
@c - %skeleton "lalr1.cc"
@c - Always pure
@c - initial action
The C++ deterministic parser is selected using the skeleton directive,
@samp{%skeleton "lalr1.cc"}. @xref{Decl Summary}.
When run, @command{bison} will create several entities in the @samp{yy}
namespace.
@findex %define api.namespace
Use the @samp{%define api.namespace} directive to change the namespace name,
see @ref{%define Summary}. The various classes are generated
in the following files:
@table @file
@item @var{file}.hh
(Assuming the extension of the grammar file was @samp{.yy}.) The
declaration of the C++ parser class and auxiliary types. By default, this
file is not generated (@pxref{Decl Summary}).
@item @var{file}.cc
The implementation of the C++ parser class. The basename and extension of
these two files (@file{@var{file}.hh} and @file{@var{file}.cc}) follow the
same rules as with regular C parsers (@pxref{Invocation}).
@item location.hh
Generated when both @code{%header} and @code{%locations} are enabled, this
file contains the definition of the classes @code{position} and
@code{location}, used for location tracking. It is not generated if
@samp{%define api.location.file none} is specified, or if user defined
locations are used. @xref{C++ Location Values}.
@item position.hh
@itemx stack.hh
Useless legacy files. To get rid of then, use @samp{%require "3.2"} or
newer.
@end table
All these files are documented using Doxygen; run @command{doxygen} for a
complete and accurate documentation.
@node C++ Parser Interface
@subsection C++ Parser Interface
The output files @file{@var{file}.hh} and @file{@var{file}.cc} declare and
define the parser class in the namespace @code{yy}. The class name defaults
to @code{parser}, but may be changed using @samp{%define api.parser.class
@{@var{name}@}}. The interface of this class is detailed below. It can be
extended using the @code{%parse-param} feature: its semantics is slightly
changed since it describes an additional member of the parser class, and an
additional argument for its constructor.
@defcv {Type} {parser} {token}
A structure that contains (only) the @code{token_kind_type} enumeration,
which defines the tokens. To refer to the token @code{FOO}, use
@code{yy::parser::token::FOO}. The scanner can use @samp{typedef
yy::parser::token token;} to ``import'' the token enumeration (@pxref{Calc++
Scanner}).
@end defcv
@defcv {Type} {parser} {token_kind_type}
An enumeration of the token kinds. Its enumerators are forged from the
token names, with a possible token prefix
(@pxref{api-token-prefix,,@code{api.token.prefix}}):
@example
/// Token kinds.
struct token
@{
enum token_kind_type
@{
YYEMPTY = -2, // No token.
YYEOF = 0, // "end of file"
YYerror = 256, // error
YYUNDEF = 257, // "invalid token"
PLUS = 258, // "+"
MINUS = 259, // "-"
[...]
VAR = 271, // "variable"
NEG = 272 // NEG
@};
@};
/// Token kind, as returned by yylex.
typedef token::token_kind_type token_kind_type;
@end example
@end defcv
@defcv {Type} {parser} {value_type}
The types for semantic values. @xref{C++ Semantic Values}.
@end defcv
@defcv {Type} {parser} {location_type}
The type of locations, if location tracking is enabled. @xref{C++ Location
Values}.
@end defcv
@defcv {Type} {parser} {syntax_error}
This class derives from @code{std::runtime_error}. Throw instances of it
from the scanner or from the actions to raise parse errors. This is
equivalent with first invoking @code{error} to report the location and
message of the syntax error, and then to invoke @code{YYERROR} to enter the
error-recovery mode. But contrary to @code{YYERROR} which can only be
invoked from user actions (i.e., written in the action itself), the
exception can be thrown from functions invoked from the user action.
@end defcv
@deftypeop {Constructor} {parser} {} parser ()
@deftypeopx {Constructor} {parser} {} parser (@var{type1} @var{arg1}, ...)
Build a new parser object. There are no arguments, unless
@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
@end deftypeop
@deftypeop {Constructor} {syntax_error} {} syntax_error (@code{const location_type&} @var{l}, @code{const std::string&} @var{m})
@deftypeopx {Constructor} {syntax_error} {} syntax_error (@code{const std::string&} @var{m})
Instantiate a syntax-error exception.
@end deftypeop
@deftypemethod {parser} {int} operator() ()
@deftypemethodx {parser} {int} parse ()
Run the syntactic analysis, and return 0 on success, 1 otherwise. Both
routines are equivalent, @code{operator()} being more C++ish.
@cindex exceptions
The whole function is wrapped in a @code{try}/@code{catch} block, so that
when an exception is thrown, the @code{%destructor}s are called to release
the lookahead symbol, and the symbols pushed on the stack.
Exception related code in the generated parser is protected by CPP guards
(@code{#if}) and disabled when exceptions are not supported (i.e., passing
@option{-fno-exceptions} to the C++ compiler).
@end deftypemethod
@deftypemethod {parser} {std::ostream&} debug_stream ()
@deftypemethodx {parser} {void} set_debug_stream (@code{std::ostream&} @var{o})
Get or set the stream used for tracing the parsing. It defaults to
@code{std::cerr}.
@end deftypemethod
@deftypemethod {parser} {debug_level_type} debug_level ()
@deftypemethodx {parser} {void} set_debug_level (debug_level_type @var{l})
Get or set the tracing level (an integral). Currently its value is either
0, no trace, or nonzero, full tracing.
@end deftypemethod
@deftypemethod {parser} {void} error (@code{const location_type&} @var{l}, @code{const std::string&} @var{m})
@deftypemethodx {parser} {void} error (@code{const std::string&} @var{m})
The definition for this member function must be supplied by the user: the
parser uses it to report a parser error occurring at @var{l}, described by
@var{m}. If location tracking is not enabled, the second signature is used.
@end deftypemethod
@node C++ Semantic Values
@subsection C++ Semantic Values
Bison supports two different means to handle semantic values in C++. One is
alike the C interface, and relies on unions. As C++ practitioners know,
unions are inconvenient in C++, therefore another approach is provided,
based on variants.
@menu
* C++ Unions:: Semantic values cannot be objects
* C++ Variants:: Using objects as semantic values
@end menu
@node C++ Unions
@subsubsection C++ Unions
The @code{%union} directive works as for C, see @ref{Union Decl}. In
particular it produces a genuine @code{union}, which have a few specific
features in C++.
@itemize @minus
@item
The value type is @code{yy::parser::value_type}, not @code{YYSTYPE}.
@item
Non POD (Plain Old Data) types cannot be used. C++98 forbids any instance
of classes with constructors in unions: only @emph{pointers} to such objects
are allowed. C++11 relaxed this constraints, but at the cost of safety.
@end itemize
Because objects have to be stored via pointers, memory is not
reclaimed automatically: using the @code{%destructor} directive is the
only means to avoid leaks. @xref{Destructor Decl}.
@node C++ Variants
@subsubsection C++ Variants
Bison provides a @emph{variant} based implementation of semantic values for
C++. This alleviates all the limitations reported in the previous section,
and in particular, object types can be used without pointers.
To enable variant-based semantic values, set the @code{%define} variable
@code{api.value.type} to @code{variant} (@pxref{%define Summary}). Then
@code{%union} is ignored; instead of using the name of the fields of the
@code{%union} to ``type'' the symbols, use genuine types.
For instance, instead of:
@example
%union
@{
int ival;
std::string* sval;
@}
%token <ival> NUMBER;
%token <sval> STRING;
@end example
@noindent
write:
@example
%token <int> NUMBER;
%token <std::string> STRING;
@end example
@code{STRING} is no longer a pointer, which should fairly simplify the user
actions in the grammar and in the scanner (in particular the memory
management).
Since C++ features destructors, and since it is customary to specialize
@code{operator<<} to support uniform printing of values, variants also
typically simplify Bison printers and destructors.
Variants are stricter than unions. When based on unions, you may play any
dirty game with @code{yylval}, say storing an @code{int}, reading a
@code{char*}, and then storing a @code{double} in it. This is no longer
possible with variants: they must be initialized, then assigned to, and
eventually, destroyed. As a matter of fact, Bison variants forbid the use
of alternative types such as @samp{$<int>2} or @samp{$<std::string>$}, even
in midrule actions. It is mandatory to use typed midrule actions
(@pxref{Typed Midrule Actions}).
@deftypemethod {value_type} {T&} {emplace<T>} ()
@deftypemethodx {value_type} {T&} {emplace<T>} (@code{const T&} @var{t})
Available in C++98/C++03 only. Default construct/copy-construct from
@var{t}. Return a reference to where the actual value may be stored.
Requires that the variant was not initialized yet.
@end deftypemethod
@deftypemethod {value_type} {T&} {emplace<T, U>} (@code{U&&...} @var{u})
Available in C++11 and later only. Build a variant of type @code{T} from
the variadic forwarding references @var{u...}.
@end deftypemethod
@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
appeared unacceptable to require Boost on the user's machine (i.e., the
machine on which the generated parser will be compiled, not the machine on
which @command{bison} was run). Second, for each possible semantic value,
Boost.Variant not only stores the value, but also a tag specifying its
type. But the parser already ``knows'' the type of the semantic value, so
that would be duplicating the information.
We do not use C++17's @code{std::variant} either: we want to support all the
C++ standards, and of course @code{std::variant} also stores a tag to record
the current type.
Therefore we developed light-weight variants whose type tag is external (so
they are really like @code{unions} for C++ actually). There is a number of
limitations in (the current implementation of) variants:
@itemize
@item
Alignment must be enforced: values should be aligned in memory according to
the most demanding type. Computing the smallest alignment possible requires
meta-programming techniques that are not currently implemented in Bison, and
therefore, since, as far as we know, @code{double} is the most demanding
type on all platforms, alignments are enforced for @code{double} whatever
types are actually used. This may waste space in some cases.
@item
There might be portability issues we are not aware of.
@end itemize
As far as we know, these limitations @emph{can} be alleviated. All it takes
is some time and/or some talented C++ hacker willing to contribute to Bison.
@node C++ Location Values
@subsection C++ Location Values
When the directive @code{%locations} is used, the C++ parser supports
location tracking, see @ref{Tracking Locations}.
By default, two auxiliary classes define a @code{position}, a single point
in a file, and a @code{location}, a range composed of a pair of
@code{position}s (possibly spanning several files). If the @code{%define}
variable @code{api.location.type} is defined, then these classes will not be
generated, and the user defined type will be used.
@menu
* C++ position:: One point in the source file
* C++ location:: Two points in the source file
* Exposing the Location Classes:: Using the Bison location class in your
project
* User Defined Location Type:: Required interface for locations
@end menu
@node C++ position
@subsubsection C++ @code{position}
@defcv {Type} {position} {filename_type}
The base type for file names. Defaults to @code{const std::string}.
@xref{api-filename-type,,@code{api.filename.type}}, to change its definition.
@end defcv
@defcv {Type} {position} {counter_type}
The type used to store line and column numbers. Defined as @code{int}.
@end defcv
@deftypeop {Constructor} {position} {} position (@code{filename_type*} @var{file} = nullptr, @code{counter_type} @var{line} = 1, @code{counter_type} @var{col} = 1)
Create a @code{position} denoting a given point. Note that @code{file} is
not reclaimed when the @code{position} is destroyed: memory managed must be
handled elsewhere.
@end deftypeop
@deftypemethod {position} {void} initialize (@code{filename_type*} @var{file} = nullptr, @code{counter_type} @var{line} = 1, @code{counter_type} @var{col} = 1)
Reset the position to the given values.
@end deftypemethod
@deftypeivar {position} {filename_type*} file
The name of the file. It will always be handled as a pointer, the parser
will never duplicate nor deallocate it.
@end deftypeivar
@deftypeivar {position} {counter_type} line
The line, starting at 1.
@end deftypeivar
@deftypemethod {position} {void} lines (@code{counter_type} @var{height} = 1)
If @var{height} is not null, advance by @var{height} lines, resetting the
column number. The resulting line number cannot be less than 1.
@end deftypemethod
@deftypeivar {position} {counter_type} column
The column, starting at 1.
@end deftypeivar
@deftypemethod {position} {void} columns (@code{counter_type} @var{width} = 1)
Advance by @var{width} columns, without changing the line number. The
resulting column number cannot be less than 1.
@end deftypemethod
@deftypemethod {position} {position&} operator+= (@code{counter_type} @var{width})
@deftypemethodx {position} {position} operator+ (@code{counter_type} @var{width})
@deftypemethodx {position} {position&} operator-= (@code{counter_type} @var{width})
@deftypemethodx {position} {position} operator- (@code{counter_type} @var{width})
Various forms of syntactic sugar for @code{columns}.
@end deftypemethod
@deftypemethod {position} {bool} operator== (@code{const position&} @var{that})
@deftypemethodx {position} {bool} operator!= (@code{const position&} @var{that})
Whether @code{*this} and @code{that} denote equal/different positions.
@end deftypemethod
@deftypefun {std::ostream&} operator<< (@code{std::ostream&} @var{o}, @code{const position&} @var{p})
Report @var{p} on @var{o} like this:
@samp{@var{file}:@var{line}.@var{column}}, or
@samp{@var{line}.@var{column}} if @var{file} is null.
@end deftypefun
@node C++ location
@subsubsection C++ @code{location}
@deftypeop {Constructor} {location} {} location (@code{const position&} @var{begin}, @code{const position&} @var{end})
Create a @code{Location} from the endpoints of the range.
@end deftypeop
@deftypeop {Constructor} {location} {} location (@code{const position&} @var{pos} = position())
@deftypeopx {Constructor} {location} {} location (@code{filename_type*} @var{file}, @code{counter_type} @var{line}, @code{counter_type} @var{col})
Create a @code{Location} denoting an empty range located at a given point.
@end deftypeop
@deftypemethod {location} {void} initialize (@code{filename_type*} @var{file} = nullptr, @code{counter_type} @var{line} = 1, @code{counter_type} @var{col} = 1)
Reset the location to an empty range at the given values.
@end deftypemethod
@deftypeivar {location} {position} begin
@deftypeivarx {location} {position} end
The first, inclusive, position of the range, and the first beyond.
@end deftypeivar
@deftypemethod {location} {void} columns (@code{counter_type} @var{width} = 1)
@deftypemethodx {location} {void} lines (@code{counter_type} @var{height} = 1)
Forwarded to the @code{end} position.
@end deftypemethod
@deftypemethod {location} {location} operator+ (@code{counter_type} @var{width})
@deftypemethodx {location} {location} operator+= (@code{counter_type} @var{width})
@deftypemethodx {location} {location} operator- (@code{counter_type} @var{width})
@deftypemethodx {location} {location} operator-= (@code{counter_type} @var{width})
Various forms of syntactic sugar for @code{columns}.
@end deftypemethod
@deftypemethod {location} {location} operator+ (@code{const location&} @var{end})
@deftypemethodx {location} {location} operator+= (@code{const location&} @var{end})
Join two locations: starts at the position of the first one, and ends at the
position of the second.
@end deftypemethod
@deftypemethod {location} {void} step ()
Move @code{begin} onto @code{end}.
@end deftypemethod
@deftypemethod {location} {bool} operator== (@code{const location&} @var{that})
@deftypemethodx {location} {bool} operator!= (@code{const location&} @var{that})
Whether @code{*this} and @code{that} denote equal/different ranges of
positions.
@end deftypemethod
@deftypefun {std::ostream&} operator<< (@code{std::ostream&} @var{o}, @code{const location&} @var{p})
Report @var{p} on @var{o}, taking care of special cases such as: no
@code{filename} defined, or equal filename/line or column.
@end deftypefun
@node Exposing the Location Classes
@subsubsection Exposing the Location Classes
When both @code{%header} and @code{%locations} are enabled, Bison generates
an additional file: @file{location.hh}. If you don't use locations outside
of the parser, you may avoid its creation with @samp{%define
api.location.file none}.
However this file is useful if, for instance, your parser builds an abstract
syntax tree decorated with locations: you may use Bison's @code{location}
type independently of Bison's parser. You may name the file differently,
e.g., @samp{%define api.location.file "include/ast/location.hh"}: this name
can have directory components, or even be absolute. The way the location
file is included is controlled by @code{api.location.include}.
This way it is possible to have several parsers share the same location
file.
For instance, in @file{src/foo/parser.yy}, generate the
@file{include/ast/loc.hh} file:
@example
// src/foo/parser.yy
%locations
%define api.namespace @{foo@}
%define api.location.file "include/ast/loc.hh"
%define api.location.include @{<ast/loc.hh>@}
@end example
@noindent
and use it in @file{src/bar/parser.yy}:
@example
// src/bar/parser.yy
%locations
%define api.namespace @{bar@}
%code requires @{#include <ast/loc.hh>@}
%define api.location.type @{bar::location@}
@end example
Absolute file names are supported; it is safe in your @file{Makefile} to
pass the flag
@option{-Dapi.location.file='"$(top_srcdir)/include/ast/loc.hh"'} to
@command{bison} for @file{src/foo/parser.yy}. The generated file will not
have references to this absolute path, thanks to @samp{%define
api.location.include @{<ast/loc.hh>@}}. Adding @samp{-I
$(top_srcdir)/include} to your @code{CPPFLAGS} will suffice for the compiler
to find @file{ast/loc.hh}.
@node User Defined Location Type
@subsubsection User Defined Location Type
@findex %define api.location.type
Instead of using the built-in types you may use the @code{%define} variable
@code{api.location.type} to specify your own type:
@example
%define api.location.type @{@var{LocationType}@}
@end example
The requirements over your @var{LocationType} are:
@itemize
@item
it must be copyable;
@item
in order to compute the (default) value of @code{@@$} in a reduction, the
parser basically runs
@example
@@$.begin = @@1.begin;
@@$.end = @@@var{N}.end; // The location of last right-hand side symbol.
@end example
@noindent
so there must be copyable @code{begin} and @code{end} members;
@item
alternatively you may redefine the computation of the default location, in
which case these members are not required (@pxref{Location Default Action});
@item
if traces are enabled, then there must exist an @samp{std::ostream&
operator<< (std::ostream& o, const @var{LocationType}& s)} function.
@end itemize
@sp 1
In programs with several C++ parsers, you may also use the @code{%define}
variable @code{api.location.type} to share a common set of built-in
definitions for @code{position} and @code{location}. For instance, one
parser @file{master/parser.yy} might use:
@example
%header
%locations
%define api.namespace @{master::@}
@end example
@noindent
to generate the @file{master/position.hh} and @file{master/location.hh}
files, reused by other parsers as follows:
@example
%define api.location.type @{master::location@}
%code requires @{ #include <master/location.hh> @}
@end example
@node C++ Parser Context
@subsection C++ Parser Context
When @samp{%define parse.error custom} is used (@pxref{Syntax Error
Reporting Function}), the user must define the following function.
@deftypemethod {parser} {void} report_syntax_error (@code{const context_type&}@var{ctx}) @code{const}
Report a syntax error to the user. Whether it uses @code{yyerror} is up to
the user.
@end deftypemethod
Use the following types and functions to build the error message.
@defcv {Type} {parser} {context}
A type that captures the circumstances of the syntax error.
@end defcv
@defcv {Type} {parser} {symbol_kind_type}
An enum of all the grammar symbols, tokens and nonterminals. Its
enumerators are forged from the symbol names:
@example
struct symbol_kind
@{
enum symbol_kind_type
@{
S_YYEMPTY = -2, // No symbol.
S_YYEOF = 0, // "end of file"
S_YYERROR = 1, // error
S_YYUNDEF = 2, // "invalid token"
S_PLUS = 3, // "+"
S_MINUS = 4, // "-"
[...]
S_VAR = 14, // "variable"
S_NEG = 15, // NEG
S_YYACCEPT = 16, // $accept
S_exp = 17, // exp
S_input = 18 // input
@};
@};
typedef symbol_kind::symbol_kind_t symbol_kind_type;
@end example
@end defcv
@deftypemethod {context} {const symbol_type&} lookahead () @code{const}
The ``unexpected'' token: the lookahead that caused the syntax error.
@end deftypemethod
@deftypemethod {context} {symbol_kind_type} token () @code{const}
The symbol kind of the lookahead token that caused the syntax error. Returns
@code{symbol_kind::S_YYEMPTY} if there is no lookahead.
@end deftypemethod
@deftypemethod {context} {const location&} location () @code{const}
The location of the syntax error (that of the lookahead).
@end deftypemethod
@deftypemethod {context} int expected_tokens (@code{symbol_kind_type} @var{argv}@code{[]}, @code{int} @var{argc}) @code{const}
Fill @var{argv} with the expected tokens, which never includes
@code{symbol_kind::S_YYEMPTY}, @code{symbol_kind::S_YYERROR}, or
@code{symbol_kind::S_YYUNDEF}.
Never put more than @var{argc} elements into @var{argv}, and on success
return the number of tokens stored in @var{argv}. If there are more
expected tokens than @var{argc}, fill @var{argv} up to @var{argc} and return
0. If there are no expected tokens, also return 0, but set @code{argv[0]}
to @code{symbol_kind::S_YYEMPTY}.
If @var{argv} is null, return the size needed to store all the possible
values, which is always less than @code{YYNTOKENS}.
@end deftypemethod
@deftypemethod {parser} {const char *} symbol_name (@code{symbol_kind_t} @var{symbol}) @code{const}
The name of the symbol whose kind is @var{symbol}, possibly translated.
Returns a @code{std::string} when @code{parse.error} is @code{verbose}.
@end deftypemethod
A custom syntax error function looks as follows. This implementation is
inappropriate for internationalization, see the @file{c/bistromathic}
example for a better alternative.
@example
void
yy::parser::report_syntax_error (const context& ctx)
@{
int res = 0;
std::cerr << ctx.location () << ": syntax error";
// Report the tokens expected at this point.
@{
enum @{ TOKENMAX = 5 @};
symbol_kind_type expected[TOKENMAX];
int n = ctx.expected_tokens (ctx, expected, TOKENMAX);
for (int i = 0; i < n; ++i)
std::cerr << i == 0 ? ": expected " : " or "
<< symbol_name (expected[i]);
@}
// Report the unexpected token.
@{
symbol_kind_type lookahead = ctx.token ();
if (lookahead != symbol_kind::S_YYEMPTY)
std::cerr << " before " << symbol_name (lookahead));
@}
std::cerr << '\n';
@}
@end example
You still must provide a @code{yyerror} function, used for instance to
report memory exhaustion.
@node C++ Scanner Interface
@subsection C++ Scanner Interface
@c - prefix for yylex.
@c - Pure interface to yylex
@c - %lex-param
The parser invokes the scanner by calling @code{yylex}. Contrary to C
parsers, C++ parsers are always pure: there is no point in using the
@samp{%define api.pure} directive. The actual interface with @code{yylex}
depends whether you use unions, or variants.
@menu
* Split Symbols:: Passing symbols as two/three components
* Complete Symbols:: Making symbols a whole
@end menu
@node Split Symbols
@subsubsection Split Symbols
The generated parser expects @code{yylex} to have the following prototype.
@deftypefun {int} yylex (@code{value_type*} @var{yylval}, @code{location_type*} @var{yylloc}, @var{type1} @var{arg1}, @dots{})
@deftypefunx {int} yylex (@code{value_type*} @var{yylval}, @var{type1} @var{arg1}, @dots{})
Return the next token. Its kind is the return value, its semantic value and
location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
@end deftypefun
Note that when using variants, the interface for @code{yylex} is the same,
but @code{yylval} is handled differently.
Regular union-based code in Lex scanner typically looks like:
@example
[0-9]+ @{
yylval->ival = text_to_int (yytext);
return yy::parser::token::INTEGER;
@}
[a-z]+ @{
yylval->sval = new std::string (yytext);
return yy::parser::token::IDENTIFIER;
@}
@end example
Using variants, @code{yylval} is already constructed, but it is not
initialized. So the code would look like:
@example
[0-9]+ @{
yylval->emplace<int> () = text_to_int (yytext);
return yy::parser::token::INTEGER;
@}
[a-z]+ @{
yylval->emplace<std::string> () = yytext;
return yy::parser::token::IDENTIFIER;
@}
@end example
@noindent
or
@example
[0-9]+ @{
yylval->emplace (text_to_int (yytext));
return yy::parser::token::INTEGER;
@}
[a-z]+ @{
yylval->emplace (yytext);
return yy::parser::token::IDENTIFIER;
@}
@end example
@node Complete Symbols
@subsubsection Complete Symbols
With both @code{%define api.value.type variant} and @code{%define
api.token.constructor}, the parser defines the type @code{symbol_type}, and
expects @code{yylex} to have the following prototype.
@deftypefun {parser::symbol_type} yylex ()
@deftypefunx {parser::symbol_type} yylex (@var{type1} @var{arg1}, @dots{})
Return a @emph{complete} symbol, aggregating its type (i.e., the traditional
value returned by @code{yylex}), its semantic value, and possibly its
location. Invocations of @samp{%lex-param @{@var{type1} @var{arg1}@}} yield
additional arguments.
@end deftypefun
@defcv {Type} {parser} {symbol_type}
A ``complete symbol'', that binds together its kind, value and (when
applicable) location.
@end defcv
@deftypemethod {symbol_type} {symbol_kind_type} kind () @code{const}
The kind of this symbol.
@end deftypemethod
@deftypemethod {symbol_type} {const char *} name () @code{const}
The name of the kind of this symbol.
Returns a @code{std::string} when @code{parse.error} is @code{verbose}.
@end deftypemethod
@sp 1
For each token kind, Bison generates named constructors as follows.
@deftypeop {Constructor} {parser::symbol_type} {} {symbol_type} (@code{int} @var{token}, @code{const @var{value_type}&} @var{value}, @code{const location_type&} @var{location})
@deftypeopx {Constructor} {parser::symbol_type} {} {symbol_type} (@code{int} @var{token}, @code{const location_type&} @var{location})
@deftypeopx {Constructor} {parser::symbol_type} {} {symbol_type} (@code{int} @var{token}, @code{const @var{value_type}&} @var{value})
@deftypeopx {Constructor} {parser::symbol_type} {} {symbol_type} (@code{int} @var{token})
Build a complete terminal symbol for the token kind @var{token} (including
the @code{api.token.prefix}), whose semantic value, if it has one, is
@var{value} of adequate @var{value_type}. Pass the @var{location} iff
location tracking is enabled.
Consistency between @var{token} and @var{value_type} is checked via an
@code{assert}.
@end deftypeop
For instance, given the following declarations:
@example
%define api.token.prefix @{TOK_@}
%token <std::string> IDENTIFIER;
%token <int> INTEGER;
%token ':';
@end example
@noindent
you may use these constructors:
@example
symbol_type (int token, const std::string&, const location_type&);
symbol_type (int token, const int&, const location_type&);
symbol_type (int token, const location_type&);
@end example
Correct matching between token kinds and value types is checked via
@code{assert}; for instance, @samp{symbol_type (ID, 42)} would abort. Named
constructors are preferable (see below), as they offer better type safety
(for instance @samp{make_ID (42)} would not even compile), but symbol_type
constructors may help when token kinds are discovered at run-time, e.g.,
@example
@group
[a-z]+ @{
if (auto i = lookup_keyword (yytext))
return yy::parser::symbol_type (i, loc);
else
return yy::parser::make_ID (yytext, loc);
@}
@end group
@end example
@sp 1
Note that it is possible to generate and compile type incorrect code
(e.g. @samp{symbol_type (':', yytext, loc)}). It will fail at run time,
provided the assertions are enabled (i.e., @option{-DNDEBUG} was not passed
to the compiler). Bison supports an alternative that guarantees that type
incorrect code will not even compile. Indeed, it generates @emph{named
constructors} as follows.
@deftypemethod {parser} {symbol_type} {make_@var{token}} (@code{const @var{value_type}&} @var{value}, @code{const location_type&} @var{location})
@deftypemethodx {parser} {symbol_type} {make_@var{token}} (@code{const location_type&} @var{location})
@deftypemethodx {parser} {symbol_type} {make_@var{token}} (@code{const @var{value_type}&} @var{value})
@deftypemethodx {parser} {symbol_type} {make_@var{token}} ()
Build a complete terminal symbol for the token kind @var{token} (not
including the @code{api.token.prefix}), whose semantic value, if it has one,
is @var{value} of adequate @var{value_type}. Pass the @var{location} iff
location tracking is enabled.
@end deftypemethod
For instance, given the following declarations:
@example
%define api.token.prefix @{TOK_@}
%token <std::string> IDENTIFIER;
%token <int> INTEGER;
%token COLON;
%token EOF 0;
@end example
@noindent
Bison generates:
@example
symbol_type make_IDENTIFIER (const std::string&, const location_type&);
symbol_type make_INTEGER (const int&, const location_type&);
symbol_type make_COLON (const location_type&);
symbol_type make_EOF (const location_type&);
@end example
@noindent
which should be used in a scanner as follows.
@example
[a-z]+ return yy::parser::make_IDENTIFIER (yytext, loc);
[0-9]+ return yy::parser::make_INTEGER (text_to_int (yytext), loc);
":" return yy::parser::make_COLON (loc);
<<EOF>> return yy::parser::make_EOF (loc);
@end example
Tokens that do not have an identifier are not accessible: you cannot simply
use characters such as @code{':'}, they must be declared with @code{%token},
including the end-of-file token.
@node A Complete C++ Example
@subsection A Complete C++ Example
This section demonstrates the use of a C++ parser with a simple but complete
example. This example should be available on your system, ready to compile,
in the directory @file{examples/c++/calc++}. It focuses on
the use of Bison, therefore the design of the various C++ classes is very
naive: no accessors, no encapsulation of members etc. We will use a Lex
scanner, and more precisely, a Flex scanner, to demonstrate the various
interactions. A hand-written scanner is actually easier to interface with.
@menu
* Calc++ --- C++ Calculator:: The specifications
* Calc++ Parsing Driver:: An active parsing context
* Calc++ Parser:: A parser class
* Calc++ Scanner:: A pure C++ Flex scanner
* Calc++ Top Level:: Conducting the band
@end menu
@node Calc++ --- C++ Calculator
@subsubsection Calc++ --- C++ Calculator
Of course the grammar is dedicated to arithmetic, a single expression,
possibly preceded by variable assignments. An environment containing
possibly predefined variables such as @code{one} and @code{two}, is
exchanged with the parser. An example of valid input follows.
@example
three := 3
seven := one + two * three
seven * seven
@end example
@node Calc++ Parsing Driver
@subsubsection Calc++ Parsing Driver
@c - An env
@c - A place to store error messages
@c - A place for the result
To support a pure interface with the parser (and the scanner) the technique
of the ``parsing context'' is convenient: a structure containing all the
data to exchange. Since, in addition to simply launch the parsing, there
are several auxiliary tasks to execute (open the file for scanning,
instantiate the parser etc.), we recommend transforming the simple parsing
context structure into a fully blown @dfn{parsing driver} class.
The declaration of this driver class, in @file{driver.hh}, is as follows.
The first part includes the CPP guard and imports the required standard
library components, and the declaration of the parser class.
@ignore
@comment file: c++/calc++/driver.hh
@example
/* Driver for calc++. -*- C++ -*-
Copyright (C) 2005-2015, 2018-2021 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c++/calc++/driver.hh
@example
#ifndef DRIVER_HH
# define DRIVER_HH
# include <string>
# include <map>
# include "parser.hh"
@end example
@noindent
Then comes the declaration of the scanning function. Flex expects the
signature of @code{yylex} to be defined in the macro @code{YY_DECL}, and the
C++ parser expects it to be declared. We can factor both as follows.
@comment file: c++/calc++/driver.hh
@example
// Give Flex the prototype of yylex we want ...
# define YY_DECL \
yy::parser::symbol_type yylex (driver& drv)
// ... and declare it for the parser's sake.
YY_DECL;
@end example
@noindent
The @code{driver} class is then declared with its most obvious members.
@comment file: c++/calc++/driver.hh
@example
// Conducting the whole scanning and parsing of Calc++.
class driver
@{
public:
driver ();
std::map<std::string, int> variables;
int result;
@end example
@noindent
The main routine is of course calling the parser.
@comment file: c++/calc++/driver.hh
@example
// Run the parser on file F. Return 0 on success.
int parse (const std::string& f);
// The name of the file being parsed.
std::string file;
// Whether to generate parser debug traces.
bool trace_parsing;
@end example
@noindent
To encapsulate the coordination with the Flex scanner, it is useful to have
member functions to open and close the scanning phase.
@comment file: c++/calc++/driver.hh
@example
// Handling the scanner.
void scan_begin ();
void scan_end ();
// Whether to generate scanner debug traces.
bool trace_scanning;
// The token's location used by the scanner.
yy::location location;
@};
#endif // ! DRIVER_HH
@end example
The implementation of the driver (@file{driver.cc}) is straightforward.
@ignore
@comment file: c++/calc++/driver.cc
@example
/* Driver for calc++. -*- C++ -*-
Copyright (C) 2005-2015, 2018-2021 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c++/calc++/driver.cc
@example
#include "driver.hh"
#include "parser.hh"
@group
driver::driver ()
: trace_parsing (false), trace_scanning (false)
@{
variables["one"] = 1;
variables["two"] = 2;
@}
@end group
@end example
The @code{parse} member function deserves some attention.
@comment file: c++/calc++/driver.cc
@example
@group
int
driver::parse (const std::string &f)
@{
file = f;
location.initialize (&file);
scan_begin ();
yy::parser parse (*this);
parse.set_debug_level (trace_parsing);
int res = parse ();
scan_end ();
return res;
@}
@end group
@end example
@node Calc++ Parser
@subsubsection Calc++ Parser
The grammar file @file{parser.yy} starts by asking for the C++ deterministic
parser skeleton, the creation of the parser header file. Because the C++
skeleton changed several times, it is safer to require the version you
designed the grammar for.
@ignore
@comment file: c++/calc++/parser.yy
@example
/* Parser for calc++. -*- C++ -*-
Copyright (C) 2005-2015, 2018-2021 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c++/calc++/parser.yy
@example
%skeleton "lalr1.cc" // -*- C++ -*-
%require "@value{VERSION}"
%header
@end example
@noindent
@findex %define api.token.raw
Because our scanner returns only genuine tokens and never simple characters
(i.e., it returns @samp{PLUS}, not @samp{'+'}), we can avoid conversions.
@comment file: c++/calc++/parser.yy
@example
%define api.token.raw
@end example
@noindent
@findex %define api.token.constructor
@findex %define api.value.type variant
This example uses genuine C++ objects as semantic values, therefore, we
require the variant-based storage of semantic values. To make sure we
properly use it, we enable assertions. To fully benefit from type-safety
and more natural definition of ``symbol'', we enable
@code{api.token.constructor}.
@comment file: c++/calc++/parser.yy
@example
%define api.token.constructor
%define api.value.type variant
%define parse.assert
@end example
@noindent
@findex %code requires
Then come the declarations/inclusions needed by the semantic values.
Because the parser uses the parsing driver and reciprocally, both would like
to include the header of the other, which is, of course, insane. This
mutual dependency will be broken using forward declarations. Because the
driver's header needs detailed knowledge about the parser class (in
particular its inner types), it is the parser's header which will use a
forward declaration of the driver. @xref{%code Summary}.
@comment file: c++/calc++/parser.yy
@example
@group
%code requires @{
# include <string>
class driver;
@}
@end group
@end example
@noindent
The driver is passed by reference to the parser and to the scanner.
This provides a simple but effective pure interface, not relying on
global variables.
@comment file: c++/calc++/parser.yy
@example
// The parsing context.
%param @{ driver& drv @}
@end example
@noindent
Then we request location tracking.
@comment file: c++/calc++/parser.yy
@example
%locations
@end example
@noindent
Use the following two directives to enable parser tracing and detailed error
messages. However, detailed error messages can contain incorrect
information if lookahead correction is not enabled (@pxref{LAC}).
@comment file: c++/calc++/parser.yy
@example
%define parse.trace
%define parse.error detailed
%define parse.lac full
@end example
@noindent
@findex %code
The code between @samp{%code @{} and @samp{@}} is output in the @file{*.cc}
file; it needs detailed knowledge about the driver.
@comment file: c++/calc++/parser.yy
@example
@group
%code @{
# include "driver.hh"
@}
@end group
@end example
@noindent
User friendly names are provided for each symbol. To avoid name clashes in
the generated files (@pxref{Calc++ Scanner}), prefix tokens with @code{TOK_}
(@pxref{%define Summary}).
@comment file: c++/calc++/parser.yy
@example
%define api.token.prefix @{TOK_@}
%token
ASSIGN ":="
MINUS "-"
PLUS "+"
STAR "*"
SLASH "/"
LPAREN "("
RPAREN ")"
;
@end example
@noindent
Since we use variant-based semantic values, @code{%union} is not used, and
@code{%token}, @code{%nterm} and @code{%type} expect genuine types, not type
tags.
@comment file: c++/calc++/parser.yy
@example
%token <std::string> IDENTIFIER "identifier"
%token <int> NUMBER "number"
%nterm <int> exp
@end example
@noindent
No @code{%destructor} is needed to enable memory deallocation during error
recovery; the memory, for strings for instance, will be reclaimed by the
regular destructors. All the values are printed using their
@code{operator<<} (@pxref{Printer Decl}).
@comment file: c++/calc++/parser.yy
@example
%printer @{ yyo << $$; @} <*>;
@end example
@noindent
The grammar itself is straightforward (@pxref{Location Tracking Calc}).
@comment file: c++/calc++/parser.yy
@example
%%
%start unit;
unit: assignments exp @{ drv.result = $2; @};
assignments:
%empty @{@}
| assignments assignment @{@};
assignment:
"identifier" ":=" exp @{ drv.variables[$1] = $3; @};
%left "+" "-";
%left "*" "/";
exp:
"number"
| "identifier" @{ $$ = drv.variables[$1]; @}
| exp "+" exp @{ $$ = $1 + $3; @}
| exp "-" exp @{ $$ = $1 - $3; @}
| exp "*" exp @{ $$ = $1 * $3; @}
| exp "/" exp @{ $$ = $1 / $3; @}
| "(" exp ")" @{ $$ = $2; @}
%%
@end example
@noindent
Finally the @code{error} member function reports the errors.
@comment file: c++/calc++/parser.yy
@example
void
yy::parser::error (const location_type& l, const std::string& m)
@{
std::cerr << l << ": " << m << '\n';
@}
@end example
@node Calc++ Scanner
@subsubsection Calc++ Scanner
In addition to standard headers, the Flex scanner includes the driver's,
then the parser's to get the set of defined tokens.
@ignore
@comment file: c++/calc++/scanner.ll
@example
/* Scanner for calc++. -*- C++ -*-
Copyright (C) 2005-2015, 2018-2021 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c++/calc++/scanner.ll
@example
%@{ /* -*- C++ -*- */
# include <cerrno>
# include <climits>
# include <cstdlib>
# include <cstring> // strerror
# include <string>
# include "driver.hh"
# include "parser.hh"
%@}
@end example
@ignore
@comment file: c++/calc++/scanner.ll
@example
%@{
#if defined __clang__
# define CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
#endif
// Clang and ICC like to pretend they are GCC.
#if defined __GNUC__ && !defined __clang__ && !defined __ICC
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#endif
// Pacify warnings in yy_init_buffer (observed with Flex 2.6.4)
// and GCC 6.4.0, 7.3.0 with -O3.
#if defined GCC_VERSION && 600 <= GCC_VERSION
# pragma GCC diagnostic ignored "-Wnull-dereference"
#endif
// This example uses Flex's C back end, yet compiles it as C++.
// So expect warnings about C style casts and NULL.
#if defined CLANG_VERSION && 500 <= CLANG_VERSION
# pragma clang diagnostic ignored "-Wold-style-cast"
# pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#elif defined GCC_VERSION && 407 <= GCC_VERSION
# pragma GCC diagnostic ignored "-Wold-style-cast"
# pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
#define FLEX_VERSION (YY_FLEX_MAJOR_VERSION * 100 + YY_FLEX_MINOR_VERSION)
// Old versions of Flex (2.5.35) generate an incomplete documentation comment.
//
// In file included from src/scan-code-c.c:3:
// src/scan-code.c:2198:21: error: empty paragraph passed to '@param' command
// [-Werror,-Wdocumentation]
// * @param line_number
// ~~~~~~~~~~~~~~~~~^
// 1 error generated.
#if FLEX_VERSION < 206 && defined CLANG_VERSION
# pragma clang diagnostic ignored "-Wdocumentation"
#endif
// Old versions of Flex (2.5.35) use 'register'. Warnings introduced in
// GCC 7 and Clang 6.
#if FLEX_VERSION < 206
# if defined CLANG_VERSION && 600 <= CLANG_VERSION
# pragma clang diagnostic ignored "-Wdeprecated-register"
# elif defined GCC_VERSION && 700 <= GCC_VERSION
# pragma GCC diagnostic ignored "-Wregister"
# endif
#endif
#if FLEX_VERSION < 206
# if defined CLANG_VERSION
# pragma clang diagnostic ignored "-Wconversion"
# pragma clang diagnostic ignored "-Wdocumentation"
# pragma clang diagnostic ignored "-Wshorten-64-to-32"
# pragma clang diagnostic ignored "-Wsign-conversion"
# elif defined GCC_VERSION
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wsign-conversion"
# endif
#endif
// Flex 2.6.4, GCC 9
// warning: useless cast to type 'int' [-Wuseless-cast]
// 1361 | YY_CURRENT_BUFFER_LVALUE->yy_buf_size = (int) (new_size - 2);
// | ^
#if defined GCC_VERSION && 900 <= GCC_VERSION
# pragma GCC diagnostic ignored "-Wuseless-cast"
#endif
%@}
@end example
@end ignore
@noindent
Since our calculator has no @code{#include}-like feature, we don't need
@code{yywrap}. We don't need the @code{unput} and @code{input} functions
either, and we parse an actual file, this is not an interactive session with
the user. Finally, we enable scanner tracing.
@comment file: c++/calc++/scanner.ll
@example
%option noyywrap nounput noinput batch debug
@end example
@noindent
The following function will be handy to convert a string denoting a number
into a @code{NUMBER} token.
@comment file: c++/calc++/scanner.ll
@example
%@{
// A number symbol corresponding to the value in S.
yy::parser::symbol_type
make_NUMBER (const std::string &s, const yy::parser::location_type& loc);
%@}
@end example
@noindent
Abbreviations allow for more readable rules.
@comment file: c++/calc++/scanner.ll
@example
id [a-zA-Z][a-zA-Z_0-9]*
int [0-9]+
blank [ \t\r]
@end example
@noindent
The following paragraph suffices to track locations accurately. Each time
@code{yylex} is invoked, the begin position is moved onto the end position.
Then when a pattern is matched, its width is added to the end column. When
matching ends of lines, the end cursor is adjusted, and each time blanks are
matched, the begin cursor is moved onto the end cursor to effectively ignore
the blanks preceding tokens. Comments would be treated equally.
@comment file: c++/calc++/scanner.ll
@example
@group
%@{
// Code run each time a pattern is matched.
# define YY_USER_ACTION loc.columns (yyleng);
%@}
@end group
%%
@group
%@{
// A handy shortcut to the location held by the driver.
yy::location& loc = drv.location;
// Code run each time yylex is called.
loc.step ();
%@}
@end group
@{blank@}+ loc.step ();
\n+ loc.lines (yyleng); loc.step ();
@end example
@noindent
The rules are simple. The driver is used to report errors.
@comment file: c++/calc++/scanner.ll
@example
"-" return yy::parser::make_MINUS (loc);
"+" return yy::parser::make_PLUS (loc);
"*" return yy::parser::make_STAR (loc);
"/" return yy::parser::make_SLASH (loc);
"(" return yy::parser::make_LPAREN (loc);
")" return yy::parser::make_RPAREN (loc);
":=" return yy::parser::make_ASSIGN (loc);
@{int@} return make_NUMBER (yytext, loc);
@{id@} return yy::parser::make_IDENTIFIER (yytext, loc);
@group
. @{
throw yy::parser::syntax_error
(loc, "invalid character: " + std::string(yytext));
@}
@end group
<<EOF>> return yy::parser::make_YYEOF (loc);
%%
@end example
@noindent
You should keep your rules simple, both in the parser and in the scanner.
Throwing from the auxiliary functions is then very handy to report errors.
@comment file: c++/calc++/scanner.ll
@example
@group
yy::parser::symbol_type
make_NUMBER (const std::string &s, const yy::parser::location_type& loc)
@{
errno = 0;
long n = strtol (s.c_str(), NULL, 10);
if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
throw yy::parser::syntax_error (loc, "integer is out of range: " + s);
return yy::parser::make_NUMBER ((int) n, loc);
@}
@end group
@end example
@noindent
Finally, because the scanner-related driver's member-functions depend
on the scanner's data, it is simpler to implement them in this file.
@comment file: c++/calc++/scanner.ll
@example
@group
void
driver::scan_begin ()
@{
yy_flex_debug = trace_scanning;
if (file.empty () || file == "-")
yyin = stdin;
else if (!(yyin = fopen (file.c_str (), "r")))
@{
std::cerr << "cannot open " << file << ": " << strerror (errno) << '\n';
exit (EXIT_FAILURE);
@}
@}
@end group
@group
void
driver::scan_end ()
@{
fclose (yyin);
@}
@end group
@end example
@node Calc++ Top Level
@subsubsection Calc++ Top Level
The top level file, @file{calc++.cc}, poses no problem.
@ignore
@comment file: c++/calc++/calc++.cc
@example
/* Main for calc++. -*- C++ -*-
Copyright (C) 2005-2015, 2018-2021 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
@end example
@end ignore
@comment file: c++/calc++/calc++.cc
@example
#include <iostream>
#include "driver.hh"
@group
int
main (int argc, char *argv[])
@{
int res = 0;
driver drv;
for (int i = 1; i < argc; ++i)
if (argv[i] == std::string ("-p"))
drv.trace_parsing = true;
else if (argv[i] == std::string ("-s"))
drv.trace_scanning = true;
else if (!drv.parse (argv[i]))
std::cout << drv.result << '\n';
else
res = 1;
return res;
@}
@end group
@end example
@node D Parsers
@section D Parsers
@menu
* D Bison Interface:: Asking for D parser generation
* D Semantic Values:: %token and %nterm vs. D
* D Location Values:: The position and location classes
* D Parser Interface:: Instantiating and running the parser
* D Parser Context Interface:: Circumstances of a syntax error
* D Scanner Interface:: Specifying the scanner for the parser
* D Action Features:: Special features for use in actions
* D Push Parser Interface:: Instantiating and running the push parser
* D Complete Symbols:: Using token constructors
@end menu
@node D Bison Interface
@subsection D Bison Interface
@c - %language "D"
The D parser skeletons are selected using the @code{%language "D"}
directive or the @option{-L D}/@option{--language=D} option.
@c FIXME: Documented bug.
When generating a D parser, @samp{bison @var{basename}.y} will create a
single D source file named @file{@var{basename}.d} containing the
parser implementation. Using a grammar file without a @file{.y} suffix is
currently broken. The basename of the parser implementation file can be
changed by the @code{%file-prefix} directive or the
@option{-b}/@option{--file-prefix} option. The entire parser implementation
file name can be changed by the @code{%output} directive or the
@option{-o}/@option{--output} option. The parser implementation file
contains a single class for the parser.
You can create documentation for generated parsers using Ddoc.
GLR parsers are currently unsupported in D. Do not use the
@code{glr-parser} directive.
No header file can be generated for D parsers. Do not use the
@code{%header} directive or the @option{-d}/@option{--header} options.
@node D Semantic Values
@subsection D Semantic Values
Semantic types are handled by @code{%union} and @samp{%define api.value.type
union}, similar to C/C++ parsers. In the latter case, the union of the
values is handled by the backend. In D, unions can hold classes, structs,
etc., so this directive is more similar to @samp{%define api.value.type
variant} from C++.
D parsers do not support @code{%destructor}, since the language
adopts garbage collection. The parser will try to hold references
to semantic values for as little time as needed.
D parsers support @code{%printer}. An example for the output of type
@code{int}, where @code{yyo} is the parser's debug output:
@example
%printer @{ yyo.write($$); @} <int>
@end example
@node D Location Values
@subsection D Location Values
@c - %locations
@c - class Position
@c - class Location
When the directive @code{%locations} is used, the D parser supports location
tracking, see @ref{Tracking Locations}. The position and the location
structures are provided.
@deftypeivar {Location} {Position} begin
@deftypeivarx {Location} {Position} end
The first, inclusive, position of the range, and the first beyond.
@end deftypeivar
@deftypeop {Constructor} {Location} {} this(@code{Position} @var{loc})
Create a @code{Location} denoting an empty range located at a given point.
@end deftypeop
@deftypeop {Constructor} {Location} {} this(@code{Position} @var{begin}, @code{Position} @var{end})
Create a @code{Location} from the endpoints of the range.
@end deftypeop
@deftypemethod {Location} {string} toString()
The range represented by the location as a string.
@end deftypemethod
@node D Parser Interface
@subsection D Parser Interface
The name of the generated parser class defaults to @code{YYParser}. The
@code{YY} prefix may be changed using the @samp{%define api.prefix}.
Alternatively, use @samp{%define api.parser.class @{@var{name}@}} to give a
custom name to the class. The interface of this class is detailed below.
By default, the parser class has public visibility. To add modifiers to the
parser class, @code{%define} @code{api.parser.public},
@code{api.parser.abstract} and/or @code{api.parser.final}.
The superclass and the implemented interfaces of the parser class can be
specified with the @samp{%define api.parser.extends} and @samp{%define
api.parser.implements} directives.
The parser class defines an interface, @code{Lexer} (@pxref{D Scanner
Interface}). Other than this interface and the members described in the
interface below, all the other members and fields are preceded with a
@code{yy} or @code{YY} prefix to avoid clashes with user code.
The parser class can be extended using the @code{%parse-param}
directive. Each occurrence of the directive will add a by default public
field to the parser class, and an argument to its constructor, which
initializes them automatically.
@deftypeop {Constructor} {YYParser} {} this(@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
Build a new parser object with embedded @samp{%code lexer}. There are no
parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
@code{%lex-param}s are used.
@end deftypeop
@deftypeop {Constructor} {YYParser} {} this(@code{Lexer} @var{lexer}, @var{parse_param}, @dots{})
Build a new parser object using the specified scanner. There are no
additional parameters unless @code{%param}s and/or @code{%parse-param}s are
used.
@end deftypeop
@deftypemethod {YYParser} {boolean} parse()
Run the syntactic analysis, and return @code{true} on success,
@code{false} otherwise.
@end deftypemethod
@deftypemethod {YYParser} {boolean} getErrorVerbose()
@deftypemethodx {YYParser} {void} setErrorVerbose(boolean @var{verbose})
Get or set the option to produce verbose error messages. These are only
available with @samp{%define parse.error detailed},
which also turns on verbose error messages.
@end deftypemethod
@deftypemethod {YYParser} {void} yyerror(@code{string} @var{msg})
@deftypemethodx {YYParser} {void} yyerror(@code{Location} @var{loc}, @code{string} @var{msg})
Print an error message using the @code{yyerror} method of the scanner
instance in use. The @code{Location} and @code{Position} parameters are
available only if location tracking is active.
@end deftypemethod
@deftypemethod {YYParser} {boolean} recovering()
During the syntactic analysis, return @code{true} if recovering
from a syntax error.
@xref{Error Recovery}.
@end deftypemethod
@deftypemethod {YYParser} {File} getDebugStream()
@deftypemethodx {YYParser} {void} setDebugStream(@code{File} @var{o})
Get or set the stream used for tracing the parsing. It defaults to
@code{stderr}.
@end deftypemethod
@deftypemethod {YYParser} {int} getDebugLevel()
@deftypemethodx {YYParser} {void} setDebugLevel(@code{int} @var{l})
Get or set the tracing level. Currently its value is either 0, no trace,
or nonzero, full tracing.
@end deftypemethod
@deftypecv {Constant} {YYParser} {string} {bisonVersion}
@deftypecvx {Constant} {YYParser} {string} {bisonSkeleton}
Identify the Bison version and skeleton used to generate this parser.
@end deftypecv
The internationalization in D is very similar to the one in C. The D
parser uses @code{dgettext} for translating Bison messages.
To enable internationalization, compile using @samp{-version ENABLE_NLS
-version YYENABLE_NLS} and import @code{bindtextdomain} and
@code{textdomain} from C:
@example
extern(C) char* bindtextdomain(const char* domainname, const char* dirname);
extern(C) char* textdomain(const char* domainname);
@end example
The main function should load the translation catalogs, similarly to the
@file{c/bistromathic} example:
@example
int main()
@{
import core.stdc.locale;
// Set up internationalization.
setlocale(LC_ALL, "");
// Use Bison's standard translation catalog for error messages
// (the generated messages).
bindtextdomain("bison-runtime", BISON_LOCALEDIR);
// For the translation catalog of your own project, use the
// name of your project.
bindtextdomain("bison", LOCALEDIR);
textdomain("bison");
// usual main content
...
@}
@end example
For user message translations, the user must implement the @samp{string
_(const char* @var{msg})} function. It is recommended to use
@code{gettext}:
@example
%code imports @{
static if (!is(typeof(_)))
@{
version(ENABLE_NLS)
@{
extern(C) char* gettext(const char*);
string _(const char* s)
@{
return to!string(gettext(s));
@}
@}
@}
static if (!is(typeof(_)))
@{
pragma(inline, true)
string _(string msg) @{ return msg; @}
@}
@}
@end example
@node D Parser Context Interface
@subsection D Parser Context Interface
The parser context provides information to build error reports when you
invoke @samp{%define parse.error custom}.
@defcv {Type} {YYParser} {SymbolKind}
A struct containing an enum of all the grammar symbols, tokens and
nonterminals. Its enumerators are forged from the symbol names. Use
@samp{void toString(W)(W sink)} to get the symbol names.
@end defcv
@deftypemethod {YYParser.Context} {YYParser.SymbolKind} getToken()
The kind of the lookahead. Return @code{null} iff there is no lookahead.
@end deftypemethod
@deftypemethod {YYParser.Context} {YYParser.Location} getLocation()
The location of the lookahead.
@end deftypemethod
@deftypemethod {YYParser.Context} {int} getExpectedTokens(@code{YYParser.SymbolKind[]} @var{argv}, @code{int} @var{argc})
Fill @var{argv} with the expected tokens, which never includes
@code{SymbolKind.YYERROR}, or @code{SymbolKind.YYUNDEF}.
Never put more than @var{argc} elements into @var{argv}, and on success
return the number of tokens stored in @var{argv}. If there are more
expected tokens than @var{argc}, fill @var{argv} up to @var{argc} and return
0. If there are no expected tokens, also return 0, but set @code{argv[0]}
to @code{null}.
If @var{argv} is null, return the size needed to store all the possible
values, which is always less than @code{YYNTOKENS}.
@end deftypemethod
@node D Scanner Interface
@subsection D Scanner Interface
@c - %code lexer
@c - %lex-param
@c - Lexer interface
There are two possible ways to interface a Bison-generated D parser
with a scanner: the scanner may be defined by @code{%code lexer}, or
defined elsewhere. In either case, the scanner has to implement the
@code{Lexer} inner interface of the parser class. This interface also
contains constants for all user-defined token names and the predefined
@code{YYEOF} token.
In the first case, the body of the scanner class is placed in
@code{%code lexer} blocks. If you want to pass parameters from the
parser constructor to the scanner constructor, specify them with
@code{%lex-param}; they are passed before @code{%parse-param}s to the
constructor.
In the second case, the scanner has to implement the @code{Lexer} interface,
which is defined within the parser class (e.g., @code{YYParser.Lexer}).
The constructor of the parser object will then accept an object
implementing the interface; @code{%lex-param} is not used in this
case.
In both cases, the scanner has to implement the following methods.
@deftypemethod {Lexer} {void} yyerror(@code{Location} @var{loc}, @code{string} @var{msg})
This method is defined by the user to emit an error message. The first
parameter is omitted if location tracking is not active.
@end deftypemethod
@deftypemethod {Lexer} {Symbol} yylex()
Return the next token. The return value is of type @code{Symbol}, which
binds together the kind, the semantic value and the location.
@end deftypemethod
@deftypemethod {Lexer} {void} reportSyntaxError(@code{YYParser.Context} @var{ctx})
If you invoke @samp{%define parse.error custom} (@pxref{Bison
Declarations}), then the parser no longer passes syntax error messages to
@code{yyerror}, rather it delegates that task to the user by calling the
@code{reportSyntaxError} function.
Whether it uses @code{yyerror} is up to the user.
Here is an example of a reporting function (@pxref{D Parser Context
Interface}).
@example
public void reportSyntaxError(YYParser.Context ctx)
@{
stderr.write(ctx.getLocation(), ": syntax error");
// Report the expected tokens.
@{
immutable int TOKENMAX = 5;
YYParser.SymbolKind[] arg = new YYParser.SymbolKind[TOKENMAX];
int n = ctx.getExpectedTokens(arg, TOKENMAX);
if (n < TOKENMAX)
for (int i = 0; i < n; ++i)
stderr.write((i == 0 ? ": expected " : " or "), arg[i]);
@}
// Report the unexpected token which triggered the error.
@{
YYParser.SymbolKind lookahead = ctx.getToken();
stderr.writeln(" before ", lookahead);
@}
@}
@end example
@noindent
This implementation is inappropriate for internationalization, see
the @file{c/bistromathic} example for a better alternative.
@end deftypemethod
@node D Action Features
@subsection Special Features for Use in D Actions
Here is a table of Bison constructs, variables and functions that are useful in
actions.
@deffn {Variable} $$
Acts like a variable that contains the semantic value for the
grouping made by the current rule. @xref{Actions}.
@end deffn
@deffn {Variable} $@var{n}
Acts like a variable that contains the semantic value for the
@var{n}th component of the current rule. @xref{Actions}.
@end deffn
@deffn {Function} yyerrok
Resume generating error messages immediately for subsequent syntax
errors. This is useful primarily in error rules.
@xref{Error Recovery}.
@end deffn
@node D Push Parser Interface
@subsection D Push Parser Interface
@c - define push_parse
@findex %define api.push-pull
Normally, Bison generates a pull parser for D.
The following Bison declaration says that you want the parser to be a push
parser (@pxref{%define Summary}):
@example
%define api.push-pull push
@end example
Most of the discussion about the D pull Parser Interface, (@pxref{D
Parser Interface}) applies to the push parser interface as well.
When generating a push parser, the method @code{pushParse} is created with
the following signature:
@deftypemethod {YYParser} {int} pushParse (@code{Symbol} @var{sym})
@end deftypemethod
The primary difference with respect to a pull parser is that the parser
method @code{pushParse} is invoked repeatedly to parse each token. This
function is available if either the @samp{%define api.push-pull push} or
@samp{%define api.push-pull both} declaration is used (@pxref{%define
Summary}).
The value returned by the @code{pushParse} method is one of the following:
@code{ACCEPT}, @code{ABORT}, or @code{PUSH_MORE}. This new value,
@code{PUSH_MORE}, may be returned if more input is required to finish
parsing the input.
If @code{api.push-pull} is defined as @code{both}, then the generated parser
class will also implement the @code{parse} method. This method's body is a
loop that repeatedly invokes the scanner and then passes the values obtained
from the scanner to the @code{pushParse} method.
@node D Complete Symbols
@subsection D Complete Symbols
To build return values for @code{yylex}, call the @code{Symbol} method of
the same name as the token kind reported, and adding the parameters for
value and location if necessary. These methods generate compile-time errors
if the parameters are inconsistent. Token constructors work with both
@code{%union} and @samp{%define api.value.type union}.
The order of the parameters is the same as for the @code{Symbol}
constructor. An example for the token kind @code{NUM}, which has value
@code{ival} and with location tracking activated:
@example
Symbol.NUM(ival, location);
@end example
@node Java Parsers
@section Java Parsers
@menu
* Java Bison Interface:: Asking for Java parser generation
* Java Semantic Values:: %token and %nterm vs. Java
* Java Location Values:: The position and location classes
* Java Parser Interface:: Instantiating and running the parser
* Java Parser Context Interface:: Circumstances of a syntax error
* Java Scanner Interface:: Specifying the scanner for the parser
* Java Action Features:: Special features for use in actions
* Java Push Parser Interface:: Instantiating and running the push parser
* Java Differences:: Differences between C/C++ and Java Grammars
* Java Declarations Summary:: List of Bison declarations used with Java
@end menu
@node Java Bison Interface
@subsection Java Bison Interface
@c - %language "Java"
The Java parser skeletons are selected using the @code{%language "Java"}
directive or the @option{-L java}/@option{--language=java} option.
@c FIXME: Documented bug.
When generating a Java parser, @samp{bison @var{basename}.y} will create a
single Java source file named @file{@var{basename}.java} containing the
parser implementation. Using a grammar file without a @file{.y} suffix is
currently broken. The basename of the parser implementation file can be
changed by the @code{%file-prefix} directive or the
@option{-b}/@option{--file-prefix} option. The entire parser implementation
file name can be changed by the @code{%output} directive or the
@option{-o}/@option{--output} option. The parser implementation file
contains a single class for the parser.
You can create documentation for generated parsers using Javadoc.
Contrary to C parsers, Java parsers do not use global variables; the state
of the parser is always local to an instance of the parser class.
Therefore, all Java parsers are ``pure'', and the @code{%define api.pure}
directive does nothing when used in Java.
GLR parsers are currently unsupported in Java. Do not use the
@code{glr-parser} directive.
No header file can be generated for Java parsers. Do not use the
@code{%header} directive or the @option{-d}/@option{-H}/@option{--header}
options.
@c FIXME: Possible code change.
Currently, support for tracing is always compiled in. Thus the
@samp{%define parse.trace} and @samp{%token-table} directives and the
@option{-t}/@option{--debug} and @option{-k}/@option{--token-table} options
have no effect. This may change in the future to eliminate unused code in
the generated parser, so use @samp{%define parse.trace} explicitly if
needed. Also, in the future the @code{%token-table} directive might enable
a public interface to access the token names and codes.
Getting a ``code too large'' error from the Java compiler means the code hit
the 64KB bytecode per method limitation of the Java class file. Try
reducing the amount of code in actions and static initializers; otherwise,
report a bug so that the parser skeleton will be improved.
@node Java Semantic Values
@subsection Java Semantic Values
There is no @code{%union} directive in Java parsers. Instead, the semantic
values' types (class names) should be specified in the @code{%nterm} or
@code{%token} directive:
@example
%nterm <Expression> expr assignment_expr term factor
%nterm <Integer> number
@end example
By default, the semantic stack is declared to have @code{Object} members,
which means that the class types you specify can be of any class.
To improve the type safety of the parser, you can declare the common
superclass of all the semantic values using the @samp{%define api.value.type}
directive. For example, after the following declaration:
@example
%define api.value.type @{ASTNode@}
@end example
@noindent
any @code{%token}, @code{%nterm} or @code{%type} specifying a semantic type
which is not a subclass of @code{ASTNode}, will cause a compile-time error.
@c FIXME: Documented bug.
Types used in the directives may be qualified with a package name.
Primitive data types are accepted for Java version 1.5 or later. Note
that in this case the autoboxing feature of Java 1.5 will be used.
Generic types may not be used; this is due to a limitation in the
implementation of Bison, and may change in future releases.
Java parsers do not support @code{%destructor}, since the language
adopts garbage collection. The parser will try to hold references
to semantic values for as little time as needed.
Java parsers do not support @code{%printer}, as @code{toString()}
can be used to print the semantic values. This however may change
(in a backwards-compatible way) in future versions of Bison.
@node Java Location Values
@subsection Java Location Values
@c - %locations
@c - class Position
@c - class Location
When the directive @code{%locations} is used, the Java parser supports
location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
class defines a @dfn{position}, a single point in a file; Bison itself
defines a class representing a @dfn{location}, a range composed of a pair of
positions (possibly spanning several files). The location class is an inner
class of the parser; the name is @code{Location} by default, and may also be
renamed using @code{%define api.location.type @{@var{class-name}@}}.
The location class treats the position as a completely opaque value.
By default, the class name is @code{Position}, but this can be changed
with @code{%define api.position.type @{@var{class-name}@}}. This class must
be supplied by the user.
@deftypeivar {Location} {Position} begin
@deftypeivarx {Location} {Position} end
The first, inclusive, position of the range, and the first beyond.
@end deftypeivar
@deftypeop {Constructor} {Location} {} Location (@code{Position} @var{loc})
Create a @code{Location} denoting an empty range located at a given point.
@end deftypeop
@deftypeop {Constructor} {Location} {} Location (@code{Position} @var{begin}, @code{Position} @var{end})
Create a @code{Location} from the endpoints of the range.
@end deftypeop
@deftypemethod {Location} {String} toString ()
Prints the range represented by the location. For this to work
properly, the position class should override the @code{equals} and
@code{toString} methods appropriately.
@end deftypemethod
@node Java Parser Interface
@subsection Java Parser Interface
The name of the generated parser class defaults to @code{YYParser}. The
@code{YY} prefix may be changed using the @samp{%define api.prefix}.
Alternatively, use @samp{%define api.parser.class @{@var{name}@}} to give a
custom name to the class. The interface of this class is detailed below.
By default, the parser class has package visibility. A declaration
@samp{%define api.parser.public} will change to public visibility. Remember
that, according to the Java language specification, the name of the
@file{.java} file should match the name of the class in this case.
Similarly, you can use @code{api.parser.abstract}, @code{api.parser.final}
and @code{api.parser.strictfp} with the @code{%define} declaration to add
other modifiers to the parser class. A single @samp{%define
api.parser.annotations @{@var{annotations}@}} directive can be used to add
any number of annotations to the parser class.
The Java package name of the parser class can be specified using the
@samp{%define package} directive. The superclass and the implemented
interfaces of the parser class can be specified with the @code{%define
api.parser.extends} and @samp{%define api.parser.implements} directives.
The parser class defines an inner class, @code{Location}, that is used
for location tracking (see @ref{Java Location Values}), and a inner
interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
these inner class/interface, and the members described in the interface
below, all the other members and fields are preceded with a @code{yy} or
@code{YY} prefix to avoid clashes with user code.
The parser class can be extended using the @code{%parse-param}
directive. Each occurrence of the directive will add a @code{protected
final} field to the parser class, and an argument to its constructor,
which initializes them automatically.
@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
Build a new parser object with embedded @code{%code lexer}. There are
no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
@code{%lex-param}s are used.
Use @code{%code init} for code added to the start of the constructor
body. This is especially useful to initialize superclasses. Use
@samp{%define init_throws} to specify any uncaught exceptions.
@end deftypeop
@deftypeop {Constructor} {YYParser} {} YYParser (@code{Lexer} @var{lexer}, @var{parse_param}, @dots{})
Build a new parser object using the specified scanner. There are no
additional parameters unless @code{%param}s and/or @code{%parse-param}s are
used.
If the scanner is defined by @code{%code lexer}, this constructor is
declared @code{protected} and is called automatically with a scanner
created with the correct @code{%param}s and/or @code{%lex-param}s.
Use @code{%code init} for code added to the start of the constructor
body. This is especially useful to initialize superclasses. Use
@samp{%define init_throws} to specify any uncaught exceptions.
@end deftypeop
@deftypemethod {YYParser} {boolean} parse ()
Run the syntactic analysis, and return @code{true} on success,
@code{false} otherwise.
@end deftypemethod
@deftypemethod {YYParser} {boolean} getErrorVerbose ()
@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
Get or set the option to produce verbose error messages. These are only
available with @samp{%define parse.error detailed} (or @samp{verbose}),
which also turns on verbose error messages.
@end deftypemethod
@deftypemethod {YYParser} {void} yyerror (@code{String} @var{msg})
@deftypemethodx {YYParser} {void} yyerror (@code{Position} @var{pos}, @code{String} @var{msg})
@deftypemethodx {YYParser} {void} yyerror (@code{Location} @var{loc}, @code{String} @var{msg})
Print an error message using the @code{yyerror} method of the scanner
instance in use. The @code{Location} and @code{Position} parameters are
available only if location tracking is active.
@end deftypemethod
@deftypemethod {YYParser} {boolean} recovering ()
During the syntactic analysis, return @code{true} if recovering
from a syntax error.
@xref{Error Recovery}.
@end deftypemethod
@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
@deftypemethodx {YYParser} {void} setDebugStream (@code{java.io.PrintStream} @var{o})
Get or set the stream used for tracing the parsing. It defaults to
@code{System.err}.
@end deftypemethod
@deftypemethod {YYParser} {int} getDebugLevel ()
@deftypemethodx {YYParser} {void} setDebugLevel (@code{int} @var{l})
Get or set the tracing level. Currently its value is either 0, no trace,
or nonzero, full tracing.
@end deftypemethod
@deftypecv {Constant} {YYParser} {String} {bisonVersion}
@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
Identify the Bison version and skeleton used to generate this parser.
@end deftypecv
If you enabled token internationalization (@pxref{Token I18n}), you must
provide the parser with the following function:
@deftypecv {Static Method} {YYParser} {String} {i18n} (@code{string} @var{s})
Return the translation of @var{s} in the user's language. As an example:
@example
%code @{
static ResourceBundle myResources
= ResourceBundle.getBundle("domain-name");
static final String i18n(String s) @{
return myResources.getString(s);
@}
@}
@end example
@end deftypecv
@node Java Parser Context Interface
@subsection Java Parser Context Interface
The parser context provides information to build error reports when you
invoke @samp{%define parse.error custom}.
@defcv {Type} {YYParser} {SymbolKind}
An enum of all the grammar symbols, tokens and nonterminals. Its
enumerators are forged from the symbol names:
@example
public enum SymbolKind
@{
S_YYEOF(0), /* "end of file" */
S_YYERROR(1), /* error */
S_YYUNDEF(2), /* "invalid token" */
S_BANG(3), /* "!" */
S_PLUS(4), /* "+" */
S_MINUS(5), /* "-" */
[...]
S_NUM(13), /* "number" */
S_NEG(14), /* NEG */
S_YYACCEPT(15), /* $accept */
S_input(16), /* input */
S_line(17); /* line */
@};
@end example
@end defcv
@deftypemethod {YYParser.SymbolKind} {String} getName ()
The name of this symbol, possibly translated.
@end deftypemethod
@deftypemethod {YYParser.Context} {YYParser.SymbolKind} getToken ()
The kind of the lookahead. Return @code{null} iff there is no lookahead.
@end deftypemethod
@deftypemethod {YYParser.Context} {YYParser.Location} getLocation ()
The location of the lookahead.
@end deftypemethod
@deftypemethod {YYParser.Context} {int} getExpectedTokens (@code{YYParser.SymbolKind[]} @var{argv}, @code{int} @var{argc})
Fill @var{argv} with the expected tokens, which never includes
@code{SymbolKind.S_YYERROR}, or @code{SymbolKind.S_YYUNDEF}.
Never put more than @var{argc} elements into @var{argv}, and on success
return the number of tokens stored in @var{argv}. If there are more
expected tokens than @var{argc}, fill @var{argv} up to @var{argc} and return
0. If there are no expected tokens, also return 0, but set @code{argv[0]}
to @code{null}.
If @var{argv} is null, return the size needed to store all the possible
values, which is always less than @code{YYNTOKENS}.
@end deftypemethod
@node Java Scanner Interface
@subsection Java Scanner Interface
@c - %code lexer
@c - %lex-param
@c - Lexer interface
There are two possible ways to interface a Bison-generated Java parser
with a scanner: the scanner may be defined by @code{%code lexer}, or
defined elsewhere. In either case, the scanner has to implement the
@code{Lexer} inner interface of the parser class. This interface also
contains constants for all user-defined token names and the predefined
@code{YYEOF} token.
In the first case, the body of the scanner class is placed in
@code{%code lexer} blocks. If you want to pass parameters from the
parser constructor to the scanner constructor, specify them with
@code{%lex-param}; they are passed before @code{%parse-param}s to the
constructor.
In the second case, the scanner has to implement the @code{Lexer} interface,
which is defined within the parser class (e.g., @code{YYParser.Lexer}).
The constructor of the parser object will then accept an object
implementing the interface; @code{%lex-param} is not used in this
case.
In both cases, the scanner has to implement the following methods.
@deftypemethod {Lexer} {void} yyerror (@code{Location} @var{loc}, @code{String} @var{msg})
This method is defined by the user to emit an error message. The first
parameter is omitted if location tracking is not active. Its type can be
changed using @code{%define api.location.type @{@var{class-name}@}}.
@end deftypemethod
@deftypemethod {Lexer} {int} yylex ()
Return the next token. Its type is the return value, its semantic value and
location are saved and returned by the their methods in the interface. Not
needed for push-only parsers.
Use @samp{%define lex_throws} to specify any uncaught exceptions.
Default is @code{java.io.IOException}.
@end deftypemethod
@deftypemethod {Lexer} {Position} getStartPos ()
@deftypemethodx {Lexer} {Position} getEndPos ()
Return respectively the first position of the last token that @code{yylex}
returned, and the first position beyond it. These methods are not needed
unless location tracking and pull parsing are active.
They should return new objects for each call, to avoid that all the symbol
share the same Position boundaries.
The return type can be changed using @code{%define api.position.type
@{@var{class-name}@}}.
@end deftypemethod
@deftypemethod {Lexer} {Object} getLVal ()
Return the semantic value of the last token that yylex returned. Not needed
for push-only parsers.
The return type can be changed using @samp{%define api.value.type
@{@var{class-name}@}}.
@end deftypemethod
@deftypemethod {Lexer} {void} reportSyntaxError (@code{YYParser.Context} @var{ctx})
If you invoke @samp{%define parse.error custom} (@pxref{Bison
Declarations}), then the parser no longer passes syntax error messages to
@code{yyerror}, rather it delegates that task to the user by calling the
@code{reportSyntaxError} function.
Whether it uses @code{yyerror} is up to the user.
Here is an example of a reporting function (@pxref{Java Parser Context
Interface}).
@example
public void reportSyntaxError(YYParser.Context ctx) @{
System.err.print(ctx.getLocation() + ": syntax error");
// Report the expected tokens.
@{
final int TOKENMAX = 5;
YYParser.SymbolKind[] arg = new YYParser.SymbolKind[TOKENMAX];
int n = ctx.getExpectedTokens(arg, TOKENMAX);
for (int i = 0; i < n; ++i)
System.err.print((i == 0 ? ": expected " : " or ")
+ arg[i].getName());
@}
// Report the unexpected token which triggered the error.
@{
YYParser.SymbolKind lookahead = ctx.getToken();
if (lookahead != null)
System.err.print(" before " + lookahead.getName());
@}
System.err.println("");
@}
@end example
@noindent
This implementation is inappropriate for internationalization, see the
@file{c/bistromathic} example for a better alternative.
@end deftypemethod
@node Java Action Features
@subsection Special Features for Use in Java Actions
The following special constructs can be uses in Java actions.
Other analogous C action features are currently unavailable for Java.
Use @samp{%define throws} to specify any uncaught exceptions from parser
actions, and initial actions specified by @code{%initial-action}.
@defvar $@var{n}
The semantic value for the @var{n}th component of the current rule.
This may not be assigned to.
@xref{Java Semantic Values}.
@end defvar
@defvar $<@var{typealt}>@var{n}
Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
@xref{Java Semantic Values}.
@end defvar
@defvar $$
The semantic value for the grouping made by the current rule. As a
value, this is in the base type (@code{Object} or as specified by
@samp{%define api.value.type}) as in not cast to the declared subtype because
casts are not allowed on the left-hand side of Java assignments.
Use an explicit Java cast if the correct subtype is needed.
@xref{Java Semantic Values}.
@end defvar
@defvar $<@var{typealt}>$
Same as @code{$$} since Java always allow assigning to the base type.
Perhaps we should use this and @code{$<>$} for the value and @code{$$}
for setting the value but there is currently no easy way to distinguish
these constructs.
@xref{Java Semantic Values}.
@end defvar
@defvar @@@var{n}
The location information of the @var{n}th component of the current rule.
This may not be assigned to.
@xref{Java Location Values}.
@end defvar
@defvar @@$
The location information of the grouping made by the current rule.
@xref{Java Location Values}.
@end defvar
@deftypefn {Statement} return YYABORT @code{;}
Return immediately from the parser, indicating failure.
@xref{Java Parser Interface}.
@end deftypefn
@deftypefn {Statement} return YYACCEPT @code{;}
Return immediately from the parser, indicating success.
@xref{Java Parser Interface}.
@end deftypefn
@deftypefn {Statement} {return} YYERROR @code{;}
Start error recovery (without printing an error message).
@xref{Error Recovery}.
@end deftypefn
@deftypefn {Function} {boolean} recovering ()
Return whether error recovery is being done. In this state, the parser
reads token until it reaches a known state, and then restarts normal
operation.
@xref{Error Recovery}.
@end deftypefn
@deftypefn {Function} {void} yyerror (@code{String} @var{msg})
@deftypefnx {Function} {void} yyerror (@code{Position} @var{loc}, @code{String} @var{msg})
@deftypefnx {Function} {void} yyerror (@code{Location} @var{loc}, @code{String} @var{msg})
Print an error message using the @code{yyerror} method of the scanner
instance in use. The @code{Location} and @code{Position} parameters are
available only if location tracking is active.
@end deftypefn
@node Java Push Parser Interface
@subsection Java Push Parser Interface
@c - define push_parse
@findex %define api.push-pull
Normally, Bison generates a pull parser for Java.
The following Bison declaration says that you want the parser to be a push
parser (@pxref{%define Summary}):
@example
%define api.push-pull push
@end example
Most of the discussion about the Java pull Parser Interface, (@pxref{Java
Parser Interface}) applies to the push parser interface as well.
When generating a push parser, the method @code{push_parse} is created with
the following signature (depending on if locations are enabled).
@deftypemethod {YYParser} {void} push_parse (@code{int} @var{token}, @code{Object} @var{yylval})
@deftypemethodx {YYParser} {void} push_parse (@code{int} @var{token}, @code{Object} @var{yylval}, @code{Location} @var{yyloc})
@deftypemethodx {YYParser} {void} push_parse (@code{int} @var{token}, @code{Object} @var{yylval}, @code{Position} @var{yypos})
@end deftypemethod
The primary difference with respect to a pull parser is that the parser
method @code{push_parse} is invoked repeatedly to parse each token. This
function is available if either the @samp{%define api.push-pull push} or
@samp{%define api.push-pull both} declaration is used (@pxref{%define
Summary}). The @code{Location} and @code{Position} parameters are available
only if location tracking is active.
The value returned by the @code{push_parse} method is one of the following:
0 (success), 1 (abort), 2 (memory exhaustion), or @code{YYPUSH_MORE}. This
new value, @code{YYPUSH_MORE}, may be returned if more input is required to
finish parsing the grammar.
If @code{api.push-pull} is defined as @code{both}, then the generated parser
class will also implement the @code{parse} method. This method's body is a
loop that repeatedly invokes the scanner and then passes the values obtained
from the scanner to the @code{push_parse} method.
There is one additional complication. Technically, the push parser does not
need to know about the scanner (i.e. an object implementing the
@code{YYParser.Lexer} interface), but it does need access to the
@code{yyerror} method. Currently, the @code{yyerror} method is defined in
the @code{YYParser.Lexer} interface. Hence, an implementation of that
interface is still required in order to provide an implementation of
@code{yyerror}. The current approach (and subject to change) is to require
the @code{YYParser} constructor to be given an object implementing the
@code{YYParser.Lexer} interface. This object need only implement the
@code{yyerror} method; the other methods can be stubbed since they will
never be invoked. The simplest way to do this is to add a trivial scanner
implementation to your grammar file using whatever implementation of
@code{yyerror} is desired. The following code sample shows a simple way to
accomplish this.
@example
%code lexer
@{
public Object getLVal () @{return null;@}
public int yylex () @{return 0;@}
public void yyerror (String s) @{System.err.println(s);@}
@}
@end example
@node Java Differences
@subsection Differences between C/C++ and Java Grammars
The different structure of the Java language forces several differences
between C/C++ grammars, and grammars designed for Java parsers. This
section summarizes these differences.
@itemize
@item
Java has no a preprocessor, so obviously the @code{YYERROR},
@code{YYACCEPT}, @code{YYABORT} symbols (@pxref{Table of Symbols}) cannot be
macros. Instead, they should be preceded by @code{return} when they appear
in an action. The actual definition of these symbols is opaque to the Bison
grammar, and it might change in the future. The only meaningful operation
that you can do, is to return them. @xref{Java Action Features}.
Note that of these three symbols, only @code{YYACCEPT} and
@code{YYABORT} will cause a return from the @code{yyparse}
method@footnote{Java parsers include the actions in a separate
method than @code{yyparse} in order to have an intuitive syntax that
corresponds to these C macros.}.
@item
Java lacks unions, so @code{%union} has no effect. Instead, semantic
values have a common base type: @code{Object} or as specified by
@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
an union. The type of @code{$$}, even with angle brackets, is the base
type since Java casts are not allow on the left-hand side of assignments.
Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
left-hand side of assignments. @xref{Java Semantic Values}, and
@ref{Java Action Features}.
@item
The prologue declarations have a different meaning than in C/C++ code.
@table @asis
@item @code{%code imports}
blocks are placed at the beginning of the Java source code. They may
include copyright notices. For a @code{package} declarations, use
@samp{%define api.package} instead.
@item unqualified @code{%code}
blocks are placed inside the parser class.
@item @code{%code lexer}
blocks, if specified, should include the implementation of the
scanner. If there is no such block, the scanner can be any class
that implements the appropriate interface (@pxref{Java Scanner
Interface}).
@end table
Other @code{%code} blocks are not supported in Java parsers.
In particular, @code{%@{ @dots{} %@}} blocks should not be used
and may give an error in future versions of Bison.
The epilogue has the same meaning as in C/C++ code and it can
be used to define other classes used by the parser @emph{outside}
the parser class.
@end itemize
@node Java Declarations Summary
@subsection Java Declarations Summary
This summary only include declarations specific to Java or have special
meaning when used in a Java parser.
@deffn {Directive} {%language "Java"}
Generate a Java class for the parser.
@end deffn
@deffn {Directive} %lex-param @{@var{type} @var{name}@}
A parameter for the lexer class defined by @code{%code lexer}
@emph{only}, added as parameters to the lexer constructor and the parser
constructor that @emph{creates} a lexer. Default is none.
@xref{Java Scanner Interface}.
@end deffn
@deffn {Directive} %parse-param @{@var{type} @var{name}@}
A parameter for the parser class added as parameters to constructor(s)
and as fields initialized by the constructor(s). Default is none.
@xref{Java Parser Interface}.
@end deffn
@deffn {Directive} %token <@var{type}> @var{token} @dots{}
Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
@xref{Java Semantic Values}.
@end deffn
@deffn {Directive} %nterm <@var{type}> @var{nonterminal} @dots{}
Declare the type of nonterminals. Note that the angle brackets enclose
a Java @emph{type}.
@xref{Java Semantic Values}.
@end deffn
@deffn {Directive} %code @{ @var{code} @dots{} @}
Code appended to the inside of the parser class.
@xref{Java Differences}.
@end deffn
@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
Code inserted just after the @code{package} declaration.
@xref{Java Differences}.
@end deffn
@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
Code inserted at the beginning of the parser constructor body.
@xref{Java Parser Interface}.
@end deffn
@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
Code added to the body of a inner lexer class within the parser class.
@xref{Java Scanner Interface}.
@end deffn
@deffn {Directive} %% @var{code} @dots{}
Code (after the second @code{%%}) appended to the end of the file,
@emph{outside} the parser class.
@xref{Java Differences}.
@end deffn
@deffn {Directive} %@{ @var{code} @dots{} %@}
Not supported. Use @code{%code imports} instead.
@xref{Java Differences}.
@end deffn
@deffn {Directive} {%define api.prefix} @{@var{prefix}@}
The prefix of the parser class name @code{@var{prefix}Parser} if
@samp{%define api.parser.class} is not used. Default is @code{YY}.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.abstract}
Whether the parser class is declared @code{abstract}. Default is false.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.annotations} @{@var{annotations}@}
The Java annotations for the parser class. Default is none.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.class} @{@var{name}@}
The name of the parser class. Default is @code{YYParser} or
@code{@var{api.prefix}Parser}. @xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.extends} @{@var{superclass}@}
The superclass of the parser class. Default is none.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.final}
Whether the parser class is declared @code{final}. Default is false.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.implements} @{@var{interfaces}@}
The implemented interfaces of the parser class, a comma-separated list.
Default is none.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.public}
Whether the parser class is declared @code{public}. Default is false.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define api.parser.strictfp}
Whether the parser class is declared @code{strictfp}. Default is false.
@xref{Java Bison Interface}.
@end deffn
@deffn {Directive} {%define init_throws} @{@var{exceptions}@}
The exceptions thrown by @code{%code init} from the parser class
constructor. Default is none.
@xref{Java Parser Interface}.
@end deffn
@deffn {Directive} {%define lex_throws} @{@var{exceptions}@}
The exceptions thrown by the @code{yylex} method of the lexer, a
comma-separated list. Default is @code{java.io.IOException}.
@xref{Java Scanner Interface}.
@end deffn
@deffn {Directive} {%define api.location.type} @{@var{class}@}
The name of the class used for locations (a range between two
positions). This class is generated as an inner class of the parser
class by @command{bison}. Default is @code{Location}.
Formerly named @code{location_type}.
@xref{Java Location Values}.
@end deffn
@deffn {Directive} {%define api.package} @{@var{package}@}
The package to put the parser class in. Default is none.
@xref{Java Bison Interface}.
Renamed from @code{package} in Bison 3.7.
@end deffn
@deffn {Directive} {%define api.position.type} @{@var{class}@}
The name of the class used for positions. This class must be supplied by
the user. Default is @code{Position}.
Formerly named @code{position_type}.
@xref{Java Location Values}.
@end deffn
@deffn {Directive} {%define api.value.type} @{@var{class}@}
The base type of semantic values. Default is @code{Object}.
@xref{Java Semantic Values}.
@end deffn
@deffn {Directive} {%define throws} @{@var{exceptions}@}
The exceptions thrown by user-supplied parser actions and
@code{%initial-action}, a comma-separated list. Default is none.
@xref{Java Parser Interface}.
@end deffn
@c ================================================= History
@node History
@chapter A Brief History of the Greater Ungulates
@cindex history
@cindex ungulates
@menu
* Yacc:: The original Yacc
* yacchack:: An obscure early implementation of reentrancy
* Byacc:: Berkeley Yacc
* Bison:: This program
* Other Ungulates:: Similar programs
@end menu
@node Yacc
@section The ancestral Yacc
Bison originated as a workalike of a program called Yacc --- Yet Another
Compiler Compiler.@footnote{Because of the acronym, the name is sometimes
given as ``YACC'', but Johnson used ``Yacc'' in the descriptive paper
included in the
@url{https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/v7vol2b.pdf, Version
7 Unix Manual}.} Yacc was written at Bell Labs as part of the very early
development of Unix; one of its first uses was to develop the original
Portable C Compiler, pcc. The same person, Steven C. Johnson, wrote Yacc and
the original pcc.
According to the author
@footnote{@url{https://lists.gnu.org/r/bison-patches/2019-02/msg00061.html}},
Yacc was first invented in 1971 and reached a form recognizably similar to
the C version in 1973. Johnson published @cite{A Portable Compiler: Theory
and Practice} @pcite{Johnson 1978}.
Yacc was not itself originally written in C but in its predecessor language,
B. This goes far to explain its odd interface, which exposes a large number
of global variables rather than bundling them into a C struct. All other
Yacc-like programs are descended from the C port of Yacc.
Yacc, through both its deployment in pcc and as a standalone tool for
generating other parsers, helped drive the early spread of Unix. Yacc
itself, however, passed out of use after around 1990 when workalikes
with less restrictive licenses and more features became available.
Original Yacc became generally available when Caldera released the sources
of old versions of Unix up to V7 and 32V in 2002. By that time it had been
long superseded in practical use by Bison even on Yacc's native Unix
variants.
@node yacchack
@section yacchack
@cindex yacchack
One of the deficiencies of original Yacc was its inability to produce
reentrant parsers. This was first remedied by a set of drop-in
modifications called ``yacchack'', published by Eric S. Raymond on USENET
around 1983. This code was quickly forgotten when zoo and Berkeley Yacc
became available a few years later.
@node Byacc
@section Berkeley Yacc
@cindex byacc
Berkeley Yacc was originated in 1985 by Robert Corbett @pcite{Corbett
1984}. It was originally named ``zoo'', but by October 1989 it became
known as Berkeley Yacc or byacc.
Berkeley Yacc had three advantages over the ancestral Yacc: it generated
faster parsers, it could generate reentrant parsers, and the source code was
released to the public domain rather than being under an AT&T proprietary
license. The better performance came from implementing techniques from
DeRemer and Penello's seminal paper on LALR parsing @pcite{DeRemer 1982}.
Use of byacc spread rapidly due to its public domain license. However, once
Bison became available, byacc itself passed out of general use.
@node Bison
@section Bison
@cindex zoo
Robert Corbett actually wrote two (closely related) LALR parsers in 1985,
both using the DeRemer/Penello techniques. One was ``zoo'', the other was
``Byson''. In 1987 Richard Stallman began working on Byson; the name changed
to Bison and the interface became Yacc-compatible.
The main visible difference between Yacc and Byson/Bison at the time of
Byson's first release is that Byson supported the @code{@@@var{n}} construct
(giving access to the starting and ending line number and character number
associated with any of the symbols in the current rule).
There was also the command @samp{%expect @var{n}} which said not to mention the
conflicts if there are @var{n} shift/reduce conflicts and no reduce/reduce
conflicts. In more recent versions of Bison, @code{%expect} and its
@code{%expect-rr} variant for reduce/reduce conflicts can be applied to
individual rules.
Later versions of Bison added many more new features.
Bison error reporting has been improved in various ways. Notably. ancestral
Yacc and Byson did not have carets in error messages.
Compared to Yacc Bison uses a faster but less space-efficient encoding for
the parse tables @pcite{Corbett 1984}, and more modern techniques for
generating the lookahead sets @pcite{DeRemer 1982}. This approach is the
standard one since then.
(It has also been plausibly alleged the differences in the algorithms stem
mainly from the horrible kludges that Johnson had to perpetrate to make
the original Yacc fit in a PDP-11.)
Named references, semantic predicates, @code{%locations},
@code{%glr-parser}, @code{%printer}, %destructor, dumps to DOT,
@code{%parse-param}, @code{%lex-param}, and dumps to XSLT, LAC, and IELR(1)
generation are new in Bison.
Bison also has many features to support C++ that were not present in the
ancestral Yacc or Byson.
Bison obsolesced all previous Yacc variants and workalikes generating C by
1995.
@node Other Ungulates
@section Other Ungulates
The Yacc concept has frequently been ported to other languages. Some of the
early ports are extinct along with the languages that hosted them; others
have been superseded by parser skeletons shipped with Bison.
However, independent implementations persist. One of the best-known
still in use is David Beazley's ``PLY'' (Python Lex-Yacc) for
Python. Another is goyacc, supporting the Go language. An ``ocamlyacc''
is shipped as part of the Ocaml compiler suite.
@c ================================================= Version Compatibility
@node Versioning
@chapter Bison Version Compatibility: Best Practices
@cindex version
@cindex compatibility
Bison provides a Yacc compatibility mode in which it strives to conform with
the POSIX standard. Grammar files which are written to the POSIX standard, and
do not take advantage of any of the special capabilities of Bison, should
work with many versions of Bison without modification.
All other features of Bison are particular to Bison, and are changing. Bison
is actively maintained and continuously evolving. It should come as no
surprise that an older version of Bison will not accept Bison source code which
uses newer features that do no not exist at all in the older Bison.
Regrettably, in spite of reasonable effort to maintain compatibility, the
reverse situation may also occur: it may happen that code developed using an
older version of Bison does not build with a newer version of Bison without
modifications.
Because Bison is a code generation tool, it is possible to retain its output
and distribute that to the users of the program. The users are then not
required to have Bison installed at all, only an implementation of the
programming language, such as C, which is required for processing the generated
output.
It is the output of Bison that is intended to be of the utmost portability.
So, that is to say, whereas the Bison grammar source code may have a dependency
on specific versions of Bison, the generated parser from any version of Bison
should work with with a large number of implementations of C, or whatever
language is applicable.
The recommended best practice for using Bison (in the context of software that
is distributed in source code form) is to ship the generated parser to the
downstream users. Only those downstream users who engage in active development
of the program who need to make changes to the grammar file need to have Bison
installed at all, and those users can install the specific version of Bison
which is required.
Following this recommended practice also makes it possible to use a more recent
Bison than what is available to users through operating system distributions,
thereby taking advantage of the latest techniques that Bison allows.
Some features of Bison have been, or are being adopted into other Yacc-like
programs. Therefore it might seem that is a good idea to write grammar code
which targets multiple implementations, similarly to the way C programs are
often written to target multiple compilers and language versions. Other than
the Yacc subset described by POSIX, the Bison language is not rigorously
standardized. When a Bison feature is adopted by another parser generator, it
may be initially compatible with that version of Bison on which it was based,
but the compatibility may degrade going forward. Developers who strive to make
their Bison code simultaneously compatible with other parser generators are
encouraged to nevertheless use specific versions of all generators, and still
follow the recommended practice of shipping generated output. For example,
a project can internally maintain compatibility with multiple generators,
and choose the output of a particular one to ship to the users. Or else,
the project could ship all of the outputs, arranging for a way for the user
to specify which one is used to build the program.
@c ================================================= FAQ
@node FAQ
@chapter Frequently Asked Questions
@cindex frequently asked questions
@cindex questions
Several questions about Bison come up occasionally. Here some of them
are addressed.
@menu
* Memory Exhausted:: Breaking the Stack Limits
* How Can I Reset the Parser:: @code{yyparse} Keeps some State
* Strings are Destroyed:: @code{yylval} Loses Track of Strings
* Implementing Gotos/Loops:: Control Flow in the Calculator
* Multiple start-symbols:: Factoring closely related grammars
* Secure? Conform?:: Is Bison POSIX safe?
* Enabling Relocatability:: Moving Bison/using it through network shares
* I can't build Bison:: Troubleshooting
* Where can I find help?:: Troubleshouting
* Bug Reports:: Troublereporting
* More Languages:: Parsers in C++, Java, and so on
* Beta Testing:: Experimenting development versions
* Mailing Lists:: Meeting other Bison users
@end menu
@node Memory Exhausted
@section Memory Exhausted
@quotation
My parser returns with error with a @samp{memory exhausted}
message. What can I do?
@end quotation
This question is already addressed elsewhere, see @ref{Recursion}.
@node How Can I Reset the Parser
@section How Can I Reset the Parser
The following phenomenon has several symptoms, resulting in the
following typical questions:
@quotation
I invoke @code{yyparse} several times, and on correct input it works
properly; but when a parse error is found, all the other calls fail
too. How can I reset the error flag of @code{yyparse}?
@end quotation
@noindent
or
@quotation
My parser includes support for an @samp{#include}-like feature, in which
case I run @code{yyparse} from @code{yyparse}. This fails although I did
specify @samp{%define api.pure full}.
@end quotation
These problems typically come not from Bison itself, but from
Lex-generated scanners. Because these scanners use large buffers for
speed, they might not notice a change of input file. As a
demonstration, consider the following source file,
@file{first-line.l}:
@example
@group
%@{
#include <stdio.h>
#include <stdlib.h>
%@}
@end group
%%
.*\n ECHO; return 1;
%%
@group
int
yyparse (char const *file)
@{
yyin = fopen (file, "r");
if (!yyin)
@{
perror ("fopen");
exit (EXIT_FAILURE);
@}
@end group
@group
/* One token only. */
yylex ();
if (fclose (yyin) != 0)
@{
perror ("fclose");
exit (EXIT_FAILURE);
@}
return 0;
@}
@end group
@group
int
main (void)
@{
yyparse ("input");
yyparse ("input");
return 0;
@}
@end group
@end example
@noindent
If the file @file{input} contains
@example
input:1: Hello,
input:2: World!
@end example
@noindent
then instead of getting the first line twice, you get:
@example
$ @kbd{flex -ofirst-line.c first-line.l}
$ @kbd{gcc -ofirst-line first-line.c -ll}
$ @kbd{./first-line}
input:1: Hello,
input:2: World!
@end example
Therefore, whenever you change @code{yyin}, you must tell the
Lex-generated scanner to discard its current buffer and switch to the
new one. This depends upon your implementation of Lex; see its
documentation for more. For Flex, it suffices to call
@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
Flex-generated scanner needs to read from several input streams to
handle features like include files, you might consider using Flex
functions like @samp{yy_switch_to_buffer} that manipulate multiple
input buffers.
If your Flex-generated scanner uses start conditions (@pxref{Start
conditions, , Start conditions, flex, The Flex Manual}), you might
also want to reset the scanner's state, i.e., go back to the initial
start condition, through a call to @samp{BEGIN (0)}.
@node Strings are Destroyed
@section Strings are Destroyed
@quotation
My parser seems to destroy old strings, or maybe it loses track of
them. Instead of reporting @samp{"foo", "bar"}, it reports
@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
@end quotation
This error is probably the single most frequent ``bug report'' sent to
Bison lists, but is only concerned with a misunderstanding of the role
of the scanner. Consider the following Lex code:
@example
@group
%@{
#include <stdio.h>
char *yylval = NULL;
%@}
@end group
@group
%%
.* yylval = yytext; return 1;
\n continue;
%%
@end group
@group
int
main ()
@{
/* Similar to using $1, $2 in a Bison action. */
char *fst = (yylex (), yylval);
char *snd = (yylex (), yylval);
printf ("\"%s\", \"%s\"\n", fst, snd);
return 0;
@}
@end group
@end example
If you compile and run this code, you get:
@example
$ @kbd{flex -osplit-lines.c split-lines.l}
$ @kbd{gcc -osplit-lines split-lines.c -ll}
$ @kbd{printf 'one\ntwo\n' | ./split-lines}
"one
two", "two"
@end example
@noindent
this is because @code{yytext} is a buffer provided for @emph{reading}
in the action, but if you want to keep it, you have to duplicate it
(e.g., using @code{strdup}). Note that the output may depend on how
your implementation of Lex handles @code{yytext}. For instance, when
given the Lex compatibility option @option{-l} (which triggers the
option @samp{%array}) Flex generates a different behavior:
@example
$ @kbd{flex -l -osplit-lines.c split-lines.l}
$ @kbd{gcc -osplit-lines split-lines.c -ll}
$ @kbd{printf 'one\ntwo\n' | ./split-lines}
"two", "two"
@end example
@node Implementing Gotos/Loops
@section Implementing Gotos/Loops
@quotation
My simple calculator supports variables, assignments, and functions,
but how can I implement gotos, or loops?
@end quotation
Although very pedagogical, the examples included in the document blur
the distinction to make between the parser---whose job is to recover
the structure of a text and to transmit it to subsequent modules of
the program---and the processing (such as the execution) of this
structure. This works well with so called straight line programs,
i.e., precisely those that have a straightforward execution model:
execute simple instructions one after the others.
@cindex abstract syntax tree
@cindex AST
If you want a richer model, you will probably need to use the parser
to construct a tree that does represent the structure it has
recovered; this tree is usually called the @dfn{abstract syntax tree},
or @dfn{AST} for short. Then, walking through this tree,
traversing it in various ways, will enable treatments such as its
execution or its translation, which will result in an interpreter or a
compiler.
This topic is way beyond the scope of this manual, and the reader is
invited to consult the dedicated literature.
@node Multiple start-symbols
@section Multiple start-symbols
@quotation
I have several closely related grammars, and I would like to share their
implementations. In fact, I could use a single grammar but with multiple
entry points.
@end quotation
Bison does not support multiple start-symbols, but there is a very simple
means to simulate them. If @code{foo} and @code{bar} are the two pseudo
start-symbols, then introduce two new tokens, say @code{START_FOO} and
@code{START_BAR}, and use them as switches from the real start-symbol:
@example
%token START_FOO START_BAR;
%start start;
start:
START_FOO foo
| START_BAR bar;
@end example
These tokens prevent the introduction of new conflicts. As far as the
parser goes, that is all that is needed.
Now the difficult part is ensuring that the scanner will send these tokens
first. If your scanner is hand-written, that should be straightforward. If
your scanner is generated by Lex, them there is simple means to do it:
recall that anything between @samp{%@{ ... %@}} after the first @code{%%} is
copied verbatim in the top of the generated @code{yylex} function. Make
sure a variable @code{start_token} is available in the scanner (e.g., a
global variable or using @code{%lex-param} etc.), and use the following:
@example
/* @r{Prologue.} */
%%
%@{
if (start_token)
@{
int t = start_token;
start_token = 0;
return t;
@}
%@}
/* @r{The rules.} */
@end example
@node Secure? Conform?
@section Secure? Conform?
@quotation
Is Bison secure? Does it conform to POSIX?
@end quotation
If you're looking for a guarantee or certification, we don't provide it.
However, Bison is intended to be a reliable program that conforms to the
POSIX specification for Yacc. If you run into problems, please send us a
bug report.
@include relocatable.texi
@node I can't build Bison
@section I can't build Bison
@quotation
I can't build Bison because @command{make} complains that
@code{msgfmt} is not found.
What should I do?
@end quotation
Like most GNU packages with internationalization support, that feature
is turned on by default. If you have problems building in the @file{po}
subdirectory, it indicates that your system's internationalization
support is lacking. You can re-configure Bison with
@option{--disable-nls} to turn off this support, or you can install GNU
gettext from @url{https://ftp.gnu.org/gnu/gettext/} and re-configure
Bison. See the file @file{ABOUT-NLS} for more information.
@quotation
I can't build Bison because my C compiler is too old.
@end quotation
Except for GLR parsers (which require C99), the C code that Bison generates
requires only C89 or later. However, Bison itself requires common C99
features such as declarations after statements. Bison's @code{configure}
script attempts to enable C99 (or later) support on compilers that default
to pre-C99. If your compiler lacks these C99 features entirely, GCC may
well be a better choice; or you can try upgrading to your compiler's latest
version.
@node Where can I find help?
@section Where can I find help?
@quotation
I'm having trouble using Bison. Where can I find help?
@end quotation
First, read this fine manual. Beyond that, you can send mail to
@email{help-bison@@gnu.org}. This mailing list is intended to be
populated with people who are willing to answer questions about using
and installing Bison. Please keep in mind that (most of) the people on
the list have aspects of their lives which are not related to Bison (!),
so you may not receive an answer to your question right away. This can
be frustrating, but please try not to honk them off; remember that any
help they provide is purely voluntary and out of the kindness of their
hearts.
@node Bug Reports
@section Bug Reports
@quotation
I found a bug. What should I include in the bug report?
@end quotation
Before sending a bug report, make sure you are using the latest
version. Check @url{https://ftp.gnu.org/pub/gnu/bison/} or one of its
mirrors. Be sure to include the version number in your bug report. If
the bug is present in the latest version but not in a previous version,
try to determine the most recent version which did not contain the bug.
If the bug is parser-related, you should include the smallest grammar
you can which demonstrates the bug. The grammar file should also be
complete (i.e., I should be able to run it through Bison without having
to edit or add anything). The smaller and simpler the grammar, the
easier it will be to fix the bug.
Include information about your compilation environment, including your
operating system's name and version and your compiler's name and
version. If you have trouble compiling, you should also include a
transcript of the build session, starting with the invocation of
@code{configure}. Depending on the nature of the bug, you may be asked to
send additional files as well (such as @file{config.h} or @file{config.cache}).
Patches are most welcome, but not required. That is, do not hesitate to
send a bug report just because you cannot provide a fix.
Send bug reports to @email{bug-bison@@gnu.org}.
@node More Languages
@section More Languages
@quotation
Will Bison ever have C++ and Java support? How about @var{insert your
favorite language here}?
@end quotation
C++, D and Java are supported. We'd love to add other languages;
contributions are welcome.
@node Beta Testing
@section Beta Testing
@quotation
What is involved in being a beta tester?
@end quotation
It's not terribly involved. Basically, you would download a test
release, compile it, and use it to build and run a parser or two. After
that, you would submit either a bug report or a message saying that
everything is okay. It is important to report successes as well as
failures because test releases eventually become mainstream releases,
but only if they are adequately tested. If no one tests, development is
essentially halted.
Beta testers are particularly needed for operating systems to which the
developers do not have easy access. They currently have easy access to
recent GNU/Linux and Solaris versions. Reports about other operating
systems are especially welcome.
@node Mailing Lists
@section Mailing Lists
@quotation
How do I join the help-bison and bug-bison mailing lists?
@end quotation
See @url{https://lists.gnu.org/}.
@c ================================================= Table of Symbols
@node Table of Symbols
@appendix Bison Symbols
@cindex Bison symbols, table of
@cindex symbols in Bison, table of
@deffn {Variable} @@$
In an action, the location of the left-hand side of the rule.
@xref{Tracking Locations}.
@end deffn
@deffn {Variable} @@@var{n}
@deffnx {Symbol} @@@var{n}
In an action, the location of the @var{n}-th symbol of the right-hand side
of the rule. @xref{Tracking Locations}.
In a grammar, the Bison-generated nonterminal symbol for a midrule action
with a semantic value. @xref{Midrule Action Translation}.
@end deffn
@deffn {Variable} @@@var{name}
@deffnx {Variable} @@[@var{name}]
In an action, the location of a symbol addressed by @var{name}.
@xref{Tracking Locations}.
@end deffn
@deffn {Symbol} $@@@var{n}
In a grammar, the Bison-generated nonterminal symbol for a midrule action
with no semantics value. @xref{Midrule Action Translation}.
@end deffn
@deffn {Variable} $$
In an action, the semantic value of the left-hand side of the rule.
@xref{Actions}.
@end deffn
@deffn {Variable} $@var{n}
In an action, the semantic value of the @var{n}-th symbol of the
right-hand side of the rule. @xref{Actions}.
@end deffn
@deffn {Variable} $@var{name}
@deffnx {Variable} $[@var{name}]
In an action, the semantic value of a symbol addressed by @var{name}.
@xref{Actions}.
@end deffn
@deffn {Delimiter} %%
Delimiter used to separate the grammar rule section from the
Bison declarations section or the epilogue.
@xref{Grammar Layout}.
@end deffn
@c Don't insert spaces, or check the DVI output.
@deffn {Delimiter} %@{@var{code}%@}
All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
to the parser implementation file. Such code forms the prologue of
the grammar file. @xref{Grammar Outline}.
@end deffn
@deffn {Directive} %?@{@var{expression}@}
Predicate actions. This is a type of action clause that may appear in
rules. The expression is evaluated, and if false, causes a syntax error. In
GLR parsers during nondeterministic operation,
this silently causes an alternative parse to die. During deterministic
operation, it is the same as the effect of YYERROR.
@xref{Semantic Predicates}.
@end deffn
@deffn {Construct} /* @dots{} */
@deffnx {Construct} // @dots{}
Comments, as in C/C++.
@end deffn
@deffn {Delimiter} :
Separates a rule's result from its components. @xref{Rules}.
@end deffn
@deffn {Delimiter} ;
Terminates a rule. @xref{Rules}.
@end deffn
@deffn {Delimiter} |
Separates alternate rules for the same result nonterminal.
@xref{Rules}.
@end deffn
@deffn {Directive} <*>
Used to define a default tagged @code{%destructor} or default tagged
@code{%printer}.
@xref{Destructor Decl}.
@end deffn
@deffn {Directive} <>
Used to define a default tagless @code{%destructor} or default tagless
@code{%printer}.
@xref{Destructor Decl}.
@end deffn
@deffn {Symbol} $accept
The predefined nonterminal whose only rule is @samp{$accept: @var{start}
$end}, where @var{start} is the start symbol. @xref{Start Decl}. It cannot
be used in the grammar.
@end deffn
@deffn {Directive} %code @{@var{code}@}
@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
Insert @var{code} verbatim into the output parser source at the
default location or at the location specified by @var{qualifier}.
@xref{%code Summary}.
@end deffn
@deffn {Directive} %debug
Equip the parser for debugging. @xref{Decl Summary}.
@end deffn
@ifset defaultprec
@deffn {Directive} %default-prec
Assign a precedence to rules that lack an explicit @samp{%prec}
modifier. @xref{Contextual Precedence}.
@end deffn
@end ifset
@deffn {Directive} %define @var{variable}
@deffnx {Directive} %define @var{variable} @var{value}
@deffnx {Directive} %define @var{variable} @{@var{value}@}
@deffnx {Directive} %define @var{variable} "@var{value}"
Define a variable to adjust Bison's behavior. @xref{%define Summary}.
@end deffn
@deffn {Directive} %defines
@deffnx {Directive} %defines @var{defines-file}
Historical name for @code{%header}.
@xref{Decl Summary}.
@end deffn
@deffn {Directive} %destructor
Specify how the parser should reclaim the memory associated to
discarded symbols. @xref{Destructor Decl}.
@end deffn
@deffn {Directive} %dprec
Bison declaration to assign a precedence to a rule that is used at parse
time to resolve reduce/reduce conflicts. @xref{GLR Parsers}.
@end deffn
@deffn {Directive} %empty
Bison declaration to declare make explicit that a rule has an empty
right-hand side. @xref{Empty Rules}.
@end deffn
@deffn {Symbol} $end
The predefined token marking the end of the token stream. It cannot be
used in the grammar.
@end deffn
@deffn {Symbol} error
A token name reserved for error recovery. This token may be used in
grammar rules so as to allow the Bison parser to recognize an error in
the grammar without halting the process. In effect, a sentence
containing an error may be recognized as valid. On a syntax error, the
token @code{error} becomes the current lookahead token. Actions
corresponding to @code{error} are then executed, and the lookahead
token is reset to the token that originally caused the violation.
@xref{Error Recovery}.
@end deffn
@deffn {Directive} %error-verbose
An obsolete directive standing for @samp{%define parse.error verbose}.
@end deffn
@deffn {Directive} %file-prefix "@var{prefix}"
Bison declaration to set the prefix of the output files. @xref{Decl
Summary}.
@end deffn
@deffn {Directive} %glr-parser
Bison declaration to produce a GLR parser. @xref{GLR
Parsers}.
@end deffn
@deffn {Directive} %header
Bison declaration to create a parser header file, which is usually
meant for the scanner. @xref{Decl Summary}.
@end deffn
@deffn {Directive} %header @var{header-file}
Same as above, but save in the file @var{header-file}.
@xref{Decl Summary}.
@end deffn
@deffn {Directive} %initial-action
Run user code before parsing. @xref{Initial Action Decl}.
@end deffn
@deffn {Directive} %language
Specify the programming language for the generated parser.
@xref{Decl Summary}.
@end deffn
@deffn {Directive} %left
Bison declaration to assign precedence and left associativity to token(s).
@xref{Precedence Decl}.
@end deffn
@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
Bison declaration to specifying additional arguments that
@code{yylex} should accept. @xref{Pure Calling}.
@end deffn
@deffn {Directive} %merge
Bison declaration to assign a merging function to a rule. If there is a
reduce/reduce conflict with a rule having the same merging function, the
function is applied to the two semantic values to get a single result.
@xref{GLR Parsers}.
@end deffn
@deffn {Directive} %name-prefix "@var{prefix}"
Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
Parsers}).
Rename the external symbols (variables and functions) used in the parser so
that they start with @var{prefix} instead of @samp{yy}. Contrary to
@code{api.prefix}, do no rename types and macros.
The precise list of symbols renamed in C parsers is @code{yyparse},
@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
example, if you use @samp{%name-prefix "c_"}, the names become
@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
@code{%define api.namespace} documentation in this section.
@end deffn
@ifset defaultprec
@deffn {Directive} %no-default-prec
Do not assign a precedence to rules that lack an explicit @samp{%prec}
modifier. @xref{Contextual Precedence}.
@end deffn
@end ifset
@deffn {Directive} %no-lines
Bison declaration to avoid generating @code{#line} directives in the
parser implementation file. @xref{Decl Summary}.
@end deffn
@deffn {Directive} %nonassoc
Bison declaration to assign precedence and nonassociativity to token(s).
@xref{Precedence Decl}.
@end deffn
@deffn {Directive} %nterm
Bison declaration to declare nonterminals. @xref{Type Decl}.
@end deffn
@deffn {Directive} %output "@var{file}"
Bison declaration to set the name of the parser implementation file.
@xref{Decl Summary}.
@end deffn
@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
Bison declaration to specify additional arguments that both
@code{yylex} and @code{yyparse} should accept. @xref{Parser Function}.
@end deffn
@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
Bison declaration to specify additional arguments that @code{yyparse}
should accept. @xref{Parser Function}.
@end deffn
@deffn {Directive} %prec
Bison declaration to assign a precedence to a specific rule.
@xref{Contextual Precedence}.
@end deffn
@deffn {Directive} %precedence
Bison declaration to assign precedence to token(s), but no associativity
@xref{Precedence Decl}.
@end deffn
@deffn {Directive} %pure-parser
Deprecated version of @samp{%define api.pure} (@pxref{%define
Summary}), for which Bison is more careful to warn about
unreasonable usage.
@end deffn
@deffn {Directive} %require "@var{version}"
Require version @var{version} or higher of Bison. @xref{Require Decl}.
@end deffn
@deffn {Directive} %right
Bison declaration to assign precedence and right associativity to token(s).
@xref{Precedence Decl}.
@end deffn
@deffn {Directive} %skeleton
Specify the skeleton to use; usually for development.
@xref{Decl Summary}.
@end deffn
@deffn {Directive} %start
Bison declaration to specify the start symbol. @xref{Start Decl}.
@end deffn
@deffn {Directive} %token
Bison declaration to declare token(s) without specifying precedence.
@xref{Token Decl}.
@end deffn
@deffn {Directive} %token-table
Bison declaration to include a token name table in the parser implementation
file. @xref{Decl Summary}.
@end deffn
@deffn {Directive} %type
Bison declaration to declare symbol value types. @xref{Type Decl}.
@end deffn
@deffn {Symbol} $undefined
The predefined token onto which all undefined values returned by
@code{yylex} are mapped. It cannot be used in the grammar, rather, use
@code{error}.
@end deffn
@deffn {Directive} %union
Bison declaration to specify several possible data types for semantic
values. @xref{Union Decl}.
@end deffn
@deffn {Macro} YYABORT
Macro to pretend that an unrecoverable syntax error has occurred, by making
@code{yyparse} return 1 immediately. The error reporting function
@code{yyerror} is not called. @xref{Parser Function}.
For Java parsers, this functionality is invoked using @code{return YYABORT;}
instead.
@end deffn
@deffn {Macro} YYACCEPT
Macro to pretend that a complete utterance of the language has been
read, by making @code{yyparse} return 0 immediately.
@xref{Parser Function}.
For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
instead.
@end deffn
@deffn {Macro} YYBACKUP
Macro to discard a value from the parser stack and fake a lookahead
token. @xref{Action Features}.
@end deffn
@deffn {Macro} YYBISON
The version of Bison as an integer, for instance 30704 for version 3.7.4.
Defined in @file{yacc.c} only. Before version 3.7.4, @code{YYBISON} was
defined to 1.
@end deffn
@deffn {Variable} yychar
External integer variable that contains the integer value of the
lookahead token. (In a pure parser, it is a local variable within
@code{yyparse}.) Error-recovery rule actions may examine this variable.
@xref{Action Features}.
@end deffn
@deffn {Variable} yyclearin
Macro used in error-recovery rule actions. It clears the previous
lookahead token. @xref{Error Recovery}.
@end deffn
@deffn {Macro} YYDEBUG
Macro to define to equip the parser with tracing code. @xref{Tracing}.
@end deffn
@deffn {Variable} yydebug
External integer variable set to zero by default. If @code{yydebug}
is given a nonzero value, the parser will output information on input
symbols and parser action. @xref{Tracing}.
@end deffn
@deffn {Value} YYEMPTY
The pseudo token kind when there is no lookahead token.
@end deffn
@deffn {Value} YYEOF
The token kind denoting is the end of the input stream.
@end deffn
@deffn {Macro} yyerrok
Macro to cause parser to recover immediately to its normal mode
after a syntax error. @xref{Error Recovery}.
@end deffn
@deffn {Macro} YYERROR
Cause an immediate syntax error. This statement initiates error
recovery just as if the parser itself had detected an error; however, it
does not call @code{yyerror}, and does not print any message. If you
want to print an error message, call @code{yyerror} explicitly before
the @samp{YYERROR;} statement. @xref{Error Recovery}.
For Java parsers, this functionality is invoked using @code{return YYERROR;}
instead.
@end deffn
@deffn {Function} yyerror
User-supplied function to be called by @code{yyparse} on error.
@xref{Error Reporting Function}.
@end deffn
@deffn {Macro} YYFPRINTF
Macro used to output run-time traces in C.
@xref{Enabling Traces}.
@end deffn
@deffn {Macro} YYINITDEPTH
Macro for specifying the initial size of the parser stack.
@xref{Memory Management}.
@end deffn
@deffn {Function} yylex
User-supplied lexical analyzer function, called with no arguments to get
the next token. @xref{Lexical}.
@end deffn
@deffn {Variable} yylloc
External variable in which @code{yylex} should place the line and column
numbers associated with a token. (In a pure parser, it is a local
variable within @code{yyparse}, and its address is passed to
@code{yylex}.)
You can ignore this variable if you don't use the @samp{@@} feature in the
grammar actions.
@xref{Token Locations}.
In semantic actions, it stores the location of the lookahead token.
@xref{Actions and Locations}.
@end deffn
@deffn {Type} YYLTYPE
Data type of @code{yylloc}. By default in C, a structure with four members
(start/end line/column). @xref{Location Type}.
@end deffn
@deffn {Variable} yylval
External variable in which @code{yylex} should place the semantic
value associated with a token. (In a pure parser, it is a local
variable within @code{yyparse}, and its address is passed to
@code{yylex}.)
@xref{Token Values}.
In semantic actions, it stores the semantic value of the lookahead token.
@xref{Actions}.
@end deffn
@deffn {Macro} YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. @xref{Memory
Management}.
@end deffn
@deffn {Variable} yynerrs
Global variable which Bison increments each time it reports a syntax error.
(In a pure parser, it is a local variable within @code{yyparse}. In a
pure push parser, it is a member of @code{yypstate}.)
@xref{Error Reporting Function}.
@end deffn
@deffn {Macro} YYNOMEM
Macro to pretend that memory is exhausted, by making @code{yyparse} return 2
immediately. The error reporting function @code{yyerror} is called.
@xref{Parser Function}.
@end deffn
@deffn {Function} yyparse
The parser function produced by Bison; call this function to start
parsing. @xref{Parser Function}.
@end deffn
@deffn {Function} yypstate_delete
The function to delete a parser instance, produced by Bison in push mode;
call this function to delete the memory associated with a parser.
@xref{yypstate_delete,,@code{yypstate_delete}}. Does nothing when called
with a null pointer.
@end deffn
@deffn {Function} yypstate_new
The function to create a parser instance, produced by Bison in push mode;
call this function to create a new parser.
@xref{yypstate_new,,@code{yypstate_new}}.
@end deffn
@deffn {Function} yypull_parse
The parser function produced by Bison in push mode; call this function to
parse the rest of the input stream.
@xref{yypull_parse,,@code{yypull_parse}}.
@end deffn
@deffn {Function} yypush_parse
The parser function produced by Bison in push mode; call this function to
parse a single token.
@xref{yypush_parse,,@code{yypush_parse}}.
@end deffn
@deffn {Macro} YYRECOVERING
The expression @code{YYRECOVERING ()} yields 1 when the parser
is recovering from a syntax error, and 0 otherwise.
@xref{Action Features}.
@end deffn
@deffn {Macro} YYSTACK_USE_ALLOCA
Macro used to control the use of @code{alloca} when the
deterministic parser in C needs to extend its stacks. If defined to 0,
the parser will use @code{malloc} to extend its stacks and memory exhaustion
occurs if @code{malloc} fails (@pxref{Memory Management}). If defined to
1, the parser will use @code{alloca}. Values other than 0 and 1 are
reserved for future Bison extensions. If not defined,
@code{YYSTACK_USE_ALLOCA} defaults to 0.
In the all-too-common case where your code may run on a host with a
limited stack and with unreliable stack-overflow checking, you should
set @code{YYMAXDEPTH} to a value that cannot possibly result in
unchecked stack overflow on any of your target hosts when
@code{alloca} is called. You can inspect the code that Bison
generates in order to determine the proper numeric values. This will
require some expertise in low-level implementation details.
@end deffn
@deffn {Type} YYSTYPE
In C, data type of semantic values; @code{int} by default.
Deprecated in favor of the @code{%define} variable @code{api.value.type}.
@xref{Value Type}.
@end deffn
@deffn {Type} yysymbol_kind_t
An enum of all the symbols, tokens and nonterminals, of the grammar.
@xref{Syntax Error Reporting Function}. The symbol kinds are used
internally by the parser, and should not be confused with the token kinds:
the symbol kind of a terminal symbol is not equal to its token kind! (Unless
@samp{%define api.token.raw} was used.)
@end deffn
@deffn {Type} yytoken_kind_t
An enum of all the @dfn{token kinds} declared with @code{%token}
(@pxref{Token Decl}). These are the return values for @code{yylex}. They
should not be confused with the @emph{symbol kinds}, used internally by the
parser.
@end deffn
@deffn {Value} YYUNDEF
The token kind denoting an unknown token.
@end deffn
@node Glossary
@appendix Glossary
@cindex glossary
@table @asis
@item Accepting state
A state whose only action is the accept action.
The accepting state is thus a consistent state.
@xref{Understanding}.
@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
Formal method of specifying context-free grammars originally proposed
by John Backus, and slightly improved by Peter Naur in his 1960-01-02
committee document contributing to what became the Algol 60 report.
@xref{Language and Grammar}.
@item Consistent state
A state containing only one possible action. @xref{Default Reductions}.
@item Context-free grammars
Grammars specified as rules that can be applied regardless of context.
Thus, if there is a rule which says that an integer can be used as an
expression, integers are allowed @emph{anywhere} an expression is
permitted. @xref{Language and Grammar}.
@item Counterexample
A sequence of tokens and/or nonterminals, with one dot, that demonstrates a
conflict. The dot marks the place where the conflict occurs.
@cindex unifying counterexample
@cindex counterexample, unifying
@cindex nonunifying counterexample
@cindex counterexample, nonunifying
A @emph{unifying} counterexample is a single string that has two different
parses; its existence proves that the grammar is ambiguous. When a unifying
counterexample cannot be found in reasonable time, a @emph{nonunifying}
counterexample is built: @emph{two} different string sharing the prefix up
to the dot.
@xref{Counterexamples}
@item Default reduction
The reduction that a parser should perform if the current parser state
contains no other action for the lookahead token. In permitted parser
states, Bison declares the reduction with the largest lookahead set to be
the default reduction and removes that lookahead set. @xref{Default
Reductions}.
@item Defaulted state
A consistent state with a default reduction. @xref{Default Reductions}.
@item Dynamic allocation
Allocation of memory that occurs during execution, rather than at
compile time or on entry to a function.
@item Empty string
Analogous to the empty set in set theory, the empty string is a
character string of length zero.
@item Finite-state stack machine
A ``machine'' that has discrete states in which it is said to exist at
each instant in time. As input to the machine is processed, the
machine moves from state to state as specified by the logic of the
machine. In the case of the parser, the input is the language being
parsed, and the states correspond to various stages in the grammar
rules. @xref{Algorithm}.
@item Generalized LR (GLR)
A parsing algorithm that can handle all context-free grammars, including those
that are not LR(1). It resolves situations that Bison's
deterministic parsing
algorithm cannot by effectively splitting off multiple parsers, trying all
possible parsers, and discarding those that fail in the light of additional
right context. @xref{Generalized LR Parsing}.
@item Grouping
A language construct that is (in general) grammatically divisible;
for example, `expression' or `declaration' in C@.
@xref{Language and Grammar}.
@item IELR(1) (Inadequacy Elimination LR(1))
A minimal LR(1) parser table construction algorithm. That is, given any
context-free grammar, IELR(1) generates parser tables with the full
language-recognition power of canonical LR(1) but with nearly the same
number of parser states as LALR(1). This reduction in parser states is
often an order of magnitude. More importantly, because canonical LR(1)'s
extra parser states may contain duplicate conflicts in the case of non-LR(1)
grammars, the number of conflicts for IELR(1) is often an order of magnitude
less as well. This can significantly reduce the complexity of developing a
grammar. @xref{LR Table Construction}.
@item Infix operator
An arithmetic operator that is placed between the operands on which it
performs some operation.
@item Input stream
A continuous flow of data between devices or programs.
@item Kind
``Token'' and ``symbol'' are each overloaded to mean either a grammar symbol
(kind) or all parse info (kind, value, location) associated with occurrences
of that grammar symbol from the input. To disambiguate,
@itemize
@item
we use ``token kind'' and ``symbol kind'' to mean both grammar symbols and
the values that represent them in a base programming language (C, C++,
etc.). The names of the types of these values are typically
@code{token_kind_t}, or @code{token_kind_type}, or @code{TokenKind},
depending on the programming language.
@item
we use ``token'' and ``symbol'' without the word ``kind'' to mean parsed
occurrences, and we append the word ``type'' to refer to the types that
represent them in a base programming language.
@end itemize
In summary: When you see ``kind'', interpret ``symbol'' or ``token'' to mean
a @emph{grammar symbol}. When you don't see ``kind'' (including when you
see ``type''), interpret ``symbol'' or ``token'' to mean a @emph{parsed
symbol}.
@item LAC (Lookahead Correction)
A parsing mechanism that fixes the problem of delayed syntax error
detection, which is caused by LR state merging, default reductions, and the
use of @code{%nonassoc}. Delayed syntax error detection results in
unexpected semantic actions, initiation of error recovery in the wrong
syntactic context, and an incorrect list of expected tokens in a verbose
syntax error message. @xref{LAC}.
@item Language construct
One of the typical usage schemas of the language. For example, one of
the constructs of the C language is the @code{if} statement.
@xref{Language and Grammar}.
@item Left associativity
Operators having left associativity are analyzed from left to right:
@samp{a+b+c} first computes @samp{a+b} and then combines with
@samp{c}. @xref{Precedence}.
@item Left recursion
A rule whose result symbol is also its first component symbol; for
example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion}.
@item Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from
left to right. @xref{Algorithm}.
@item Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one.
@xref{Lexical}.
@item Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way
tokens are parsed. @xref{Lexical Tie-ins}.
@item Literal string token
A token which consists of two or more fixed characters. @xref{Symbols}.
@item Lookahead token
A token already read but not yet shifted. @xref{Lookahead}.
@item LALR(1)
The class of context-free grammars that Bison (like most other parser
generators) can handle by default; a subset of LR(1).
@xref{Mysterious Conflicts}.
@item LR(1)
The class of context-free grammars in which at most one token of
lookahead is needed to disambiguate the parsing of any piece of input.
@item Nonterminal symbol
A grammar symbol standing for a grammatical construct that can
be expressed through rules in terms of smaller constructs; in other
words, a construct that is not a token. @xref{Symbols}.
@item Parser
A function that recognizes valid sentences of a language by analyzing
the syntax structure of a set of tokens passed to it from a lexical
analyzer.
@item Postfix operator
An arithmetic operator that is placed after the operands upon which it
performs some operation.
@item Reduction
Replacing a string of nonterminals and/or terminals with a single
nonterminal, according to a grammar rule. @xref{Algorithm}.
@item Reentrant
A reentrant subprogram is a subprogram which can be in invoked any
number of times in parallel, without interference between the various
invocations. @xref{Pure Decl}.
@item Reverse Polish Notation
A language in which all operators are postfix operators.
@item Right recursion
A rule whose result symbol is also its last component symbol; for
example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion}.
@item Semantics
In computer languages, the semantics are specified by the actions
taken for each instance of the language, i.e., the meaning of
each statement. @xref{Semantics}.
@item Shift
A parser is said to shift when it makes the choice of analyzing
further input from the stream rather than reducing immediately some
already-recognized rule. @xref{Algorithm}.
@item Single-character literal
A single character that is recognized and interpreted as is.
@xref{Grammar in Bison}.
@item Start symbol
The nonterminal symbol that stands for a complete valid utterance in
the language being parsed. The start symbol is usually listed as the
first nonterminal symbol in a language specification.
@xref{Start Decl}.
@item Symbol kind
A (finite) enumeration of the grammar symbols, as processed by the parser.
@xref{Symbols}.
@item Symbol table
A data structure where symbol names and associated data are stored during
parsing to allow for recognition and use of existing information in repeated
uses of a symbol. @xref{Multi-function Calc}.
@item Syntax error
An error encountered during parsing of an input stream due to invalid
syntax. @xref{Error Recovery}.
@item Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is
grammatically indivisible. The piece of text it represents is a token.
@xref{Language and Grammar}.
@item Token
A basic, grammatically indivisible unit of a language. The symbol that
describes a token in the grammar is a terminal symbol. The input of the
Bison parser is a stream of tokens which comes from the lexical analyzer.
@xref{Symbols}.
@item Token kind
A (finite) enumeration of the grammar terminals, as discriminated by the
scanner. @xref{Symbols}.
@item Unreachable state
A parser state to which there does not exist a sequence of transitions from
the parser's start state. A state can become unreachable during conflict
resolution. @xref{Unreachable States}.
@end table
@node GNU Free Documentation License
@appendix GNU Free Documentation License
@include fdl.texi
@node Bibliography
@unnumbered Bibliography
@c Please follow the following canvas to add more references.
@c And keep sorted alphabetically.
@table @asis
@anchor{Corbett 1984}
@item [Corbett 1984]
@c author
Robert Paul Corbett,
@c title
Static Semantics in Compiler Error Recovery
@c in
Ph.D. Dissertation, Report No. UCB/CSD 85/251,
@c where
Department of Electrical Engineering and Computer Science, Compute Science
Division, University of California, Berkeley, California
@c when
(June 1985).
@c url
@uref{https://digicoll.lib.berkeley.edu/record/135875}
@anchor{Denny 2008}
@item [Denny 2008]
Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
2008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
pp.@: 240--245. @uref{https://dx.doi.org/10.1145/1363686.1363747}
@anchor{Denny 2010 May}
@item [Denny 2010 May]
Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
University, Clemson, SC, USA (May 2010).
@uref{https://tigerprints.clemson.edu/all_dissertations/519/}
@anchor{Denny 2010 November}
@item [Denny 2010 November]
Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
2010), pp.@: 943--979. @uref{https://dx.doi.org/10.1016/j.scico.2009.08.001}
@anchor{DeRemer 1982}
@item [DeRemer 1982]
Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
615--649. @uref{https://dx.doi.org/10.1145/69622.357187}
@anchor{Isradisaikul 2015}
@item [Isradisaikul 2015]
Chinawat Isradisaikul, Andrew Myers,
Finding Counterexamples from Parsing Conflicts,
in @cite{Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation} (PLDI '15),
ACM, pp.@: 555--564.
@uref{https://www.cs.cornell.edu/andru/papers/cupex/cupex.pdf}
@anchor{Johnson 1978}
@item [Johnson 1978]
Steven C. Johnson,
A portable compiler: theory and practice,
in @cite{Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages} (POPL '78),
pp.@: 97--104.
@uref{https://dx.doi.org/10.1145/512760.512771}.
@anchor{Knuth 1965}
@item [Knuth 1965]
Donald E. Knuth, On the Translation of Languages from Left to Right, in
@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
607--639. @uref{https://dx.doi.org/10.1016/S0019-9958(65)90426-2}
@anchor{Scott 2000}
@item [Scott 2000]
Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
London, Department of Computer Science, TR-00-12 (December 2000).
@uref{https://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
@end table
@node Index of Terms
@unnumbered Index of Terms
@printindex cp
@bye
@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init POSIX ODR
@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
@c LocalWords: symrec val tptr FUN func struct sym enum IEC syntaxes Byacc
@c LocalWords: fun putsym getsym arith funs atan ptr malloc sizeof Lex pcc
@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
@c LocalWords: ptypes itype trigraphs yytname expseq vindex dtype Unary usr
@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead ctx
@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
@c LocalWords: ypp yxx itemx tex leaderfill Troubleshouting sqrt Graphviz
@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
@c LocalWords: multitable headitem hh basename Doxygen fno filename gdef de
@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
@c LocalWords: Ctor defcv defcvx arg accessors CPP ifndef CALCXX YYerror
@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType yyo
@c LocalWords: parsers parser's documentencoding documentlanguage Wempty ss
@c LocalWords: associativity subclasses precedences unresolvable runnable
@c LocalWords: allocators subunit initializations unreferenced untyped dir
@c LocalWords: errorVerbose subtype subtypes Wmidrule midrule's src rvalues
@c LocalWords: automove evolutions Wother Wconflicts PNG lookaheads Acc sep
@c LocalWords: xsltproc XSL xsl xhtml html num Wprecedence Werror fcaret gv
@c LocalWords: fdiagnostics setlocale nullptr ast srcdir iff drv rgbWarning
@c LocalWords: deftypefunx pragma Wnull dereference Wdocumentation elif ish
@c LocalWords: Wdeprecated Wregister noinput yyloc yypos PODs sstream Wsign
@c LocalWords: typename emplace Wconversion Wshorten yacchack reentrancy ou
@c LocalWords: Relocatability exprs fixit Wyacc parseable fixits ffixit svg
@c LocalWords: DNDEBUG cstring Wzero workalike POPL workalikes byacc UCB
@c LocalWords: Penello's Penello Byson Byson's Corbett's CSD TOPLAS PDP cex
@c LocalWords: Beazley's goyacc ocamlyacc SIGACT SIGPLAN colorWarning exVal
@c LocalWords: setcolor rgbError colorError rgbNotice colorNotice derror
@c LocalWords: colorOff maincolor inlineraw darkviolet darkcyan dwarning
@c LocalWords: dnotice copyable stdint ptrdiff bufsize yyreport invariants
@c LocalWords: xrefautomaticsectiontitle yysyntax yysymbol ARGMAX cond RTTI
@c LocalWords: Wdangling yytoken erreur syntaxe inattendu attendait nombre
@c LocalWords: YYUNDEF SymbolKind yypcontext YYENOMEM TOKENMAX getBundle
@c LocalWords: ResourceBundle myResources getString getName getToken ylwrap
@c LocalWords: getLocation getExpectedTokens reportSyntaxError bistromathic
@c LocalWords: TokenKind Automake's rtti Wcounterexamples Chinawat PLDI buf
@c LocalWords: Isradisaikul tcite pcite rgbGreen colorGreen rgbYellow Wcex
@c LocalWords: colorYellow rgbRed colorRed rgbBlue colorBlue rgbPurple Ddoc
@c LocalWords: colorPurple ifhtml ifnothtml situ rcex MERCHANTABILITY Wnone
@c LocalWords: diagError diagNotice diagWarning diagOff danglingElseCex
@c LocalWords: nonunifying YYNOMEM Wuseless dgettext textdomain domainname
@c LocalWords: dirname typeof writeln YYBISON YYLOCATION backend structs
@c LocalWords: pushParse
@c Local Variables:
@c ispell-dictionary: "american"
@c fill-column: 76
@c End:
|