1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
|
\input texinfo @c -*-texinfo-*-
@comment %**start of header
@setfilename bison.info
@include version.texi
@settitle Bison @value{VERSION}
@setchapternewpage odd
@finalout
@c SMALL BOOK version
@c This edition has been formatted so that you can format and print it in
@c the smallbook format.
@c @smallbook
@c Set following if you have the new `shorttitlepage' command
@c @clear shorttitlepage-enabled
@c @set shorttitlepage-enabled
@c Set following if you want to document %default-prec and %no-default-prec.
@c This feature is experimental and may change in future Bison versions.
@c @set defaultprec
@c ISPELL CHECK: done, 14 Jan 1993 --bob
@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
@c titlepage; should NOT be changed in the GPL. --mew
@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
@iftex
@syncodeindex fn cp
@syncodeindex vr cp
@syncodeindex tp cp
@end iftex
@ifinfo
@synindex fn cp
@synindex vr cp
@synindex tp cp
@end ifinfo
@comment %**end of header
@copying
This manual is for @acronym{GNU} Bison (version @value{VERSION},
@value{UPDATED}), the @acronym{GNU} parser generator.
Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
@quotation
Permission is granted to copy, distribute and/or modify this document
under the terms of the @acronym{GNU} Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with the Front-Cover texts
being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
(a) below. A copy of the license is included in the section entitled
``@acronym{GNU} Free Documentation License.''
(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
Copies published by the Free Software Foundation raise funds for
@acronym{GNU} development.''
@end quotation
@end copying
@dircategory GNU programming tools
@direntry
* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
@end direntry
@ifset shorttitlepage-enabled
@shorttitlepage Bison
@end ifset
@titlepage
@title Bison
@subtitle The Yacc-compatible Parser Generator
@subtitle @value{UPDATED}, Bison Version @value{VERSION}
@author by Charles Donnelly and Richard Stallman
@page
@vskip 0pt plus 1filll
@insertcopying
@sp 2
Published by the Free Software Foundation @*
59 Temple Place, Suite 330 @*
Boston, MA 02111-1307 USA @*
Printed copies are available from the Free Software Foundation.@*
@acronym{ISBN} 1-882114-44-2
@sp 2
Cover art by Etienne Suvasa.
@end titlepage
@contents
@ifnottex
@node Top
@top Bison
@insertcopying
@end ifnottex
@menu
* Introduction::
* Conditions::
* Copying:: The @acronym{GNU} General Public License says
how you can copy and share Bison
Tutorial sections:
* Concepts:: Basic concepts for understanding Bison.
* Examples:: Three simple explained examples of using Bison.
Reference sections:
* Grammar File:: Writing Bison declarations and rules.
* Interface:: C-language interface to the parser function @code{yyparse}.
* Algorithm:: How the Bison parser works at run-time.
* Error Recovery:: Writing rules for error recovery.
* Context Dependency:: What to do if your language syntax is too
messy for Bison to handle straightforwardly.
* Debugging:: Understanding or debugging Bison parsers.
* Invocation:: How to run Bison (to produce the parser source file).
* Table of Symbols:: All the keywords of the Bison language are explained.
* Glossary:: Basic concepts are explained.
* FAQ:: Frequently Asked Questions
* Copying This Manual:: License for copying this manual.
* Index:: Cross-references to the text.
@detailmenu
--- The Detailed Node Listing ---
The Concepts of Bison
* Language and Grammar:: Languages and context-free grammars,
as mathematical ideas.
* Grammar in Bison:: How we represent grammars for Bison's sake.
* Semantic Values:: Each token or syntactic grouping can have
a semantic value (the value of an integer,
the name of an identifier, etc.).
* Semantic Actions:: Each rule can have an action containing C code.
* GLR Parsers:: Writing parsers for general context-free languages
* Locations Overview:: Tracking Locations.
* Bison Parser:: What are Bison's input and output,
how is the output used?
* Stages:: Stages in writing and running Bison grammars.
* Grammar Layout:: Overall structure of a Bison grammar file.
Examples
* RPN Calc:: Reverse polish notation calculator;
a first example with no operator precedence.
* Infix Calc:: Infix (algebraic) notation calculator.
Operator precedence is introduced.
* Simple Error Recovery:: Continuing after syntax errors.
* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
* Multi-function Calc:: Calculator with memory and trig functions.
It uses multiple data-types for semantic values.
* Exercises:: Ideas for improving the multi-function calculator.
Reverse Polish Notation Calculator
* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
* Lexer: Rpcalc Lexer. The lexical analyzer.
* Main: Rpcalc Main. The controlling function.
* Error: Rpcalc Error. The error reporting function.
* Gen: Rpcalc Gen. Running Bison on the grammar file.
* Comp: Rpcalc Compile. Run the C compiler on the output code.
Grammar Rules for @code{rpcalc}
* Rpcalc Input::
* Rpcalc Line::
* Rpcalc Expr::
Location Tracking Calculator: @code{ltcalc}
* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
* Lexer: Ltcalc Lexer. The lexical analyzer.
Multi-Function Calculator: @code{mfcalc}
* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
* Rules: Mfcalc Rules. Grammar rules for the calculator.
* Symtab: Mfcalc Symtab. Symbol table management subroutines.
Bison Grammar Files
* Grammar Outline:: Overall layout of the grammar file.
* Symbols:: Terminal and nonterminal symbols.
* Rules:: How to write grammar rules.
* Recursion:: Writing recursive rules.
* Semantics:: Semantic values and actions.
* Locations:: Locations and actions.
* Declarations:: All kinds of Bison declarations are described here.
* Multiple Parsers:: Putting more than one Bison parser in one program.
Outline of a Bison Grammar
* Prologue:: Syntax and usage of the prologue.
* Bison Declarations:: Syntax and usage of the Bison declarations section.
* Grammar Rules:: Syntax and usage of the grammar rules section.
* Epilogue:: Syntax and usage of the epilogue.
Defining Language Semantics
* Value Type:: Specifying one data type for all semantic values.
* Multiple Types:: Specifying several alternative data types.
* Actions:: An action is the semantic definition of a grammar rule.
* Action Types:: Specifying data types for actions to operate on.
* Mid-Rule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
Tracking Locations
* Location Type:: Specifying a data type for locations.
* Actions and Locations:: Using locations in actions.
* Location Default Action:: Defining a general way to compute locations.
Bison Declarations
* Token Decl:: Declaring terminal symbols.
* Precedence Decl:: Declaring terminals with precedence and associativity.
* Union Decl:: Declaring the set of all semantic value types.
* Type Decl:: Declaring the choice of type for a nonterminal symbol.
* Destructor Decl:: Declaring how symbols are freed.
* Expect Decl:: Suppressing warnings about parsing conflicts.
* Start Decl:: Specifying the start symbol.
* Pure Decl:: Requesting a reentrant parser.
* Decl Summary:: Table of all Bison declarations.
Parser C-Language Interface
* Parser Function:: How to call @code{yyparse} and what it returns.
* Lexical:: You must supply a function @code{yylex}
which reads tokens.
* Error Reporting:: You must supply a function @code{yyerror}.
* Action Features:: Special features for use in actions.
The Lexical Analyzer Function @code{yylex}
* Calling Convention:: How @code{yyparse} calls @code{yylex}.
* Token Values:: How @code{yylex} must return the semantic value
of the token it has read.
* Token Locations:: How @code{yylex} must return the text location
(line number, etc.) of the token, if the
actions want that.
* Pure Calling:: How the calling convention differs
in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
The Bison Parser Algorithm
* Look-Ahead:: Parser looks one token ahead when deciding what to do.
* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
* Precedence:: Operator precedence works by resolving conflicts.
* Contextual Precedence:: When an operator's precedence depends on context.
* Parser States:: The parser is a finite-state-machine with stack.
* Reduce/Reduce:: When two rules are applicable in the same situation.
* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
* Stack Overflow:: What happens when stack gets full. How to avoid it.
Operator Precedence
* Why Precedence:: An example showing why precedence is needed.
* Using Precedence:: How to specify precedence in Bison grammars.
* Precedence Examples:: How these features are used in the previous example.
* How Precedence:: How they work.
Handling Context Dependencies
* Semantic Tokens:: Token parsing can depend on the semantic context.
* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
* Tie-in Recovery:: Lexical tie-ins have implications for how
error recovery rules must be written.
Debugging Your Parser
* Understanding:: Understanding the structure of your parser.
* Tracing:: Tracing the execution of your parser.
Invoking Bison
* Bison Options:: All the options described in detail,
in alphabetical order by short options.
* Option Cross Key:: Alphabetical list of long options.
* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
Frequently Asked Questions
* Parser Stack Overflow:: Breaking the Stack Limits
* How Can I Reset the Parser:: @code{yyparse} Keeps some State
* Strings are Destroyed:: @code{yylval} Loses Track of Strings
* C++ Parsers:: Compiling Parsers with C++ Compilers
* Implementing Loops:: Control Flow in the Calculator
Copying This Manual
* GNU Free Documentation License:: License for copying this manual.
@end detailmenu
@end menu
@node Introduction
@unnumbered Introduction
@cindex introduction
@dfn{Bison} is a general-purpose parser generator that converts a
grammar description for an @acronym{LALR}(1) context-free grammar into a C
program to parse that grammar. Once you are proficient with Bison,
you may use it to develop a wide range of language parsers, from those
used in simple desk calculators to complex programming languages.
Bison is upward compatible with Yacc: all properly-written Yacc grammars
ought to work with Bison with no change. Anyone familiar with Yacc
should be able to use Bison with little trouble. You need to be fluent in
C programming in order to use Bison or to understand this manual.
We begin with tutorial chapters that explain the basic concepts of using
Bison and show three explained examples, each building on the last. If you
don't know Bison or Yacc, start by reading these chapters. Reference
chapters follow which describe specific aspects of Bison in detail.
Bison was written primarily by Robert Corbett; Richard Stallman made it
Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
multi-character string literals and other features.
This edition corresponds to version @value{VERSION} of Bison.
@node Conditions
@unnumbered Conditions for Using Bison
As of Bison version 1.24, we have changed the distribution terms for
@code{yyparse} to permit using Bison's output in nonfree programs when
Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
parsers could be used only in programs that were free software.
The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
compiler, have never
had such a requirement. They could always be used for nonfree
software. The reason Bison was different was not due to a special
policy decision; it resulted from applying the usual General Public
License to all of the Bison source code.
The output of the Bison utility---the Bison parser file---contains a
verbatim copy of a sizable piece of Bison, which is the code for the
@code{yyparse} function. (The actions from your grammar are inserted
into this function at one point, but the rest of the function is not
changed.) When we applied the @acronym{GPL} terms to the code for
@code{yyparse},
the effect was to restrict the use of Bison output to free software.
We didn't change the terms because of sympathy for people who want to
make software proprietary. @strong{Software should be free.} But we
concluded that limiting Bison's use to free software was doing little to
encourage people to make other software free. So we decided to make the
practical conditions for using Bison match the practical conditions for
using the other @acronym{GNU} tools.
This exception applies only when Bison is generating C code for an
@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
as usual. You can
tell whether the exception applies to your @samp{.c} output file by
inspecting it to see whether it says ``As a special exception, when
this file is copied by Bison into a Bison output file, you may use
that output file without restriction.''
@include gpl.texi
@node Concepts
@chapter The Concepts of Bison
This chapter introduces many of the basic concepts without which the
details of Bison will not make sense. If you do not already know how to
use Bison or Yacc, we suggest you start by reading this chapter carefully.
@menu
* Language and Grammar:: Languages and context-free grammars,
as mathematical ideas.
* Grammar in Bison:: How we represent grammars for Bison's sake.
* Semantic Values:: Each token or syntactic grouping can have
a semantic value (the value of an integer,
the name of an identifier, etc.).
* Semantic Actions:: Each rule can have an action containing C code.
* GLR Parsers:: Writing parsers for general context-free languages
* Locations Overview:: Tracking Locations.
* Bison Parser:: What are Bison's input and output,
how is the output used?
* Stages:: Stages in writing and running Bison grammars.
* Grammar Layout:: Overall structure of a Bison grammar file.
@end menu
@node Language and Grammar
@section Languages and Context-Free Grammars
@cindex context-free grammar
@cindex grammar, context-free
In order for Bison to parse a language, it must be described by a
@dfn{context-free grammar}. This means that you specify one or more
@dfn{syntactic groupings} and give rules for constructing them from their
parts. For example, in the C language, one kind of grouping is called an
`expression'. One rule for making an expression might be, ``An expression
can be made of a minus sign and another expression''. Another would be,
``An expression can be an integer''. As you can see, rules are often
recursive, but there must be at least one rule which leads out of the
recursion.
@cindex @acronym{BNF}
@cindex Backus-Naur form
The most common formal system for presenting such rules for humans to read
is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
order to specify the language Algol 60. Any grammar expressed in
@acronym{BNF} is a context-free grammar. The input to Bison is
essentially machine-readable @acronym{BNF}.
@cindex @acronym{LALR}(1) grammars
@cindex @acronym{LR}(1) grammars
There are various important subclasses of context-free grammar. Although it
can handle almost all context-free grammars, Bison is optimized for what
are called @acronym{LALR}(1) grammars.
In brief, in these grammars, it must be possible to
tell how to parse any portion of an input string with just a single
token of look-ahead. Strictly speaking, that is a description of an
@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
restrictions that are
hard to explain simply; but it is rare in actual practice to find an
@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
more information on this.
@cindex @acronym{GLR} parsing
@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
@cindex ambiguous grammars
@cindex non-deterministic parsing
Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
roughly that the next grammar rule to apply at any point in the input is
uniquely determined by the preceding input and a fixed, finite portion
(called a @dfn{look-ahead}) of the remaining input. A context-free
grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
apply the grammar rules to get the some inputs. Even unambiguous
grammars can be @dfn{non-deterministic}, meaning that no fixed
look-ahead always suffices to determine the next grammar rule to apply.
With the proper declarations, Bison is also able to parse these more
general context-free grammars, using a technique known as @acronym{GLR}
parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
are able to handle any context-free grammar for which the number of
possible parses of any given string is finite.
@cindex symbols (abstract)
@cindex token
@cindex syntactic grouping
@cindex grouping, syntactic
In the formal grammatical rules for a language, each kind of syntactic
unit or grouping is named by a @dfn{symbol}. Those which are built by
grouping smaller constructs according to grammatical rules are called
@dfn{nonterminal symbols}; those which can't be subdivided are called
@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
corresponding to a single terminal symbol a @dfn{token}, and a piece
corresponding to a single nonterminal symbol a @dfn{grouping}.
We can use the C language as an example of what symbols, terminal and
nonterminal, mean. The tokens of C are identifiers, constants (numeric
and string), and the various keywords, arithmetic operators and
punctuation marks. So the terminal symbols of a grammar for C include
`identifier', `number', `string', plus one symbol for each keyword,
operator or punctuation mark: `if', `return', `const', `static', `int',
`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
(These tokens can be subdivided into characters, but that is a matter of
lexicography, not grammar.)
Here is a simple C function subdivided into tokens:
@ifinfo
@example
int /* @r{keyword `int'} */
square (int x) /* @r{identifier, open-paren, identifier,}
@r{identifier, close-paren} */
@{ /* @r{open-brace} */
return x * x; /* @r{keyword `return', identifier, asterisk,
identifier, semicolon} */
@} /* @r{close-brace} */
@end example
@end ifinfo
@ifnotinfo
@example
int /* @r{keyword `int'} */
square (int x) /* @r{identifier, open-paren, identifier, identifier, close-paren} */
@{ /* @r{open-brace} */
return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
@} /* @r{close-brace} */
@end example
@end ifnotinfo
The syntactic groupings of C include the expression, the statement, the
declaration, and the function definition. These are represented in the
grammar of C by nonterminal symbols `expression', `statement',
`declaration' and `function definition'. The full grammar uses dozens of
additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a
function definition; it contains one declaration, and one statement. In
the statement, each @samp{x} is an expression and so is @samp{x * x}.
Each nonterminal symbol must have grammatical rules showing how it is made
out of simpler constructs. For example, one kind of C statement is the
@code{return} statement; this would be described with a grammar rule which
reads informally as follows:
@quotation
A `statement' can be made of a `return' keyword, an `expression' and a
`semicolon'.
@end quotation
@noindent
There would be many other rules for `statement', one for each kind of
statement in C.
@cindex start symbol
One nonterminal symbol must be distinguished as the special one which
defines a complete utterance in the language. It is called the @dfn{start
symbol}. In a compiler, this means a complete input program. In the C
language, the nonterminal symbol `sequence of definitions and declarations'
plays this role.
For example, @samp{1 + 2} is a valid C expression---a valid part of a C
program---but it is not valid as an @emph{entire} C program. In the
context-free grammar of C, this follows from the fact that `expression' is
not the start symbol.
The Bison parser reads a sequence of tokens as its input, and groups the
tokens using the grammar rules. If the input is valid, the end result is
that the entire token sequence reduces to a single grouping whose symbol is
the grammar's start symbol. If we use a grammar for C, the entire input
must be a `sequence of definitions and declarations'. If not, the parser
reports a syntax error.
@node Grammar in Bison
@section From Formal Rules to Bison Input
@cindex Bison grammar
@cindex grammar, Bison
@cindex formal grammar
A formal grammar is a mathematical construct. To define the language
for Bison, you must write a file expressing the grammar in Bison syntax:
a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
A nonterminal symbol in the formal grammar is represented in Bison input
as an identifier, like an identifier in C@. By convention, it should be
in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
The Bison representation for a terminal symbol is also called a @dfn{token
type}. Token types as well can be represented as C-like identifiers. By
convention, these identifiers should be upper case to distinguish them from
nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
@code{RETURN}. A terminal symbol that stands for a particular keyword in
the language should be named after that keyword converted to upper case.
The terminal symbol @code{error} is reserved for error recovery.
@xref{Symbols}.
A terminal symbol can also be represented as a character literal, just like
a C character constant. You should do this whenever a token is just a
single character (parenthesis, plus-sign, etc.): use that same character in
a literal as the terminal symbol for that token.
A third way to represent a terminal symbol is with a C string constant
containing several characters. @xref{Symbols}, for more information.
The grammar rules also have an expression in Bison syntax. For example,
here is the Bison rule for a C @code{return} statement. The semicolon in
quotes is a literal character token, representing part of the C syntax for
the statement; the naked semicolon, and the colon, are Bison punctuation
used in every rule.
@example
stmt: RETURN expr ';'
;
@end example
@noindent
@xref{Rules, ,Syntax of Grammar Rules}.
@node Semantic Values
@section Semantic Values
@cindex semantic value
@cindex value, semantic
A formal grammar selects tokens only by their classifications: for example,
if a rule mentions the terminal symbol `integer constant', it means that
@emph{any} integer constant is grammatically valid in that position. The
precise value of the constant is irrelevant to how to parse the input: if
@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
grammatical.
But the precise value is very important for what the input means once it is
parsed. A compiler is useless if it fails to distinguish between 4, 1 and
3989 as constants in the program! Therefore, each token in a Bison grammar
has both a token type and a @dfn{semantic value}. @xref{Semantics,
,Defining Language Semantics},
for details.
The token type is a terminal symbol defined in the grammar, such as
@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
you need to know to decide where the token may validly appear and how to
group it with other tokens. The grammar rules know nothing about tokens
except their types.
The semantic value has all the rest of the information about the
meaning of the token, such as the value of an integer, or the name of an
identifier. (A token such as @code{','} which is just punctuation doesn't
need to have any semantic value.)
For example, an input token might be classified as token type
@code{INTEGER} and have the semantic value 4. Another input token might
have the same token type @code{INTEGER} but value 3989. When a grammar
rule says that @code{INTEGER} is allowed, either of these tokens is
acceptable because each is an @code{INTEGER}. When the parser accepts the
token, it keeps track of the token's semantic value.
Each grouping can also have a semantic value as well as its nonterminal
symbol. For example, in a calculator, an expression typically has a
semantic value that is a number. In a compiler for a programming
language, an expression typically has a semantic value that is a tree
structure describing the meaning of the expression.
@node Semantic Actions
@section Semantic Actions
@cindex semantic actions
@cindex actions, semantic
In order to be useful, a program must do more than parse input; it must
also produce some output based on the input. In a Bison grammar, a grammar
rule can have an @dfn{action} made up of C statements. Each time the
parser recognizes a match for that rule, the action is executed.
@xref{Actions}.
Most of the time, the purpose of an action is to compute the semantic value
of the whole construct from the semantic values of its parts. For example,
suppose we have a rule which says an expression can be the sum of two
expressions. When the parser recognizes such a sum, each of the
subexpressions has a semantic value which describes how it was built up.
The action for this rule should create a similar sort of value for the
newly recognized larger expression.
For example, here is a rule that says an expression can be the sum of
two subexpressions:
@example
expr: expr '+' expr @{ $$ = $1 + $3; @}
;
@end example
@noindent
The action says how to produce the semantic value of the sum expression
from the values of the two subexpressions.
@node GLR Parsers
@section Writing @acronym{GLR} Parsers
@cindex @acronym{GLR} parsing
@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
@findex %glr-parser
@cindex conflicts
@cindex shift/reduce conflicts
In some grammars, there will be cases where Bison's standard
@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
certain grammar rule at a given point. That is, it may not be able to
decide (on the basis of the input read so far) which of two possible
reductions (applications of a grammar rule) applies, or whether to apply
a reduction or read more of the input and apply a reduction later in the
input. These are known respectively as @dfn{reduce/reduce} conflicts
(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
(@pxref{Shift/Reduce}).
To use a grammar that is not easily modified to be @acronym{LALR}(1), a
more general parsing algorithm is sometimes necessary. If you include
@code{%glr-parser} among the Bison declarations in your file
(@pxref{Grammar Outline}), the result will be a Generalized @acronym{LR}
(@acronym{GLR}) parser. These parsers handle Bison grammars that
contain no unresolved conflicts (i.e., after applying precedence
declarations) identically to @acronym{LALR}(1) parsers. However, when
faced with unresolved shift/reduce and reduce/reduce conflicts,
@acronym{GLR} parsers use the simple expedient of doing both,
effectively cloning the parser to follow both possibilities. Each of
the resulting parsers can again split, so that at any given time, there
can be any number of possible parses being explored. The parsers
proceed in lockstep; that is, all of them consume (shift) a given input
symbol before any of them proceed to the next. Each of the cloned
parsers eventually meets one of two possible fates: either it runs into
a parsing error, in which case it simply vanishes, or it merges with
another parser, because the two of them have reduced the input to an
identical set of symbols.
During the time that there are multiple parsers, semantic actions are
recorded, but not performed. When a parser disappears, its recorded
semantic actions disappear as well, and are never performed. When a
reduction makes two parsers identical, causing them to merge, Bison
records both sets of semantic actions. Whenever the last two parsers
merge, reverting to the single-parser case, Bison resolves all the
outstanding actions either by precedences given to the grammar rules
involved, or by performing both actions, and then calling a designated
user-defined function on the resulting values to produce an arbitrary
merged result.
Let's consider an example, vastly simplified from a C++ grammar.
@example
%@{
#include <stdio.h>
#define YYSTYPE char const *
int yylex (void);
void yyerror (char const *);
%@}
%token TYPENAME ID
%right '='
%left '+'
%glr-parser
%%
prog :
| prog stmt @{ printf ("\n"); @}
;
stmt : expr ';' %dprec 1
| decl %dprec 2
;
expr : ID @{ printf ("%s ", $$); @}
| TYPENAME '(' expr ')'
@{ printf ("%s <cast> ", $1); @}
| expr '+' expr @{ printf ("+ "); @}
| expr '=' expr @{ printf ("= "); @}
;
decl : TYPENAME declarator ';'
@{ printf ("%s <declare> ", $1); @}
| TYPENAME declarator '=' expr ';'
@{ printf ("%s <init-declare> ", $1); @}
;
declarator : ID @{ printf ("\"%s\" ", $1); @}
| '(' declarator ')'
;
@end example
@noindent
This models a problematic part of the C++ grammar---the ambiguity between
certain declarations and statements. For example,
@example
T (x) = y+z;
@end example
@noindent
parses as either an @code{expr} or a @code{stmt}
(assuming that @samp{T} is recognized as a @code{TYPENAME} and
@samp{x} as an @code{ID}).
Bison detects this as a reduce/reduce conflict between the rules
@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
time it encounters @code{x} in the example above. The two @code{%dprec}
declarations, however, give precedence to interpreting the example as a
@code{decl}, which implies that @code{x} is a declarator.
The parser therefore prints
@example
"x" y z + T <init-declare>
@end example
Consider a different input string for this parser:
@example
T (x) + y;
@end example
@noindent
Here, there is no ambiguity (this cannot be parsed as a declaration).
However, at the time the Bison parser encounters @code{x}, it does not
have enough information to resolve the reduce/reduce conflict (again,
between @code{x} as an @code{expr} or a @code{declarator}). In this
case, no precedence declaration is used. Instead, the parser splits
into two, one assuming that @code{x} is an @code{expr}, and the other
assuming @code{x} is a @code{declarator}. The second of these parsers
then vanishes when it sees @code{+}, and the parser prints
@example
x T <cast> y +
@end example
Suppose that instead of resolving the ambiguity, you wanted to see all
the possibilities. For this purpose, we must @dfn{merge} the semantic
actions of the two possible parsers, rather than choosing one over the
other. To do so, you could change the declaration of @code{stmt} as
follows:
@example
stmt : expr ';' %merge <stmtMerge>
| decl %merge <stmtMerge>
;
@end example
@noindent
and define the @code{stmtMerge} function as:
@example
static YYSTYPE
stmtMerge (YYSTYPE x0, YYSTYPE x1)
@{
printf ("<OR> ");
return "";
@}
@end example
@noindent
with an accompanying forward declaration
in the C declarations at the beginning of the file:
@example
%@{
#define YYSTYPE char const *
static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
%@}
@end example
@noindent
With these declarations, the resulting parser will parse the first example
as both an @code{expr} and a @code{decl}, and print
@example
"x" y z + T <init-declare> x T <cast> y z + = <OR>
@end example
@sp 1
@cindex @code{incline}
@cindex @acronym{GLR} parsers and @code{inline}
The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
later. In addition, they use the @code{inline} keyword, which is not
C89, but is C99 and is a common extension in pre-C99 compilers. It is
up to the user of these parsers to handle
portability issues. For instance, if using Autoconf and the Autoconf
macro @code{AC_C_INLINE}, a mere
@example
%@{
#include <config.h>
%@}
@end example
@noindent
will suffice. Otherwise, we suggest
@example
%@{
#if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
#define inline
#endif
%@}
@end example
@node Locations Overview
@section Locations
@cindex location
@cindex textual location
@cindex location, textual
Many applications, like interpreters or compilers, have to produce verbose
and useful error messages. To achieve this, one must be able to keep track of
the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
Bison provides a mechanism for handling these locations.
Each token has a semantic value. In a similar fashion, each token has an
associated location, but the type of locations is the same for all tokens and
groupings. Moreover, the output parser is equipped with a default data
structure for storing locations (@pxref{Locations}, for more details).
Like semantic values, locations can be reached in actions using a dedicated
set of constructs. In the example above, the location of the whole grouping
is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
@code{@@3}.
When a rule is matched, a default action is used to compute the semantic value
of its left hand side (@pxref{Actions}). In the same way, another default
action is used for locations. However, the action for locations is general
enough for most cases, meaning there is usually no need to describe for each
rule how @code{@@$} should be formed. When building a new location for a given
grouping, the default behavior of the output parser is to take the beginning
of the first symbol, and the end of the last symbol.
@node Bison Parser
@section Bison Output: the Parser File
@cindex Bison parser
@cindex Bison utility
@cindex lexical analyzer, purpose
@cindex parser
When you run Bison, you give it a Bison grammar file as input. The output
is a C source file that parses the language described by the grammar.
This file is called a @dfn{Bison parser}. Keep in mind that the Bison
utility and the Bison parser are two distinct programs: the Bison utility
is a program whose output is the Bison parser that becomes part of your
program.
The job of the Bison parser is to group tokens into groupings according to
the grammar rules---for example, to build identifiers and operators into
expressions. As it does this, it runs the actions for the grammar rules it
uses.
The tokens come from a function called the @dfn{lexical analyzer} that
you must supply in some fashion (such as by writing it in C). The Bison
parser calls the lexical analyzer each time it wants a new token. It
doesn't know what is ``inside'' the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by
parsing characters of text, but Bison does not depend on this.
@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
The Bison parser file is C code which defines a function named
@code{yyparse} which implements that grammar. This function does not make
a complete C program: you must supply some additional functions. One is
the lexical analyzer. Another is an error-reporting function which the
parser calls to report an error. In addition, a complete C program must
start with a function called @code{main}; you have to provide this, and
arrange for it to call @code{yyparse} or the parser will never run.
@xref{Interface, ,Parser C-Language Interface}.
Aside from the token type names and the symbols in the actions you
write, all symbols defined in the Bison parser file itself
begin with @samp{yy} or @samp{YY}. This includes interface functions
such as the lexical analyzer function @code{yylex}, the error reporting
function @code{yyerror} and the parser function @code{yyparse} itself.
This also includes numerous identifiers used for internal purposes.
Therefore, you should avoid using C identifiers starting with @samp{yy}
or @samp{YY} in the Bison grammar file except for the ones defined in
this manual.
In some cases the Bison parser file includes system headers, and in
those cases your code should respect the identifiers reserved by those
headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
declare memory allocators and related types. Other system headers may
be included if you define @code{YYDEBUG} to a nonzero value
(@pxref{Tracing, ,Tracing Your Parser}).
@node Stages
@section Stages in Using Bison
@cindex stages in using Bison
@cindex using Bison
The actual language-design process using Bison, from grammar specification
to a working compiler or interpreter, has these parts:
@enumerate
@item
Formally specify the grammar in a form recognized by Bison
(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
in the language, describe the action that is to be taken when an
instance of that rule is recognized. The action is described by a
sequence of C statements.
@item
Write a lexical analyzer to process input and pass tokens to the parser.
The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
Lexical Analyzer Function @code{yylex}}). It could also be produced
using Lex, but the use of Lex is not discussed in this manual.
@item
Write a controlling function that calls the Bison-produced parser.
@item
Write error-reporting routines.
@end enumerate
To turn this source code as written into a runnable program, you
must follow these steps:
@enumerate
@item
Run Bison on the grammar to produce the parser.
@item
Compile the code output by Bison, as well as any other source files.
@item
Link the object files to produce the finished product.
@end enumerate
@node Grammar Layout
@section The Overall Layout of a Bison Grammar
@cindex grammar file
@cindex file format
@cindex format of grammar file
@cindex layout of Bison grammar
The input file for the Bison utility is a @dfn{Bison grammar file}. The
general form of a Bison grammar file is as follows:
@example
%@{
@var{Prologue}
%@}
@var{Bison declarations}
%%
@var{Grammar rules}
%%
@var{Epilogue}
@end example
@noindent
The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
in every Bison grammar file to separate the sections.
The prologue may define types and variables used in the actions. You can
also use preprocessor commands to define macros used there, and use
@code{#include} to include header files that do any of these things.
You need to declare the lexical analyzer @code{yylex} and the error
printer @code{yyerror} here, along with any other global identifiers
used by the actions in the grammar rules.
The Bison declarations declare the names of the terminal and nonterminal
symbols, and may also describe operator precedence and the data types of
semantic values of various symbols.
The grammar rules define how to construct each nonterminal symbol from its
parts.
The epilogue can contain any code you want to use. Often the
definitions of functions declared in the prologue go here. In a
simple program, all the rest of the program can go here.
@node Examples
@chapter Examples
@cindex simple examples
@cindex examples, simple
Now we show and explain three sample programs written using Bison: a
reverse polish notation calculator, an algebraic (infix) notation
calculator, and a multi-function calculator. All three have been tested
under BSD Unix 4.3; each produces a usable, though limited, interactive
desk-top calculator.
These examples are simple, but Bison grammars for real programming
languages are written the same way.
@ifinfo
You can copy these examples out of the Info file and into a source file
to try them.
@end ifinfo
@menu
* RPN Calc:: Reverse polish notation calculator;
a first example with no operator precedence.
* Infix Calc:: Infix (algebraic) notation calculator.
Operator precedence is introduced.
* Simple Error Recovery:: Continuing after syntax errors.
* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
* Multi-function Calc:: Calculator with memory and trig functions.
It uses multiple data-types for semantic values.
* Exercises:: Ideas for improving the multi-function calculator.
@end menu
@node RPN Calc
@section Reverse Polish Notation Calculator
@cindex reverse polish notation
@cindex polish notation calculator
@cindex @code{rpcalc}
@cindex calculator, simple
The first example is that of a simple double-precision @dfn{reverse polish
notation} calculator (a calculator using postfix operators). This example
provides a good starting point, since operator precedence is not an issue.
The second example will illustrate how operator precedence is handled.
The source code for this calculator is named @file{rpcalc.y}. The
@samp{.y} extension is a convention used for Bison input files.
@menu
* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
* Lexer: Rpcalc Lexer. The lexical analyzer.
* Main: Rpcalc Main. The controlling function.
* Error: Rpcalc Error. The error reporting function.
* Gen: Rpcalc Gen. Running Bison on the grammar file.
* Comp: Rpcalc Compile. Run the C compiler on the output code.
@end menu
@node Rpcalc Decls
@subsection Declarations for @code{rpcalc}
Here are the C and Bison declarations for the reverse polish notation
calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
@example
/* Reverse polish notation calculator. */
%@{
#define YYSTYPE double
#include <math.h>
int yylex (void);
void yyerror (char const *);
%@}
%token NUM
%% /* Grammar rules and actions follow. */
@end example
The declarations section (@pxref{Prologue, , The prologue}) contains two
preprocessor directives and two forward declarations.
The @code{#define} directive defines the macro @code{YYSTYPE}, thus
specifying the C data type for semantic values of both tokens and
groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
don't define it, @code{int} is the default. Because we specify
@code{double}, each token and each expression has an associated value,
which is a floating point number.
The @code{#include} directive is used to declare the exponentiation
function @code{pow}.
The forward declarations for @code{yylex} and @code{yyerror} are
needed because the C language requires that functions be declared
before they are used. These functions will be defined in the
epilogue, but the parser calls them so they must be declared in the
prologue.
The second section, Bison declarations, provides information to Bison
about the token types (@pxref{Bison Declarations, ,The Bison
Declarations Section}). Each terminal symbol that is not a
single-character literal must be declared here. (Single-character
literals normally don't need to be declared.) In this example, all the
arithmetic operators are designated by single-character literals, so the
only terminal symbol that needs to be declared is @code{NUM}, the token
type for numeric constants.
@node Rpcalc Rules
@subsection Grammar Rules for @code{rpcalc}
Here are the grammar rules for the reverse polish notation calculator.
@example
input: /* empty */
| input line
;
line: '\n'
| exp '\n' @{ printf ("\t%.10g\n", $1); @}
;
exp: NUM @{ $$ = $1; @}
| exp exp '+' @{ $$ = $1 + $2; @}
| exp exp '-' @{ $$ = $1 - $2; @}
| exp exp '*' @{ $$ = $1 * $2; @}
| exp exp '/' @{ $$ = $1 / $2; @}
/* Exponentiation */
| exp exp '^' @{ $$ = pow ($1, $2); @}
/* Unary minus */
| exp 'n' @{ $$ = -$1; @}
;
%%
@end example
The groupings of the rpcalc ``language'' defined here are the expression
(given the name @code{exp}), the line of input (@code{line}), and the
complete input transcript (@code{input}). Each of these nonterminal
symbols has several alternate rules, joined by the @samp{|} punctuator
which is read as ``or''. The following sections explain what these rules
mean.
The semantics of the language is determined by the actions taken when a
grouping is recognized. The actions are the C code that appears inside
braces. @xref{Actions}.
You must specify these actions in C, but Bison provides the means for
passing semantic values between the rules. In each action, the
pseudo-variable @code{$$} stands for the semantic value for the grouping
that the rule is going to construct. Assigning a value to @code{$$} is the
main job of most actions. The semantic values of the components of the
rule are referred to as @code{$1}, @code{$2}, and so on.
@menu
* Rpcalc Input::
* Rpcalc Line::
* Rpcalc Expr::
@end menu
@node Rpcalc Input
@subsubsection Explanation of @code{input}
Consider the definition of @code{input}:
@example
input: /* empty */
| input line
;
@end example
This definition reads as follows: ``A complete input is either an empty
string, or a complete input followed by an input line''. Notice that
``complete input'' is defined in terms of itself. This definition is said
to be @dfn{left recursive} since @code{input} appears always as the
leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
The first alternative is empty because there are no symbols between the
colon and the first @samp{|}; this means that @code{input} can match an
empty string of input (no tokens). We write the rules this way because it
is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
It's conventional to put an empty alternative first and write the comment
@samp{/* empty */} in it.
The second alternate rule (@code{input line}) handles all nontrivial input.
It means, ``After reading any number of lines, read one more line if
possible.'' The left recursion makes this rule into a loop. Since the
first alternative matches empty input, the loop can be executed zero or
more times.
The parser function @code{yyparse} continues to process input until a
grammatical error is seen or the lexical analyzer says there are no more
input tokens; we will arrange for the latter to happen at end-of-input.
@node Rpcalc Line
@subsubsection Explanation of @code{line}
Now consider the definition of @code{line}:
@example
line: '\n'
| exp '\n' @{ printf ("\t%.10g\n", $1); @}
;
@end example
The first alternative is a token which is a newline character; this means
that rpcalc accepts a blank line (and ignores it, since there is no
action). The second alternative is an expression followed by a newline.
This is the alternative that makes rpcalc useful. The semantic value of
the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
question is the first symbol in the alternative. The action prints this
value, which is the result of the computation the user asked for.
This action is unusual because it does not assign a value to @code{$$}. As
a consequence, the semantic value associated with the @code{line} is
uninitialized (its value will be unpredictable). This would be a bug if
that value were ever used, but we don't use it: once rpcalc has printed the
value of the user's input line, that value is no longer needed.
@node Rpcalc Expr
@subsubsection Explanation of @code{expr}
The @code{exp} grouping has several rules, one for each kind of expression.
The first rule handles the simplest expressions: those that are just numbers.
The second handles an addition-expression, which looks like two expressions
followed by a plus-sign. The third handles subtraction, and so on.
@example
exp: NUM
| exp exp '+' @{ $$ = $1 + $2; @}
| exp exp '-' @{ $$ = $1 - $2; @}
@dots{}
;
@end example
We have used @samp{|} to join all the rules for @code{exp}, but we could
equally well have written them separately:
@example
exp: NUM ;
exp: exp exp '+' @{ $$ = $1 + $2; @} ;
exp: exp exp '-' @{ $$ = $1 - $2; @} ;
@dots{}
@end example
Most of the rules have actions that compute the value of the expression in
terms of the value of its parts. For example, in the rule for addition,
@code{$1} refers to the first component @code{exp} and @code{$2} refers to
the second one. The third component, @code{'+'}, has no meaningful
associated semantic value, but if it had one you could refer to it as
@code{$3}. When @code{yyparse} recognizes a sum expression using this
rule, the sum of the two subexpressions' values is produced as the value of
the entire expression. @xref{Actions}.
You don't have to give an action for every rule. When a rule has no
action, Bison by default copies the value of @code{$1} into @code{$$}.
This is what happens in the first rule (the one that uses @code{NUM}).
The formatting shown here is the recommended convention, but Bison does
not require it. You can add or change white space as much as you wish.
For example, this:
@example
exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{}
@end example
@noindent
means the same thing as this:
@example
exp: NUM
| exp exp '+' @{ $$ = $1 + $2; @}
| @dots{}
@end example
@noindent
The latter, however, is much more readable.
@node Rpcalc Lexer
@subsection The @code{rpcalc} Lexical Analyzer
@cindex writing a lexical analyzer
@cindex lexical analyzer, writing
The lexical analyzer's job is low-level parsing: converting characters
or sequences of characters into tokens. The Bison parser gets its
tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
Analyzer Function @code{yylex}}.
Only a simple lexical analyzer is needed for the @acronym{RPN}
calculator. This
lexical analyzer skips blanks and tabs, then reads in numbers as
@code{double} and returns them as @code{NUM} tokens. Any other character
that isn't part of a number is a separate token. Note that the token-code
for such a single-character token is the character itself.
The return value of the lexical analyzer function is a numeric code which
represents a token type. The same text used in Bison rules to stand for
this token type is also a C expression for the numeric code for the type.
This works in two ways. If the token type is a character literal, then its
numeric code is that of the character; you can use the same
character literal in the lexical analyzer to express the number. If the
token type is an identifier, that identifier is defined by Bison as a C
macro whose definition is the appropriate number. In this example,
therefore, @code{NUM} becomes a macro for @code{yylex} to use.
The semantic value of the token (if it has one) is stored into the
global variable @code{yylval}, which is where the Bison parser will look
for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
defined at the beginning of the grammar; @pxref{Rpcalc Decls,
,Declarations for @code{rpcalc}}.)
A token type code of zero is returned if the end-of-input is encountered.
(Bison recognizes any nonpositive value as indicating end-of-input.)
Here is the code for the lexical analyzer:
@example
@group
/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric code
of the character read if not a number. It skips all blanks
and tabs, and returns 0 for end-of-input. */
#include <ctype.h>
@end group
@group
int
yylex (void)
@{
int c;
/* Skip white space. */
while ((c = getchar ()) == ' ' || c == '\t')
;
@end group
@group
/* Process numbers. */
if (c == '.' || isdigit (c))
@{
ungetc (c, stdin);
scanf ("%lf", &yylval);
return NUM;
@}
@end group
@group
/* Return end-of-input. */
if (c == EOF)
return 0;
/* Return a single char. */
return c;
@}
@end group
@end example
@node Rpcalc Main
@subsection The Controlling Function
@cindex controlling function
@cindex main function in simple example
In keeping with the spirit of this example, the controlling function is
kept to the bare minimum. The only requirement is that it call
@code{yyparse} to start the process of parsing.
@example
@group
int
main (void)
@{
return yyparse ();
@}
@end group
@end example
@node Rpcalc Error
@subsection The Error Reporting Routine
@cindex error reporting routine
When @code{yyparse} detects a syntax error, it calls the error reporting
function @code{yyerror} to print an error message (usually but not
always @code{"syntax error"}). It is up to the programmer to supply
@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
here is the definition we will use:
@example
@group
#include <stdio.h>
/* Called by yyparse on error. */
void
yyerror (char const *s)
@{
fprintf (stderr, "%s\n", s);
@}
@end group
@end example
After @code{yyerror} returns, the Bison parser may recover from the error
and continue parsing if the grammar contains a suitable error rule
(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
have not written any error rules in this example, so any invalid input will
cause the calculator program to exit. This is not clean behavior for a
real calculator, but it is adequate for the first example.
@node Rpcalc Gen
@subsection Running Bison to Make the Parser
@cindex running Bison (introduction)
Before running Bison to produce a parser, we need to decide how to
arrange all the source code in one or more source files. For such a
simple example, the easiest thing is to put everything in one file. The
definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
end, in the epilogue of the file
(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
For a large project, you would probably have several source files, and use
@code{make} to arrange to recompile them.
With all the source in a single file, you use the following command to
convert it into a parser file:
@example
bison @var{file_name}.y
@end example
@noindent
In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
removing the @samp{.y} from the original file name. The file output by
Bison contains the source code for @code{yyparse}. The additional
functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
are copied verbatim to the output.
@node Rpcalc Compile
@subsection Compiling the Parser File
@cindex compiling the parser
Here is how to compile and run the parser file:
@example
@group
# @r{List files in current directory.}
$ @kbd{ls}
rpcalc.tab.c rpcalc.y
@end group
@group
# @r{Compile the Bison parser.}
# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
@end group
@group
# @r{List files again.}
$ @kbd{ls}
rpcalc rpcalc.tab.c rpcalc.y
@end group
@end example
The file @file{rpcalc} now contains the executable code. Here is an
example session using @code{rpcalc}.
@example
$ @kbd{rpcalc}
@kbd{4 9 +}
13
@kbd{3 7 + 3 4 5 *+-}
-13
@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
13
@kbd{5 6 / 4 n +}
-3.166666667
@kbd{3 4 ^} @r{Exponentiation}
81
@kbd{^D} @r{End-of-file indicator}
$
@end example
@node Infix Calc
@section Infix Notation Calculator: @code{calc}
@cindex infix notation calculator
@cindex @code{calc}
@cindex calculator, infix notation
We now modify rpcalc to handle infix operators instead of postfix. Infix
notation involves the concept of operator precedence and the need for
parentheses nested to arbitrary depth. Here is the Bison code for
@file{calc.y}, an infix desk-top calculator.
@example
/* Infix notation calculator. */
%@{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);
%@}
/* Bison declarations. */
%token NUM
%left '-' '+'
%left '*' '/'
%left NEG /* negation--unary minus */
%right '^' /* exponentiation */
%% /* The grammar follows. */
input: /* empty */
| input line
;
line: '\n'
| exp '\n' @{ printf ("\t%.10g\n", $1); @}
;
exp: NUM @{ $$ = $1; @}
| exp '+' exp @{ $$ = $1 + $3; @}
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
| exp '/' exp @{ $$ = $1 / $3; @}
| '-' exp %prec NEG @{ $$ = -$2; @}
| exp '^' exp @{ $$ = pow ($1, $3); @}
| '(' exp ')' @{ $$ = $2; @}
;
%%
@end example
@noindent
The functions @code{yylex}, @code{yyerror} and @code{main} can be the
same as before.
There are two important new features shown in this code.
In the second section (Bison declarations), @code{%left} declares token
types and says they are left-associative operators. The declarations
@code{%left} and @code{%right} (right associativity) take the place of
@code{%token} which is used to declare a token type name without
associativity. (These tokens are single-character literals, which
ordinarily don't need to be declared. We declare them here to specify
the associativity.)
Operator precedence is determined by the line ordering of the
declarations; the higher the line number of the declaration (lower on
the page or screen), the higher the precedence. Hence, exponentiation
has the highest precedence, unary minus (@code{NEG}) is next, followed
by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
Precedence}.
The other important new feature is the @code{%prec} in the grammar
section for the unary minus operator. The @code{%prec} simply instructs
Bison that the rule @samp{| '-' exp} has the same precedence as
@code{NEG}---in this case the next-to-highest. @xref{Contextual
Precedence, ,Context-Dependent Precedence}.
Here is a sample run of @file{calc.y}:
@need 500
@example
$ @kbd{calc}
@kbd{4 + 4.5 - (34/(8*3+-3))}
6.880952381
@kbd{-56 + 2}
-54
@kbd{3 ^ 2}
9
@end example
@node Simple Error Recovery
@section Simple Error Recovery
@cindex error recovery, simple
Up to this point, this manual has not addressed the issue of @dfn{error
recovery}---how to continue parsing after the parser detects a syntax
error. All we have handled is error reporting with @code{yyerror}.
Recall that by default @code{yyparse} returns after calling
@code{yyerror}. This means that an erroneous input line causes the
calculator program to exit. Now we show how to rectify this deficiency.
The Bison language itself includes the reserved word @code{error}, which
may be included in the grammar rules. In the example below it has
been added to one of the alternatives for @code{line}:
@example
@group
line: '\n'
| exp '\n' @{ printf ("\t%.10g\n", $1); @}
| error '\n' @{ yyerrok; @}
;
@end group
@end example
This addition to the grammar allows for simple error recovery in the
event of a syntax error. If an expression that cannot be evaluated is
read, the error will be recognized by the third rule for @code{line},
and parsing will continue. (The @code{yyerror} function is still called
upon to print its message as well.) The action executes the statement
@code{yyerrok}, a macro defined automatically by Bison; its meaning is
that error recovery is complete (@pxref{Error Recovery}). Note the
difference between @code{yyerrok} and @code{yyerror}; neither one is a
misprint.
This form of error recovery deals with syntax errors. There are other
kinds of errors; for example, division by zero, which raises an exception
signal that is normally fatal. A real calculator program must handle this
signal and use @code{longjmp} to return to @code{main} and resume parsing
input lines; it would also have to discard the rest of the current line of
input. We won't discuss this issue further because it is not specific to
Bison programs.
@node Location Tracking Calc
@section Location Tracking Calculator: @code{ltcalc}
@cindex location tracking calculator
@cindex @code{ltcalc}
@cindex calculator, location tracking
This example extends the infix notation calculator with location
tracking. This feature will be used to improve the error messages. For
the sake of clarity, this example is a simple integer calculator, since
most of the work needed to use locations will be done in the lexical
analyzer.
@menu
* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
* Lexer: Ltcalc Lexer. The lexical analyzer.
@end menu
@node Ltcalc Decls
@subsection Declarations for @code{ltcalc}
The C and Bison declarations for the location tracking calculator are
the same as the declarations for the infix notation calculator.
@example
/* Location tracking calculator. */
%@{
#define YYSTYPE int
#include <math.h>
int yylex (void);
void yyerror (char const *);
%@}
/* Bison declarations. */
%token NUM
%left '-' '+'
%left '*' '/'
%left NEG
%right '^'
%% /* The grammar follows. */
@end example
@noindent
Note there are no declarations specific to locations. Defining a data
type for storing locations is not needed: we will use the type provided
by default (@pxref{Location Type, ,Data Types of Locations}), which is a
four member structure with the following integer fields:
@code{first_line}, @code{first_column}, @code{last_line} and
@code{last_column}.
@node Ltcalc Rules
@subsection Grammar Rules for @code{ltcalc}
Whether handling locations or not has no effect on the syntax of your
language. Therefore, grammar rules for this example will be very close
to those of the previous example: we will only modify them to benefit
from the new information.
Here, we will use locations to report divisions by zero, and locate the
wrong expressions or subexpressions.
@example
@group
input : /* empty */
| input line
;
@end group
@group
line : '\n'
| exp '\n' @{ printf ("%d\n", $1); @}
;
@end group
@group
exp : NUM @{ $$ = $1; @}
| exp '+' exp @{ $$ = $1 + $3; @}
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
@end group
@group
| exp '/' exp
@{
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",
@@3.first_line, @@3.first_column,
@@3.last_line, @@3.last_column);
@}
@}
@end group
@group
| '-' exp %preg NEG @{ $$ = -$2; @}
| exp '^' exp @{ $$ = pow ($1, $3); @}
| '(' exp ')' @{ $$ = $2; @}
@end group
@end example
This code shows how to reach locations inside of semantic actions, by
using the pseudo-variables @code{@@@var{n}} for rule components, and the
pseudo-variable @code{@@$} for groupings.
We don't need to assign a value to @code{@@$}: the output parser does it
automatically. By default, before executing the C code of each action,
@code{@@$} is set to range from the beginning of @code{@@1} to the end
of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
can be redefined (@pxref{Location Default Action, , Default Action for
Locations}), and for very specific rules, @code{@@$} can be computed by
hand.
@node Ltcalc Lexer
@subsection The @code{ltcalc} Lexical Analyzer.
Until now, we relied on Bison's defaults to enable location
tracking. The next step is to rewrite the lexical analyzer, and make it
able to feed the parser with the token locations, as it already does for
semantic values.
To this end, we must take into account every single character of the
input text, to avoid the computed locations of being fuzzy or wrong:
@example
@group
int
yylex (void)
@{
int c;
@end group
@group
/* Skip white space. */
while ((c = getchar ()) == ' ' || c == '\t')
++yylloc.last_column;
@end group
@group
/* Step. */
yylloc.first_line = yylloc.last_line;
yylloc.first_column = yylloc.last_column;
@end group
@group
/* Process numbers. */
if (isdigit (c))
@{
yylval = c - '0';
++yylloc.last_column;
while (isdigit (c = getchar ()))
@{
++yylloc.last_column;
yylval = yylval * 10 + c - '0';
@}
ungetc (c, stdin);
return NUM;
@}
@end group
/* Return end-of-input. */
if (c == EOF)
return 0;
/* Return a single char, and update location. */
if (c == '\n')
@{
++yylloc.last_line;
yylloc.last_column = 0;
@}
else
++yylloc.last_column;
return c;
@}
@end example
Basically, the lexical analyzer performs the same processing as before:
it skips blanks and tabs, and reads numbers or single-character tokens.
In addition, it updates @code{yylloc}, the global variable (of type
@code{YYLTYPE}) containing the token's location.
Now, each time this function returns a token, the parser has its number
as well as its semantic value, and its location in the text. The last
needed change is to initialize @code{yylloc}, for example in the
controlling function:
@example
@group
int
main (void)
@{
yylloc.first_line = yylloc.last_line = 1;
yylloc.first_column = yylloc.last_column = 0;
return yyparse ();
@}
@end group
@end example
Remember that computing locations is not a matter of syntax. Every
character must be associated to a location update, whether it is in
valid input, in comments, in literal strings, and so on.
@node Multi-function Calc
@section Multi-Function Calculator: @code{mfcalc}
@cindex multi-function calculator
@cindex @code{mfcalc}
@cindex calculator, multi-function
Now that the basics of Bison have been discussed, it is time to move on to
a more advanced problem. The above calculators provided only five
functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
be nice to have a calculator that provides other mathematical functions such
as @code{sin}, @code{cos}, etc.
It is easy to add new operators to the infix calculator as long as they are
only single-character literals. The lexical analyzer @code{yylex} passes
back all nonnumber characters as tokens, so new grammar rules suffice for
adding a new operator. But we want something more flexible: built-in
functions whose syntax has this form:
@example
@var{function_name} (@var{argument})
@end example
@noindent
At the same time, we will add memory to the calculator, by allowing you
to create named variables, store values in them, and use them later.
Here is a sample session with the multi-function calculator:
@example
$ @kbd{mfcalc}
@kbd{pi = 3.141592653589}
3.1415926536
@kbd{sin(pi)}
0.0000000000
@kbd{alpha = beta1 = 2.3}
2.3000000000
@kbd{alpha}
2.3000000000
@kbd{ln(alpha)}
0.8329091229
@kbd{exp(ln(beta1))}
2.3000000000
$
@end example
Note that multiple assignment and nested function calls are permitted.
@menu
* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
* Rules: Mfcalc Rules. Grammar rules for the calculator.
* Symtab: Mfcalc Symtab. Symbol table management subroutines.
@end menu
@node Mfcalc Decl
@subsection Declarations for @code{mfcalc}
Here are the C and Bison declarations for the multi-function calculator.
@smallexample
@group
%@{
#include <math.h> /* For math functions, cos(), sin(), etc. */
#include "calc.h" /* Contains definition of `symrec'. */
int yylex (void);
void yyerror (char const *);
%@}
@end group
@group
%union @{
double val; /* For returning numbers. */
symrec *tptr; /* For returning symbol-table pointers. */
@}
@end group
%token <val> NUM /* Simple double precision number. */
%token <tptr> VAR FNCT /* Variable and Function. */
%type <val> exp
@group
%right '='
%left '-' '+'
%left '*' '/'
%left NEG /* negation--unary minus */
%right '^' /* exponentiation */
@end group
%% /* The grammar follows. */
@end smallexample
The above grammar introduces only two new features of the Bison language.
These features allow semantic values to have various data types
(@pxref{Multiple Types, ,More Than One Value Type}).
The @code{%union} declaration specifies the entire list of possible types;
this is instead of defining @code{YYSTYPE}. The allowable types are now
double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
Since values can now have various types, it is necessary to associate a
type with each grammar symbol whose semantic value is used. These symbols
are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
declarations are augmented with information about their data type (placed
between angle brackets).
The Bison construct @code{%type} is used for declaring nonterminal
symbols, just as @code{%token} is used for declaring token types. We
have not used @code{%type} before because nonterminal symbols are
normally declared implicitly by the rules that define them. But
@code{exp} must be declared explicitly so we can specify its value type.
@xref{Type Decl, ,Nonterminal Symbols}.
@node Mfcalc Rules
@subsection Grammar Rules for @code{mfcalc}
Here are the grammar rules for the multi-function calculator.
Most of them are copied directly from @code{calc}; three rules,
those which mention @code{VAR} or @code{FNCT}, are new.
@smallexample
@group
input: /* empty */
| input line
;
@end group
@group
line:
'\n'
| exp '\n' @{ printf ("\t%.10g\n", $1); @}
| error '\n' @{ yyerrok; @}
;
@end group
@group
exp: NUM @{ $$ = $1; @}
| VAR @{ $$ = $1->value.var; @}
| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
| exp '+' exp @{ $$ = $1 + $3; @}
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
| exp '/' exp @{ $$ = $1 / $3; @}
| '-' exp %prec NEG @{ $$ = -$2; @}
| exp '^' exp @{ $$ = pow ($1, $3); @}
| '(' exp ')' @{ $$ = $2; @}
;
@end group
/* End of grammar. */
%%
@end smallexample
@node Mfcalc Symtab
@subsection The @code{mfcalc} Symbol Table
@cindex symbol table example
The multi-function calculator requires a symbol table to keep track of the
names and meanings of variables and functions. This doesn't affect the
grammar rules (except for the actions) or the Bison declarations, but it
requires some additional C functions for support.
The symbol table itself consists of a linked list of records. Its
definition, which is kept in the header @file{calc.h}, is as follows. It
provides for either functions or variables to be placed in the table.
@smallexample
@group
/* Function type. */
typedef double (*func_t) (double);
@end group
@group
/* Data type for links in the chain of symbols. */
struct symrec
@{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FNCT */
union
@{
double var; /* value of a VAR */
func_t fnctptr; /* value of a FNCT */
@} value;
struct symrec *next; /* link field */
@};
@end group
@group
typedef struct symrec symrec;
/* The symbol table: a chain of `struct symrec'. */
extern symrec *sym_table;
symrec *putsym (char const *, func_t);
symrec *getsym (char const *);
@end group
@end smallexample
The new version of @code{main} includes a call to @code{init_table}, a
function that initializes the symbol table. Here it is, and
@code{init_table} as well:
@smallexample
#include <stdio.h>
@group
/* Called by yyparse on error. */
void
yyerror (char const *s)
@{
printf ("%s\n", s);
@}
@end group
@group
struct init
@{
char const *fname;
double (*fnct) (double);
@};
@end group
@group
struct init const arith_fncts[] =
@{
"sin", sin,
"cos", cos,
"atan", atan,
"ln", log,
"exp", exp,
"sqrt", sqrt,
0, 0
@};
@end group
@group
/* The symbol table: a chain of `struct symrec'. */
symrec *sym_table;
@end group
@group
/* Put arithmetic functions in table. */
void
init_table (void)
@{
int i;
symrec *ptr;
for (i = 0; arith_fncts[i].fname != 0; i++)
@{
ptr = putsym (arith_fncts[i].fname, FNCT);
ptr->value.fnctptr = arith_fncts[i].fnct;
@}
@}
@end group
@group
int
main (void)
@{
init_table ();
return yyparse ();
@}
@end group
@end smallexample
By simply editing the initialization list and adding the necessary include
files, you can add additional functions to the calculator.
Two important functions allow look-up and installation of symbols in the
symbol table. The function @code{putsym} is passed a name and the type
(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
linked to the front of the list, and a pointer to the object is returned.
The function @code{getsym} is passed the name of the symbol to look up. If
found, a pointer to that symbol is returned; otherwise zero is returned.
@smallexample
symrec *
putsym (char const *sym_name, int sym_type)
@{
symrec *ptr;
ptr = (symrec *) malloc (sizeof (symrec));
ptr->name = (char *) malloc (strlen (sym_name) + 1);
strcpy (ptr->name,sym_name);
ptr->type = sym_type;
ptr->value.var = 0; /* Set value to 0 even if fctn. */
ptr->next = (struct symrec *)sym_table;
sym_table = ptr;
return ptr;
@}
symrec *
getsym (char const *sym_name)
@{
symrec *ptr;
for (ptr = sym_table; ptr != (symrec *) 0;
ptr = (symrec *)ptr->next)
if (strcmp (ptr->name,sym_name) == 0)
return ptr;
return 0;
@}
@end smallexample
The function @code{yylex} must now recognize variables, numeric values, and
the single-character arithmetic operators. Strings of alphanumeric
characters with a leading non-digit are recognized as either variables or
functions depending on what the symbol table says about them.
The string is passed to @code{getsym} for look up in the symbol table. If
the name appears in the table, a pointer to its location and its type
(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
already in the table, then it is installed as a @code{VAR} using
@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
returned to @code{yyparse}.
No change is needed in the handling of numeric values and arithmetic
operators in @code{yylex}.
@smallexample
@group
#include <ctype.h>
@end group
@group
int
yylex (void)
@{
int c;
/* Ignore white space, get first nonwhite character. */
while ((c = getchar ()) == ' ' || c == '\t');
if (c == EOF)
return 0;
@end group
@group
/* Char starts a number => parse the number. */
if (c == '.' || isdigit (c))
@{
ungetc (c, stdin);
scanf ("%lf", &yylval.val);
return NUM;
@}
@end group
@group
/* Char starts an identifier => read the name. */
if (isalpha (c))
@{
symrec *s;
static char *symbuf = 0;
static int length = 0;
int i;
@end group
@group
/* Initially make the buffer long enough
for a 40-character symbol name. */
if (length == 0)
length = 40, symbuf = (char *)malloc (length + 1);
i = 0;
do
@end group
@group
@{
/* If buffer is full, make it bigger. */
if (i == length)
@{
length *= 2;
symbuf = (char *) realloc (symbuf, length + 1);
@}
/* Add this character to the buffer. */
symbuf[i++] = c;
/* Get another character. */
c = getchar ();
@}
@end group
@group
while (isalnum (c));
ungetc (c, stdin);
symbuf[i] = '\0';
@end group
@group
s = getsym (symbuf);
if (s == 0)
s = putsym (symbuf, VAR);
yylval.tptr = s;
return s->type;
@}
/* Any other character is a token by itself. */
return c;
@}
@end group
@end smallexample
This program is both powerful and flexible. You may easily add new
functions, and it is a simple job to modify this code to install
predefined variables such as @code{pi} or @code{e} as well.
@node Exercises
@section Exercises
@cindex exercises
@enumerate
@item
Add some new functions from @file{math.h} to the initialization list.
@item
Add another array that contains constants and their values. Then
modify @code{init_table} to add these constants to the symbol table.
It will be easiest to give the constants type @code{VAR}.
@item
Make the program report an error if the user refers to an
uninitialized variable in any way except to store a value in it.
@end enumerate
@node Grammar File
@chapter Bison Grammar Files
Bison takes as input a context-free grammar specification and produces a
C-language function that recognizes correct instances of the grammar.
The Bison grammar input file conventionally has a name ending in @samp{.y}.
@xref{Invocation, ,Invoking Bison}.
@menu
* Grammar Outline:: Overall layout of the grammar file.
* Symbols:: Terminal and nonterminal symbols.
* Rules:: How to write grammar rules.
* Recursion:: Writing recursive rules.
* Semantics:: Semantic values and actions.
* Locations:: Locations and actions.
* Declarations:: All kinds of Bison declarations are described here.
* Multiple Parsers:: Putting more than one Bison parser in one program.
@end menu
@node Grammar Outline
@section Outline of a Bison Grammar
A Bison grammar file has four main sections, shown here with the
appropriate delimiters:
@example
%@{
@var{Prologue}
%@}
@var{Bison declarations}
%%
@var{Grammar rules}
%%
@var{Epilogue}
@end example
Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
As a @acronym{GNU} extension, @samp{//} introduces a comment that
continues until end of line.
@menu
* Prologue:: Syntax and usage of the prologue.
* Bison Declarations:: Syntax and usage of the Bison declarations section.
* Grammar Rules:: Syntax and usage of the grammar rules section.
* Epilogue:: Syntax and usage of the epilogue.
@end menu
@node Prologue
@subsection The prologue
@cindex declarations section
@cindex Prologue
@cindex declarations
The @var{Prologue} section contains macro definitions and
declarations of functions and variables that are used in the actions in the
grammar rules. These are copied to the beginning of the parser file so
that they precede the definition of @code{yyparse}. You can use
@samp{#include} to get the declarations from a header file. If you don't
need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
delimiters that bracket this section.
You may have more than one @var{Prologue} section, intermixed with the
@var{Bison declarations}. This allows you to have C and Bison
declarations that refer to each other. For example, the @code{%union}
declaration may use types defined in a header file, and you may wish to
prototype functions that take arguments of type @code{YYSTYPE}. This
can be done with two @var{Prologue} blocks, one before and one after the
@code{%union} declaration.
@smallexample
%@{
#include <stdio.h>
#include "ptypes.h"
%@}
%union @{
long int n;
tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
@}
%@{
static void print_token_value (FILE *, int, YYSTYPE);
#define YYPRINT(F, N, L) print_token_value (F, N, L)
%@}
@dots{}
@end smallexample
@node Bison Declarations
@subsection The Bison Declarations Section
@cindex Bison declarations (introduction)
@cindex declarations, Bison (introduction)
The @var{Bison declarations} section contains declarations that define
terminal and nonterminal symbols, specify precedence, and so on.
In some simple grammars you may not need any declarations.
@xref{Declarations, ,Bison Declarations}.
@node Grammar Rules
@subsection The Grammar Rules Section
@cindex grammar rules section
@cindex rules section for grammar
The @dfn{grammar rules} section contains one or more Bison grammar
rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
There must always be at least one grammar rule, and the first
@samp{%%} (which precedes the grammar rules) may never be omitted even
if it is the first thing in the file.
@node Epilogue
@subsection The epilogue
@cindex additional C code section
@cindex epilogue
@cindex C code, section for additional
The @var{Epilogue} is copied verbatim to the end of the parser file, just as
the @var{Prologue} is copied to the beginning. This is the most convenient
place to put anything that you want to have in the parser file but which need
not come before the definition of @code{yyparse}. For example, the
definitions of @code{yylex} and @code{yyerror} often go here. Because
C requires functions to be declared before being used, you often need
to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
even if you define them int he Epilogue.
@xref{Interface, ,Parser C-Language Interface}.
If the last section is empty, you may omit the @samp{%%} that separates it
from the grammar rules.
The Bison parser itself contains many macros and identifiers whose
names start with @samp{yy} or @samp{YY}, so it is a
good idea to avoid using any such names (except those documented in this
manual) in the epilogue of the grammar file.
@node Symbols
@section Symbols, Terminal and Nonterminal
@cindex nonterminal symbol
@cindex terminal symbol
@cindex token type
@cindex symbol
@dfn{Symbols} in Bison grammars represent the grammatical classifications
of the language.
A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
class of syntactically equivalent tokens. You use the symbol in grammar
rules to mean that a token in that class is allowed. The symbol is
represented in the Bison parser by a numeric code, and the @code{yylex}
function returns a token type code to indicate what kind of token has been
read. You don't need to know what the code value is; you can use the
symbol to stand for it.
A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
groupings. The symbol name is used in writing grammar rules. By convention,
it should be all lower case.
Symbol names can contain letters, digits (not at the beginning),
underscores and periods. Periods make sense only in nonterminals.
There are three ways of writing terminal symbols in the grammar:
@itemize @bullet
@item
A @dfn{named token type} is written with an identifier, like an
identifier in C@. By convention, it should be all upper case. Each
such name must be defined with a Bison declaration such as
@code{%token}. @xref{Token Decl, ,Token Type Names}.
@item
@cindex character token
@cindex literal token
@cindex single-character literal
A @dfn{character token type} (or @dfn{literal character token}) is
written in the grammar using the same syntax used in C for character
constants; for example, @code{'+'} is a character token type. A
character token type doesn't need to be declared unless you need to
specify its semantic value data type (@pxref{Value Type, ,Data Types of
Semantic Values}), associativity, or precedence (@pxref{Precedence,
,Operator Precedence}).
By convention, a character token type is used only to represent a
token that consists of that particular character. Thus, the token
type @code{'+'} is used to represent the character @samp{+} as a
token. Nothing enforces this convention, but if you depart from it,
your program will confuse other readers.
All the usual escape sequences used in character literals in C can be
used in Bison as well, but you must not use the null character as a
character literal because its numeric code, zero, signifies
end-of-input (@pxref{Calling Convention, ,Calling Convention
for @code{yylex}}). Also, unlike standard C, trigraphs have no
special meaning in Bison character literals, nor is backslash-newline
allowed.
@item
@cindex string token
@cindex literal string token
@cindex multicharacter literal
A @dfn{literal string token} is written like a C string constant; for
example, @code{"<="} is a literal string token. A literal string token
doesn't need to be declared unless you need to specify its semantic
value data type (@pxref{Value Type}), associativity, or precedence
(@pxref{Precedence}).
You can associate the literal string token with a symbolic name as an
alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
Declarations}). If you don't do that, the lexical analyzer has to
retrieve the token number for the literal string token from the
@code{yytname} table (@pxref{Calling Convention}).
@strong{Warning}: literal string tokens do not work in Yacc.
By convention, a literal string token is used only to represent a token
that consists of that particular string. Thus, you should use the token
type @code{"<="} to represent the string @samp{<=} as a token. Bison
does not enforce this convention, but if you depart from it, people who
read your program will be confused.
All the escape sequences used in string literals in C can be used in
Bison as well, except that you must not use a null character within a
string literal. Also, unlike Standard C, trigraphs have no special
meaning in Bison string literals, nor is backslash-newline allowed. A
literal string token must contain two or more characters; for a token
containing just one character, use a character token (see above).
@end itemize
How you choose to write a terminal symbol has no effect on its
grammatical meaning. That depends only on where it appears in rules and
on when the parser function returns that symbol.
The value returned by @code{yylex} is always one of the terminal
symbols, except that a zero or negative value signifies end-of-input.
Whichever way you write the token type in the grammar rules, you write
it the same way in the definition of @code{yylex}. The numeric code
for a character token type is simply the positive numeric code of the
character, so @code{yylex} can use the identical value to generate the
requisite code, though you may need to convert it to @code{unsigned
char} to avoid sign-extension on hosts where @code{char} is signed.
Each named token type becomes a C macro in
the parser file, so @code{yylex} can use the name to stand for the code.
(This is why periods don't make sense in terminal symbols.)
@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
If @code{yylex} is defined in a separate file, you need to arrange for the
token-type macro definitions to be available there. Use the @samp{-d}
option when you run Bison, so that it will write these macro definitions
into a separate header file @file{@var{name}.tab.h} which you can include
in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
If you want to write a grammar that is portable to any Standard C
host, you must use only non-null character tokens taken from the basic
execution character set of Standard C@. This set consists of the ten
digits, the 52 lower- and upper-case English letters, and the
characters in the following C-language string:
@example
"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
@end example
The @code{yylex} function and Bison must use a consistent character
set and encoding for character tokens. For example, if you run Bison in an
@acronym{ASCII} environment, but then compile and run the resulting program
in an environment that uses an incompatible character set like
@acronym{EBCDIC}, the resulting program may not work because the
tables generated by Bison will assume @acronym{ASCII} numeric values for
character tokens. It is standard
practice for software distributions to contain C source files that
were generated by Bison in an @acronym{ASCII} environment, so installers on
platforms that are incompatible with @acronym{ASCII} must rebuild those
files before compiling them.
The symbol @code{error} is a terminal symbol reserved for error recovery
(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
In particular, @code{yylex} should never return this value. The default
value of the error token is 256, unless you explicitly assigned 256 to
one of your tokens with a @code{%token} declaration.
@node Rules
@section Syntax of Grammar Rules
@cindex rule syntax
@cindex grammar rule syntax
@cindex syntax of grammar rules
A Bison grammar rule has the following general form:
@example
@group
@var{result}: @var{components}@dots{}
;
@end group
@end example
@noindent
where @var{result} is the nonterminal symbol that this rule describes,
and @var{components} are various terminal and nonterminal symbols that
are put together by this rule (@pxref{Symbols}).
For example,
@example
@group
exp: exp '+' exp
;
@end group
@end example
@noindent
says that two groupings of type @code{exp}, with a @samp{+} token in between,
can be combined into a larger grouping of type @code{exp}.
White space in rules is significant only to separate symbols. You can add
extra white space as you wish.
Scattered among the components can be @var{actions} that determine
the semantics of the rule. An action looks like this:
@example
@{@var{C statements}@}
@end example
@noindent
Usually there is only one action and it follows the components.
@xref{Actions}.
@findex |
Multiple rules for the same @var{result} can be written separately or can
be joined with the vertical-bar character @samp{|} as follows:
@ifinfo
@example
@var{result}: @var{rule1-components}@dots{}
| @var{rule2-components}@dots{}
@dots{}
;
@end example
@end ifinfo
@iftex
@example
@group
@var{result}: @var{rule1-components}@dots{}
| @var{rule2-components}@dots{}
@dots{}
;
@end group
@end example
@end iftex
@noindent
They are still considered distinct rules even when joined in this way.
If @var{components} in a rule is empty, it means that @var{result} can
match the empty string. For example, here is how to define a
comma-separated sequence of zero or more @code{exp} groupings:
@example
@group
expseq: /* empty */
| expseq1
;
@end group
@group
expseq1: exp
| expseq1 ',' exp
;
@end group
@end example
@noindent
It is customary to write a comment @samp{/* empty */} in each rule
with no components.
@node Recursion
@section Recursive Rules
@cindex recursive rule
A rule is called @dfn{recursive} when its @var{result} nonterminal appears
also on its right hand side. Nearly all Bison grammars need to use
recursion, because that is the only way to define a sequence of any number
of a particular thing. Consider this recursive definition of a
comma-separated sequence of one or more expressions:
@example
@group
expseq1: exp
| expseq1 ',' exp
;
@end group
@end example
@cindex left recursion
@cindex right recursion
@noindent
Since the recursive use of @code{expseq1} is the leftmost symbol in the
right hand side, we call this @dfn{left recursion}. By contrast, here
the same construct is defined using @dfn{right recursion}:
@example
@group
expseq1: exp
| exp ',' expseq1
;
@end group
@end example
@noindent
Any kind of sequence can be defined using either left recursion or right
recursion, but you should always use left recursion, because it can
parse a sequence of any number of elements with bounded stack space.
Right recursion uses up space on the Bison stack in proportion to the
number of elements in the sequence, because all the elements must be
shifted onto the stack before the rule can be applied even once.
@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
of this.
@cindex mutual recursion
@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
rule does not appear directly on its right hand side, but does appear
in rules for other nonterminals which do appear on its right hand
side.
For example:
@example
@group
expr: primary
| primary '+' primary
;
@end group
@group
primary: constant
| '(' expr ')'
;
@end group
@end example
@noindent
defines two mutually-recursive nonterminals, since each refers to the
other.
@node Semantics
@section Defining Language Semantics
@cindex defining language semantics
@cindex language semantics, defining
The grammar rules for a language determine only the syntax. The semantics
are determined by the semantic values associated with various tokens and
groupings, and by the actions taken when various groupings are recognized.
For example, the calculator calculates properly because the value
associated with each expression is the proper number; it adds properly
because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
the numbers associated with @var{x} and @var{y}.
@menu
* Value Type:: Specifying one data type for all semantic values.
* Multiple Types:: Specifying several alternative data types.
* Actions:: An action is the semantic definition of a grammar rule.
* Action Types:: Specifying data types for actions to operate on.
* Mid-Rule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
@end menu
@node Value Type
@subsection Data Types of Semantic Values
@cindex semantic value type
@cindex value type, semantic
@cindex data types of semantic values
@cindex default data type
In a simple program it may be sufficient to use the same data type for
the semantic values of all language constructs. This was true in the
@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
Notation Calculator}).
Bison's default is to use type @code{int} for all semantic values. To
specify some other type, define @code{YYSTYPE} as a macro, like this:
@example
#define YYSTYPE double
@end example
@noindent
This macro definition must go in the prologue of the grammar file
(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
@node Multiple Types
@subsection More Than One Value Type
In most programs, you will need different data types for different kinds
of tokens and groupings. For example, a numeric constant may need type
@code{int} or @code{long int}, while a string constant needs type @code{char *},
and an identifier might need a pointer to an entry in the symbol table.
To use more than one data type for semantic values in one parser, Bison
requires you to do two things:
@itemize @bullet
@item
Specify the entire collection of possible data types, with the
@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
Value Types}).
@item
Choose one of those types for each symbol (terminal or nonterminal) for
which semantic values are used. This is done for tokens with the
@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
and for groupings with the @code{%type} Bison declaration (@pxref{Type
Decl, ,Nonterminal Symbols}).
@end itemize
@node Actions
@subsection Actions
@cindex action
@vindex $$
@vindex $@var{n}
An action accompanies a syntactic rule and contains C code to be executed
each time an instance of that rule is recognized. The task of most actions
is to compute a semantic value for the grouping built by the rule from the
semantic values associated with tokens or smaller groupings.
An action consists of C statements surrounded by braces, much like a
compound statement in C@. An action can contain any sequence of C
statements. Bison does not look for trigraphs, though, so if your C
code uses trigraphs you should ensure that they do not affect the
nesting of braces or the boundaries of comments, strings, or character
literals.
An action can be placed at any position in the rule;
it is executed at that position. Most rules have just one action at the
end of the rule, following all the components. Actions in the middle of
a rule are tricky and used only for special purposes (@pxref{Mid-Rule
Actions, ,Actions in Mid-Rule}).
The C code in an action can refer to the semantic values of the components
matched by the rule with the construct @code{$@var{n}}, which stands for
the value of the @var{n}th component. The semantic value for the grouping
being constructed is @code{$$}. Bison translates both of these
constructs into expressions of the appropriate type when it copies the
actions into the parser file. @code{$$} is translated to a modifiable
lvalue, so it can be assigned to.
Here is a typical example:
@example
@group
exp: @dots{}
| exp '+' exp
@{ $$ = $1 + $3; @}
@end group
@end example
@noindent
This rule constructs an @code{exp} from two smaller @code{exp} groupings
connected by a plus-sign token. In the action, @code{$1} and @code{$3}
refer to the semantic values of the two component @code{exp} groupings,
which are the first and third symbols on the right hand side of the rule.
The sum is stored into @code{$$} so that it becomes the semantic value of
the addition-expression just recognized by the rule. If there were a
useful semantic value associated with the @samp{+} token, it could be
referred to as @code{$2}.
Note that the vertical-bar character @samp{|} is really a rule
separator, and actions are attached to a single rule. This is a
difference with tools like Flex, for which @samp{|} stands for either
``or'', or ``the same action as that of the next rule''. In the
following example, the action is triggered only when @samp{b} is found:
@example
@group
a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
@end group
@end example
@cindex default action
If you don't specify an action for a rule, Bison supplies a default:
@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
becomes the value of the whole rule. Of course, the default action is
valid only if the two data types match. There is no meaningful default
action for an empty rule; every empty rule must have an explicit action
unless the rule's value does not matter.
@code{$@var{n}} with @var{n} zero or negative is allowed for reference
to tokens and groupings on the stack @emph{before} those that match the
current rule. This is a very risky practice, and to use it reliably
you must be certain of the context in which the rule is applied. Here
is a case in which you can use this reliably:
@example
@group
foo: expr bar '+' expr @{ @dots{} @}
| expr bar '-' expr @{ @dots{} @}
;
@end group
@group
bar: /* empty */
@{ previous_expr = $0; @}
;
@end group
@end example
As long as @code{bar} is used only in the fashion shown here, @code{$0}
always refers to the @code{expr} which precedes @code{bar} in the
definition of @code{foo}.
@node Action Types
@subsection Data Types of Values in Actions
@cindex action data types
@cindex data types in actions
If you have chosen a single data type for semantic values, the @code{$$}
and @code{$@var{n}} constructs always have that data type.
If you have used @code{%union} to specify a variety of data types, then you
must declare a choice among these types for each terminal or nonterminal
symbol that can have a semantic value. Then each time you use @code{$$} or
@code{$@var{n}}, its data type is determined by which symbol it refers to
in the rule. In this example,
@example
@group
exp: @dots{}
| exp '+' exp
@{ $$ = $1 + $3; @}
@end group
@end example
@noindent
@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
have the data type declared for the nonterminal symbol @code{exp}. If
@code{$2} were used, it would have the data type declared for the
terminal symbol @code{'+'}, whatever that might be.
Alternatively, you can specify the data type when you refer to the value,
by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
reference. For example, if you have defined types as shown here:
@example
@group
%union @{
int itype;
double dtype;
@}
@end group
@end example
@noindent
then you can write @code{$<itype>1} to refer to the first subunit of the
rule as an integer, or @code{$<dtype>1} to refer to it as a double.
@node Mid-Rule Actions
@subsection Actions in Mid-Rule
@cindex actions in mid-rule
@cindex mid-rule actions
Occasionally it is useful to put an action in the middle of a rule.
These actions are written just like usual end-of-rule actions, but they
are executed before the parser even recognizes the following components.
A mid-rule action may refer to the components preceding it using
@code{$@var{n}}, but it may not refer to subsequent components because
it is run before they are parsed.
The mid-rule action itself counts as one of the components of the rule.
This makes a difference when there is another action later in the same rule
(and usually there is another at the end): you have to count the actions
along with the symbols when working out which number @var{n} to use in
@code{$@var{n}}.
The mid-rule action can also have a semantic value. The action can set
its value with an assignment to @code{$$}, and actions later in the rule
can refer to the value using @code{$@var{n}}. Since there is no symbol
to name the action, there is no way to declare a data type for the value
in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
specify a data type each time you refer to this value.
There is no way to set the value of the entire rule with a mid-rule
action, because assignments to @code{$$} do not have that effect. The
only way to set the value for the entire rule is with an ordinary action
at the end of the rule.
Here is an example from a hypothetical compiler, handling a @code{let}
statement that looks like @samp{let (@var{variable}) @var{statement}} and
serves to create a variable named @var{variable} temporarily for the
duration of @var{statement}. To parse this construct, we must put
@var{variable} into the symbol table while @var{statement} is parsed, then
remove it afterward. Here is how it is done:
@example
@group
stmt: LET '(' var ')'
@{ $<context>$ = push_context ();
declare_variable ($3); @}
stmt @{ $$ = $6;
pop_context ($<context>5); @}
@end group
@end example
@noindent
As soon as @samp{let (@var{variable})} has been recognized, the first
action is run. It saves a copy of the current semantic context (the
list of accessible variables) as its semantic value, using alternative
@code{context} in the data-type union. Then it calls
@code{declare_variable} to add the new variable to that list. Once the
first action is finished, the embedded statement @code{stmt} can be
parsed. Note that the mid-rule action is component number 5, so the
@samp{stmt} is component number 6.
After the embedded statement is parsed, its semantic value becomes the
value of the entire @code{let}-statement. Then the semantic value from the
earlier action is used to restore the prior list of variables. This
removes the temporary @code{let}-variable from the list so that it won't
appear to exist while the rest of the program is parsed.
Taking action before a rule is completely recognized often leads to
conflicts since the parser must commit to a parse in order to execute the
action. For example, the following two rules, without mid-rule actions,
can coexist in a working parser because the parser can shift the open-brace
token and look at what follows before deciding whether there is a
declaration or not:
@example
@group
compound: '@{' declarations statements '@}'
| '@{' statements '@}'
;
@end group
@end example
@noindent
But when we add a mid-rule action as follows, the rules become nonfunctional:
@example
@group
compound: @{ prepare_for_local_variables (); @}
'@{' declarations statements '@}'
@end group
@group
| '@{' statements '@}'
;
@end group
@end example
@noindent
Now the parser is forced to decide whether to run the mid-rule action
when it has read no farther than the open-brace. In other words, it
must commit to using one rule or the other, without sufficient
information to do it correctly. (The open-brace token is what is called
the @dfn{look-ahead} token at this time, since the parser is still
deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
You might think that you could correct the problem by putting identical
actions into the two rules, like this:
@example
@group
compound: @{ prepare_for_local_variables (); @}
'@{' declarations statements '@}'
| @{ prepare_for_local_variables (); @}
'@{' statements '@}'
;
@end group
@end example
@noindent
But this does not help, because Bison does not realize that the two actions
are identical. (Bison never tries to understand the C code in an action.)
If the grammar is such that a declaration can be distinguished from a
statement by the first token (which is true in C), then one solution which
does work is to put the action after the open-brace, like this:
@example
@group
compound: '@{' @{ prepare_for_local_variables (); @}
declarations statements '@}'
| '@{' statements '@}'
;
@end group
@end example
@noindent
Now the first token of the following declaration or statement,
which would in any case tell Bison which rule to use, can still do so.
Another solution is to bury the action inside a nonterminal symbol which
serves as a subroutine:
@example
@group
subroutine: /* empty */
@{ prepare_for_local_variables (); @}
;
@end group
@group
compound: subroutine
'@{' declarations statements '@}'
| subroutine
'@{' statements '@}'
;
@end group
@end example
@noindent
Now Bison can execute the action in the rule for @code{subroutine} without
deciding which rule for @code{compound} it will eventually use. Note that
the action is now at the end of its rule. Any mid-rule action can be
converted to an end-of-rule action in this way, and this is what Bison
actually does to implement mid-rule actions.
@node Locations
@section Tracking Locations
@cindex location
@cindex textual location
@cindex location, textual
Though grammar rules and semantic actions are enough to write a fully
functional parser, it can be useful to process some additional information,
especially symbol locations.
The way locations are handled is defined by providing a data type, and
actions to take when rules are matched.
@menu
* Location Type:: Specifying a data type for locations.
* Actions and Locations:: Using locations in actions.
* Location Default Action:: Defining a general way to compute locations.
@end menu
@node Location Type
@subsection Data Type of Locations
@cindex data type of locations
@cindex default location type
Defining a data type for locations is much simpler than for semantic values,
since all tokens and groupings always use the same type.
The type of locations is specified by defining a macro called @code{YYLTYPE}.
When @code{YYLTYPE} is not defined, Bison uses a default structure type with
four members:
@example
typedef struct YYLTYPE
@{
int first_line;
int first_column;
int last_line;
int last_column;
@} YYLTYPE;
@end example
@node Actions and Locations
@subsection Actions and Locations
@cindex location actions
@cindex actions, location
@vindex @@$
@vindex @@@var{n}
Actions are not only useful for defining language semantics, but also for
describing the behavior of the output parser with locations.
The most obvious way for building locations of syntactic groupings is very
similar to the way semantic values are computed. In a given rule, several
constructs can be used to access the locations of the elements being matched.
The location of the @var{n}th component of the right hand side is
@code{@@@var{n}}, while the location of the left hand side grouping is
@code{@@$}.
Here is a basic example using the default data type for locations:
@example
@group
exp: @dots{}
| exp '/' exp
@{
@@$.first_column = @@1.first_column;
@@$.first_line = @@1.first_line;
@@$.last_column = @@3.last_column;
@@$.last_line = @@3.last_line;
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
fprintf (stderr,
"Division by zero, l%d,c%d-l%d,c%d",
@@3.first_line, @@3.first_column,
@@3.last_line, @@3.last_column);
@}
@}
@end group
@end example
As for semantic values, there is a default action for locations that is
run each time a rule is matched. It sets the beginning of @code{@@$} to the
beginning of the first symbol, and the end of @code{@@$} to the end of the
last symbol.
With this default action, the location tracking can be fully automatic. The
example above simply rewrites this way:
@example
@group
exp: @dots{}
| exp '/' exp
@{
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
fprintf (stderr,
"Division by zero, l%d,c%d-l%d,c%d",
@@3.first_line, @@3.first_column,
@@3.last_line, @@3.last_column);
@}
@}
@end group
@end example
@node Location Default Action
@subsection Default Action for Locations
@vindex YYLLOC_DEFAULT
Actually, actions are not the best place to compute locations. Since
locations are much more general than semantic values, there is room in
the output parser to redefine the default action to take for each
rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
matched, before the associated action is run. It is also invoked
while processing a syntax error, to compute the error's location.
Most of the time, this macro is general enough to suppress location
dedicated code from semantic actions.
The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
the location of the grouping (the result of the computation). When a
rule is matched, the second parameter is an array holding locations of
all right hand side elements of the rule being matched, and the third
parameter is the size of the rule's right hand side. When processing
a syntax error, the second parameter is an array holding locations of
the symbols that were discarded during error processing, and the third
parameter is the number of discarded symbols.
By default, @code{YYLLOC_DEFAULT} is defined this way for simple
@acronym{LALR}(1) parsers:
@example
@group
# define YYLLOC_DEFAULT(Current, Rhs, N) \
((Current).first_line = (Rhs)[1].first_line, \
(Current).first_column = (Rhs)[1].first_column, \
(Current).last_line = (Rhs)[N].last_line, \
(Current).last_column = (Rhs)[N].last_column)
@end group
@end example
@noindent
and like this for @acronym{GLR} parsers:
@example
@group
# define YYLLOC_DEFAULT(yyCurrent, yyRhs, YYN) \
((yyCurrent).first_line = YYRHSLOC(yyRhs, 1).first_line, \
(yyCurrent).first_column = YYRHSLOC(yyRhs, 1).first_column, \
(yyCurrent).last_line = YYRHSLOC(yyRhs, YYN).last_line, \
(yyCurrent).last_column = YYRHSLOC(yyRhs, YYN).last_column)
@end group
@end example
When defining @code{YYLLOC_DEFAULT}, you should consider that:
@itemize @bullet
@item
All arguments are free of side-effects. However, only the first one (the
result) should be modified by @code{YYLLOC_DEFAULT}.
@item
For consistency with semantic actions, valid indexes for the location
array range from 1 to @var{n}.
@item
Your macro should parenthesize its arguments, if need be, since the
actual arguments may not be surrounded by parentheses. Also, your
macro should expand to something that can be used as a single
statement when it is followed by a semicolon.
@end itemize
@node Declarations
@section Bison Declarations
@cindex declarations, Bison
@cindex Bison declarations
The @dfn{Bison declarations} section of a Bison grammar defines the symbols
used in formulating the grammar and the data types of semantic values.
@xref{Symbols}.
All token type names (but not single-character literal tokens such as
@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
declared if you need to specify which data type to use for the semantic
value (@pxref{Multiple Types, ,More Than One Value Type}).
The first rule in the file also specifies the start symbol, by default.
If you want some other symbol to be the start symbol, you must declare
it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
Grammars}).
@menu
* Token Decl:: Declaring terminal symbols.
* Precedence Decl:: Declaring terminals with precedence and associativity.
* Union Decl:: Declaring the set of all semantic value types.
* Type Decl:: Declaring the choice of type for a nonterminal symbol.
* Destructor Decl:: Declaring how symbols are freed.
* Expect Decl:: Suppressing warnings about parsing conflicts.
* Start Decl:: Specifying the start symbol.
* Pure Decl:: Requesting a reentrant parser.
* Decl Summary:: Table of all Bison declarations.
@end menu
@node Token Decl
@subsection Token Type Names
@cindex declaring token type names
@cindex token type names, declaring
@cindex declaring literal string tokens
@findex %token
The basic way to declare a token type name (terminal symbol) is as follows:
@example
%token @var{name}
@end example
Bison will convert this into a @code{#define} directive in
the parser, so that the function @code{yylex} (if it is in this file)
can use the name @var{name} to stand for this token type's code.
Alternatively, you can use @code{%left}, @code{%right}, or
@code{%nonassoc} instead of @code{%token}, if you wish to specify
associativity and precedence. @xref{Precedence Decl, ,Operator
Precedence}.
You can explicitly specify the numeric code for a token type by appending
a decimal or hexadecimal integer value in the field immediately
following the token name:
@example
%token NUM 300
%token XNUM 0x12d // a GNU extension
@end example
@noindent
It is generally best, however, to let Bison choose the numeric codes for
all token types. Bison will automatically select codes that don't conflict
with each other or with normal characters.
In the event that the stack type is a union, you must augment the
@code{%token} or other token declaration to include the data type
alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
Than One Value Type}).
For example:
@example
@group
%union @{ /* define stack type */
double val;
symrec *tptr;
@}
%token <val> NUM /* define token NUM and its type */
@end group
@end example
You can associate a literal string token with a token type name by
writing the literal string at the end of a @code{%token}
declaration which declares the name. For example:
@example
%token arrow "=>"
@end example
@noindent
For example, a grammar for the C language might specify these names with
equivalent literal string tokens:
@example
%token <operator> OR "||"
%token <operator> LE 134 "<="
%left OR "<="
@end example
@noindent
Once you equate the literal string and the token name, you can use them
interchangeably in further declarations or the grammar rules. The
@code{yylex} function can use the token name or the literal string to
obtain the token type code number (@pxref{Calling Convention}).
@node Precedence Decl
@subsection Operator Precedence
@cindex precedence declarations
@cindex declaring operator precedence
@cindex operator precedence, declaring
Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
declare a token and specify its precedence and associativity, all at
once. These are called @dfn{precedence declarations}.
@xref{Precedence, ,Operator Precedence}, for general information on
operator precedence.
The syntax of a precedence declaration is the same as that of
@code{%token}: either
@example
%left @var{symbols}@dots{}
@end example
@noindent
or
@example
%left <@var{type}> @var{symbols}@dots{}
@end example
And indeed any of these declarations serves the purposes of @code{%token}.
But in addition, they specify the associativity and relative precedence for
all the @var{symbols}:
@itemize @bullet
@item
The associativity of an operator @var{op} determines how repeated uses
of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
@var{z}} is parsed by grouping @var{x} with @var{y} first or by
grouping @var{y} with @var{z} first. @code{%left} specifies
left-associativity (grouping @var{x} with @var{y} first) and
@code{%right} specifies right-associativity (grouping @var{y} with
@var{z} first). @code{%nonassoc} specifies no associativity, which
means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
considered a syntax error.
@item
The precedence of an operator determines how it nests with other operators.
All the tokens declared in a single precedence declaration have equal
precedence and nest together according to their associativity.
When two tokens declared in different precedence declarations associate,
the one declared later has the higher precedence and is grouped first.
@end itemize
@node Union Decl
@subsection The Collection of Value Types
@cindex declaring value types
@cindex value types, declaring
@findex %union
The @code{%union} declaration specifies the entire collection of possible
data types for semantic values. The keyword @code{%union} is followed by a
pair of braces containing the same thing that goes inside a @code{union} in
C.
For example:
@example
@group
%union @{
double val;
symrec *tptr;
@}
@end group
@end example
@noindent
This says that the two alternative types are @code{double} and @code{symrec
*}. They are given names @code{val} and @code{tptr}; these names are used
in the @code{%token} and @code{%type} declarations to pick one of the types
for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
As an extension to @acronym{POSIX}, a tag is allowed after the
@code{union}. For example:
@example
@group
%union value @{
double val;
symrec *tptr;
@}
@end group
@end example
specifies the union tag @code{value}, so the corresponding C type is
@code{union value}. If you do not specify a tag, it defaults to
@code{YYSTYPE}.
Note that, unlike making a @code{union} declaration in C, you need not write
a semicolon after the closing brace.
@node Type Decl
@subsection Nonterminal Symbols
@cindex declaring value types, nonterminals
@cindex value types, nonterminals, declaring
@findex %type
@noindent
When you use @code{%union} to specify multiple value types, you must
declare the value type of each nonterminal symbol for which values are
used. This is done with a @code{%type} declaration, like this:
@example
%type <@var{type}> @var{nonterminal}@dots{}
@end example
@noindent
Here @var{nonterminal} is the name of a nonterminal symbol, and
@var{type} is the name given in the @code{%union} to the alternative
that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
can give any number of nonterminal symbols in the same @code{%type}
declaration, if they have the same value type. Use spaces to separate
the symbol names.
You can also declare the value type of a terminal symbol. To do this,
use the same @code{<@var{type}>} construction in a declaration for the
terminal symbol. All kinds of token declarations allow
@code{<@var{type}>}.
@node Destructor Decl
@subsection Freeing Discarded Symbols
@cindex freeing discarded symbols
@findex %destructor
Some symbols can be discarded by the parser, typically during error
recovery (@pxref{Error Recovery}). Basically, during error recovery,
embarrassing symbols already pushed on the stack, and embarrassing
tokens coming from the rest of the file are thrown away until the parser
falls on its feet. If these symbols convey heap based information, this
memory is lost. While this behavior is tolerable for batch parsers,
such as in compilers, it is unacceptable for parsers that can
possibility ``never end'' such as shells, or implementations of
communication protocols.
The @code{%destructor} directive allows for the definition of code that
is called when a symbol is thrown away.
@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
@findex %destructor
Declare that the @var{code} must be invoked for each of the
@var{symbols} that will be discarded by the parser. The @var{code}
should use @code{$$} to designate the semantic value associated to the
@var{symbols}. The additional parser parameters are also available
(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
@strong{Warning:} as of Bison 1.875, this feature is still considered as
experimental, as there was not enough user feedback. In particular,
the syntax might still change.
@end deffn
For instance:
@smallexample
%union
@{
char *string;
@}
%token <string> STRING
%type <string> string
%destructor @{ free ($$); @} STRING string
@end smallexample
@noindent
guarantees that when a @code{STRING} or a @code{string} will be discarded,
its associated memory will be freed.
Note that in the future, Bison might also consider that right hand side
members that are not mentioned in the action can be destroyed. For
instance, in:
@smallexample
comment: "/*" STRING "*/";
@end smallexample
@noindent
the parser is entitled to destroy the semantic value of the
@code{string}. Of course, this will not apply to the default action;
compare:
@smallexample
typeless: string; // $$ = $1 does not apply; $1 is destroyed.
typefull: string; // $$ = $1 applies, $1 is not destroyed.
@end smallexample
@node Expect Decl
@subsection Suppressing Conflict Warnings
@cindex suppressing conflict warnings
@cindex preventing warnings about conflicts
@cindex warnings, preventing
@cindex conflicts, suppressing warnings of
@findex %expect
@findex %expect-rr
Bison normally warns if there are any conflicts in the grammar
(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
have harmless shift/reduce conflicts which are resolved in a predictable
way and would be difficult to eliminate. It is desirable to suppress
the warning about these conflicts unless the number of conflicts
changes. You can do this with the @code{%expect} declaration.
The declaration looks like this:
@example
%expect @var{n}
@end example
Here @var{n} is a decimal integer. The declaration says there should be
no warning if there are @var{n} shift/reduce conflicts and no
reduce/reduce conflicts. The usual warning is
given if there are either more or fewer conflicts, or if there are any
reduce/reduce conflicts.
For normal LALR(1) parsers, reduce/reduce conflicts are more serious,
and should be eliminated entirely. Bison will always report
reduce/reduce conflicts for these parsers. With GLR parsers, however,
both shift/reduce and reduce/reduce are routine (otherwise, there
would be no need to use GLR parsing). Therefore, it is also possible
to specify an expected number of reduce/reduce conflicts in GLR
parsers, using the declaration:
@example
%expect-rr @var{n}
@end example
In general, using @code{%expect} involves these steps:
@itemize @bullet
@item
Compile your grammar without @code{%expect}. Use the @samp{-v} option
to get a verbose list of where the conflicts occur. Bison will also
print the number of conflicts.
@item
Check each of the conflicts to make sure that Bison's default
resolution is what you really want. If not, rewrite the grammar and
go back to the beginning.
@item
Add an @code{%expect} declaration, copying the number @var{n} from the
number which Bison printed.
@end itemize
Now Bison will stop annoying you if you do not change the number of
conflicts, but it will warn you again if changes in the grammar result
in more or fewer conflicts.
@node Start Decl
@subsection The Start-Symbol
@cindex declaring the start symbol
@cindex start symbol, declaring
@cindex default start symbol
@findex %start
Bison assumes by default that the start symbol for the grammar is the first
nonterminal specified in the grammar specification section. The programmer
may override this restriction with the @code{%start} declaration as follows:
@example
%start @var{symbol}
@end example
@node Pure Decl
@subsection A Pure (Reentrant) Parser
@cindex reentrant parser
@cindex pure parser
@findex %pure-parser
A @dfn{reentrant} program is one which does not alter in the course of
execution; in other words, it consists entirely of @dfn{pure} (read-only)
code. Reentrancy is important whenever asynchronous execution is possible;
for example, a non-reentrant program may not be safe to call from a signal
handler. In systems with multiple threads of control, a non-reentrant
program must be called only within interlocks.
Normally, Bison generates a parser which is not reentrant. This is
suitable for most uses, and it permits compatibility with Yacc. (The
standard Yacc interfaces are inherently nonreentrant, because they use
statically allocated variables for communication with @code{yylex},
including @code{yylval} and @code{yylloc}.)
Alternatively, you can generate a pure, reentrant parser. The Bison
declaration @code{%pure-parser} says that you want the parser to be
reentrant. It looks like this:
@example
%pure-parser
@end example
The result is that the communication variables @code{yylval} and
@code{yylloc} become local variables in @code{yyparse}, and a different
calling convention is used for the lexical analyzer function
@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
Parsers}, for the details of this. The variable @code{yynerrs} also
becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
Reporting Function @code{yyerror}}). The convention for calling
@code{yyparse} itself is unchanged.
Whether the parser is pure has nothing to do with the grammar rules.
You can generate either a pure parser or a nonreentrant parser from any
valid grammar.
@node Decl Summary
@subsection Bison Declaration Summary
@cindex Bison declaration summary
@cindex declaration summary
@cindex summary, Bison declaration
Here is a summary of the declarations used to define a grammar:
@deffn {Directive} %union
Declare the collection of data types that semantic values may have
(@pxref{Union Decl, ,The Collection of Value Types}).
@end deffn
@deffn {Directive} %token
Declare a terminal symbol (token type name) with no precedence
or associativity specified (@pxref{Token Decl, ,Token Type Names}).
@end deffn
@deffn {Directive} %right
Declare a terminal symbol (token type name) that is right-associative
(@pxref{Precedence Decl, ,Operator Precedence}).
@end deffn
@deffn {Directive} %left
Declare a terminal symbol (token type name) that is left-associative
(@pxref{Precedence Decl, ,Operator Precedence}).
@end deffn
@deffn {Directive} %nonassoc
Declare a terminal symbol (token type name) that is nonassociative
(@pxref{Precedence Decl, ,Operator Precedence}).
Using it in a way that would be associative is a syntax error.
@end deffn
@ifset defaultprec
@deffn {Directive} %default-prec
Assign a precedence to rules lacking an explicit @code{%prec} modifier
(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
@end deffn
@end ifset
@deffn {Directive} %type
Declare the type of semantic values for a nonterminal symbol
(@pxref{Type Decl, ,Nonterminal Symbols}).
@end deffn
@deffn {Directive} %start
Specify the grammar's start symbol (@pxref{Start Decl, ,The
Start-Symbol}).
@end deffn
@deffn {Directive} %expect
Declare the expected number of shift-reduce conflicts
(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
@end deffn
@sp 1
@noindent
In order to change the behavior of @command{bison}, use the following
directives:
@deffn {Directive} %debug
In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
already defined, so that the debugging facilities are compiled.
@end deffn
@xref{Tracing, ,Tracing Your Parser}.
@deffn {Directive} %defines
Write an extra output file containing macro definitions for the token
type names defined in the grammar and the semantic value type
@code{YYSTYPE}, as well as a few @code{extern} variable declarations.
If the parser output file is named @file{@var{name}.c} then this file
is named @file{@var{name}.h}.
This output file is essential if you wish to put the definition of
@code{yylex} in a separate source file, because @code{yylex} needs to
be able to refer to token type codes and the variable
@code{yylval}. @xref{Token Values, ,Semantic Values of Tokens}.
@end deffn
@deffn {Directive} %destructor
Specifying how the parser should reclaim the memory associated to
discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
@end deffn
@deffn {Directive} %file-prefix="@var{prefix}"
Specify a prefix to use for all Bison output file names. The names are
chosen as if the input file were named @file{@var{prefix}.y}.
@end deffn
@deffn {Directive} %locations
Generate the code processing the locations (@pxref{Action Features,
,Special Features for Use in Actions}). This mode is enabled as soon as
the grammar uses the special @samp{@@@var{n}} tokens, but if your
grammar does not use it, using @samp{%locations} allows for more
accurate syntax error messages.
@end deffn
@deffn {Directive} %name-prefix="@var{prefix}"
Rename the external symbols used in the parser so that they start with
@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
possible @code{yylloc}. For example, if you use
@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
Program}.
@end deffn
@ifset defaultprec
@deffn {Directive} %no-default-prec
Do not assign a precedence to rules lacking an explicit @code{%prec}
modifier (@pxref{Contextual Precedence, ,Context-Dependent
Precedence}).
@end deffn
@end ifset
@deffn {Directive} %no-parser
Do not include any C code in the parser file; generate tables only. The
parser file contains just @code{#define} directives and static variable
declarations.
This option also tells Bison to write the C code for the grammar actions
into a file named @file{@var{filename}.act}, in the form of a
brace-surrounded body fit for a @code{switch} statement.
@end deffn
@deffn {Directive} %no-lines
Don't generate any @code{#line} preprocessor commands in the parser
file. Ordinarily Bison writes these commands in the parser file so that
the C compiler and debuggers will associate errors and object code with
your source file (the grammar file). This directive causes them to
associate errors with the parser file, treating it an independent source
file in its own right.
@end deffn
@deffn {Directive} %output="@var{filename}"
Specify the @var{filename} for the parser file.
@end deffn
@deffn {Directive} %pure-parser
Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
(Reentrant) Parser}).
@end deffn
@deffn {Directive} %token-table
Generate an array of token names in the parser file. The name of the
array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
token whose internal Bison token code number is @var{i}. The first
three elements of @code{yytname} correspond to the predefined tokens
@code{"$end"},
@code{"error"}, and @code{"$undefined"}; after these come the symbols
defined in the grammar file.
For single-character literal tokens and literal string tokens, the name
in the table includes the single-quote or double-quote characters: for
example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
is a literal string token. All the characters of the literal string
token appear verbatim in the string found in the table; even
double-quote characters are not escaped. For example, if the token
consists of three characters @samp{*"*}, its string in @code{yytname}
contains @samp{"*"*"}. (In C, that would be written as
@code{"\"*\"*\""}).
When you specify @code{%token-table}, Bison also generates macro
definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
@code{YYNRULES}, and @code{YYNSTATES}:
@table @code
@item YYNTOKENS
The highest token number, plus one.
@item YYNNTS
The number of nonterminal symbols.
@item YYNRULES
The number of grammar rules,
@item YYNSTATES
The number of parser states (@pxref{Parser States}).
@end table
@end deffn
@deffn {Directive} %verbose
Write an extra output file containing verbose descriptions of the
parser states and what is done for each type of look-ahead token in
that state. @xref{Understanding, , Understanding Your Parser}, for more
information.
@end deffn
@deffn {Directive} %yacc
Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
including its naming conventions. @xref{Bison Options}, for more.
@end deffn
@node Multiple Parsers
@section Multiple Parsers in the Same Program
Most programs that use Bison parse only one language and therefore contain
only one Bison parser. But what if you want to parse more than one
language with the same program? Then you need to avoid a name conflict
between different definitions of @code{yyparse}, @code{yylval}, and so on.
The easy way to do this is to use the option @samp{-p @var{prefix}}
(@pxref{Invocation, ,Invoking Bison}). This renames the interface
functions and variables of the Bison parser to start with @var{prefix}
instead of @samp{yy}. You can use this to give each parser distinct
names that do not conflict.
The precise list of symbols renamed is @code{yyparse}, @code{yylex},
@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
the names become @code{cparse}, @code{clex}, and so on.
@strong{All the other variables and macros associated with Bison are not
renamed.} These others are not global; there is no conflict if the same
name is used in different parsers. For example, @code{YYSTYPE} is not
renamed, but defining this in different ways in different parsers causes
no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
The @samp{-p} option works by adding macro definitions to the beginning
of the parser source file, defining @code{yyparse} as
@code{@var{prefix}parse}, and so on. This effectively substitutes one
name for the other in the entire parser file.
@node Interface
@chapter Parser C-Language Interface
@cindex C-language interface
@cindex interface
The Bison parser is actually a C function named @code{yyparse}. Here we
describe the interface conventions of @code{yyparse} and the other
functions that it needs to use.
Keep in mind that the parser uses many C identifiers starting with
@samp{yy} and @samp{YY} for internal purposes. If you use such an
identifier (aside from those in this manual) in an action or in epilogue
in the grammar file, you are likely to run into trouble.
@menu
* Parser Function:: How to call @code{yyparse} and what it returns.
* Lexical:: You must supply a function @code{yylex}
which reads tokens.
* Error Reporting:: You must supply a function @code{yyerror}.
* Action Features:: Special features for use in actions.
@end menu
@node Parser Function
@section The Parser Function @code{yyparse}
@findex yyparse
You call the function @code{yyparse} to cause parsing to occur. This
function reads tokens, executes actions, and ultimately returns when it
encounters end-of-input or an unrecoverable syntax error. You can also
write an action which directs @code{yyparse} to return immediately
without reading further.
@deftypefun int yyparse (void)
The value returned by @code{yyparse} is 0 if parsing was successful (return
is due to end-of-input).
The value is 1 if parsing failed (return is due to a syntax error).
@end deftypefun
In an action, you can cause immediate return from @code{yyparse} by using
these macros:
@defmac YYACCEPT
@findex YYACCEPT
Return immediately with value 0 (to report success).
@end defmac
@defmac YYABORT
@findex YYABORT
Return immediately with value 1 (to report failure).
@end defmac
If you use a reentrant parser, you can optionally pass additional
parameter information to it in a reentrant way. To do so, use the
declaration @code{%parse-param}:
@deffn {Directive} %parse-param @{@var{argument-declaration}@}
@findex %parse-param
Declare that an argument declared by @code{argument-declaration} is an
additional @code{yyparse} argument.
The @var{argument-declaration} is used when declaring
functions or prototypes. The last identifier in
@var{argument-declaration} must be the argument name.
@end deffn
Here's an example. Write this in the parser:
@example
%parse-param @{int *nastiness@}
%parse-param @{int *randomness@}
@end example
@noindent
Then call the parser like this:
@example
@{
int nastiness, randomness;
@dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
value = yyparse (&nastiness, &randomness);
@dots{}
@}
@end example
@noindent
In the grammar actions, use expressions like this to refer to the data:
@example
exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
@end example
@node Lexical
@section The Lexical Analyzer Function @code{yylex}
@findex yylex
@cindex lexical analyzer
The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
the input stream and returns them to the parser. Bison does not create
this function automatically; you must write it so that @code{yyparse} can
call it. The function is sometimes referred to as a lexical scanner.
In simple programs, @code{yylex} is often defined at the end of the Bison
grammar file. If @code{yylex} is defined in a separate source file, you
need to arrange for the token-type macro definitions to be available there.
To do this, use the @samp{-d} option when you run Bison, so that it will
write these macro definitions into a separate header file
@file{@var{name}.tab.h} which you can include in the other source files
that need it. @xref{Invocation, ,Invoking Bison}.
@menu
* Calling Convention:: How @code{yyparse} calls @code{yylex}.
* Token Values:: How @code{yylex} must return the semantic value
of the token it has read.
* Token Locations:: How @code{yylex} must return the text location
(line number, etc.) of the token, if the
actions want that.
* Pure Calling:: How the calling convention differs
in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
@end menu
@node Calling Convention
@subsection Calling Convention for @code{yylex}
The value that @code{yylex} returns must be the positive numeric code
for the type of token it has just found; a zero or negative value
signifies end-of-input.
When a token is referred to in the grammar rules by a name, that name
in the parser file becomes a C macro whose definition is the proper
numeric code for that token type. So @code{yylex} can use the name
to indicate that type. @xref{Symbols}.
When a token is referred to in the grammar rules by a character literal,
the numeric code for that character is also the code for the token type.
So @code{yylex} can simply return that character code, possibly converted
to @code{unsigned char} to avoid sign-extension. The null character
must not be used this way, because its code is zero and that
signifies end-of-input.
Here is an example showing these things:
@example
int
yylex (void)
@{
@dots{}
if (c == EOF) /* Detect end-of-input. */
return 0;
@dots{}
if (c == '+' || c == '-')
return c; /* Assume token type for `+' is '+'. */
@dots{}
return INT; /* Return the type of the token. */
@dots{}
@}
@end example
@noindent
This interface has been designed so that the output from the @code{lex}
utility can be used without change as the definition of @code{yylex}.
If the grammar uses literal string tokens, there are two ways that
@code{yylex} can determine the token type codes for them:
@itemize @bullet
@item
If the grammar defines symbolic token names as aliases for the
literal string tokens, @code{yylex} can use these symbolic names like
all others. In this case, the use of the literal string tokens in
the grammar file has no effect on @code{yylex}.
@item
@code{yylex} can find the multicharacter token in the @code{yytname}
table. The index of the token in the table is the token type's code.
The name of a multicharacter token is recorded in @code{yytname} with a
double-quote, the token's characters, and another double-quote. The
token's characters are not escaped in any way; they appear verbatim in
the contents of the string in the table.
Here's code for looking up a token in @code{yytname}, assuming that the
characters of the token are stored in @code{token_buffer}.
@smallexample
for (i = 0; i < YYNTOKENS; i++)
@{
if (yytname[i] != 0
&& yytname[i][0] == '"'
&& ! strncmp (yytname[i] + 1, token_buffer,
strlen (token_buffer))
&& yytname[i][strlen (token_buffer) + 1] == '"'
&& yytname[i][strlen (token_buffer) + 2] == 0)
break;
@}
@end smallexample
The @code{yytname} table is generated only if you use the
@code{%token-table} declaration. @xref{Decl Summary}.
@end itemize
@node Token Values
@subsection Semantic Values of Tokens
@vindex yylval
In an ordinary (non-reentrant) parser, the semantic value of the token must
be stored into the global variable @code{yylval}. When you are using
just one data type for semantic values, @code{yylval} has that type.
Thus, if the type is @code{int} (the default), you might write this in
@code{yylex}:
@example
@group
@dots{}
yylval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
@dots{}
@end group
@end example
When you are using multiple data types, @code{yylval}'s type is a union
made from the @code{%union} declaration (@pxref{Union Decl, ,The
Collection of Value Types}). So when you store a token's value, you
must use the proper member of the union. If the @code{%union}
declaration looks like this:
@example
@group
%union @{
int intval;
double val;
symrec *tptr;
@}
@end group
@end example
@noindent
then the code in @code{yylex} might look like this:
@example
@group
@dots{}
yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
@dots{}
@end group
@end example
@node Token Locations
@subsection Textual Locations of Tokens
@vindex yylloc
If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
Tracking Locations}) in actions to keep track of the
textual locations of tokens and groupings, then you must provide this
information in @code{yylex}. The function @code{yyparse} expects to
find the textual location of a token just parsed in the global variable
@code{yylloc}. So @code{yylex} must store the proper data in that
variable.
By default, the value of @code{yylloc} is a structure and you need only
initialize the members that are going to be used by the actions. The
four members are called @code{first_line}, @code{first_column},
@code{last_line} and @code{last_column}. Note that the use of this
feature makes the parser noticeably slower.
@tindex YYLTYPE
The data type of @code{yylloc} has the name @code{YYLTYPE}.
@node Pure Calling
@subsection Calling Conventions for Pure Parsers
When you use the Bison declaration @code{%pure-parser} to request a
pure, reentrant parser, the global communication variables @code{yylval}
and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
Parser}.) In such parsers the two global variables are replaced by
pointers passed as arguments to @code{yylex}. You must declare them as
shown here, and pass the information back by storing it through those
pointers.
@example
int
yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
@{
@dots{}
*lvalp = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
@dots{}
@}
@end example
If the grammar file does not use the @samp{@@} constructs to refer to
textual locations, then the type @code{YYLTYPE} will not be defined. In
this case, omit the second argument; @code{yylex} will be called with
only one argument.
If you wish to pass the additional parameter data to @code{yylex}, use
@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
Function}).
@deffn {Directive} lex-param @{@var{argument-declaration}@}
@findex %lex-param
Declare that @code{argument-declaration} is an additional @code{yylex}
argument declaration.
@end deffn
For instance:
@example
%parse-param @{int *nastiness@}
%lex-param @{int *nastiness@}
%parse-param @{int *randomness@}
@end example
@noindent
results in the following signature:
@example
int yylex (int *nastiness);
int yyparse (int *nastiness, int *randomness);
@end example
If @code{%pure-parser} is added:
@example
int yylex (YYSTYPE *lvalp, int *nastiness);
int yyparse (int *nastiness, int *randomness);
@end example
@noindent
and finally, if both @code{%pure-parser} and @code{%locations} are used:
@example
int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
int yyparse (int *nastiness, int *randomness);
@end example
@node Error Reporting
@section The Error Reporting Function @code{yyerror}
@cindex error reporting function
@findex yyerror
@cindex parse error
@cindex syntax error
The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
whenever it reads a token which cannot satisfy any syntax rule. An
action in the grammar can also explicitly proclaim an error, using the
macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
in Actions}).
The Bison parser expects to report the error by calling an error
reporting function named @code{yyerror}, which you must supply. It is
called by @code{yyparse} whenever a syntax error is found, and it
receives one argument. For a syntax error, the string is normally
@w{@code{"syntax error"}}.
@findex %error-verbose
If you invoke the directive @code{%error-verbose} in the Bison
declarations section (@pxref{Bison Declarations, ,The Bison Declarations
Section}), then Bison provides a more verbose and specific error message
string instead of just plain @w{@code{"syntax error"}}.
The parser can detect one other kind of error: stack overflow. This
happens when the input contains constructions that are very deeply
nested. It isn't likely you will encounter this, since the Bison
parser extends its stack automatically up to a very large limit. But
if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
fashion, except that the argument string is @w{@code{"parser stack
overflow"}}.
The following definition suffices in simple programs:
@example
@group
void
yyerror (char const *s)
@{
@end group
@group
fprintf (stderr, "%s\n", s);
@}
@end group
@end example
After @code{yyerror} returns to @code{yyparse}, the latter will attempt
error recovery if you have written suitable error recovery grammar rules
(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
immediately return 1.
Obviously, in location tracking pure parsers, @code{yyerror} should have
an access to the current location. This is indeed the case for the GLR
parsers, but not for the Yacc parser, for historical reasons. I.e., if
@samp{%locations %pure-parser} is passed then the prototypes for
@code{yyerror} are:
@example
void yyerror (char const *msg); /* Yacc parsers. */
void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
@end example
If @samp{%parse-param @{int *nastiness@}} is used, then:
@example
void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
@end example
Finally, GLR and Yacc parsers share the same @code{yyerror} calling
convention for absolutely pure parsers, i.e., when the calling
convention of @code{yylex} @emph{and} the calling convention of
@code{%pure-parser} are pure. I.e.:
@example
/* Location tracking. */
%locations
/* Pure yylex. */
%pure-parser
%lex-param @{int *nastiness@}
/* Pure yyparse. */
%parse-param @{int *nastiness@}
%parse-param @{int *randomness@}
@end example
@noindent
results in the following signatures for all the parser kinds:
@example
int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
int yyparse (int *nastiness, int *randomness);
void yyerror (YYLTYPE *locp,
int *nastiness, int *randomness,
char const *msg);
@end example
@noindent
The prototypes are only indications of how the code produced by Bison
uses @code{yyerror}. Bison-generated code always ignores the returned
value, so @code{yyerror} can return any type, including @code{void}.
Also, @code{yyerror} can be a variadic function; that is why the
message is always passed last.
Traditionally @code{yyerror} returns an @code{int} that is always
ignored, but this is purely for historical reasons, and @code{void} is
preferable since it more accurately describes the return type for
@code{yyerror}.
@vindex yynerrs
The variable @code{yynerrs} contains the number of syntax errors
encountered so far. Normally this variable is global; but if you
request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
then it is a local variable which only the actions can access.
@node Action Features
@section Special Features for Use in Actions
@cindex summary, action features
@cindex action features summary
Here is a table of Bison constructs, variables and macros that
are useful in actions.
@deffn {Variable} $$
Acts like a variable that contains the semantic value for the
grouping made by the current rule. @xref{Actions}.
@end deffn
@deffn {Variable} $@var{n}
Acts like a variable that contains the semantic value for the
@var{n}th component of the current rule. @xref{Actions}.
@end deffn
@deffn {Variable} $<@var{typealt}>$
Like @code{$$} but specifies alternative @var{typealt} in the union
specified by the @code{%union} declaration. @xref{Action Types, ,Data
Types of Values in Actions}.
@end deffn
@deffn {Variable} $<@var{typealt}>@var{n}
Like @code{$@var{n}} but specifies alternative @var{typealt} in the
union specified by the @code{%union} declaration.
@xref{Action Types, ,Data Types of Values in Actions}.
@end deffn
@deffn {Macro} YYABORT;
Return immediately from @code{yyparse}, indicating failure.
@xref{Parser Function, ,The Parser Function @code{yyparse}}.
@end deffn
@deffn {Macro} YYACCEPT;
Return immediately from @code{yyparse}, indicating success.
@xref{Parser Function, ,The Parser Function @code{yyparse}}.
@end deffn
@deffn {Macro} YYBACKUP (@var{token}, @var{value});
@findex YYBACKUP
Unshift a token. This macro is allowed only for rules that reduce
a single value, and only when there is no look-ahead token.
It is also disallowed in @acronym{GLR} parsers.
It installs a look-ahead token with token type @var{token} and
semantic value @var{value}; then it discards the value that was
going to be reduced by this rule.
If the macro is used when it is not valid, such as when there is
a look-ahead token already, then it reports a syntax error with
a message @samp{cannot back up} and performs ordinary error
recovery.
In either case, the rest of the action is not executed.
@end deffn
@deffn {Macro} YYEMPTY
@vindex YYEMPTY
Value stored in @code{yychar} when there is no look-ahead token.
@end deffn
@deffn {Macro} YYERROR;
@findex YYERROR
Cause an immediate syntax error. This statement initiates error
recovery just as if the parser itself had detected an error; however, it
does not call @code{yyerror}, and does not print any message. If you
want to print an error message, call @code{yyerror} explicitly before
the @samp{YYERROR;} statement. @xref{Error Recovery}.
@end deffn
@deffn {Macro} YYRECOVERING
This macro stands for an expression that has the value 1 when the parser
is recovering from a syntax error, and 0 the rest of the time.
@xref{Error Recovery}.
@end deffn
@deffn {Variable} yychar
Variable containing the current look-ahead token. (In a pure parser,
this is actually a local variable within @code{yyparse}.) When there is
no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
@xref{Look-Ahead, ,Look-Ahead Tokens}.
@end deffn
@deffn {Macro} yyclearin;
Discard the current look-ahead token. This is useful primarily in
error rules. @xref{Error Recovery}.
@end deffn
@deffn {Macro} yyerrok;
Resume generating error messages immediately for subsequent syntax
errors. This is useful primarily in error rules.
@xref{Error Recovery}.
@end deffn
@deffn {Value} @@$
@findex @@$
Acts like a structure variable containing information on the textual location
of the grouping made by the current rule. @xref{Locations, ,
Tracking Locations}.
@c Check if those paragraphs are still useful or not.
@c @example
@c struct @{
@c int first_line, last_line;
@c int first_column, last_column;
@c @};
@c @end example
@c Thus, to get the starting line number of the third component, you would
@c use @samp{@@3.first_line}.
@c In order for the members of this structure to contain valid information,
@c you must make @code{yylex} supply this information about each token.
@c If you need only certain members, then @code{yylex} need only fill in
@c those members.
@c The use of this feature makes the parser noticeably slower.
@end deffn
@deffn {Value} @@@var{n}
@findex @@@var{n}
Acts like a structure variable containing information on the textual location
of the @var{n}th component of the current rule. @xref{Locations, ,
Tracking Locations}.
@end deffn
@node Algorithm
@chapter The Bison Parser Algorithm
@cindex Bison parser algorithm
@cindex algorithm of parser
@cindex shifting
@cindex reduction
@cindex parser stack
@cindex stack, parser
As Bison reads tokens, it pushes them onto a stack along with their
semantic values. The stack is called the @dfn{parser stack}. Pushing a
token is traditionally called @dfn{shifting}.
For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
@samp{3} to come. The stack will have four elements, one for each token
that was shifted.
But the stack does not always have an element for each token read. When
the last @var{n} tokens and groupings shifted match the components of a
grammar rule, they can be combined according to that rule. This is called
@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
single grouping whose symbol is the result (left hand side) of that rule.
Running the rule's action is part of the process of reduction, because this
is what computes the semantic value of the resulting grouping.
For example, if the infix calculator's parser stack contains this:
@example
1 + 5 * 3
@end example
@noindent
and the next input token is a newline character, then the last three
elements can be reduced to 15 via the rule:
@example
expr: expr '*' expr;
@end example
@noindent
Then the stack contains just these three elements:
@example
1 + 15
@end example
@noindent
At this point, another reduction can be made, resulting in the single value
16. Then the newline token can be shifted.
The parser tries, by shifts and reductions, to reduce the entire input down
to a single grouping whose symbol is the grammar's start-symbol
(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
This kind of parser is known in the literature as a bottom-up parser.
@menu
* Look-Ahead:: Parser looks one token ahead when deciding what to do.
* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
* Precedence:: Operator precedence works by resolving conflicts.
* Contextual Precedence:: When an operator's precedence depends on context.
* Parser States:: The parser is a finite-state-machine with stack.
* Reduce/Reduce:: When two rules are applicable in the same situation.
* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
* Stack Overflow:: What happens when stack gets full. How to avoid it.
@end menu
@node Look-Ahead
@section Look-Ahead Tokens
@cindex look-ahead token
The Bison parser does @emph{not} always reduce immediately as soon as the
last @var{n} tokens and groupings match a rule. This is because such a
simple strategy is inadequate to handle most languages. Instead, when a
reduction is possible, the parser sometimes ``looks ahead'' at the next
token in order to decide what to do.
When a token is read, it is not immediately shifted; first it becomes the
@dfn{look-ahead token}, which is not on the stack. Now the parser can
perform one or more reductions of tokens and groupings on the stack, while
the look-ahead token remains off to the side. When no more reductions
should take place, the look-ahead token is shifted onto the stack. This
does not mean that all possible reductions have been done; depending on the
token type of the look-ahead token, some rules may choose to delay their
application.
Here is a simple case where look-ahead is needed. These three rules define
expressions which contain binary addition operators and postfix unary
factorial operators (@samp{!}), and allow parentheses for grouping.
@example
@group
expr: term '+' expr
| term
;
@end group
@group
term: '(' expr ')'
| term '!'
| NUMBER
;
@end group
@end example
Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
should be done? If the following token is @samp{)}, then the first three
tokens must be reduced to form an @code{expr}. This is the only valid
course, because shifting the @samp{)} would produce a sequence of symbols
@w{@code{term ')'}}, and no rule allows this.
If the following token is @samp{!}, then it must be shifted immediately so
that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
@code{expr}. It would then be impossible to shift the @samp{!} because
doing so would produce on the stack the sequence of symbols @code{expr
'!'}. No rule allows that sequence.
@vindex yychar
The current look-ahead token is stored in the variable @code{yychar}.
@xref{Action Features, ,Special Features for Use in Actions}.
@node Shift/Reduce
@section Shift/Reduce Conflicts
@cindex conflicts
@cindex shift/reduce conflicts
@cindex dangling @code{else}
@cindex @code{else}, dangling
Suppose we are parsing a language which has if-then and if-then-else
statements, with a pair of rules like this:
@example
@group
if_stmt:
IF expr THEN stmt
| IF expr THEN stmt ELSE stmt
;
@end group
@end example
@noindent
Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
terminal symbols for specific keyword tokens.
When the @code{ELSE} token is read and becomes the look-ahead token, the
contents of the stack (assuming the input is valid) are just right for
reduction by the first rule. But it is also legitimate to shift the
@code{ELSE}, because that would lead to eventual reduction by the second
rule.
This situation, where either a shift or a reduction would be valid, is
called a @dfn{shift/reduce conflict}. Bison is designed to resolve
these conflicts by choosing to shift, unless otherwise directed by
operator precedence declarations. To see the reason for this, let's
contrast it with the other alternative.
Since the parser prefers to shift the @code{ELSE}, the result is to attach
the else-clause to the innermost if-statement, making these two inputs
equivalent:
@example
if x then if y then win (); else lose;
if x then do; if y then win (); else lose; end;
@end example
But if the parser chose to reduce when possible rather than shift, the
result would be to attach the else-clause to the outermost if-statement,
making these two inputs equivalent:
@example
if x then if y then win (); else lose;
if x then do; if y then win (); end; else lose;
@end example
The conflict exists because the grammar as written is ambiguous: either
parsing of the simple nested if-statement is legitimate. The established
convention is that these ambiguities are resolved by attaching the
else-clause to the innermost if-statement; this is what Bison accomplishes
by choosing to shift rather than reduce. (It would ideally be cleaner to
write an unambiguous grammar, but that is very hard to do in this case.)
This particular ambiguity was first encountered in the specifications of
Algol 60 and is called the ``dangling @code{else}'' ambiguity.
To avoid warnings from Bison about predictable, legitimate shift/reduce
conflicts, use the @code{%expect @var{n}} declaration. There will be no
warning as long as the number of shift/reduce conflicts is exactly @var{n}.
@xref{Expect Decl, ,Suppressing Conflict Warnings}.
The definition of @code{if_stmt} above is solely to blame for the
conflict, but the conflict does not actually appear without additional
rules. Here is a complete Bison input file that actually manifests the
conflict:
@example
@group
%token IF THEN ELSE variable
%%
@end group
@group
stmt: expr
| if_stmt
;
@end group
@group
if_stmt:
IF expr THEN stmt
| IF expr THEN stmt ELSE stmt
;
@end group
expr: variable
;
@end example
@node Precedence
@section Operator Precedence
@cindex operator precedence
@cindex precedence of operators
Another situation where shift/reduce conflicts appear is in arithmetic
expressions. Here shifting is not always the preferred resolution; the
Bison declarations for operator precedence allow you to specify when to
shift and when to reduce.
@menu
* Why Precedence:: An example showing why precedence is needed.
* Using Precedence:: How to specify precedence in Bison grammars.
* Precedence Examples:: How these features are used in the previous example.
* How Precedence:: How they work.
@end menu
@node Why Precedence
@subsection When Precedence is Needed
Consider the following ambiguous grammar fragment (ambiguous because the
input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
@example
@group
expr: expr '-' expr
| expr '*' expr
| expr '<' expr
| '(' expr ')'
@dots{}
;
@end group
@end example
@noindent
Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
should it reduce them via the rule for the subtraction operator? It
depends on the next token. Of course, if the next token is @samp{)}, we
must reduce; shifting is invalid because no single rule can reduce the
token sequence @w{@samp{- 2 )}} or anything starting with that. But if
the next token is @samp{*} or @samp{<}, we have a choice: either
shifting or reduction would allow the parse to complete, but with
different results.
To decide which one Bison should do, we must consider the results. If
the next operator token @var{op} is shifted, then it must be reduced
first in order to permit another opportunity to reduce the difference.
The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
hand, if the subtraction is reduced before shifting @var{op}, the result
is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
reduce should depend on the relative precedence of the operators
@samp{-} and @var{op}: @samp{*} should be shifted first, but not
@samp{<}.
@cindex associativity
What about input such as @w{@samp{1 - 2 - 5}}; should this be
@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
operators we prefer the former, which is called @dfn{left association}.
The latter alternative, @dfn{right association}, is desirable for
assignment operators. The choice of left or right association is a
matter of whether the parser chooses to shift or reduce when the stack
contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
makes right-associativity.
@node Using Precedence
@subsection Specifying Operator Precedence
@findex %left
@findex %right
@findex %nonassoc
Bison allows you to specify these choices with the operator precedence
declarations @code{%left} and @code{%right}. Each such declaration
contains a list of tokens, which are operators whose precedence and
associativity is being declared. The @code{%left} declaration makes all
those operators left-associative and the @code{%right} declaration makes
them right-associative. A third alternative is @code{%nonassoc}, which
declares that it is a syntax error to find the same operator twice ``in a
row''.
The relative precedence of different operators is controlled by the
order in which they are declared. The first @code{%left} or
@code{%right} declaration in the file declares the operators whose
precedence is lowest, the next such declaration declares the operators
whose precedence is a little higher, and so on.
@node Precedence Examples
@subsection Precedence Examples
In our example, we would want the following declarations:
@example
%left '<'
%left '-'
%left '*'
@end example
In a more complete example, which supports other operators as well, we
would declare them in groups of equal precedence. For example, @code{'+'} is
declared with @code{'-'}:
@example
%left '<' '>' '=' NE LE GE
%left '+' '-'
%left '*' '/'
@end example
@noindent
(Here @code{NE} and so on stand for the operators for ``not equal''
and so on. We assume that these tokens are more than one character long
and therefore are represented by names, not character literals.)
@node How Precedence
@subsection How Precedence Works
The first effect of the precedence declarations is to assign precedence
levels to the terminal symbols declared. The second effect is to assign
precedence levels to certain rules: each rule gets its precedence from
the last terminal symbol mentioned in the components. (You can also
specify explicitly the precedence of a rule. @xref{Contextual
Precedence, ,Context-Dependent Precedence}.)
Finally, the resolution of conflicts works by comparing the precedence
of the rule being considered with that of the look-ahead token. If the
token's precedence is higher, the choice is to shift. If the rule's
precedence is higher, the choice is to reduce. If they have equal
precedence, the choice is made based on the associativity of that
precedence level. The verbose output file made by @samp{-v}
(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
resolved.
Not all rules and not all tokens have precedence. If either the rule or
the look-ahead token has no precedence, then the default is to shift.
@node Contextual Precedence
@section Context-Dependent Precedence
@cindex context-dependent precedence
@cindex unary operator precedence
@cindex precedence, context-dependent
@cindex precedence, unary operator
@findex %prec
Often the precedence of an operator depends on the context. This sounds
outlandish at first, but it is really very common. For example, a minus
sign typically has a very high precedence as a unary operator, and a
somewhat lower precedence (lower than multiplication) as a binary operator.
The Bison precedence declarations, @code{%left}, @code{%right} and
@code{%nonassoc}, can only be used once for a given token; so a token has
only one precedence declared in this way. For context-dependent
precedence, you need to use an additional mechanism: the @code{%prec}
modifier for rules.
The @code{%prec} modifier declares the precedence of a particular rule by
specifying a terminal symbol whose precedence should be used for that rule.
It's not necessary for that symbol to appear otherwise in the rule. The
modifier's syntax is:
@example
%prec @var{terminal-symbol}
@end example
@noindent
and it is written after the components of the rule. Its effect is to
assign the rule the precedence of @var{terminal-symbol}, overriding
the precedence that would be deduced for it in the ordinary way. The
altered rule precedence then affects how conflicts involving that rule
are resolved (@pxref{Precedence, ,Operator Precedence}).
Here is how @code{%prec} solves the problem of unary minus. First, declare
a precedence for a fictitious terminal symbol named @code{UMINUS}. There
are no tokens of this type, but the symbol serves to stand for its
precedence:
@example
@dots{}
%left '+' '-'
%left '*'
%left UMINUS
@end example
Now the precedence of @code{UMINUS} can be used in specific rules:
@example
@group
exp: @dots{}
| exp '-' exp
@dots{}
| '-' exp %prec UMINUS
@end group
@end example
@ifset defaultprec
If you forget to append @code{%prec UMINUS} to the rule for unary
minus, Bison silently assumes that minus has its usual precedence.
This kind of problem can be tricky to debug, since one typically
discovers the mistake only by testing the code.
The @code{%no-default-prec;} declaration makes it easier to discover
this kind of problem systematically. It causes rules that lack a
@code{%prec} modifier to have no precedence, even if the last terminal
symbol mentioned in their components has a declared precedence.
If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
for all rules that participate in precedence conflict resolution.
Then you will see any shift/reduce conflict until you tell Bison how
to resolve it, either by changing your grammar or by adding an
explicit precedence. This will probably add declarations to the
grammar, but it helps to protect against incorrect rule precedences.
The effect of @code{%no-default-prec;} can be reversed by giving
@code{%default-prec;}, which is the default.
@end ifset
@node Parser States
@section Parser States
@cindex finite-state machine
@cindex parser state
@cindex state (of parser)
The function @code{yyparse} is implemented using a finite-state machine.
The values pushed on the parser stack are not simply token type codes; they
represent the entire sequence of terminal and nonterminal symbols at or
near the top of the stack. The current state collects all the information
about previous input which is relevant to deciding what to do next.
Each time a look-ahead token is read, the current parser state together
with the type of look-ahead token are looked up in a table. This table
entry can say, ``Shift the look-ahead token.'' In this case, it also
specifies the new parser state, which is pushed onto the top of the
parser stack. Or it can say, ``Reduce using rule number @var{n}.''
This means that a certain number of tokens or groupings are taken off
the top of the stack, and replaced by one grouping. In other words,
that number of states are popped from the stack, and one new state is
pushed.
There is one other alternative: the table can say that the look-ahead token
is erroneous in the current state. This causes error processing to begin
(@pxref{Error Recovery}).
@node Reduce/Reduce
@section Reduce/Reduce Conflicts
@cindex reduce/reduce conflict
@cindex conflicts, reduce/reduce
A reduce/reduce conflict occurs if there are two or more rules that apply
to the same sequence of input. This usually indicates a serious error
in the grammar.
For example, here is an erroneous attempt to define a sequence
of zero or more @code{word} groupings.
@example
sequence: /* empty */
@{ printf ("empty sequence\n"); @}
| maybeword
| sequence word
@{ printf ("added word %s\n", $2); @}
;
maybeword: /* empty */
@{ printf ("empty maybeword\n"); @}
| word
@{ printf ("single word %s\n", $1); @}
;
@end example
@noindent
The error is an ambiguity: there is more than one way to parse a single
@code{word} into a @code{sequence}. It could be reduced to a
@code{maybeword} and then into a @code{sequence} via the second rule.
Alternatively, nothing-at-all could be reduced into a @code{sequence}
via the first rule, and this could be combined with the @code{word}
using the third rule for @code{sequence}.
There is also more than one way to reduce nothing-at-all into a
@code{sequence}. This can be done directly via the first rule,
or indirectly via @code{maybeword} and then the second rule.
You might think that this is a distinction without a difference, because it
does not change whether any particular input is valid or not. But it does
affect which actions are run. One parsing order runs the second rule's
action; the other runs the first rule's action and the third rule's action.
In this example, the output of the program changes.
Bison resolves a reduce/reduce conflict by choosing to use the rule that
appears first in the grammar, but it is very risky to rely on this. Every
reduce/reduce conflict must be studied and usually eliminated. Here is the
proper way to define @code{sequence}:
@example
sequence: /* empty */
@{ printf ("empty sequence\n"); @}
| sequence word
@{ printf ("added word %s\n", $2); @}
;
@end example
Here is another common error that yields a reduce/reduce conflict:
@example
sequence: /* empty */
| sequence words
| sequence redirects
;
words: /* empty */
| words word
;
redirects:/* empty */
| redirects redirect
;
@end example
@noindent
The intention here is to define a sequence which can contain either
@code{word} or @code{redirect} groupings. The individual definitions of
@code{sequence}, @code{words} and @code{redirects} are error-free, but the
three together make a subtle ambiguity: even an empty input can be parsed
in infinitely many ways!
Consider: nothing-at-all could be a @code{words}. Or it could be two
@code{words} in a row, or three, or any number. It could equally well be a
@code{redirects}, or two, or any number. Or it could be a @code{words}
followed by three @code{redirects} and another @code{words}. And so on.
Here are two ways to correct these rules. First, to make it a single level
of sequence:
@example
sequence: /* empty */
| sequence word
| sequence redirect
;
@end example
Second, to prevent either a @code{words} or a @code{redirects}
from being empty:
@example
sequence: /* empty */
| sequence words
| sequence redirects
;
words: word
| words word
;
redirects:redirect
| redirects redirect
;
@end example
@node Mystery Conflicts
@section Mysterious Reduce/Reduce Conflicts
Sometimes reduce/reduce conflicts can occur that don't look warranted.
Here is an example:
@example
@group
%token ID
%%
def: param_spec return_spec ','
;
param_spec:
type
| name_list ':' type
;
@end group
@group
return_spec:
type
| name ':' type
;
@end group
@group
type: ID
;
@end group
@group
name: ID
;
name_list:
name
| name ',' name_list
;
@end group
@end example
It would seem that this grammar can be parsed with only a single token
of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
a @code{name} if a comma or colon follows, or a @code{type} if another
@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
@cindex @acronym{LR}(1)
@cindex @acronym{LALR}(1)
However, Bison, like most parser generators, cannot actually handle all
@acronym{LR}(1) grammars. In this grammar, two contexts, that after
an @code{ID}
at the beginning of a @code{param_spec} and likewise at the beginning of
a @code{return_spec}, are similar enough that Bison assumes they are the
same. They appear similar because the same set of rules would be
active---the rule for reducing to a @code{name} and that for reducing to
a @code{type}. Bison is unable to determine at that stage of processing
that the rules would require different look-ahead tokens in the two
contexts, so it makes a single parser state for them both. Combining
the two contexts causes a conflict later. In parser terminology, this
occurrence means that the grammar is not @acronym{LALR}(1).
In general, it is better to fix deficiencies than to document them. But
this particular deficiency is intrinsically hard to fix; parser
generators that can handle @acronym{LR}(1) grammars are hard to write
and tend to
produce parsers that are very large. In practice, Bison is more useful
as it is now.
When the problem arises, you can often fix it by identifying the two
parser states that are being confused, and adding something to make them
look distinct. In the above example, adding one rule to
@code{return_spec} as follows makes the problem go away:
@example
@group
%token BOGUS
@dots{}
%%
@dots{}
return_spec:
type
| name ':' type
/* This rule is never used. */
| ID BOGUS
;
@end group
@end example
This corrects the problem because it introduces the possibility of an
additional active rule in the context after the @code{ID} at the beginning of
@code{return_spec}. This rule is not active in the corresponding context
in a @code{param_spec}, so the two contexts receive distinct parser states.
As long as the token @code{BOGUS} is never generated by @code{yylex},
the added rule cannot alter the way actual input is parsed.
In this particular example, there is another way to solve the problem:
rewrite the rule for @code{return_spec} to use @code{ID} directly
instead of via @code{name}. This also causes the two confusing
contexts to have different sets of active rules, because the one for
@code{return_spec} activates the altered rule for @code{return_spec}
rather than the one for @code{name}.
@example
param_spec:
type
| name_list ':' type
;
return_spec:
type
| ID ':' type
;
@end example
@node Generalized LR Parsing
@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
@cindex @acronym{GLR} parsing
@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
@cindex ambiguous grammars
@cindex non-deterministic parsing
Bison produces @emph{deterministic} parsers that choose uniquely
when to reduce and which reduction to apply
based on a summary of the preceding input and on one extra token of lookahead.
As a result, normal Bison handles a proper subset of the family of
context-free languages.
Ambiguous grammars, since they have strings with more than one possible
sequence of reductions cannot have deterministic parsers in this sense.
The same is true of languages that require more than one symbol of
lookahead, since the parser lacks the information necessary to make a
decision at the point it must be made in a shift-reduce parser.
Finally, as previously mentioned (@pxref{Mystery Conflicts}),
there are languages where Bison's particular choice of how to
summarize the input seen so far loses necessary information.
When you use the @samp{%glr-parser} declaration in your grammar file,
Bison generates a parser that uses a different algorithm, called
Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
parser uses the same basic
algorithm for parsing as an ordinary Bison parser, but behaves
differently in cases where there is a shift-reduce conflict that has not
been resolved by precedence rules (@pxref{Precedence}) or a
reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
situation, it
effectively @emph{splits} into a several parsers, one for each possible
shift or reduction. These parsers then proceed as usual, consuming
tokens in lock-step. Some of the stacks may encounter other conflicts
and split further, with the result that instead of a sequence of states,
a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
In effect, each stack represents a guess as to what the proper parse
is. Additional input may indicate that a guess was wrong, in which case
the appropriate stack silently disappears. Otherwise, the semantics
actions generated in each stack are saved, rather than being executed
immediately. When a stack disappears, its saved semantic actions never
get executed. When a reduction causes two stacks to become equivalent,
their sets of semantic actions are both saved with the state that
results from the reduction. We say that two stacks are equivalent
when they both represent the same sequence of states,
and each pair of corresponding states represents a
grammar symbol that produces the same segment of the input token
stream.
Whenever the parser makes a transition from having multiple
states to having one, it reverts to the normal @acronym{LALR}(1) parsing
algorithm, after resolving and executing the saved-up actions.
At this transition, some of the states on the stack will have semantic
values that are sets (actually multisets) of possible actions. The
parser tries to pick one of the actions by first finding one whose rule
has the highest dynamic precedence, as set by the @samp{%dprec}
declaration. Otherwise, if the alternative actions are not ordered by
precedence, but there the same merging function is declared for both
rules by the @samp{%merge} declaration,
Bison resolves and evaluates both and then calls the merge function on
the result. Otherwise, it reports an ambiguity.
It is possible to use a data structure for the @acronym{GLR} parsing tree that
permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
size of the input), any unambiguous (not necessarily
@acronym{LALR}(1)) grammar in
quadratic worst-case time, and any general (possibly ambiguous)
context-free grammar in cubic worst-case time. However, Bison currently
uses a simpler data structure that requires time proportional to the
length of the input times the maximum number of stacks required for any
prefix of the input. Thus, really ambiguous or non-deterministic
grammars can require exponential time and space to process. Such badly
behaving examples, however, are not generally of practical interest.
Usually, non-determinism in a grammar is local---the parser is ``in
doubt'' only for a few tokens at a time. Therefore, the current data
structure should generally be adequate. On @acronym{LALR}(1) portions of a
grammar, in particular, it is only slightly slower than with the default
Bison parser.
For a more detailed exposition of GLR parsers, please see: Elizabeth
Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
Generalised @acronym{LR} Parsers, Royal Holloway, University of
London, Department of Computer Science, TR-00-12,
@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
(2000-12-24).
@node Stack Overflow
@section Stack Overflow, and How to Avoid It
@cindex stack overflow
@cindex parser stack overflow
@cindex overflow of parser stack
The Bison parser stack can overflow if too many tokens are shifted and
not reduced. When this happens, the parser function @code{yyparse}
returns a nonzero value, pausing only to call @code{yyerror} to report
the overflow.
Because Bison parsers have growing stacks, hitting the upper limit
usually results from using a right recursion instead of a left
recursion, @xref{Recursion, ,Recursive Rules}.
@vindex YYMAXDEPTH
By defining the macro @code{YYMAXDEPTH}, you can control how deep the
parser stack can become before a stack overflow occurs. Define the
macro with a value that is an integer. This value is the maximum number
of tokens that can be shifted (and not reduced) before overflow.
It must be a constant expression whose value is known at compile time.
The stack space allowed is not necessarily allocated. If you specify a
large value for @code{YYMAXDEPTH}, the parser actually allocates a small
stack at first, and then makes it bigger by stages as needed. This
increasing allocation happens automatically and silently. Therefore,
you do not need to make @code{YYMAXDEPTH} painfully small merely to save
space for ordinary inputs that do not need much stack.
@cindex default stack limit
The default value of @code{YYMAXDEPTH}, if you do not define it, is
10000.
@vindex YYINITDEPTH
You can control how much stack is allocated initially by defining the
macro @code{YYINITDEPTH}. This value too must be a compile-time
constant integer. The default is 200.
@c FIXME: C++ output.
Because of semantical differences between C and C++, the
@acronym{LALR}(1) parsers
in C produced by Bison by compiled as C++ cannot grow. In this precise
case (compiling a C parser as C++) you are suggested to grow
@code{YYINITDEPTH}. In the near future, a C++ output output will be
provided which addresses this issue.
@node Error Recovery
@chapter Error Recovery
@cindex error recovery
@cindex recovery from errors
It is not usually acceptable to have a program terminate on a syntax
error. For example, a compiler should recover sufficiently to parse the
rest of the input file and check it for errors; a calculator should accept
another expression.
In a simple interactive command parser where each input is one line, it may
be sufficient to allow @code{yyparse} to return 1 on error and have the
caller ignore the rest of the input line when that happens (and then call
@code{yyparse} again). But this is inadequate for a compiler, because it
forgets all the syntactic context leading up to the error. A syntax error
deep within a function in the compiler input should not cause the compiler
to treat the following line like the beginning of a source file.
@findex error
You can define how to recover from a syntax error by writing rules to
recognize the special token @code{error}. This is a terminal symbol that
is always defined (you need not declare it) and reserved for error
handling. The Bison parser generates an @code{error} token whenever a
syntax error happens; if you have provided a rule to recognize this token
in the current context, the parse can continue.
For example:
@example
stmnts: /* empty string */
| stmnts '\n'
| stmnts exp '\n'
| stmnts error '\n'
@end example
The fourth rule in this example says that an error followed by a newline
makes a valid addition to any @code{stmnts}.
What happens if a syntax error occurs in the middle of an @code{exp}? The
error recovery rule, interpreted strictly, applies to the precise sequence
of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
the middle of an @code{exp}, there will probably be some additional tokens
and subexpressions on the stack after the last @code{stmnts}, and there
will be tokens to read before the next newline. So the rule is not
applicable in the ordinary way.
But Bison can force the situation to fit the rule, by discarding part of
the semantic context and part of the input. First it discards states
and objects from the stack until it gets back to a state in which the
@code{error} token is acceptable. (This means that the subexpressions
already parsed are discarded, back to the last complete @code{stmnts}.)
At this point the @code{error} token can be shifted. Then, if the old
look-ahead token is not acceptable to be shifted next, the parser reads
tokens and discards them until it finds a token which is acceptable. In
this example, Bison reads and discards input until the next newline so
that the fourth rule can apply. Note that discarded symbols are
possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
Discarded Symbols}, for a means to reclaim this memory.
The choice of error rules in the grammar is a choice of strategies for
error recovery. A simple and useful strategy is simply to skip the rest of
the current input line or current statement if an error is detected:
@example
stmnt: error ';' /* On error, skip until ';' is read. */
@end example
It is also useful to recover to the matching close-delimiter of an
opening-delimiter that has already been parsed. Otherwise the
close-delimiter will probably appear to be unmatched, and generate another,
spurious error message:
@example
primary: '(' expr ')'
| '(' error ')'
@dots{}
;
@end example
Error recovery strategies are necessarily guesses. When they guess wrong,
one syntax error often leads to another. In the above example, the error
recovery rule guesses that an error is due to bad input within one
@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
middle of a valid @code{stmnt}. After the error recovery rule recovers
from the first error, another syntax error will be found straightaway,
since the text following the spurious semicolon is also an invalid
@code{stmnt}.
To prevent an outpouring of error messages, the parser will output no error
message for another syntax error that happens shortly after the first; only
after three consecutive input tokens have been successfully shifted will
error messages resume.
Note that rules which accept the @code{error} token may have actions, just
as any other rules can.
@findex yyerrok
You can make error messages resume immediately by using the macro
@code{yyerrok} in an action. If you do this in the error rule's action, no
error messages will be suppressed. This macro requires no arguments;
@samp{yyerrok;} is a valid C statement.
@findex yyclearin
The previous look-ahead token is reanalyzed immediately after an error. If
this is unacceptable, then the macro @code{yyclearin} may be used to clear
this token. Write the statement @samp{yyclearin;} in the error rule's
action.
For example, suppose that on a syntax error, an error handling routine is
called that advances the input stream to some point where parsing should
once again commence. The next symbol returned by the lexical scanner is
probably correct. The previous look-ahead token ought to be discarded
with @samp{yyclearin;}.
@vindex YYRECOVERING
The macro @code{YYRECOVERING} stands for an expression that has the
value 1 when the parser is recovering from a syntax error, and 0 the
rest of the time. A value of 1 indicates that error messages are
currently suppressed for new syntax errors.
@node Context Dependency
@chapter Handling Context Dependencies
The Bison paradigm is to parse tokens first, then group them into larger
syntactic units. In many languages, the meaning of a token is affected by
its context. Although this violates the Bison paradigm, certain techniques
(known as @dfn{kludges}) may enable you to write Bison parsers for such
languages.
@menu
* Semantic Tokens:: Token parsing can depend on the semantic context.
* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
* Tie-in Recovery:: Lexical tie-ins have implications for how
error recovery rules must be written.
@end menu
(Actually, ``kludge'' means any technique that gets its job done but is
neither clean nor robust.)
@node Semantic Tokens
@section Semantic Info in Token Types
The C language has a context dependency: the way an identifier is used
depends on what its current meaning is. For example, consider this:
@example
foo (x);
@end example
This looks like a function call statement, but if @code{foo} is a typedef
name, then this is actually a declaration of @code{x}. How can a Bison
parser for C decide how to parse this input?
The method used in @acronym{GNU} C is to have two different token types,
@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
identifier, it looks up the current declaration of the identifier in order
to decide which token type to return: @code{TYPENAME} if the identifier is
declared as a typedef, @code{IDENTIFIER} otherwise.
The grammar rules can then express the context dependency by the choice of
token type to recognize. @code{IDENTIFIER} is accepted as an expression,
but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
is @emph{not} significant, such as in declarations that can shadow a
typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
accepted---there is one rule for each of the two token types.
This technique is simple to use if the decision of which kinds of
identifiers to allow is made at a place close to where the identifier is
parsed. But in C this is not always so: C allows a declaration to
redeclare a typedef name provided an explicit type has been specified
earlier:
@example
typedef int foo, bar, lose;
static foo (bar); /* @r{redeclare @code{bar} as static variable} */
static int foo (lose); /* @r{redeclare @code{foo} as function} */
@end example
Unfortunately, the name being declared is separated from the declaration
construct itself by a complicated syntactic structure---the ``declarator''.
As a result, part of the Bison parser for C needs to be duplicated, with
all the nonterminal names changed: once for parsing a declaration in
which a typedef name can be redefined, and once for parsing a
declaration in which that can't be done. Here is a part of the
duplication, with actions omitted for brevity:
@example
initdcl:
declarator maybeasm '='
init
| declarator maybeasm
;
notype_initdcl:
notype_declarator maybeasm '='
init
| notype_declarator maybeasm
;
@end example
@noindent
Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
cannot. The distinction between @code{declarator} and
@code{notype_declarator} is the same sort of thing.
There is some similarity between this technique and a lexical tie-in
(described next), in that information which alters the lexical analysis is
changed during parsing by other parts of the program. The difference is
here the information is global, and is used for other purposes in the
program. A true lexical tie-in has a special-purpose flag controlled by
the syntactic context.
@node Lexical Tie-ins
@section Lexical Tie-ins
@cindex lexical tie-in
One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
which is set by Bison actions, whose purpose is to alter the way tokens are
parsed.
For example, suppose we have a language vaguely like C, but with a special
construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
an expression in parentheses in which all integers are hexadecimal. In
particular, the token @samp{a1b} must be treated as an integer rather than
as an identifier if it appears in that context. Here is how you can do it:
@example
@group
%@{
int hexflag;
int yylex (void);
void yyerror (char const *);
%@}
%%
@dots{}
@end group
@group
expr: IDENTIFIER
| constant
| HEX '('
@{ hexflag = 1; @}
expr ')'
@{ hexflag = 0;
$$ = $4; @}
| expr '+' expr
@{ $$ = make_sum ($1, $3); @}
@dots{}
;
@end group
@group
constant:
INTEGER
| STRING
;
@end group
@end example
@noindent
Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
it is nonzero, all integers are parsed in hexadecimal, and tokens starting
with letters are parsed as integers if possible.
The declaration of @code{hexflag} shown in the prologue of the parser file
is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
You must also write the code in @code{yylex} to obey the flag.
@node Tie-in Recovery
@section Lexical Tie-ins and Error Recovery
Lexical tie-ins make strict demands on any error recovery rules you have.
@xref{Error Recovery}.
The reason for this is that the purpose of an error recovery rule is to
abort the parsing of one construct and resume in some larger construct.
For example, in C-like languages, a typical error recovery rule is to skip
tokens until the next semicolon, and then start a new statement, like this:
@example
stmt: expr ';'
| IF '(' expr ')' stmt @{ @dots{} @}
@dots{}
error ';'
@{ hexflag = 0; @}
;
@end example
If there is a syntax error in the middle of a @samp{hex (@var{expr})}
construct, this error rule will apply, and then the action for the
completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
remain set for the entire rest of the input, or until the next @code{hex}
keyword, causing identifiers to be misinterpreted as integers.
To avoid this problem the error recovery rule itself clears @code{hexflag}.
There may also be an error recovery rule that works within expressions.
For example, there could be a rule which applies within parentheses
and skips to the close-parenthesis:
@example
@group
expr: @dots{}
| '(' expr ')'
@{ $$ = $2; @}
| '(' error ')'
@dots{}
@end group
@end example
If this rule acts within the @code{hex} construct, it is not going to abort
that construct (since it applies to an inner level of parentheses within
the construct). Therefore, it should not clear the flag: the rest of
the @code{hex} construct should be parsed with the flag still in effect.
What if there is an error recovery rule which might abort out of the
@code{hex} construct or might not, depending on circumstances? There is no
way you can write the action to determine whether a @code{hex} construct is
being aborted or not. So if you are using a lexical tie-in, you had better
make sure your error recovery rules are not of this kind. Each rule must
be such that you can be sure that it always will, or always won't, have to
clear the flag.
@c ================================================== Debugging Your Parser
@node Debugging
@chapter Debugging Your Parser
Developing a parser can be a challenge, especially if you don't
understand the algorithm (@pxref{Algorithm, ,The Bison Parser
Algorithm}). Even so, sometimes a detailed description of the automaton
can help (@pxref{Understanding, , Understanding Your Parser}), or
tracing the execution of the parser can give some insight on why it
behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
@menu
* Understanding:: Understanding the structure of your parser.
* Tracing:: Tracing the execution of your parser.
@end menu
@node Understanding
@section Understanding Your Parser
As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
frequent than one would hope), looking at this automaton is required to
tune or simply fix a parser. Bison provides two different
representation of it, either textually or graphically (as a @acronym{VCG}
file).
The textual file is generated when the options @option{--report} or
@option{--verbose} are specified, see @xref{Invocation, , Invoking
Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
the parser output file name, and adding @samp{.output} instead.
Therefore, if the input file is @file{foo.y}, then the parser file is
called @file{foo.tab.c} by default. As a consequence, the verbose
output file is called @file{foo.output}.
The following grammar file, @file{calc.y}, will be used in the sequel:
@example
%token NUM STR
%left '+' '-'
%left '*'
%%
exp: exp '+' exp
| exp '-' exp
| exp '*' exp
| exp '/' exp
| NUM
;
useless: STR;
%%
@end example
@command{bison} reports:
@example
calc.y: warning: 1 useless nonterminal and 1 useless rule
calc.y:11.1-7: warning: useless nonterminal: useless
calc.y:11.10-12: warning: useless rule: useless: STR
calc.y: conflicts: 7 shift/reduce
@end example
When given @option{--report=state}, in addition to @file{calc.tab.c}, it
creates a file @file{calc.output} with contents detailed below. The
order of the output and the exact presentation might vary, but the
interpretation is the same.
The first section includes details on conflicts that were solved thanks
to precedence and/or associativity:
@example
Conflict in state 8 between rule 2 and token '+' resolved as reduce.
Conflict in state 8 between rule 2 and token '-' resolved as reduce.
Conflict in state 8 between rule 2 and token '*' resolved as shift.
@exdent @dots{}
@end example
@noindent
The next section lists states that still have conflicts.
@example
State 8 conflicts: 1 shift/reduce
State 9 conflicts: 1 shift/reduce
State 10 conflicts: 1 shift/reduce
State 11 conflicts: 4 shift/reduce
@end example
@noindent
@cindex token, useless
@cindex useless token
@cindex nonterminal, useless
@cindex useless nonterminal
@cindex rule, useless
@cindex useless rule
The next section reports useless tokens, nonterminal and rules. Useless
nonterminals and rules are removed in order to produce a smaller parser,
but useless tokens are preserved, since they might be used by the
scanner (note the difference between ``useless'' and ``not used''
below):
@example
Useless nonterminals:
useless
Terminals which are not used:
STR
Useless rules:
#6 useless: STR;
@end example
@noindent
The next section reproduces the exact grammar that Bison used:
@example
Grammar
Number, Line, Rule
0 5 $accept -> exp $end
1 5 exp -> exp '+' exp
2 6 exp -> exp '-' exp
3 7 exp -> exp '*' exp
4 8 exp -> exp '/' exp
5 9 exp -> NUM
@end example
@noindent
and reports the uses of the symbols:
@example
Terminals, with rules where they appear
$end (0) 0
'*' (42) 3
'+' (43) 1
'-' (45) 2
'/' (47) 4
error (256)
NUM (258) 5
Nonterminals, with rules where they appear
$accept (8)
on left: 0
exp (9)
on left: 1 2 3 4 5, on right: 0 1 2 3 4
@end example
@noindent
@cindex item
@cindex pointed rule
@cindex rule, pointed
Bison then proceeds onto the automaton itself, describing each state
with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
item is a production rule together with a point (marked by @samp{.})
that the input cursor.
@example
state 0
$accept -> . exp $ (rule 0)
NUM shift, and go to state 1
exp go to state 2
@end example
This reads as follows: ``state 0 corresponds to being at the very
beginning of the parsing, in the initial rule, right before the start
symbol (here, @code{exp}). When the parser returns to this state right
after having reduced a rule that produced an @code{exp}, the control
flow jumps to state 2. If there is no such transition on a nonterminal
symbol, and the lookahead is a @code{NUM}, then this token is shifted on
the parse stack, and the control flow jumps to state 1. Any other
lookahead triggers a syntax error.''
@cindex core, item set
@cindex item set core
@cindex kernel, item set
@cindex item set core
Even though the only active rule in state 0 seems to be rule 0, the
report lists @code{NUM} as a lookahead symbol because @code{NUM} can be
at the beginning of any rule deriving an @code{exp}. By default Bison
reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
you want to see more detail you can invoke @command{bison} with
@option{--report=itemset} to list all the items, include those that can
be derived:
@example
state 0
$accept -> . exp $ (rule 0)
exp -> . exp '+' exp (rule 1)
exp -> . exp '-' exp (rule 2)
exp -> . exp '*' exp (rule 3)
exp -> . exp '/' exp (rule 4)
exp -> . NUM (rule 5)
NUM shift, and go to state 1
exp go to state 2
@end example
@noindent
In the state 1...
@example
state 1
exp -> NUM . (rule 5)
$default reduce using rule 5 (exp)
@end example
@noindent
the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead
(@samp{$default}), the parser will reduce it. If it was coming from
state 0, then, after this reduction it will return to state 0, and will
jump to state 2 (@samp{exp: go to state 2}).
@example
state 2
$accept -> exp . $ (rule 0)
exp -> exp . '+' exp (rule 1)
exp -> exp . '-' exp (rule 2)
exp -> exp . '*' exp (rule 3)
exp -> exp . '/' exp (rule 4)
$ shift, and go to state 3
'+' shift, and go to state 4
'-' shift, and go to state 5
'*' shift, and go to state 6
'/' shift, and go to state 7
@end example
@noindent
In state 2, the automaton can only shift a symbol. For instance,
because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
@samp{+}, it will be shifted on the parse stack, and the automaton
control will jump to state 4, corresponding to the item @samp{exp -> exp
'+' . exp}. Since there is no default action, any other token than
those listed above will trigger a syntax error.
The state 3 is named the @dfn{final state}, or the @dfn{accepting
state}:
@example
state 3
$accept -> exp $ . (rule 0)
$default accept
@end example
@noindent
the initial rule is completed (the start symbol and the end
of input were read), the parsing exits successfully.
The interpretation of states 4 to 7 is straightforward, and is left to
the reader.
@example
state 4
exp -> exp '+' . exp (rule 1)
NUM shift, and go to state 1
exp go to state 8
state 5
exp -> exp '-' . exp (rule 2)
NUM shift, and go to state 1
exp go to state 9
state 6
exp -> exp '*' . exp (rule 3)
NUM shift, and go to state 1
exp go to state 10
state 7
exp -> exp '/' . exp (rule 4)
NUM shift, and go to state 1
exp go to state 11
@end example
As was announced in beginning of the report, @samp{State 8 conflicts:
1 shift/reduce}:
@example
state 8
exp -> exp . '+' exp (rule 1)
exp -> exp '+' exp . (rule 1)
exp -> exp . '-' exp (rule 2)
exp -> exp . '*' exp (rule 3)
exp -> exp . '/' exp (rule 4)
'*' shift, and go to state 6
'/' shift, and go to state 7
'/' [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)
@end example
Indeed, there are two actions associated to the lookahead @samp{/}:
either shifting (and going to state 7), or reducing rule 1. The
conflict means that either the grammar is ambiguous, or the parser lacks
information to make the right decision. Indeed the grammar is
ambiguous, as, since we did not specify the precedence of @samp{/}, the
sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
NUM}, which corresponds to reducing rule 1.
Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
Shift/Reduce Conflicts}. Discarded actions are reported in between
square brackets.
Note that all the previous states had a single possible action: either
shifting the next token and going to the corresponding state, or
reducing a single rule. In the other cases, i.e., when shifting
@emph{and} reducing is possible or when @emph{several} reductions are
possible, the lookahead is required to select the action. State 8 is
one such state: if the lookahead is @samp{*} or @samp{/} then the action
is shifting, otherwise the action is reducing rule 1. In other words,
the first two items, corresponding to rule 1, are not eligible when the
lookahead is @samp{*}, since we specified that @samp{*} has higher
precedence that @samp{+}. More generally, some items are eligible only
with some set of possible lookaheads. When run with
@option{--report=lookahead}, Bison specifies these lookaheads:
@example
state 8
exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
exp -> exp . '-' exp (rule 2)
exp -> exp . '*' exp (rule 3)
exp -> exp . '/' exp (rule 4)
'*' shift, and go to state 6
'/' shift, and go to state 7
'/' [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)
@end example
The remaining states are similar:
@example
state 9
exp -> exp . '+' exp (rule 1)
exp -> exp . '-' exp (rule 2)
exp -> exp '-' exp . (rule 2)
exp -> exp . '*' exp (rule 3)
exp -> exp . '/' exp (rule 4)
'*' shift, and go to state 6
'/' shift, and go to state 7
'/' [reduce using rule 2 (exp)]
$default reduce using rule 2 (exp)
state 10
exp -> exp . '+' exp (rule 1)
exp -> exp . '-' exp (rule 2)
exp -> exp . '*' exp (rule 3)
exp -> exp '*' exp . (rule 3)
exp -> exp . '/' exp (rule 4)
'/' shift, and go to state 7
'/' [reduce using rule 3 (exp)]
$default reduce using rule 3 (exp)
state 11
exp -> exp . '+' exp (rule 1)
exp -> exp . '-' exp (rule 2)
exp -> exp . '*' exp (rule 3)
exp -> exp . '/' exp (rule 4)
exp -> exp '/' exp . (rule 4)
'+' shift, and go to state 4
'-' shift, and go to state 5
'*' shift, and go to state 6
'/' shift, and go to state 7
'+' [reduce using rule 4 (exp)]
'-' [reduce using rule 4 (exp)]
'*' [reduce using rule 4 (exp)]
'/' [reduce using rule 4 (exp)]
$default reduce using rule 4 (exp)
@end example
@noindent
Observe that state 11 contains conflicts due to the lack of precedence
of @samp{/} wrt @samp{+}, @samp{-}, and @samp{*}, but also because the
associativity of @samp{/} is not specified.
@node Tracing
@section Tracing Your Parser
@findex yydebug
@cindex debugging
@cindex tracing the parser
If a Bison grammar compiles properly but doesn't do what you want when it
runs, the @code{yydebug} parser-trace feature can help you figure out why.
There are several means to enable compilation of trace facilities:
@table @asis
@item the macro @code{YYDEBUG}
@findex YYDEBUG
Define the macro @code{YYDEBUG} to a nonzero value when you compile the
parser. This is compliant with @acronym{POSIX} Yacc. You could use
@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
Prologue}).
@item the option @option{-t}, @option{--debug}
Use the @samp{-t} option when you run Bison (@pxref{Invocation,
,Invoking Bison}). This is @acronym{POSIX} compliant too.
@item the directive @samp{%debug}
@findex %debug
Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
Declaration Summary}). This is a Bison extension, which will prove
useful when Bison will output parsers for languages that don't use a
preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
you, this is
the preferred solution.
@end table
We suggest that you always enable the debug option so that debugging is
always possible.
The trace facility outputs messages with macro calls of the form
@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
@var{format} and @var{args} are the usual @code{printf} format and
arguments. If you define @code{YYDEBUG} to a nonzero value but do not
define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
and @code{YYPRINTF} is defined to @code{fprintf}.
Once you have compiled the program with trace facilities, the way to
request a trace is to store a nonzero value in the variable @code{yydebug}.
You can do this by making the C code do it (in @code{main}, perhaps), or
you can alter the value with a C debugger.
Each step taken by the parser when @code{yydebug} is nonzero produces a
line or two of trace information, written on @code{stderr}. The trace
messages tell you these things:
@itemize @bullet
@item
Each time the parser calls @code{yylex}, what kind of token was read.
@item
Each time a token is shifted, the depth and complete contents of the
state stack (@pxref{Parser States}).
@item
Each time a rule is reduced, which rule it is, and the complete contents
of the state stack afterward.
@end itemize
To make sense of this information, it helps to refer to the listing file
produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
Bison}). This file shows the meaning of each state in terms of
positions in various rules, and also what each state will do with each
possible input token. As you read the successive trace messages, you
can see that the parser is functioning according to its specification in
the listing file. Eventually you will arrive at the place where
something undesirable happens, and you will see which parts of the
grammar are to blame.
The parser file is a C program and you can use C debuggers on it, but it's
not easy to interpret what it is doing. The parser function is a
finite-state machine interpreter, and aside from the actions it executes
the same code over and over. Only the values of variables show where in
the grammar it is working.
@findex YYPRINT
The debugging information normally gives the token type of each token
read, but not its semantic value. You can optionally define a macro
named @code{YYPRINT} to provide a way to print the value. If you define
@code{YYPRINT}, it should take three arguments. The parser will pass a
standard I/O stream, the numeric code for the token type, and the token
value (from @code{yylval}).
Here is an example of @code{YYPRINT} suitable for the multi-function
calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
@smallexample
%@{
static void print_token_value (FILE *, int, YYSTYPE);
#define YYPRINT(file, type, value) print_token_value (file, type, value)
%@}
@dots{} %% @dots{} %% @dots{}
static void
print_token_value (FILE *file, int type, YYSTYPE value)
@{
if (type == VAR)
fprintf (file, "%s", value.tptr->name);
else if (type == NUM)
fprintf (file, "%d", value.val);
@}
@end smallexample
@c ================================================= Invoking Bison
@node Invocation
@chapter Invoking Bison
@cindex invoking Bison
@cindex Bison invocation
@cindex options for invoking Bison
The usual way to invoke Bison is as follows:
@example
bison @var{infile}
@end example
Here @var{infile} is the grammar file name, which usually ends in
@samp{.y}. The parser file's name is made by replacing the @samp{.y}
with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
@file{hack/foo.tab.c}. It's also possible, in case you are writing
C++ code instead of C in your grammar file, to name it @file{foo.ypp}
or @file{foo.y++}. Then, the output files will take an extension like
the given one as input (respectively @file{foo.tab.cpp} and
@file{foo.tab.c++}).
This feature takes effect with all options that manipulate filenames like
@samp{-o} or @samp{-d}.
For example :
@example
bison -d @var{infile.yxx}
@end example
@noindent
will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
@example
bison -d -o @var{output.c++} @var{infile.y}
@end example
@noindent
will produce @file{output.c++} and @file{outfile.h++}.
For compatibility with @acronym{POSIX}, the standard Bison
distribution also contains a shell script called @command{yacc} that
invokes Bison with the @option{-y} option.
@menu
* Bison Options:: All the options described in detail,
in alphabetical order by short options.
* Option Cross Key:: Alphabetical list of long options.
* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
@end menu
@node Bison Options
@section Bison Options
Bison supports both traditional single-letter options and mnemonic long
option names. Long option names are indicated with @samp{--} instead of
@samp{-}. Abbreviations for option names are allowed as long as they
are unique. When a long option takes an argument, like
@samp{--file-prefix}, connect the option name and the argument with
@samp{=}.
Here is a list of options that can be used with Bison, alphabetized by
short option. It is followed by a cross key alphabetized by long
option.
@c Please, keep this ordered as in `bison --help'.
@noindent
Operations modes:
@table @option
@item -h
@itemx --help
Print a summary of the command-line options to Bison and exit.
@item -V
@itemx --version
Print the version number of Bison and exit.
@need 1750
@item -y
@itemx --yacc
Equivalent to @samp{-o y.tab.c}; the parser output file is called
@file{y.tab.c}, and the other outputs are called @file{y.output} and
@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
file name conventions. Thus, the following shell script can substitute
for Yacc, and the Bison distribution contains such a script for
compatibility with @acronym{POSIX}:
@example
#! /bin/sh
bison -y "$@@"
@end example
@end table
@noindent
Tuning the parser:
@table @option
@item -S @var{file}
@itemx --skeleton=@var{file}
Specify the skeleton to use. You probably don't need this option unless
you are developing Bison.
@item -t
@itemx --debug
In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
already defined, so that the debugging facilities are compiled.
@xref{Tracing, ,Tracing Your Parser}.
@item --locations
Pretend that @code{%locations} was specified. @xref{Decl Summary}.
@item -p @var{prefix}
@itemx --name-prefix=@var{prefix}
Pretend that @code{%name-prefix="@var{prefix}"} was specified.
@xref{Decl Summary}.
@item -l
@itemx --no-lines
Don't put any @code{#line} preprocessor commands in the parser file.
Ordinarily Bison puts them in the parser file so that the C compiler
and debuggers will associate errors with your source file, the
grammar file. This option causes them to associate errors with the
parser file, treating it as an independent source file in its own right.
@item -n
@itemx --no-parser
Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
@item -k
@itemx --token-table
Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
@end table
@noindent
Adjust the output:
@table @option
@item -d
@itemx --defines
Pretend that @code{%defines} was specified, i.e., write an extra output
file containing macro definitions for the token type names defined in
the grammar and the semantic value type @code{YYSTYPE}, as well as a few
@code{extern} variable declarations. @xref{Decl Summary}.
@item --defines=@var{defines-file}
Same as above, but save in the file @var{defines-file}.
@item -b @var{file-prefix}
@itemx --file-prefix=@var{prefix}
Pretend that @code{%verbose} was specified, i.e, specify prefix to use
for all Bison output file names. @xref{Decl Summary}.
@item -r @var{things}
@itemx --report=@var{things}
Write an extra output file containing verbose description of the comma
separated list of @var{things} among:
@table @code
@item state
Description of the grammar, conflicts (resolved and unresolved), and
@acronym{LALR} automaton.
@item lookahead
Implies @code{state} and augments the description of the automaton with
each rule's lookahead set.
@item itemset
Implies @code{state} and augments the description of the automaton with
the full set of items for each state, instead of its core only.
@end table
For instance, on the following grammar
@item -v
@itemx --verbose
Pretend that @code{%verbose} was specified, i.e, write an extra output
file containing verbose descriptions of the grammar and
parser. @xref{Decl Summary}.
@item -o @var{filename}
@itemx --output=@var{filename}
Specify the @var{filename} for the parser file.
The other output files' names are constructed from @var{filename} as
described under the @samp{-v} and @samp{-d} options.
@item -g
Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
automaton computed by Bison. If the grammar file is @file{foo.y}, the
@acronym{VCG} output file will
be @file{foo.vcg}.
@item --graph=@var{graph-file}
The behavior of @var{--graph} is the same than @samp{-g}. The only
difference is that it has an optional argument which is the name of
the output graph filename.
@end table
@node Option Cross Key
@section Option Cross Key
Here is a list of options, alphabetized by long option, to help you find
the corresponding short option.
@tex
\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
{\tt
\line{ --debug \leaderfill -t}
\line{ --defines \leaderfill -d}
\line{ --file-prefix \leaderfill -b}
\line{ --graph \leaderfill -g}
\line{ --help \leaderfill -h}
\line{ --name-prefix \leaderfill -p}
\line{ --no-lines \leaderfill -l}
\line{ --no-parser \leaderfill -n}
\line{ --output \leaderfill -o}
\line{ --token-table \leaderfill -k}
\line{ --verbose \leaderfill -v}
\line{ --version \leaderfill -V}
\line{ --yacc \leaderfill -y}
}
@end tex
@ifinfo
@example
--debug -t
--defines=@var{defines-file} -d
--file-prefix=@var{prefix} -b @var{file-prefix}
--graph=@var{graph-file} -d
--help -h
--name-prefix=@var{prefix} -p @var{name-prefix}
--no-lines -l
--no-parser -n
--output=@var{outfile} -o @var{outfile}
--token-table -k
--verbose -v
--version -V
--yacc -y
@end example
@end ifinfo
@node Yacc Library
@section Yacc Library
The Yacc library contains default implementations of the
@code{yyerror} and @code{main} functions. These default
implementations are normally not useful, but @acronym{POSIX} requires
them. To use the Yacc library, link your program with the
@option{-ly} option. Note that Bison's implementation of the Yacc
library is distributed under the terms of the @acronym{GNU} General
Public License (@pxref{Copying}).
If you use the Yacc library's @code{yyerror} function, you should
declare @code{yyerror} as follows:
@example
int yyerror (char const *);
@end example
Bison ignores the @code{int} value returned by this @code{yyerror}.
If you use the Yacc library's @code{main} function, your
@code{yyparse} function should have the following type signature:
@example
int yyparse (void);
@end example
@c ================================================= Invoking Bison
@node FAQ
@chapter Frequently Asked Questions
@cindex frequently asked questions
@cindex questions
Several questions about Bison come up occasionally. Here some of them
are addressed.
@menu
* Parser Stack Overflow:: Breaking the Stack Limits
* How Can I Reset the Parser:: @code{yyparse} Keeps some State
* Strings are Destroyed:: @code{yylval} Loses Track of Strings
* C++ Parsers:: Compiling Parsers with C++ Compilers
* Implementing Loops:: Control Flow in the Calculator
@end menu
@node Parser Stack Overflow
@section Parser Stack Overflow
@display
My parser returns with error with a @samp{parser stack overflow}
message. What can I do?
@end display
This question is already addressed elsewhere, @xref{Recursion,
,Recursive Rules}.
@node How Can I Reset the Parser
@section How Can I Reset the Parser
The following phenomenon has several symptoms, resulting in the
following typical questions:
@display
I invoke @code{yyparse} several times, and on correct input it works
properly; but when a parse error is found, all the other calls fail
too. How can I reset the error flag of @code{yyparse}?
@end display
@noindent
or
@display
My parser includes support for an @samp{#include}-like feature, in
which case I run @code{yyparse} from @code{yyparse}. This fails
although I did specify I needed a @code{%pure-parser}.
@end display
These problems typically come not from Bison itself, but from
Lex-generated scanners. Because these scanners use large buffers for
speed, they might not notice a change of input file. As a
demonstration, consider the following source file,
@file{first-line.l}:
@verbatim
%{
#include <stdio.h>
#include <stdlib.h>
%}
%%
.*\n ECHO; return 1;
%%
int
yyparse (char const *file)
{
yyin = fopen (file, "r");
if (!yyin)
exit (2);
/* One token only. */
yylex ();
if (fclose (yyin) != 0)
exit (3);
return 0;
}
int
main (void)
{
yyparse ("input");
yyparse ("input");
return 0;
}
@end verbatim
@noindent
If the file @file{input} contains
@verbatim
input:1: Hello,
input:2: World!
@end verbatim
@noindent
then instead of getting the first line twice, you get:
@example
$ @kbd{flex -ofirst-line.c first-line.l}
$ @kbd{gcc -ofirst-line first-line.c -ll}
$ @kbd{./first-line}
input:1: Hello,
input:2: World!
@end example
Therefore, whenever you change @code{yyin}, you must tell the
Lex-generated scanner to discard its current buffer and switch to the
new one. This depends upon your implementation of Lex; see its
documentation for more. For Flex, it suffices to call
@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
Flex-generated scanner needs to read from several input streams to
handle features like include files, you might consider using Flex
functions like @samp{yy_switch_to_buffer} that manipulate multiple
input buffers.
If your Flex-generated scanner uses start conditions (@pxref{Start
conditions, , Start conditions, flex, The Flex Manual}), you might
also want to reset the scanner's state, i.e., go back to the initial
start condition, through a call to @samp{BEGIN (0)}.
@node Strings are Destroyed
@section Strings are Destroyed
@display
My parser seems to destroy old strings, or maybe it loses track of
them. Instead of reporting @samp{"foo", "bar"}, it reports
@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
@end display
This error is probably the single most frequent ``bug report'' sent to
Bison lists, but is only concerned with a misunderstanding of the role
of scanner. Consider the following Lex code:
@verbatim
%{
#include <stdio.h>
char *yylval = NULL;
%}
%%
.* yylval = yytext; return 1;
\n /* IGNORE */
%%
int
main ()
{
/* Similar to using $1, $2 in a Bison action. */
char *fst = (yylex (), yylval);
char *snd = (yylex (), yylval);
printf ("\"%s\", \"%s\"\n", fst, snd);
return 0;
}
@end verbatim
If you compile and run this code, you get:
@example
$ @kbd{flex -osplit-lines.c split-lines.l}
$ @kbd{gcc -osplit-lines split-lines.c -ll}
$ @kbd{printf 'one\ntwo\n' | ./split-lines}
"one
two", "two"
@end example
@noindent
this is because @code{yytext} is a buffer provided for @emph{reading}
in the action, but if you want to keep it, you have to duplicate it
(e.g., using @code{strdup}). Note that the output may depend on how
your implementation of Lex handles @code{yytext}. For instance, when
given the Lex compatibility option @option{-l} (which triggers the
option @samp{%array}) Flex generates a different behavior:
@example
$ @kbd{flex -l -osplit-lines.c split-lines.l}
$ @kbd{gcc -osplit-lines split-lines.c -ll}
$ @kbd{printf 'one\ntwo\n' | ./split-lines}
"two", "two"
@end example
@node C++ Parsers
@section C++ Parsers
@display
How can I generate parsers in C++?
@end display
We are working on a C++ output for Bison, but unfortunately, for lack
of time, the skeleton is not finished. It is functional, but in
numerous respects, it will require additional work which @emph{might}
break backward compatibility. Since the skeleton for C++ is not
documented, we do not consider ourselves bound to this interface,
nevertheless, as much as possible we will try to keep compatibility.
Another possibility is to use the regular C parsers, and to compile
them with a C++ compiler. This works properly, provided that you bear
some simple C++ rules in mind, such as not including ``real classes''
(i.e., structure with constructors) in unions. Therefore, in the
@code{%union}, use pointers to classes, or better yet, a single
pointer type to the root of your lexical/syntactic hierarchy.
@node Implementing Loops
@section Implementing Loops
@display
My simple calculator supports variables, assignments, and functions,
but how can I implement loops?
@end display
Although very pedagogical, the examples included in the document blur
the distinction to make between the parser---whose job is to recover
the structure of a text and to transmit it to subsequent modules of
the program---and the processing (such as the execution) of this
structure. This works well with so called straight line programs,
i.e., precisely those that have a straightforward execution model:
execute simple instructions one after the others.
@cindex abstract syntax tree
@cindex @acronym{AST}
If you want a richer model, you will probably need to use the parser
to construct a tree that does represent the structure it has
recovered; this tree is usually called the @dfn{abstract syntax tree},
or @dfn{@acronym{AST}} for short. Then, walking through this tree,
traversing it in various ways, will enable treatments such as its
execution or its translation, which will result in an interpreter or a
compiler.
This topic is way beyond the scope of this manual, and the reader is
invited to consult the dedicated literature.
@c ================================================= Table of Symbols
@node Table of Symbols
@appendix Bison Symbols
@cindex Bison symbols, table of
@cindex symbols in Bison, table of
@deffn {Variable} @@$
In an action, the location of the left-hand side of the rule.
@xref{Locations, , Locations Overview}.
@end deffn
@deffn {Variable} @@@var{n}
In an action, the location of the @var{n}-th symbol of the right-hand
side of the rule. @xref{Locations, , Locations Overview}.
@end deffn
@deffn {Variable} $$
In an action, the semantic value of the left-hand side of the rule.
@xref{Actions}.
@end deffn
@deffn {Variable} $@var{n}
In an action, the semantic value of the @var{n}-th symbol of the
right-hand side of the rule. @xref{Actions}.
@end deffn
@deffn {Symbol} $accept
The predefined nonterminal whose only rule is @samp{$accept: @var{start}
$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
Start-Symbol}. It cannot be used in the grammar.
@end deffn
@deffn {Symbol} $end
The predefined token marking the end of the token stream. It cannot be
used in the grammar.
@end deffn
@deffn {Symbol} $undefined
The predefined token onto which all undefined values returned by
@code{yylex} are mapped. It cannot be used in the grammar, rather, use
@code{error}.
@end deffn
@deffn {Symbol} error
A token name reserved for error recovery. This token may be used in
grammar rules so as to allow the Bison parser to recognize an error in
the grammar without halting the process. In effect, a sentence
containing an error may be recognized as valid. On a syntax error, the
token @code{error} becomes the current look-ahead token. Actions
corresponding to @code{error} are then executed, and the look-ahead
token is reset to the token that originally caused the violation.
@xref{Error Recovery}.
@end deffn
@deffn {Macro} YYABORT
Macro to pretend that an unrecoverable syntax error has occurred, by
making @code{yyparse} return 1 immediately. The error reporting
function @code{yyerror} is not called. @xref{Parser Function, ,The
Parser Function @code{yyparse}}.
@end deffn
@deffn {Macro} YYACCEPT
Macro to pretend that a complete utterance of the language has been
read, by making @code{yyparse} return 0 immediately.
@xref{Parser Function, ,The Parser Function @code{yyparse}}.
@end deffn
@deffn {Macro} YYBACKUP
Macro to discard a value from the parser stack and fake a look-ahead
token. @xref{Action Features, ,Special Features for Use in Actions}.
@end deffn
@deffn {Macro} YYDEBUG
Macro to define to equip the parser with tracing code. @xref{Tracing,
,Tracing Your Parser}.
@end deffn
@deffn {Macro} YYERROR
Macro to pretend that a syntax error has just been detected: call
@code{yyerror} and then perform normal error recovery if possible
(@pxref{Error Recovery}), or (if recovery is impossible) make
@code{yyparse} return 1. @xref{Error Recovery}.
@end deffn
@deffn {Macro} YYERROR_VERBOSE
An obsolete macro that you define with @code{#define} in the prologue
to request verbose, specific error message strings
when @code{yyerror} is called. It doesn't matter what definition you
use for @code{YYERROR_VERBOSE}, just whether you define it. Using
@code{%error-verbose} is preferred.
@end deffn
@deffn {Macro} YYINITDEPTH
Macro for specifying the initial size of the parser stack.
@xref{Stack Overflow}.
@end deffn
@deffn {Macro} YYLEX_PARAM
An obsolete macro for specifying an extra argument (or list of extra
arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
macro is deprecated, and is supported only for Yacc like parsers.
@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
@end deffn
@deffn {Type} YYLTYPE
Data type of @code{yylloc}; by default, a structure with four
members. @xref{Location Type, , Data Types of Locations}.
@end deffn
@deffn {Macro} YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. @xref{Stack
Overflow}.
@end deffn
@deffn {Macro} YYPARSE_PARAM
An obsolete macro for specifying the name of a parameter that
@code{yyparse} should accept. The use of this macro is deprecated, and
is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
Conventions for Pure Parsers}.
@end deffn
@deffn {Macro} YYRECOVERING
Macro whose value indicates whether the parser is recovering from a
syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
@end deffn
@deffn {Macro} YYSTACK_USE_ALLOCA
Macro used to control the use of @code{alloca}. If defined to @samp{0},
the parser will not use @code{alloca} but @code{malloc} when trying to
grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA}
to anything else.
@end deffn
@deffn {Type} YYSTYPE
Data type of semantic values; @code{int} by default.
@xref{Value Type, ,Data Types of Semantic Values}.
@end deffn
@deffn {Variable} yychar
External integer variable that contains the integer value of the current
look-ahead token. (In a pure parser, it is a local variable within
@code{yyparse}.) Error-recovery rule actions may examine this variable.
@xref{Action Features, ,Special Features for Use in Actions}.
@end deffn
@deffn {Variable} yyclearin
Macro used in error-recovery rule actions. It clears the previous
look-ahead token. @xref{Error Recovery}.
@end deffn
@deffn {Variable} yydebug
External integer variable set to zero by default. If @code{yydebug}
is given a nonzero value, the parser will output information on input
symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
@end deffn
@deffn {Macro} yyerrok
Macro to cause parser to recover immediately to its normal mode
after a syntax error. @xref{Error Recovery}.
@end deffn
@deffn {Function} yyerror
User-supplied function to be called by @code{yyparse} on error.
@xref{Error Reporting, ,The Error
Reporting Function @code{yyerror}}.
@end deffn
@deffn {Function} yylex
User-supplied lexical analyzer function, called with no arguments to get
the next token. @xref{Lexical, ,The Lexical Analyzer Function
@code{yylex}}.
@end deffn
@deffn {Variable} yylval
External variable in which @code{yylex} should place the semantic
value associated with a token. (In a pure parser, it is a local
variable within @code{yyparse}, and its address is passed to
@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
@end deffn
@deffn {Variable} yylloc
External variable in which @code{yylex} should place the line and column
numbers associated with a token. (In a pure parser, it is a local
variable within @code{yyparse}, and its address is passed to
@code{yylex}.) You can ignore this variable if you don't use the
@samp{@@} feature in the grammar actions. @xref{Token Locations,
,Textual Locations of Tokens}.
@end deffn
@deffn {Variable} yynerrs
Global variable which Bison increments each time there is a syntax error.
(In a pure parser, it is a local variable within @code{yyparse}.)
@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
@end deffn
@deffn {Function} yyparse
The parser function produced by Bison; call this function to start
parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
@end deffn
@deffn {Directive} %debug
Equip the parser for debugging. @xref{Decl Summary}.
@end deffn
@ifset defaultprec
@deffn {Directive} %default-prec
Assign a precedence to rules that lack an explicit @samp{%prec}
modifier. @xref{Contextual Precedence, ,Context-Dependent
Precedence}.
@end deffn
@end ifset
@deffn {Directive} %defines
Bison declaration to create a header file meant for the scanner.
@xref{Decl Summary}.
@end deffn
@deffn {Directive} %destructor
Specifying how the parser should reclaim the memory associated to
discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
@end deffn
@deffn {Directive} %dprec
Bison declaration to assign a precedence to a rule that is used at parse
time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
@acronym{GLR} Parsers}.
@end deffn
@deffn {Directive} %error-verbose
Bison declaration to request verbose, specific error message strings
when @code{yyerror} is called.
@end deffn
@deffn {Directive} %file-prefix="@var{prefix}"
Bison declaration to set the prefix of the output files. @xref{Decl
Summary}.
@end deffn
@deffn {Directive} %glr-parser
Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
Parsers, ,Writing @acronym{GLR} Parsers}.
@end deffn
@deffn {Directive} %left
Bison declaration to assign left associativity to token(s).
@xref{Precedence Decl, ,Operator Precedence}.
@end deffn
@deffn {Directive} %lex-param @{@var{argument-declaration}@}
Bison declaration to specifying an additional parameter that
@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
for Pure Parsers}.
@end deffn
@deffn {Directive} %merge
Bison declaration to assign a merging function to a rule. If there is a
reduce/reduce conflict with a rule having the same merging function, the
function is applied to the two semantic values to get a single result.
@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
@end deffn
@deffn {Directive} %name-prefix="@var{prefix}"
Bison declaration to rename the external symbols. @xref{Decl Summary}.
@end deffn
@ifset defaultprec
@deffn {Directive} %no-default-prec
Do not assign a precedence to rules that lack an explicit @samp{%prec}
modifier. @xref{Contextual Precedence, ,Context-Dependent
Precedence}.
@end deffn
@end ifset
@deffn {Directive} %no-lines
Bison declaration to avoid generating @code{#line} directives in the
parser file. @xref{Decl Summary}.
@end deffn
@deffn {Directive} %nonassoc
Bison declaration to assign non-associativity to token(s).
@xref{Precedence Decl, ,Operator Precedence}.
@end deffn
@deffn {Directive} %output="@var{filename}"
Bison declaration to set the name of the parser file. @xref{Decl
Summary}.
@end deffn
@deffn {Directive} %parse-param @{@var{argument-declaration}@}
Bison declaration to specifying an additional parameter that
@code{yyparse} should accept. @xref{Parser Function,, The Parser
Function @code{yyparse}}.
@end deffn
@deffn {Directive} %prec
Bison declaration to assign a precedence to a specific rule.
@xref{Contextual Precedence, ,Context-Dependent Precedence}.
@end deffn
@deffn {Directive} %pure-parser
Bison declaration to request a pure (reentrant) parser.
@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
@end deffn
@deffn {Directive} %right
Bison declaration to assign right associativity to token(s).
@xref{Precedence Decl, ,Operator Precedence}.
@end deffn
@deffn {Directive} %start
Bison declaration to specify the start symbol. @xref{Start Decl, ,The
Start-Symbol}.
@end deffn
@deffn {Directive} %token
Bison declaration to declare token(s) without specifying precedence.
@xref{Token Decl, ,Token Type Names}.
@end deffn
@deffn {Directive} %token-table
Bison declaration to include a token name table in the parser file.
@xref{Decl Summary}.
@end deffn
@deffn {Directive} %type
Bison declaration to declare nonterminals. @xref{Type Decl,
,Nonterminal Symbols}.
@end deffn
@deffn {Directive} %union
Bison declaration to specify several possible data types for semantic
values. @xref{Union Decl, ,The Collection of Value Types}.
@end deffn
@sp 1
These are the punctuation and delimiters used in Bison input:
@deffn {Delimiter} %%
Delimiter used to separate the grammar rule section from the
Bison declarations section or the epilogue.
@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
@end deffn
@c Don't insert spaces, or check the DVI output.
@deffn {Delimiter} %@{@var{code}%@}
All code listed between @samp{%@{} and @samp{%@}} is copied directly to
the output file uninterpreted. Such code forms the prologue of the input
file. @xref{Grammar Outline, ,Outline of a Bison
Grammar}.
@end deffn
@deffn {Construct} /*@dots{}*/
Comment delimiters, as in C.
@end deffn
@deffn {Delimiter} :
Separates a rule's result from its components. @xref{Rules, ,Syntax of
Grammar Rules}.
@end deffn
@deffn {Delimiter} ;
Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
@end deffn
@deffn {Delimiter} |
Separates alternate rules for the same result nonterminal.
@xref{Rules, ,Syntax of Grammar Rules}.
@end deffn
@node Glossary
@appendix Glossary
@cindex glossary
@table @asis
@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
Formal method of specifying context-free grammars originally proposed
by John Backus, and slightly improved by Peter Naur in his 1960-01-02
committee document contributing to what became the Algol 60 report.
@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
@item Context-free grammars
Grammars specified as rules that can be applied regardless of context.
Thus, if there is a rule which says that an integer can be used as an
expression, integers are allowed @emph{anywhere} an expression is
permitted. @xref{Language and Grammar, ,Languages and Context-Free
Grammars}.
@item Dynamic allocation
Allocation of memory that occurs during execution, rather than at
compile time or on entry to a function.
@item Empty string
Analogous to the empty set in set theory, the empty string is a
character string of length zero.
@item Finite-state stack machine
A ``machine'' that has discrete states in which it is said to exist at
each instant in time. As input to the machine is processed, the
machine moves from state to state as specified by the logic of the
machine. In the case of the parser, the input is the language being
parsed, and the states correspond to various stages in the grammar
rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
@item Generalized @acronym{LR} (@acronym{GLR})
A parsing algorithm that can handle all context-free grammars, including those
that are not @acronym{LALR}(1). It resolves situations that Bison's
usual @acronym{LALR}(1)
algorithm cannot by effectively splitting off multiple parsers, trying all
possible parsers, and discarding those that fail in the light of additional
right context. @xref{Generalized LR Parsing, ,Generalized
@acronym{LR} Parsing}.
@item Grouping
A language construct that is (in general) grammatically divisible;
for example, `expression' or `declaration' in C@.
@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
@item Infix operator
An arithmetic operator that is placed between the operands on which it
performs some operation.
@item Input stream
A continuous flow of data between devices or programs.
@item Language construct
One of the typical usage schemas of the language. For example, one of
the constructs of the C language is the @code{if} statement.
@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
@item Left associativity
Operators having left associativity are analyzed from left to right:
@samp{a+b+c} first computes @samp{a+b} and then combines with
@samp{c}. @xref{Precedence, ,Operator Precedence}.
@item Left recursion
A rule whose result symbol is also its first component symbol; for
example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
Rules}.
@item Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from
left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
@item Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one.
@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
@item Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way
tokens are parsed. @xref{Lexical Tie-ins}.
@item Literal string token
A token which consists of two or more fixed characters. @xref{Symbols}.
@item Look-ahead token
A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
Tokens}.
@item @acronym{LALR}(1)
The class of context-free grammars that Bison (like most other parser
generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
@item @acronym{LR}(1)
The class of context-free grammars in which at most one token of
look-ahead is needed to disambiguate the parsing of any piece of input.
@item Nonterminal symbol
A grammar symbol standing for a grammatical construct that can
be expressed through rules in terms of smaller constructs; in other
words, a construct that is not a token. @xref{Symbols}.
@item Parser
A function that recognizes valid sentences of a language by analyzing
the syntax structure of a set of tokens passed to it from a lexical
analyzer.
@item Postfix operator
An arithmetic operator that is placed after the operands upon which it
performs some operation.
@item Reduction
Replacing a string of nonterminals and/or terminals with a single
nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
Parser Algorithm}.
@item Reentrant
A reentrant subprogram is a subprogram which can be in invoked any
number of times in parallel, without interference between the various
invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
@item Reverse polish notation
A language in which all operators are postfix operators.
@item Right recursion
A rule whose result symbol is also its last component symbol; for
example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
Rules}.
@item Semantics
In computer languages, the semantics are specified by the actions
taken for each instance of the language, i.e., the meaning of
each statement. @xref{Semantics, ,Defining Language Semantics}.
@item Shift
A parser is said to shift when it makes the choice of analyzing
further input from the stream rather than reducing immediately some
already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
@item Single-character literal
A single character that is recognized and interpreted as is.
@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
@item Start symbol
The nonterminal symbol that stands for a complete valid utterance in
the language being parsed. The start symbol is usually listed as the
first nonterminal symbol in a language specification.
@xref{Start Decl, ,The Start-Symbol}.
@item Symbol table
A data structure where symbol names and associated data are stored
during parsing to allow for recognition and use of existing
information in repeated uses of a symbol. @xref{Multi-function Calc}.
@item Syntax error
An error encountered during parsing of an input stream due to invalid
syntax. @xref{Error Recovery}.
@item Token
A basic, grammatically indivisible unit of a language. The symbol
that describes a token in the grammar is a terminal symbol.
The input of the Bison parser is a stream of tokens which comes from
the lexical analyzer. @xref{Symbols}.
@item Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is
grammatically indivisible. The piece of text it represents is a token.
@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
@end table
@node Copying This Manual
@appendix Copying This Manual
@menu
* GNU Free Documentation License:: License for copying this manual.
@end menu
@include fdl.texi
@node Index
@unnumbered Index
@printindex cp
@bye
@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
@c LocalWords: YYSTACK DVI fdl printindex
|