1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html40/loose.dtd">
<HTML>
<!-- Created on January, 28 2005 by texi2html 1.66 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<HEAD>
<TITLE>Bison 2.21.5: Examples</TITLE>
<META NAME="description" CONTENT="Bison 2.21.5: Examples">
<META NAME="keywords" CONTENT="Bison 2.21.5: Examples">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="texi2html 1.66">
</HEAD>
<BODY LANG="en" BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#800080" ALINK="#FF0000">
<A NAME="SEC14"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_4.html#SEC13"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_4.html#SEC6"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H1> 2. Examples </H1>
<!--docid::SEC14::-->
<P>
Now we show and explain three sample programs written using Bison: a
reverse polish notation calculator, an algebraic (infix) notation
calculator, and a multi-function calculator. All three have been tested
under BSD Unix 4.3; each produces a usable, though limited, interactive
desk-top calculator.
</P>
<P>
These examples are simple, but Bison grammars for real programming
languages are written the same way.
You can copy these examples out of the Info file and into a source file
to try them.
</P>
<P>
<TABLE BORDER="0" CELLSPACING="0">
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC15">2.1 Reverse Polish Notation Calculator</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Reverse polish notation calculator;
a first example with no operator precedence.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC26">2.2 Infix Notation Calculator: <CODE>calc</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Infix (algebraic) notation calculator.
Operator precedence is introduced.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC27">2.3 Simple Error Recovery</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Continuing after syntax errors.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC28">2.4 Multi-Function Calculator: <CODE>mfcalc</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Calculator with memory and trig functions.
It uses multiple data-types for semantic values.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC32">2.5 Exercises</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Ideas for improving the multi-function calculator.</TD></TR>
</TABLE>
<P>
<A NAME="RPN Calc"></A>
<HR SIZE="6">
<A NAME="SEC15"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC16"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 2.1 Reverse Polish Notation Calculator </H2>
<!--docid::SEC15::-->
<P>
The first example is that of a simple double-precision <EM>reverse polish
notation</EM> calculator (a calculator using postfix operators). This example
provides a good starting point, since operator precedence is not an issue.
The second example will illustrate how operator precedence is handled.
</P>
<P>
The source code for this calculator is named `<TT>rpcalc.y</TT>'. The
`<SAMP>.y</SAMP>' extension is a convention used for Bison input files.
</P>
<P>
<TABLE BORDER="0" CELLSPACING="0">
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC16">2.1.1 Declarations for <CODE>rpcalc</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Bison and C declarations for rpcalc.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC17">2.1.2 Grammar Rules for <CODE>rpcalc</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Grammar Rules for rpcalc, with explanation.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC21">2.1.3 The <CODE>rpcalc</CODE> Lexical Analyzer</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">The lexical analyzer.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC22">2.1.4 The Controlling Function</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">The controlling function.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC23">2.1.5 The Error Reporting Routine</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">The error reporting function.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC24">2.1.6 Running Bison to Make the Parser</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Running Bison on the grammar file.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC25">2.1.7 Compiling the Parser File</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Run the C compiler on the output code.</TD></TR>
</TABLE>
<P>
<A NAME="Rpcalc Decls"></A>
<HR SIZE="6">
<A NAME="SEC16"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC17"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.1.1 Declarations for <CODE>rpcalc</CODE> </H3>
<!--docid::SEC16::-->
<P>
Here are the C and Bison declarations for the reverse polish notation
calculator. As in C, comments are placed between `<SAMP>/*<small>...</small>*/</SAMP>'.
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>/* Reverse polish notation calculator. */
%{
#define YYSTYPE double
#include <math.h>
%}
%token NUM
%% /* Grammar rules and actions follow */
</pre></td></tr></table><P>
The C declarations section (see section <A HREF="bison_6.html#SEC35">The C Declarations Section</A>) contains two
preprocessor directives.
</P>
<P>
The <CODE>#define</CODE> directive defines the macro <CODE>YYSTYPE</CODE>, thus
specifying the C data type for semantic values of both tokens and groupings
(see section <A HREF="bison_6.html#SEC43">Data Types of Semantic Values</A>). The Bison parser will use whatever type
<CODE>YYSTYPE</CODE> is defined as; if you don't define it, <CODE>int</CODE> is the
default. Because we specify <CODE>double</CODE>, each token and each expression
has an associated value, which is a floating point number.
</P>
<P>
The <CODE>#include</CODE> directive is used to declare the exponentiation
function <CODE>pow</CODE>.
</P>
<P>
The second section, Bison declarations, provides information to Bison about
the token types (see section <A HREF="bison_6.html#SEC36">The Bison Declarations Section</A>). Each terminal symbol that is
not a single-character literal must be declared here. (Single-character
literals normally don't need to be declared.) In this example, all the
arithmetic operators are designated by single-character literals, so the
only terminal symbol that needs to be declared is <CODE>NUM</CODE>, the token
type for numeric constants.
</P>
<P>
<A NAME="Rpcalc Rules"></A>
<HR SIZE="6">
<A NAME="SEC17"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC16"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC18"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.1.2 Grammar Rules for <CODE>rpcalc</CODE> </H3>
<!--docid::SEC17::-->
<P>
Here are the grammar rules for the reverse polish notation calculator.
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>input: /* empty */
| input line
;
line: '\n'
| exp '\n' { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }
| exp exp '+' { $$ = $1 + $2; }
| exp exp '-' { $$ = $1 - $2; }
| exp exp '*' { $$ = $1 * $2; }
| exp exp '/' { $$ = $1 / $2; }
/* Exponentiation */
| exp exp '^' { $$ = pow ($1, $2); }
/* Unary minus */
| exp 'n' { $$ = -$1; }
;
%%
</pre></td></tr></table><P>
The groupings of the rpcalc "language" defined here are the expression
(given the name <CODE>exp</CODE>), the line of input (<CODE>line</CODE>), and the
complete input transcript (<CODE>input</CODE>). Each of these nonterminal
symbols has several alternate rules, joined by the `<SAMP>|</SAMP>' punctuator
which is read as "or". The following sections explain what these rules
mean.
</P>
<P>
The semantics of the language is determined by the actions taken when a
grouping is recognized. The actions are the C code that appears inside
braces. See section <A HREF="bison_6.html#SEC45">3.5.3 Actions</A>.
</P>
<P>
You must specify these actions in C, but Bison provides the means for
passing semantic values between the rules. In each action, the
pseudo-variable <CODE>$$</CODE> stands for the semantic value for the grouping
that the rule is going to construct. Assigning a value to <CODE>$$</CODE> is the
main job of most actions. The semantic values of the components of the
rule are referred to as <CODE>$1</CODE>, <CODE>$2</CODE>, and so on.
</P>
<P>
<TABLE BORDER="0" CELLSPACING="0">
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC18">2.1.2.1 Explanation of <CODE>input</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP"></TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC19">2.1.2.2 Explanation of <CODE>line</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP"></TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC20">2.1.2.3 Explanation of <CODE>expr</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP"></TD></TR>
</TABLE>
<P>
<A NAME="Rpcalc Input"></A>
<HR SIZE="6">
<A NAME="SEC18"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC17"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC19"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC17"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H4> 2.1.2.1 Explanation of <CODE>input</CODE> </H4>
<!--docid::SEC18::-->
<P>
Consider the definition of <CODE>input</CODE>:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>input: /* empty */
| input line
;
</pre></td></tr></table><P>
This definition reads as follows: "A complete input is either an empty
string, or a complete input followed by an input line". Notice that
"complete input" is defined in terms of itself. This definition is said
to be <EM>left recursive</EM> since <CODE>input</CODE> appears always as the
leftmost symbol in the sequence. See section <A HREF="bison_6.html#SEC41">Recursive Rules</A>.
</P>
<P>
The first alternative is empty because there are no symbols between the
colon and the first `<SAMP>|</SAMP>'; this means that <CODE>input</CODE> can match an
empty string of input (no tokens). We write the rules this way because it
is legitimate to type <KBD>Ctrl-d</KBD> right after you start the calculator.
It's conventional to put an empty alternative first and write the comment
`<SAMP>/* empty */</SAMP>' in it.
</P>
<P>
The second alternate rule (<CODE>input line</CODE>) handles all nontrivial input.
It means, "After reading any number of lines, read one more line if
possible." The left recursion makes this rule into a loop. Since the
first alternative matches empty input, the loop can be executed zero or
more times.
</P>
<P>
The parser function <CODE>yyparse</CODE> continues to process input until a
grammatical error is seen or the lexical analyzer says there are no more
input tokens; we will arrange for the latter to happen at end of file.
</P>
<P>
<A NAME="Rpcalc Line"></A>
<HR SIZE="6">
<A NAME="SEC19"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC18"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC20"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC17"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H4> 2.1.2.2 Explanation of <CODE>line</CODE> </H4>
<!--docid::SEC19::-->
<P>
Now consider the definition of <CODE>line</CODE>:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>line: '\n'
| exp '\n' { printf ("\t%.10g\n", $1); }
;
</pre></td></tr></table><P>
The first alternative is a token which is a newline character; this means
that rpcalc accepts a blank line (and ignores it, since there is no
action). The second alternative is an expression followed by a newline.
This is the alternative that makes rpcalc useful. The semantic value of
the <CODE>exp</CODE> grouping is the value of <CODE>$1</CODE> because the <CODE>exp</CODE> in
question is the first symbol in the alternative. The action prints this
value, which is the result of the computation the user asked for.
</P>
<P>
This action is unusual because it does not assign a value to <CODE>$$</CODE>. As
a consequence, the semantic value associated with the <CODE>line</CODE> is
uninitialized (its value will be unpredictable). This would be a bug if
that value were ever used, but we don't use it: once rpcalc has printed the
value of the user's input line, that value is no longer needed.
</P>
<P>
<A NAME="Rpcalc Expr"></A>
<HR SIZE="6">
<A NAME="SEC20"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC19"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC21"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC17"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H4> 2.1.2.3 Explanation of <CODE>expr</CODE> </H4>
<!--docid::SEC20::-->
<P>
The <CODE>exp</CODE> grouping has several rules, one for each kind of expression.
The first rule handles the simplest expressions: those that are just numbers.
The second handles an addition-expression, which looks like two expressions
followed by a plus-sign. The third handles subtraction, and so on.
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>exp: NUM
| exp exp '+' { $$ = $1 + $2; }
| exp exp '-' { $$ = $1 - $2; }
<small>...</small>
;
</pre></td></tr></table><P>
We have used `<SAMP>|</SAMP>' to join all the rules for <CODE>exp</CODE>, but we could
equally well have written them separately:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>exp: NUM ;
exp: exp exp '+' { $$ = $1 + $2; } ;
exp: exp exp '-' { $$ = $1 - $2; } ;
<small>...</small>
</pre></td></tr></table><P>
Most of the rules have actions that compute the value of the expression in
terms of the value of its parts. For example, in the rule for addition,
<CODE>$1</CODE> refers to the first component <CODE>exp</CODE> and <CODE>$2</CODE> refers to
the second one. The third component, <CODE>'+'</CODE>, has no meaningful
associated semantic value, but if it had one you could refer to it as
<CODE>$3</CODE>. When <CODE>yyparse</CODE> recognizes a sum expression using this
rule, the sum of the two subexpressions' values is produced as the value of
the entire expression. See section <A HREF="bison_6.html#SEC45">3.5.3 Actions</A>.
</P>
<P>
You don't have to give an action for every rule. When a rule has no
action, Bison by default copies the value of <CODE>$1</CODE> into <CODE>$$</CODE>.
This is what happens in the first rule (the one that uses <CODE>NUM</CODE>).
</P>
<P>
The formatting shown here is the recommended convention, but Bison does
not require it. You can add or change whitespace as much as you wish.
For example, this:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>exp : NUM | exp exp '+' {$$ = $1 + $2; } | <small>...</small>
</pre></td></tr></table><P>
means the same thing as this:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>exp: NUM
| exp exp '+' { $$ = $1 + $2; }
| <small>...</small>
</pre></td></tr></table><P>
The latter, however, is much more readable.
</P>
<P>
<A NAME="Rpcalc Lexer"></A>
<HR SIZE="6">
<A NAME="SEC21"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC20"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC22"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.1.3 The <CODE>rpcalc</CODE> Lexical Analyzer </H3>
<!--docid::SEC21::-->
<P>
The lexical analyzer's job is low-level parsing: converting characters or
sequences of characters into tokens. The Bison parser gets its tokens by
calling the lexical analyzer. See section <A HREF="bison_7.html#SEC60">The Lexical Analyzer Function <CODE>yylex</CODE></A>.
</P>
<P>
Only a simple lexical analyzer is needed for the RPN calculator. This
lexical analyzer skips blanks and tabs, then reads in numbers as
<CODE>double</CODE> and returns them as <CODE>NUM</CODE> tokens. Any other character
that isn't part of a number is a separate token. Note that the token-code
for such a single-character token is the character itself.
</P>
<P>
The return value of the lexical analyzer function is a numeric code which
represents a token type. The same text used in Bison rules to stand for
this token type is also a C expression for the numeric code for the type.
This works in two ways. If the token type is a character literal, then its
numeric code is the ASCII code for that character; you can use the same
character literal in the lexical analyzer to express the number. If the
token type is an identifier, that identifier is defined by Bison as a C
macro whose definition is the appropriate number. In this example,
therefore, <CODE>NUM</CODE> becomes a macro for <CODE>yylex</CODE> to use.
</P>
<P>
The semantic value of the token (if it has one) is stored into the global
variable <CODE>yylval</CODE>, which is where the Bison parser will look for it.
(The C data type of <CODE>yylval</CODE> is <CODE>YYSTYPE</CODE>, which was defined
at the beginning of the grammar; see section <A HREF="bison_5.html#SEC16">Declarations for <CODE>rpcalc</CODE></A>.)
</P>
<P>
A token type code of zero is returned if the end-of-file is encountered.
(Bison recognizes any nonpositive value as indicating the end of the
input.)
</P>
<P>
Here is the code for the lexical analyzer:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>/* Lexical analyzer returns a double floating point
number on the stack and the token NUM, or the ASCII
character read if not a number. Skips all blanks
and tabs, returns 0 for EOF. */
#include <ctype.h>
yylex ()
{
int c;
/* skip white space */
while ((c = getchar ()) == ' ' || c == '\t')
;
/* process numbers */
if (c == '.' || isdigit (c))
{
ungetc (c, stdin);
scanf ("%lf", &yylval);
return NUM;
}
/* return end-of-file */
if (c == EOF)
return 0;
/* return single chars */
return c;
}
</pre></td></tr></table><P>
<A NAME="Rpcalc Main"></A>
<HR SIZE="6">
<A NAME="SEC22"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC21"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC23"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.1.4 The Controlling Function </H3>
<!--docid::SEC22::-->
<P>
In keeping with the spirit of this example, the controlling function is
kept to the bare minimum. The only requirement is that it call
<CODE>yyparse</CODE> to start the process of parsing.
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>main ()
{
yyparse ();
}
</pre></td></tr></table><P>
<A NAME="Rpcalc Error"></A>
<HR SIZE="6">
<A NAME="SEC23"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC22"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC24"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.1.5 The Error Reporting Routine </H3>
<!--docid::SEC23::-->
<P>
When <CODE>yyparse</CODE> detects a syntax error, it calls the error reporting
function <CODE>yyerror</CODE> to print an error message (usually but not always
<CODE>"parse error"</CODE>). It is up to the programmer to supply <CODE>yyerror</CODE>
(see section <A HREF="bison_7.html#SEC58">Parser C-Language Interface</A>), so here is the definition we will use:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>#include <stdio.h>
yyerror (s) /* Called by yyparse on error */
char *s;
{
printf ("%s\n", s);
}
</pre></td></tr></table><P>
After <CODE>yyerror</CODE> returns, the Bison parser may recover from the error
and continue parsing if the grammar contains a suitable error rule
(see section <A HREF="bison_9.html#SEC80">6. Error Recovery</A>). Otherwise, <CODE>yyparse</CODE> returns nonzero. We
have not written any error rules in this example, so any invalid input will
cause the calculator program to exit. This is not clean behavior for a
real calculator, but it is adequate in the first example.
</P>
<P>
<A NAME="Rpcalc Gen"></A>
<HR SIZE="6">
<A NAME="SEC24"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC23"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC25"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.1.6 Running Bison to Make the Parser </H3>
<!--docid::SEC24::-->
<P>
Before running Bison to produce a parser, we need to decide how to arrange
all the source code in one or more source files. For such a simple example,
the easiest thing is to put everything in one file. The definitions of
<CODE>yylex</CODE>, <CODE>yyerror</CODE> and <CODE>main</CODE> go at the end, in the
"additional C code" section of the file (see section <A HREF="bison_4.html#SEC13">The Overall Layout of a Bison Grammar</A>).
</P>
<P>
For a large project, you would probably have several source files, and use
<CODE>make</CODE> to arrange to recompile them.
</P>
<P>
With all the source in a single file, you use the following command to
convert it into a parser file:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>bison <VAR>file_name</VAR>.y
</pre></td></tr></table><P>
In this example the file was called `<TT>rpcalc.y</TT>' (for "Reverse Polish
CALCulator"). Bison produces a file named `<TT><VAR>file_name</VAR>.tab.c</TT>',
removing the `<SAMP>.y</SAMP>' from the original file name. The file output by
Bison contains the source code for <CODE>yyparse</CODE>. The additional
functions in the input file (<CODE>yylex</CODE>, <CODE>yyerror</CODE> and <CODE>main</CODE>)
are copied verbatim to the output.
</P>
<P>
<A NAME="Rpcalc Compile"></A>
<HR SIZE="6">
<A NAME="SEC25"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC24"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC26"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC15"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.1.7 Compiling the Parser File </H3>
<!--docid::SEC25::-->
<P>
Here is how to compile and run the parser file:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre># List files in current directory.
% ls
rpcalc.tab.c rpcalc.y
# Compile the Bison parser.
# `<SAMP>-lm</SAMP>' tells compiler to search math library for <CODE>pow</CODE>.
% cc rpcalc.tab.c -lm -o rpcalc
# List files again.
% ls
rpcalc rpcalc.tab.c rpcalc.y
</pre></td></tr></table><P>
The file `<TT>rpcalc</TT>' now contains the executable code. Here is an
example session using <CODE>rpcalc</CODE>.
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>% rpcalc
4 9 +
13
3 7 + 3 4 5 *+-
-13
3 7 + 3 4 5 * + - n Note the unary minus, `<SAMP>n</SAMP>'
13
5 6 / 4 n +
-3.166666667
3 4 ^ Exponentiation
81
^D End-of-file indicator
%
</pre></td></tr></table><P>
<A NAME="Infix Calc"></A>
<HR SIZE="6">
<A NAME="SEC26"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC25"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC27"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 2.2 Infix Notation Calculator: <CODE>calc</CODE> </H2>
<!--docid::SEC26::-->
<P>
We now modify rpcalc to handle infix operators instead of postfix. Infix
notation involves the concept of operator precedence and the need for
parentheses nested to arbitrary depth. Here is the Bison code for
`<TT>calc.y</TT>', an infix desk-top calculator.
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>/* Infix notation calculator--calc */
%{
#define YYSTYPE double
#include <math.h>
%}
/* BISON Declarations */
%token NUM
%left '-' '+'
%left '*' '/'
%left NEG /* negation--unary minus */
%right '^' /* exponentiation */
/* Grammar follows */
%%
input: /* empty string */
| input line
;
line: '\n'
| exp '\n' { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }
| exp '+' exp { $$ = $1 + $3; }
| exp '-' exp { $$ = $1 - $3; }
| exp '*' exp { $$ = $1 * $3; }
| exp '/' exp { $$ = $1 / $3; }
| '-' exp %prec NEG { $$ = -$2; }
| exp '^' exp { $$ = pow ($1, $3); }
| '(' exp ')' { $$ = $2; }
;
%%
</pre></td></tr></table><P>
The functions <CODE>yylex</CODE>, <CODE>yyerror</CODE> and <CODE>main</CODE> can be the same
as before.
</P>
<P>
There are two important new features shown in this code.
</P>
<P>
In the second section (Bison declarations), <CODE>%left</CODE> declares token
types and says they are left-associative operators. The declarations
<CODE>%left</CODE> and <CODE>%right</CODE> (right associativity) take the place of
<CODE>%token</CODE> which is used to declare a token type name without
associativity. (These tokens are single-character literals, which
ordinarily don't need to be declared. We declare them here to specify
the associativity.)
</P>
<P>
Operator precedence is determined by the line ordering of the
declarations; the higher the line number of the declaration (lower on
the page or screen), the higher the precedence. Hence, exponentiation
has the highest precedence, unary minus (<CODE>NEG</CODE>) is next, followed
by `<SAMP>*</SAMP>' and `<SAMP>/</SAMP>', and so on. See section <A HREF="bison_8.html#SEC70">Operator Precedence</A>.
</P>
<P>
The other important new feature is the <CODE>%prec</CODE> in the grammar section
for the unary minus operator. The <CODE>%prec</CODE> simply instructs Bison that
the rule `<SAMP>| '-' exp</SAMP>' has the same precedence as <CODE>NEG</CODE>---in this
case the next-to-highest. See section <A HREF="bison_8.html#SEC75">Context-Dependent Precedence</A>.
</P>
<P>
Here is a sample run of `<TT>calc.y</TT>':
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>% calc
4 + 4.5 - (34/(8*3+-3))
6.880952381
-56 + 2
-54
3 ^ 2
9
</pre></td></tr></table><P>
<A NAME="Simple Error Recovery"></A>
<HR SIZE="6">
<A NAME="SEC27"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC26"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC28"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 2.3 Simple Error Recovery </H2>
<!--docid::SEC27::-->
<P>
Up to this point, this manual has not addressed the issue of <EM>error
recovery</EM>---how to continue parsing after the parser detects a syntax
error. All we have handled is error reporting with <CODE>yyerror</CODE>. Recall
that by default <CODE>yyparse</CODE> returns after calling <CODE>yyerror</CODE>. This
means that an erroneous input line causes the calculator program to exit.
Now we show how to rectify this deficiency.
</P>
<P>
The Bison language itself includes the reserved word <CODE>error</CODE>, which
may be included in the grammar rules. In the example below it has
been added to one of the alternatives for <CODE>line</CODE>:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>line: '\n'
| exp '\n' { printf ("\t%.10g\n", $1); }
| error '\n' { yyerrok; }
;
</pre></td></tr></table><P>
This addition to the grammar allows for simple error recovery in the event
of a parse error. If an expression that cannot be evaluated is read, the
error will be recognized by the third rule for <CODE>line</CODE>, and parsing
will continue. (The <CODE>yyerror</CODE> function is still called upon to print
its message as well.) The action executes the statement <CODE>yyerrok</CODE>, a
macro defined automatically by Bison; its meaning is that error recovery is
complete (see section <A HREF="bison_9.html#SEC80">6. Error Recovery</A>). Note the difference between
<CODE>yyerrok</CODE> and <CODE>yyerror</CODE>; neither one is a misprint.</P>
<P>
This form of error recovery deals with syntax errors. There are other
kinds of errors; for example, division by zero, which raises an exception
signal that is normally fatal. A real calculator program must handle this
signal and use <CODE>longjmp</CODE> to return to <CODE>main</CODE> and resume parsing
input lines; it would also have to discard the rest of the current line of
input. We won't discuss this issue further because it is not specific to
Bison programs.
</P>
<P>
<A NAME="Multi-function Calc"></A>
<HR SIZE="6">
<A NAME="SEC28"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC27"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC29"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 2.4 Multi-Function Calculator: <CODE>mfcalc</CODE> </H2>
<!--docid::SEC28::-->
<P>
Now that the basics of Bison have been discussed, it is time to move on to
a more advanced problem. The above calculators provided only five
functions, `<SAMP>+</SAMP>', `<SAMP>-</SAMP>', `<SAMP>*</SAMP>', `<SAMP>/</SAMP>' and `<SAMP>^</SAMP>'. It would
be nice to have a calculator that provides other mathematical functions such
as <CODE>sin</CODE>, <CODE>cos</CODE>, etc.
</P>
<P>
It is easy to add new operators to the infix calculator as long as they are
only single-character literals. The lexical analyzer <CODE>yylex</CODE> passes
back all non-number characters as tokens, so new grammar rules suffice for
adding a new operator. But we want something more flexible: built-in
functions whose syntax has this form:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre><VAR>function_name</VAR> (<VAR>argument</VAR>)
</pre></td></tr></table><P>
At the same time, we will add memory to the calculator, by allowing you
to create named variables, store values in them, and use them later.
Here is a sample session with the multi-function calculator:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>% mfcalc
pi = 3.141592653589
3.1415926536
sin(pi)
0.0000000000
alpha = beta1 = 2.3
2.3000000000
alpha
2.3000000000
ln(alpha)
0.8329091229
exp(ln(beta1))
2.3000000000
%
</pre></td></tr></table><P>
Note that multiple assignment and nested function calls are permitted.
</P>
<P>
<TABLE BORDER="0" CELLSPACING="0">
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC29">2.4.1 Declarations for <CODE>mfcalc</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Bison declarations for multi-function calculator.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC30">2.4.2 Grammar Rules for <CODE>mfcalc</CODE></A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Grammar rules for the calculator.</TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="bison_5.html#SEC31">2.4.3 The <CODE>mfcalc</CODE> Symbol Table</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP">Symbol table management subroutines.</TD></TR>
</TABLE>
<P>
<A NAME="Mfcalc Decl"></A>
<HR SIZE="6">
<A NAME="SEC29"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC28"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC30"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC28"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.4.1 Declarations for <CODE>mfcalc</CODE> </H3>
<!--docid::SEC29::-->
<P>
Here are the C and Bison declarations for the multi-function calculator.
</P>
<P>
<TABLE><tr><td> </td><td class=smallexample><pre><FONT SIZE=-1>%{
#include <math.h> /* For math functions, cos(), sin(), etc. */
#include "calc.h" /* Contains definition of `symrec' */
%}
%union {
double val; /* For returning numbers. */
symrec *tptr; /* For returning symbol-table pointers */
}
%token <val> NUM /* Simple double precision number */
%token <tptr> VAR FNCT /* Variable and Function */
%type <val> exp
%right '='
%left '-' '+'
%left '*' '/'
%left NEG /* Negation--unary minus */
%right '^' /* Exponentiation */
/* Grammar follows */
%%
</FONT></pre></td></tr></table><P>
The above grammar introduces only two new features of the Bison language.
These features allow semantic values to have various data types
(see section <A HREF="bison_6.html#SEC44">More Than One Value Type</A>).
</P>
<P>
The <CODE>%union</CODE> declaration specifies the entire list of possible types;
this is instead of defining <CODE>YYSTYPE</CODE>. The allowable types are now
double-floats (for <CODE>exp</CODE> and <CODE>NUM</CODE>) and pointers to entries in
the symbol table. See section <A HREF="bison_6.html#SEC51">The Collection of Value Types</A>.
</P>
<P>
Since values can now have various types, it is necessary to associate a
type with each grammar symbol whose semantic value is used. These symbols
are <CODE>NUM</CODE>, <CODE>VAR</CODE>, <CODE>FNCT</CODE>, and <CODE>exp</CODE>. Their
declarations are augmented with information about their data type (placed
between angle brackets).
</P>
<P>
The Bison construct <CODE>%type</CODE> is used for declaring nonterminal symbols,
just as <CODE>%token</CODE> is used for declaring token types. We have not used
<CODE>%type</CODE> before because nonterminal symbols are normally declared
implicitly by the rules that define them. But <CODE>exp</CODE> must be declared
explicitly so we can specify its value type. See section <A HREF="bison_6.html#SEC52">Nonterminal Symbols</A>.
</P>
<P>
<A NAME="Mfcalc Rules"></A>
<HR SIZE="6">
<A NAME="SEC30"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC29"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC31"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC28"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.4.2 Grammar Rules for <CODE>mfcalc</CODE> </H3>
<!--docid::SEC30::-->
<P>
Here are the grammar rules for the multi-function calculator.
Most of them are copied directly from <CODE>calc</CODE>; three rules,
those which mention <CODE>VAR</CODE> or <CODE>FNCT</CODE>, are new.
</P>
<P>
<TABLE><tr><td> </td><td class=smallexample><pre><FONT SIZE=-1>input: /* empty */
| input line
;
line:
'\n'
| exp '\n' { printf ("\t%.10g\n", $1); }
| error '\n' { yyerrok; }
;
exp: NUM { $$ = $1; }
| VAR { $$ = $1->value.var; }
| VAR '=' exp { $$ = $3; $1->value.var = $3; }
| FNCT '(' exp ')' { $$ = (*($1->value.fnctptr))($3); }
| exp '+' exp { $$ = $1 + $3; }
| exp '-' exp { $$ = $1 - $3; }
| exp '*' exp { $$ = $1 * $3; }
| exp '/' exp { $$ = $1 / $3; }
| '-' exp %prec NEG { $$ = -$2; }
| exp '^' exp { $$ = pow ($1, $3); }
| '(' exp ')' { $$ = $2; }
;
/* End of grammar */
%%
</FONT></pre></td></tr></table><P>
<A NAME="Mfcalc Symtab"></A>
<HR SIZE="6">
<A NAME="SEC31"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC30"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC32"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC28"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H3> 2.4.3 The <CODE>mfcalc</CODE> Symbol Table </H3>
<!--docid::SEC31::-->
<P>
The multi-function calculator requires a symbol table to keep track of the
names and meanings of variables and functions. This doesn't affect the
grammar rules (except for the actions) or the Bison declarations, but it
requires some additional C functions for support.
</P>
<P>
The symbol table itself consists of a linked list of records. Its
definition, which is kept in the header `<TT>calc.h</TT>', is as follows. It
provides for either functions or variables to be placed in the table.
</P>
<P>
<TABLE><tr><td> </td><td class=smallexample><pre><FONT SIZE=-1>/* Data type for links in the chain of symbols. */
struct symrec
{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FNCT */
union {
double var; /* value of a VAR */
double (*fnctptr)(); /* value of a FNCT */
} value;
struct symrec *next; /* link field */
};
typedef struct symrec symrec;
/* The symbol table: a chain of `struct symrec'. */
extern symrec *sym_table;
symrec *putsym ();
symrec *getsym ();
</FONT></pre></td></tr></table><P>
The new version of <CODE>main</CODE> includes a call to <CODE>init_table</CODE>, a
function that initializes the symbol table. Here it is, and
<CODE>init_table</CODE> as well:
</P>
<P>
<TABLE><tr><td> </td><td class=smallexample><pre><FONT SIZE=-1>#include <stdio.h>
main ()
{
init_table ();
yyparse ();
}
yyerror (s) /* Called by yyparse on error */
char *s;
{
printf ("%s\n", s);
}
struct init
{
char *fname;
double (*fnct)();
};
struct init arith_fncts[]
= {
"sin", sin,
"cos", cos,
"atan", atan,
"ln", log,
"exp", exp,
"sqrt", sqrt,
0, 0
};
/* The symbol table: a chain of `struct symrec'. */
symrec *sym_table = (symrec *)0;
init_table () /* puts arithmetic functions in table. */
{
int i;
symrec *ptr;
for (i = 0; arith_fncts[i].fname != 0; i++)
{
ptr = putsym (arith_fncts[i].fname, FNCT);
ptr->value.fnctptr = arith_fncts[i].fnct;
}
}
</FONT></pre></td></tr></table><P>
By simply editing the initialization list and adding the necessary include
files, you can add additional functions to the calculator.
</P>
<P>
Two important functions allow look-up and installation of symbols in the
symbol table. The function <CODE>putsym</CODE> is passed a name and the type
(<CODE>VAR</CODE> or <CODE>FNCT</CODE>) of the object to be installed. The object is
linked to the front of the list, and a pointer to the object is returned.
The function <CODE>getsym</CODE> is passed the name of the symbol to look up. If
found, a pointer to that symbol is returned; otherwise zero is returned.
</P>
<P>
<TABLE><tr><td> </td><td class=smallexample><pre><FONT SIZE=-1>symrec *
putsym (sym_name,sym_type)
char *sym_name;
int sym_type;
{
symrec *ptr;
ptr = (symrec *) malloc (sizeof (symrec));
ptr->name = (char *) malloc (strlen (sym_name) + 1);
strcpy (ptr->name,sym_name);
ptr->type = sym_type;
ptr->value.var = 0; /* set value to 0 even if fctn. */
ptr->next = (struct symrec *)sym_table;
sym_table = ptr;
return ptr;
}
symrec *
getsym (sym_name)
char *sym_name;
{
symrec *ptr;
for (ptr = sym_table; ptr != (symrec *) 0;
ptr = (symrec *)ptr->next)
if (strcmp (ptr->name,sym_name) == 0)
return ptr;
return 0;
}
</FONT></pre></td></tr></table><P>
The function <CODE>yylex</CODE> must now recognize variables, numeric values, and
the single-character arithmetic operators. Strings of alphanumeric
characters with a leading nondigit are recognized as either variables or
functions depending on what the symbol table says about them.
</P>
<P>
The string is passed to <CODE>getsym</CODE> for look up in the symbol table. If
the name appears in the table, a pointer to its location and its type
(<CODE>VAR</CODE> or <CODE>FNCT</CODE>) is returned to <CODE>yyparse</CODE>. If it is not
already in the table, then it is installed as a <CODE>VAR</CODE> using
<CODE>putsym</CODE>. Again, a pointer and its type (which must be <CODE>VAR</CODE>) is
returned to <CODE>yyparse</CODE>.</P>
<P>
No change is needed in the handling of numeric values and arithmetic
operators in <CODE>yylex</CODE>.
</P>
<P>
<TABLE><tr><td> </td><td class=smallexample><pre><FONT SIZE=-1>#include <ctype.h>
yylex ()
{
int c;
/* Ignore whitespace, get first nonwhite character. */
while ((c = getchar ()) == ' ' || c == '\t');
if (c == EOF)
return 0;
/* Char starts a number => parse the number. */
if (c == '.' || isdigit (c))
{
ungetc (c, stdin);
scanf ("%lf", &yylval.val);
return NUM;
}
/* Char starts an identifier => read the name. */
if (isalpha (c))
{
symrec *s;
static char *symbuf = 0;
static int length = 0;
int i;
/* Initially make the buffer long enough
for a 40-character symbol name. */
if (length == 0)
length = 40, symbuf = (char *)malloc (length + 1);
i = 0;
do
{
/* If buffer is full, make it bigger. */
if (i == length)
{
length *= 2;
symbuf = (char *)realloc (symbuf, length + 1);
}
/* Add this character to the buffer. */
symbuf[i++] = c;
/* Get another character. */
c = getchar ();
}
while (c != EOF && isalnum (c));
ungetc (c, stdin);
symbuf[i] = '\0';
s = getsym (symbuf);
if (s == 0)
s = putsym (symbuf, VAR);
yylval.tptr = s;
return s->type;
}
/* Any other character is a token by itself. */
return c;
}
</FONT></pre></td></tr></table><P>
This program is both powerful and flexible. You may easily add new
functions, and it is a simple job to modify this code to install predefined
variables such as <CODE>pi</CODE> or <CODE>e</CODE> as well.
</P>
<P>
<A NAME="Exercises"></A>
<HR SIZE="6">
<A NAME="SEC32"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC31"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 2.5 Exercises </H2>
<!--docid::SEC32::-->
<P>
<OL>
<LI>
Add some new functions from `<TT>math.h</TT>' to the initialization list.
<P>
</P>
<LI>
Add another array that contains constants and their values. Then
modify <CODE>init_table</CODE> to add these constants to the symbol table.
It will be easiest to give the constants type <CODE>VAR</CODE>.
<P>
</P>
<LI>
Make the program report an error if the user refers to an
uninitialized variable in any way except to store a value in it.
</OL>
<P>
<A NAME="Grammar File"></A>
<HR SIZE="6">
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_5.html#SEC14"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_6.html#SEC33"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_15.html#SEC92">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="bison_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<BR>
<FONT SIZE="-1">
This document was generated
by <I>Frank B. Brokken</I> on <I>January, 28 2005</I>
using <A HREF="http://texi2html.cvshome.org"><I>texi2html</I></A>
</FONT>
</BODY>
</HTML>
|