1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
#ifdef DoSTATS
#include<sys/time.h>
#endif
#include "Sampler.h"
#include "common.h"
Sampler::Sampler(){ //{{{
m=samplesN=samplesLogged=samplesTotal=samplesOut=Nmap=Nunmap=0;
isoformLengths = NULL;
#ifdef DoSTATS
tT=tTa=tZ=0;
nT=nTa=nZ=0;
#endif
}//}}}
Sampler::~Sampler(){ //{{{
#ifdef DoSTATS
message("---------------------------\nSTATISTICS:\n");
message("Theta: %lg %lgm av:%lgs\n",nT,tT/60000.0,tT/1000.0/nT);
message("Z: %lg %lgm av:%lgs\n",nZ,tZ/60000.0,tZ/1000.0/nZ);
if(nTa>0)message("Theta Act: %ld %lgm av:%lgs\n",nTa,tTa/60000.0,tTa/1000.0/nTa);
message("Total time: %lgm\n",(tT+tZ)/60000.0);
#endif
}//}}}
void Sampler::init(long m, long samplesTotal, long samplesOut, long Nunmap,const TagAlignments *alignments, const distributionParameters &betaPar, const distributionParameters &dirPar, long &seed){//{{{
// this->n=n;
this->m=m;
this->samplesOut=samplesOut;
this->Nmap=alignments->getNreads();
this->Nunmap=Nunmap;
this->alignments=alignments;
beta=&betaPar;
dir=&dirPar;
//dir=new distributionParameters;
//dir->alpha=1.0/m;
//dir->beta=dirPar.beta;
rng_mt.seed(seed);
seed = (long) (1717171717.17*uniformDistribution(rng_mt));
resetSampler(samplesTotal);
theta.assign(m,0);
C.assign(m,0);
}//}}}
void Sampler::resetSampler(long samplesTotal){//{{{
this->samplesTotal=samplesTotal;
samplesN = 0;
samplesLogged = 0;
logRate=(double)samplesOut/samplesTotal;
sumC0 = 0;
sumNorm.first = sumNorm.second = 0;
thetaSum.assign(m,pairD(0,0));
thetaSqSum.assign(m,pairD(0,0));
}//}}}
long Sampler::getAverageC0(){//{{{
return (long) (sumC0 / sumNorm.first);
}//}}}
void Sampler::getAverage(vector<pairD> &av){//{{{
long i;
if((long)av.size()<m)
av.assign(m,pairD(0,0));
for(i=0;i<m;i++){
if(sumNorm.first != 0)
av[i].first=thetaSum[i].first/sumNorm.first;
if(sumNorm.second != 0)
av[i].second=thetaSum[i].second/sumNorm.second;
}
}//}}}
pairD Sampler::getAverage(long i){//{{{
double av1,av2;
av1=(sumNorm.first==0)?0:thetaSum[i].first/sumNorm.first;
av2=(sumNorm.second==0)?0:thetaSum[i].second/sumNorm.second;
return pairD(av1,av2);
}//}}}
pairD Sampler::getWithinVariance(long i){//{{{
double va1,va2;
if(sumNorm.first==0)
va1=0;
else
va1=thetaSqSum[i].first/(sumNorm.first-1.0) -
(thetaSum[i].first/(sumNorm.first-1.0))*
(thetaSum[i].first/sumNorm.first);
if(sumNorm.second==0)
va2=0;
else
va2=thetaSqSum[i].second/(sumNorm.second-1.0) -
(thetaSum[i].second/(sumNorm.second-1.0))*
(thetaSum[i].second/sumNorm.second);
if(va1<0)message("minus %lg %lg %lg\n",thetaSqSum[i].first,thetaSum[i].first,sumNorm.first);
return pairD(va1,va2);
}//}}}
void Sampler::getThetaSums(long i, double *thSqSum, double *thSum, double *sumN){//{{{
if(i >= m){
(*thSqSum) = (*thSum) = (*sumN) = 0;
return;
}
*thSqSum = thetaSqSum[i].first;
*thSum = thetaSum[i].first;
*sumN = sumNorm.first;
}//}}}
void Sampler::getTau(vector<double> &tau, double norm){//{{{
double tauSum=0;
if ((theta.size() > tau.size()) || (isoformLengths->size() != tau.size()))
error("Sampler failed");
tau.assign(tau.size(),0);
tau[0]=theta[0]; // set thetaAct
// divide by length:
for(size_t i=1;i<theta.size();i++){
tau[ i ] = theta[i] / (*isoformLengths)[ i ] * norm;
tauSum += tau[i];
}
// DO normalize:
for(size_t i=1;i<tau.size();i++)
if(tau[i]>0) tau[i] /= tauSum;
}//}}}
void Sampler::appendFile(){//{{{
long i;
double norm=saveNorm;
if((!save) || (outFile == NULL))return;
thetaActLog.push_back(theta[0]);
outFile->precision(9);
(*outFile)<<scientific;
if(saveType == "counts"){
if(norm == 0)norm = Nmap;
for(i=1;i<m;i++)
(*outFile)<<theta[i]*norm<<" ";
}else if(saveType == "rpkm"){
if(norm == 0)norm = 1000000000.0;
for(i=1;i<m;i++)
if((*isoformLengths)[i]>0)
(*outFile)<<theta[i]*norm/(*isoformLengths)[i]<<" ";
else
(*outFile)<<theta[i]*norm<<" ";
}else if(saveType == "theta"){
if(norm == 0)norm=1.0;
for(i=1;i<m;i++)
(*outFile)<<theta[i]*norm<<" ";
}else if(saveType == "tau"){
if(norm == 0)norm=1.0;
vector<double> tau(m);
getTau(tau,norm);
for(i=1;i<m;i++)
(*outFile)<<tau[i]<<" ";
}
(*outFile)<<endl;
}//}}}
void Sampler::updateSums(){//{{{
long i;
double s;
for(i=0;i<m;i++){
thetaSum[i].first+=theta[i];
thetaSqSum[i].first+=theta[i]*theta[i];
}
sumC0+=C[0];
sumNorm.first++;
//if(doLog){
for(i=0;i<m;i++){
s = log(theta[i]) - log(1-theta[i]);//LOGIT
thetaSum[i].second += s;
thetaSqSum[i].second += s * s;
}
sumNorm.second++;
//}
}//}}}
void Sampler::saveSamples(ofstream *outFile, const vector<double> *isoformLengths, const string &saveType, double norm){//{{{
this->outFile = outFile;
this->isoformLengths = isoformLengths;
this->saveType = saveType;
saveNorm = norm;
save = true;
thetaActLog.clear();
}//}}}
void Sampler::noSave(){//{{{
save = false;
outFile = NULL;
if(isoformLengths){
delete isoformLengths;
isoformLengths = NULL;
}
}//}}}
void Sampler::sampleTheta(){//{{{
#ifdef DoSTATS
nT++;
struct timeval start, end;
gettimeofday(&start, NULL);
#endif
vector<double> gamma(m,0);
double gammaSum=0;
long i;
for(i=1;i<m;i++){
gammaDistribution.param(gDP(dir->alpha + C[i], dir->beta));
gamma[i]=gammaDistribution(rng_mt);
gammaSum+=gamma[i];
}
if (gammaSum<=0) // at least something should be more than zero
error("Sampler failed");
for(i=1;i<m;i++){
theta[i]=gamma[i]/gammaSum;
}
#ifdef DoSTATS
gettimeofday(&end, NULL);
tT += (end.tv_sec-start.tv_sec)*1000*1000+(end.tv_usec-start.tv_usec);
#endif
}//}}}
void Sampler::sample(){//{{{
samplesN++;
}//}}}
void Sampler::update(){//{{{
doLog = false;
if(samplesOut-samplesLogged>0){
if(samplesTotal-samplesN<=samplesOut-samplesLogged)doLog=true;
else if((long)(logRate * samplesN) > samplesLogged)doLog=true;
}
if(doLog) samplesLogged ++;
}//}}}
|