1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
-- Copyright (c) 2015 Nuand LLC
--
-- Permission is hereby granted, free of charge, to any person obtaining a copy
-- of this software and associated documentation files (the "Software"), to deal
-- in the Software without restriction, including without limitation the rights
-- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the Software is
-- furnished to do so, subject to the following conditions:
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.
library ieee ;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;
entity command_uart is
port (
-- FPGA internal interface to the TX and RX FIFOs
clock : in std_logic ;
reset : in std_logic ;
-- RS232 interface
rs232_sout : out std_logic ;
rs232_sin : in std_logic ;
-- Avalon-MM interface
addr : in std_logic_vector(4 downto 0) ;
dout : out std_logic_vector(31 downto 0) ;
din : in std_logic_vector(31 downto 0) ;
read : in std_logic ;
write : in std_logic ;
waitreq : out std_logic ;
readack : out std_logic ;
irq : out std_logic
) ;
end entity ; -- command_uart
architecture arch of command_uart is
-- TODO: Make this a generic instead of a constant
constant CLOCKS_PER_BIT : natural := 20 ;
-- Send and receive state machine definitions
type send_fsm_t is (IDLE, SEND_START, SEND_DATA, SEND_STOP ) ;
type receive_fsm_t is (WAIT_FOR_START, CENTER_START, SAMPLE_DATA, WAIT_FOR_STOP) ;
-- FSM signals
signal send_fsm : send_fsm_t ;
signal receive_fsm : receive_fsm_t ;
-- Synchronization signals for asynchronous input
signal reg_sin : std_logic ;
signal sync_sin : std_logic ;
signal reg_response : std_logic_vector(127 downto 0) ;
signal reg_request : std_logic_vector(127 downto 0) ;
signal sin_data : std_logic_vector(7 downto 0) ;
signal sin_we : std_logic ;
signal sout_data : std_logic_vector(7 downto 0) ;
signal sout_we : std_logic ;
signal ack : std_logic ;
type magics_t is array(natural range <>) of std_logic_vector(7 downto 0) ;
-- These are all the magic header characters
constant magics : magics_t := (
std_logic_vector(to_unsigned(character'pos('A'),8)), -- 8x8
std_logic_vector(to_unsigned(character'pos('B'),8)), -- 8x16
std_logic_vector(to_unsigned(character'pos('C'),8)), -- 8x32
std_logic_vector(to_unsigned(character'pos('D'),8)), -- 8x64
std_logic_vector(to_unsigned(character'pos('K'),8)), -- 32x32
std_logic_vector(to_unsigned(character'pos('N'),8)), -- Legacy
std_logic_vector(to_unsigned(character'pos('T'),8)) -- Retune
) ;
signal command_in : std_logic ;
signal control : std_logic_vector(7 downto 0) := (0 => '1', others =>'0') ;
alias isr_enable is control(0) ;
begin
readack <= ack ;
waitreq <= not(ack or write) ;
-- Avalon-MM interface for responses
mm_writes : process(clock)
begin
if( rising_edge(clock) ) then
command_in <= '0' ;
if( write = '1' ) then
case to_integer(unsigned(addr)) is
when 0| 1| 2| 3 => reg_response( 31 downto 0) <= din ; command_in <= '1' ;
when 4| 5| 6| 7 => reg_response( 63 downto 32) <= din ;
when 8| 9|10|11 => reg_response( 95 downto 64) <= din ;
when 12|13|14|15 => reg_response(127 downto 96) <= din ;
when others => control(7 downto 0) <= din(7 downto 0) ;
end case ;
end if ;
end if ;
end process ;
send_command : process(clock, reset)
type state_t is (WAITING_FOR_COMMAND, SEND_BYTE, WAITING_FOR_START, WAITING_FOR_DONE) ;
variable state : state_t ;
variable count : natural range 0 to 15 := 15 ;
begin
if( reset = '1' ) then
state := WAITING_FOR_COMMAND ;
sout_we <= '0' ;
elsif( rising_edge(clock) ) then
sout_we <= '0' ;
sout_data <= reg_response(count*8+7 downto count*8) ;
case state is
when WAITING_FOR_COMMAND =>
if( command_in = '1' ) then
state := SEND_BYTE ;
count := 0 ;
end if ;
when SEND_BYTE =>
sout_we <= '1' ;
state := WAITING_FOR_START ;
when WAITING_FOR_START =>
if( send_fsm /= IDLE ) then
state := WAITING_FOR_DONE ;
end if ;
when WAITING_FOR_DONE =>
if( send_fsm = IDLE ) then
if( count < 15 ) then
count := count + 1 ;
state := SEND_BYTE ;
else
state := WAITING_FOR_COMMAND ;
end if ;
end if ;
end case ;
end if ;
end process ;
-- Avanlon-MM interface for requests
mm_reads : process(clock)
begin
if( rising_edge(clock) ) then
ack <= read ;
if( read = '1' ) then
case to_integer(unsigned(addr)) is
when 0| 1| 2| 3 => dout <= reg_request( 31 downto 0) ;
when 4| 5| 6| 7 => dout <= reg_request( 63 downto 32) ;
when 8| 9|10|11 => dout <= reg_request( 95 downto 64) ;
when 12|13|14|15 => dout <= reg_request(127 downto 96) ;
when others => dout(7 downto 0) <= control ;
end case ;
end if ;
end if ;
end process ;
receive_command : process(clock, reset)
type state_t is (WAIT_FOR_MAGIC, CHECK_MAGIC, RECEIVE_COMMAND, INTERRUPT, WAIT_FOR_READ) ;
variable state : state_t ;
variable count : natural range 0 to 15 ;
begin
if( reset = '1' ) then
state := WAIT_FOR_MAGIC ;
count := 0 ;
irq <= '0' ;
elsif( rising_edge(clock) ) then
if( sin_we = '1' ) then
reg_request(count*8+7 downto count*8) <= sin_data ;
end if ;
case state is
when WAIT_FOR_MAGIC =>
if( sin_we = '1' ) then
state := CHECK_MAGIC ;
end if ;
when CHECK_MAGIC =>
for i in magics'range loop
if( magics(i) = reg_request(7 downto 0) ) then
state := RECEIVE_COMMAND ;
count := count + 1 ;
end if ;
end loop ;
if( count = 0 ) then
state := WAIT_FOR_MAGIC ;
end if ;
when RECEIVE_COMMAND =>
if( sin_we = '1' ) then
if( count < 15 ) then
count := count + 1 ;
else
count := 0 ;
if( isr_enable = '1' ) then
state := INTERRUPT ;
else
state := WAIT_FOR_MAGIC ;
end if ;
end if ;
end if ;
when INTERRUPT =>
irq <= '1' ;
state := WAIT_FOR_READ ;
when WAIT_FOR_READ =>
if( read = '1' ) then
irq <= '0' ;
state := WAIT_FOR_MAGIC ;
end if ;
end case ;
end if ;
end process ;
-- Synchronize asynchronous inputs
reg_sin <= rs232_sin when rising_edge( clock ) ;
sync_sin <= reg_sin when rising_edge( clock ) ;
-- Receive data from the UART and put it in the FIFO
receive_from_uart : process(clock, reset)
variable bits : std_logic_vector(7 downto 0) ;
variable bit_count : natural range 0 to bits'length ;
variable clock_count : natural range 0 to CLOCKS_PER_BIT ;
variable sin_delay : std_logic ;
begin
if( reset = '1' ) then
receive_fsm <= WAIT_FOR_START ;
sin_we <= '0' ;
sin_data <= (others =>'0') ;
bits := (others =>'0') ;
bit_count := 0 ;
clock_count := 0 ;
sin_delay := '0' ;
elsif( rising_edge(clock) ) then
sin_we <= '0' ;
case receive_fsm is
-- Wait for the start signal
when WAIT_FOR_START =>
if( sync_sin = '0' and sin_delay = '1' ) then
receive_fsm <= CENTER_START ;
clock_count := CLOCKS_PER_BIT/2-1 ;
end if ;
sin_delay := sync_sin ;
-- Center the start bit
when CENTER_START =>
clock_count := clock_count - 1 ;
if( clock_count = 0 ) then
receive_fsm <= SAMPLE_DATA ;
clock_count := CLOCKS_PER_BIT ;
bit_count := bits'length ;
end if ;
-- Sample the bits
when SAMPLE_DATA =>
clock_count := clock_count - 1 ;
if( clock_count = 0 ) then
bits := sync_sin & bits(bits'high downto 1) ;
bit_count := bit_count - 1 ;
clock_count := CLOCKS_PER_BIT ;
if( bit_count = 0 ) then
receive_fsm <= WAIT_FOR_STOP ;
sin_data <= bits ;
sin_we <= '1' ;
end if ;
end if ;
-- Wait for the stop bit
when WAIT_FOR_STOP =>
clock_count := clock_count - 1 ;
if( clock_count = 0 ) then
receive_fsm <= WAIT_FOR_START ;
assert sync_sin = '1' report "STOP bit not found!" severity error ;
end if ;
when others =>
end case ;
end if ;
end process ;
-- Send data to the UART from the FIFO
send_to_uart : process(clock, reset)
variable bits : std_logic_vector(7 downto 0) ;
variable bit_count : natural range 0 to bits'length ;
variable clock_count : natural range 0 to CLOCKS_PER_BIT ;
begin
if( reset = '1' ) then
send_fsm <= IDLE ;
rs232_sout <= '1' ;
bit_count := 0 ;
clock_count := 0 ;
bits := (others =>'0') ;
elsif( rising_edge(clock) ) then
case send_fsm is
-- Wait until we have something to send
when IDLE =>
rs232_sout <= '1' ;
if( sout_we = '1' ) then
send_fsm <= SEND_START ;
bit_count := bits'length ;
clock_count := CLOCKS_PER_BIT ;
end if ;
-- Send the start bit
when SEND_START =>
rs232_sout <= '0' ;
clock_count := clock_count - 1 ;
if( clock_count = 0 ) then
send_fsm <= SEND_DATA ;
clock_count := CLOCKS_PER_BIT ;
elsif( clock_count = 9 ) then
bits := sout_data ;
end if ;
-- Send the data
when SEND_DATA =>
rs232_sout <= bits(0) ;
clock_count := clock_count - 1 ;
if( clock_count = 0 ) then
bits := '0' & bits(bits'high downto 1) ;
bit_count := bit_count - 1 ;
clock_count := CLOCKS_PER_BIT ;
if( bit_count = 0 ) then
send_fsm <= SEND_STOP ;
end if ;
end if ;
-- Send the stop bit
when SEND_STOP =>
rs232_sout <= '1' ;
clock_count := clock_count - 1 ;
if( clock_count = 0 ) then
send_fsm <= IDLE ;
end if ;
-- Weird
when others =>
send_fsm <= IDLE ;
rs232_sout <= '1' ;
bit_count := 0 ;
clock_count := 0 ;
bits := (others =>'0') ;
end case ;
end if ;
end process ;
end architecture ; -- arch
|