1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
-- Copyright (c) 2017 Nuand LLC
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU Affero General Public License as
-- published by the Free Software Foundation, either version 3 of the
-- License, or (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU Affero General Public License for more details.
--
-- You should have received a copy of the GNU Affero General Public License
-- along with this program. If not, see <http://www.gnu.org/licenses/>.
library ieee ;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;
use ieee.math_real.all ;
entity bladerf_agc_lms_drv is
port (
-- 40MHz clock and async asserted, sync deasserted reset
clock : in std_logic ;
reset : in std_logic ;
enable : in std_logic ;
gain_inc_req : in std_logic ;
gain_dec_req : in std_logic ;
gain_rst_req : in std_logic ;
gain_ack : out std_logic ;
gain_nack : out std_logic ;
gain_high : out std_logic ;
gain_mid : out std_logic ;
gain_low : out std_logic ;
-- Arbiter
arbiter_req : out std_logic ;
arbiter_grant : in std_logic ;
arbiter_done : out std_logic ;
-- Misc
band_sel : in std_logic ;
-- Physical Interface
sclk : out std_logic ;
miso : in std_logic ;
mosi : out std_logic ;
cs_n : out std_logic
) ;
end entity ;
architecture arch of bladerf_agc_lms_drv is
type gain_state_t is ( UNSET_GAIN_STATE, HIGH_GAIN_STATE, MID_GAIN_STATE, LOW_GAIN_STATE ) ;
type lna_gain_t is ( LNA_MID_GAIN, LNA_MAX_GAIN ) ;
type rxvga1_gain_t is ( RXVGA1_MID_GAIN, RXVGA1_MAX_GAIN ) ;
type rxvga2_gain_t is ( RXVGA2_LOW_GAIN, RXVGA2_MID_GAIN ) ;
type fsm_t is ( INIT, IDLE, SPI_WRITE, SPI_WRITE_GRANTED, WRITE_RXVGA1, WRITE_RXVGA2,
UPDATE_GAINS, SPI_WAIT, SPI_WAIT_1 ) ;
type gain_t is record
lna_gain : lna_gain_t ;
rxvga1_gain : rxvga1_gain_t ;
rxvga2_gain : rxvga2_gain_t ;
end record ;
-- -82dBm - -52dBm
constant HIGH_GAIN : gain_t := (
lna_gain => LNA_MAX_GAIN, -- 6 dB (Max)
rxvga1_gain => RXVGA1_MAX_GAIN, -- 30 dB
rxvga2_gain => RXVGA2_MID_GAIN -- 15 dB
) ;
-- -52dBm - -30dBm
constant MID_GAIN : gain_t := (
lna_gain => LNA_MID_GAIN, -- 3 dB (Mid)
rxvga1_gain => RXVGA1_MAX_GAIN, -- 30 dB
rxvga2_gain => RXVGA2_LOW_GAIN -- 0 dB
) ;
-- -30dBm - -17dBm
constant LOW_GAIN : gain_t := (
lna_gain => LNA_MID_GAIN, -- 3 dB (Mid)
rxvga1_gain => RXVGA1_MID_GAIN, -- 12 dB
rxvga2_gain => RXVGA2_LOW_GAIN -- 0 dB
) ;
type state_t is record
fsm : fsm_t ;
nfsm : fsm_t ;
initializing : std_logic ;
ack : std_logic ;
nack : std_logic ;
gain_state : gain_state_t ;
current_gain : gain_t ;
future_gain : gain_t ;
arbiter_req : std_logic ;
arbiter_done : std_logic ;
-- Avalon-MM Interface
mm_write : std_logic ;
mm_addr : std_logic_vector(7 downto 0) ;
mm_din : std_logic_vector(7 downto 0) ;
end record ;
function NULL_STATE return state_t is
variable rv : state_t ;
begin
rv.fsm := INIT ;
rv.nfsm := INIT ;
rv.initializing := '0' ;
rv.arbiter_req := '0' ;
rv.arbiter_done := '0' ;
rv.gain_state := UNSET_GAIN_STATE ;
rv.mm_addr := ( others => '0' ) ;
rv.mm_din := ( others => '0' ) ;
return rv ;
end function ;
signal current, future : state_t := NULL_STATE ;
signal mm_busy : std_logic ;
begin
arbiter_req <= current.arbiter_req ;
arbiter_done <= current.arbiter_done ;
gain_high <= '1' when current.gain_state = HIGH_GAIN_STATE else '0' ;
gain_mid <= '1' when current.gain_state = MID_GAIN_STATE else '0' ;
gain_low <= '1' when current.gain_state = LOW_GAIN_STATE else '0' ;
gain_ack <= current.ack ; --'1' when current.fsm = UPDATE_GAINS else '0' ;
gain_nack <= current.nack ;
U_spi_controller: entity work.lms6_spi_controller
port map (
-- Physical Interface
sclk => sclk,
miso => '0',
mosi => mosi,
cs_n => cs_n,
-- Avalon-MM Interface
mm_clock => clock,
mm_reset => reset,
mm_read => '0',
mm_write => current.mm_write,
mm_addr => current.mm_addr,
mm_din => current.mm_din,
mm_dout => open,
mm_dout_val => open, -- Read data valid.
mm_busy => mm_busy
);
sync : process(clock, reset)
begin
if( reset = '1' ) then
current <= NULL_STATE ;
elsif( rising_edge(clock) ) then
current <= future ;
end if ;
end process ;
comb : process(all)
begin
future <= current ;
future.mm_write <= '0' ;
future.ack <= '0' ;
future.nack <= '0' ;
future.arbiter_done <= '0' ;
future.arbiter_req <= '0' ;
case current.fsm is
when INIT =>
future.nack <= '1' ;
if( enable = '1' ) then
future.nack <= '0' ;
future.gain_state <= HIGH_GAIN_STATE ;
future.future_gain <= HIGH_GAIN ;
future.initializing <= '1' ;
future.fsm <= SPI_WRITE ;
end if ;
when IDLE =>
if( gain_inc_req = '1' ) then
if( current.gain_state = LOW_GAIN_STATE ) then
future.gain_state <= MID_GAIN_STATE ;
future.future_gain <= MID_GAIN ;
future.fsm <= SPI_WRITE ;
elsif( current.gain_state = MID_GAIN_STATE ) then
future.gain_state <= HIGH_GAIN_STATE ;
future.future_gain <= HIGH_GAIN ;
future.fsm <= SPI_WRITE ;
else
future.nack <= '1' ;
-- we are already as high as can be
end if ;
end if ;
if( gain_dec_req = '1' ) then
if( current.gain_state = MID_GAIN_STATE ) then
future.gain_state <= LOW_GAIN_STATE ;
future.future_gain <= LOW_GAIN ;
future.fsm <= SPI_WRITE ;
elsif( current.gain_state = HIGH_GAIN_STATE ) then
future.gain_state <= MID_GAIN_STATE ;
future.future_gain <= MID_GAIN ;
future.fsm <= SPI_WRITE ;
else
future.nack <= '1' ;
-- we are already as low as can be
end if ;
end if ;
if( gain_rst_req = '1' ) then
future.gain_state <= HIGH_GAIN_STATE ;
future.future_gain <= HIGH_GAIN ;
end if ;
if( enable = '0' ) then
future.fsm <= INIT ;
end if ;
when SPI_WRITE =>
future.arbiter_req <= '1' ;
if( arbiter_grant = '1' ) then
future.fsm <= SPI_WRITE_GRANTED ;
end if ;
when SPI_WRITE_GRANTED =>
if( current.current_gain.lna_gain /= current.future_gain.lna_gain or
current.initializing = '1' ) then
future.mm_addr <= x"75" ;
if (current.future_gain.lna_gain = LNA_MAX_GAIN ) then
if (band_sel = '0' ) then
future.mm_din <= x"D0";
else
future.mm_din <= x"E0";
end if ;
elsif (current.future_gain.lna_gain = LNA_MID_GAIN ) then
if (band_sel = '0' ) then
future.mm_din <= x"90";
else
future.mm_din <= x"A0";
end if ;
end if ;
future.mm_write <= '1' ;
future.fsm <= SPI_WAIT ;
future.nfsm <= WRITE_RXVGA1 ;
else
future.fsm <= WRITE_RXVGA1 ;
end if ;
when WRITE_RXVGA1 =>
if( current.current_gain.rxvga1_gain /= current.future_gain.rxvga1_gain or
current.initializing = '1' ) then
future.mm_addr <= x"76" ;
if (current.future_gain.rxvga1_gain = RXVGA1_MAX_GAIN ) then
future.mm_din <= x"78" ;
elsif (current.future_gain.rxvga1_gain = RXVGA1_MID_GAIN ) then
future.mm_din <= x"46" ;
end if ;
future.mm_write <= '1' ;
future.fsm <= SPI_WAIT ;
future.nfsm <= WRITE_RXVGA2 ;
else
future.fsm <= WRITE_RXVGA2 ;
end if ;
when WRITE_RXVGA2 =>
if( current.current_gain.rxvga2_gain /= current.future_gain.rxvga2_gain or
current.initializing = '1' ) then
future.mm_addr <= x"65" ;
if (current.future_gain.rxvga2_gain = RXVGA2_MID_GAIN ) then
future.mm_din <= x"05" ;
elsif (current.future_gain.rxvga2_gain = RXVGA2_LOW_GAIN ) then
future.mm_din <= x"00" ;
end if ;
future.mm_write <= '1' ;
future.fsm <= SPI_WAIT ;
future.nfsm <= UPDATE_GAINS ;
else
future.fsm <= UPDATE_GAINS ;
end if ;
when UPDATE_GAINS =>
future.ack <= '1' ;
future.initializing <= '0' ;
future.current_gain <= current.future_gain ;
future.arbiter_done <= '1' ;
future.fsm <= IDLE ;
when SPI_WAIT =>
future.fsm <= SPI_WAIT_1 ;
when SPI_WAIT_1 =>
if( mm_busy = '0' ) then
future.fsm <= current.nfsm ;
end if ;
end case ;
end process ;
end architecture ;
|