1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
-- Copyright (c) 2017 Nuand LLC
--
-- Permission is hereby granted, free of charge, to any person obtaining a copy
-- of this software and associated documentation files (the "Software"), to deal
-- in the Software without restriction, including without limitation the rights
-- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the Software is
-- furnished to do so, subject to the following conditions:
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.fifo_readwrite_p.all;
entity fifo_reader is
generic (
NUM_STREAMS : natural := 1;
FIFO_READ_THROTTLE : natural range 0 to 255 := 1;
FIFO_USEDW_WIDTH : natural := 12;
FIFO_DATA_WIDTH : natural := 32;
META_FIFO_USEDW_WIDTH : natural := 3;
META_FIFO_DATA_WIDTH : natural := 128
);
port (
clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
usb_speed : in std_logic;
meta_en : in std_logic;
packet_en : in std_logic;
timestamp : in unsigned(63 downto 0);
fifo_usedw : in std_logic_vector(FIFO_USEDW_WIDTH-1 downto 0);
fifo_read : buffer std_logic := '0';
fifo_empty : in std_logic;
fifo_data : in std_logic_vector(FIFO_DATA_WIDTH-1 downto 0);
fifo_holdoff : in std_logic := '0';
packet_control : out packet_control_t;
packet_empty : out std_logic;
packet_ready : in std_logic;
meta_fifo_usedw : in std_logic_vector(META_FIFO_USEDW_WIDTH-1 downto 0);
meta_fifo_read : buffer std_logic := '0';
meta_fifo_empty : in std_logic;
meta_fifo_data : in std_logic_vector(META_FIFO_DATA_WIDTH-1 downto 0);
in_sample_controls : in sample_controls_t(0 to NUM_STREAMS-1) := (others => SAMPLE_CONTROL_DISABLE);
out_samples : out sample_streams_t(0 to NUM_STREAMS-1) := (others => ZERO_SAMPLE);
underflow_led : buffer std_logic;
underflow_count : buffer unsigned(63 downto 0);
underflow_duration : in unsigned(15 downto 0)
);
end entity;
architecture simple of fifo_reader is
constant DMA_BUF_SIZE_SS : natural := 512;
constant DMA_BUF_SIZE_HS : natural := 256;
signal dma_buf_size : natural range DMA_BUF_SIZE_HS to DMA_BUF_SIZE_SS := DMA_BUF_SIZE_SS;
signal underflow_detected : std_logic := '0';
type meta_state_t is (
META_LOAD,
META_WAIT,
META_DOWNCOUNT
);
type meta_fsm_t is record
state : meta_state_t;
dma_downcount : natural range 0 to DMA_BUF_SIZE_SS;
meta_pkt_sop : std_logic;
meta_pkt_eop : std_logic;
skip_padding : std_logic;
meta_read : std_logic;
meta_cache : std_logic_vector(META_FIFO_DATA_WIDTH-1 downto 0);
meta_p_time : unsigned(63 downto 0);
meta_time_go : std_logic;
end record;
constant META_FSM_RESET_VALUE : meta_fsm_t := (
state => META_LOAD,
dma_downcount => 0,
meta_pkt_sop => '0',
meta_pkt_eop => '0',
skip_padding => '0',
meta_read => '0',
meta_cache => (others => '0'),
meta_p_time => (others => '-'),
meta_time_go => '0'
);
signal meta_current : meta_fsm_t := META_FSM_RESET_VALUE;
signal meta_future : meta_fsm_t := META_FSM_RESET_VALUE;
type fifo_state_t is (
COMPUTE_ENABLED_CHANNELS,
COMPUTE_OFFSETS,
READ_PACKET,
READ_SAMPLES,
READ_THROTTLE,
READ_HOLDOFF
);
type ch_offsets_t is array( natural range <> ) of natural range fifo_data'low to fifo_data'high;
type fifo_fsm_t is record
state : fifo_state_t;
downcount : natural range 0 to FIFO_READ_THROTTLE;
sample_controls_reg : sample_controls_t(in_sample_controls'range);
enabled_channels : natural range 0 to in_sample_controls'length;
ch_shift : natural range 0 to out_samples'high;
ch_offsets : ch_offsets_t(in_sample_controls'range);
samples_left_init : natural range 0 to in_sample_controls'length;
samples_left : natural range 0 to in_sample_controls'length;
packet_control : packet_control_t;
packet_data_cache : std_logic_vector(31 downto 0);
fifo_read : std_logic;
out_samples : sample_streams_t(out_samples'range);
end record;
constant FIFO_FSM_RESET_VALUE : fifo_fsm_t := (
state => COMPUTE_ENABLED_CHANNELS,
downcount => FIFO_READ_THROTTLE,
sample_controls_reg => (others => SAMPLE_CONTROL_DISABLE),
enabled_channels => 0,
ch_shift => 0,
ch_offsets => (others => 0),
samples_left_init => 0,
samples_left => 0,
packet_control => PACKET_CONTROL_DEFAULT,
packet_data_cache => (others => '0'),
fifo_read => '0',
out_samples => (others => ZERO_SAMPLE)
);
signal fifo_current : fifo_fsm_t := FIFO_FSM_RESET_VALUE;
signal fifo_future : fifo_fsm_t := FIFO_FSM_RESET_VALUE;
begin
-- Throw compile/synthesis error if things don't make sense
assert ( (in_sample_controls'low = out_samples'low) and
(in_sample_controls'high = out_samples'high) )
report "in_sample_controls must have same range as out_samples"
severity failure;
-- Determine the DMA buffer size based on USB speed
calc_buf_size : process( clock, reset )
begin
if( reset = '1' ) then
dma_buf_size <= DMA_BUF_SIZE_SS;
elsif( rising_edge(clock) ) then
if( usb_speed = '0' ) then
dma_buf_size <= DMA_BUF_SIZE_SS;
else
dma_buf_size <= DMA_BUF_SIZE_HS;
end if;
end if;
end process;
-- ------------------------------------------------------------------------
-- META FIFO FSM
-- ------------------------------------------------------------------------
-- Meta FIFO synchronous process
meta_fsm_sync : process( clock, reset )
begin
if( reset = '1' ) then
meta_current <= META_FSM_RESET_VALUE;
elsif( rising_edge(clock) ) then
meta_current <= meta_future;
end if;
end process;
packet_empty <= '1' when ( meta_fifo_empty = '1' and meta_current.state /= META_WAIT ) else '0' ;
-- Meta FIFO combinatorial process
meta_fsm_comb : process( all )
variable meta_time : unsigned(63 downto 0);
begin
meta_future <= meta_current;
meta_future.meta_read <= '0';
meta_future.meta_pkt_sop <= '0';
meta_future.meta_pkt_eop <= '0';
case meta_current.state is
when META_LOAD =>
meta_future.skip_padding <= '0';
meta_time := unsigned(meta_fifo_data(95 downto 32)) - 1;
meta_future.meta_p_time <= meta_time;
meta_future.meta_cache <= meta_fifo_data;
if( meta_current.dma_downcount = NUM_STREAMS ) then
meta_future.dma_downcount <= 0;
end if;
if( fifo_current.ch_shift = 0 ) then
if( meta_fifo_empty = '0' and (packet_en = '0' or
(packet_en = '1' and packet_ready = '1') ) ) then
meta_future.meta_read <= '1';
meta_future.state <= META_WAIT;
if( packet_en = '1' or meta_time /= timestamp ) then
meta_future.meta_time_go <= '0';
else
meta_future.meta_time_go <= '1';
end if;
else
meta_future.meta_time_go <= '0';
end if;
end if;
when META_WAIT =>
if( packet_en = '1' ) then
meta_future.dma_downcount <= to_integer(unsigned(meta_current.meta_cache(15 downto 0)));
else
meta_future.dma_downcount <= dma_buf_size - 4;
end if;
if( (timestamp >= meta_current.meta_p_time or meta_current.meta_p_time + 1 = 0)
and ( packet_en = '0' or ( packet_en = '1' and packet_ready = '1' ) ) ) then
meta_future.meta_time_go <= '1';
meta_future.state <= META_DOWNCOUNT;
meta_future.meta_pkt_sop <= '1';
else
meta_future.meta_time_go <= '0';
end if;
when META_DOWNCOUNT =>
meta_future.meta_time_go <= '1';
if( packet_en = '0' ) then
if( fifo_current.fifo_read = '1') then
meta_future.dma_downcount <= meta_current.dma_downcount - NUM_STREAMS;
end if;
if( meta_current.dma_downcount <= NUM_STREAMS ) then
-- Look for 2 because of the 2 cycles passing
-- through META_LOAD and META_WAIT after this.
meta_future.state <= META_LOAD;
end if;
else
if( fifo_current.packet_control.data_valid = '1') then
meta_future.dma_downcount <= meta_current.dma_downcount - 1;
end if;
if( meta_current.dma_downcount <= 1 and packet_ready = '1' ) then
meta_future.state <= META_LOAD;
meta_future.meta_pkt_eop <= '1';
end if;
end if;
if( meta_current.meta_cache(0) = '1' ) then
meta_future.skip_padding <= '1';
end if;
when others =>
meta_future.state <= META_LOAD;
end case;
-- Abort?
if( (enable = '0') or (meta_en = '0') ) then
meta_future <= META_FSM_RESET_VALUE;
end if;
-- Output assignments
meta_fifo_read <= meta_current.meta_read;
end process;
-- ------------------------------------------------------------------------
-- SAMPLE FIFO FSM
-- ------------------------------------------------------------------------
-- Sample FIFO synchronous process
fifo_fsm_sync : process( clock, reset )
begin
if( reset = '1' ) then
fifo_current <= FIFO_FSM_RESET_VALUE;
elsif( rising_edge(clock) ) then
fifo_current <= fifo_future;
end if;
end process;
-- Sample FIFO combinatorial process
fifo_fsm_comb : process( all )
-- --------------------------------------------------------------------
-- MIMO UNPACKER: STEP 1 of 5
-- --------------------------------------------------------------------
-- The sample FIFO output is a wide data bus that may contain more
-- than one sample for a given channel. This function unpacks
-- the bus into an array of sample streams. For example, a 2x2 MIMO
-- design with 16-bit samples will pack its data into a 64-bit wide
-- bus in one of the following ways:
-- | 63:48 | 47:32 | 31:16 | 15:0 | Bits
-- 1. | Q1 | I1 | Q0 | I0 | Channels 0 & 1 enabled
-- 2. | Q0' | I0' | Q0 | I0 | Channel 0 only enabled
-- 3. | Q1' | I1' | Q1 | I1 | Channel 1 only enabled
-- This function will return an array of length 2. The 0th
-- element containing I0/Q0, and the 1st element I1/Q1. It is up
-- to the state machine to select between element 0 and 1 based
-- on which stream(s) is/are enabled.
function unpack( c : sample_controls_t;
d : std_logic_vector ) return sample_streams_t is
variable rv : sample_streams_t(c'range);
constant OFFSET_UNIT : natural := rv(rv'low).data_i'length +
rv(rv'low).data_q'length;
-- The following 4 constants are platform-specific and perhaps
-- should be parameters instead. This is good enough for now.
constant I_HIGH : natural := 11;
constant I_LOW : natural := 0;
constant Q_HIGH : natural := 27;
constant Q_LOW : natural := 16;
begin
-- Ensure the array indices are normalized
assert (c'low = 0) and (c'high >= c'low)
report "Invalid range for parameter 'c'"
severity failure;
for i in rv'range loop
rv(i).data_i := resize(signed(shift_right(unsigned(d),i*OFFSET_UNIT)(I_HIGH downto I_LOW)),rv(i).data_i'length);
rv(i).data_q := resize(signed(shift_right(unsigned(d),i*OFFSET_UNIT)(Q_HIGH downto Q_LOW)),rv(i).data_q'length);
rv(i).data_v := '0';
end loop;
return rv;
end function;
-- --------------------------------------------------------------------
-- MIMO UNPACKER: STEP 3 of 5
-- --------------------------------------------------------------------
-- The FIFO data has been unpacked into an array containing I and Q
-- samples for each of the possible channels they belong to. We need to
-- figure out which index of this unpacked array belongs to which
-- channel so we can output it to the correct endpoint, as follows:
-- a. All channel indices start at 0.
-- b. For each channel, add 1 to the index for each previous
-- channel that is enabled. For 2x2 MIMO:
-- ch_enabled | array index of the unpacked data stream
-- 0 & 1 | ch0 = 0 ; ch1 = 0 + 1 = 1
-- 0 only | ch0 = 0 ; ch1 = - = 0 (ch1 is disabled, doesn't matter)
-- 1 only | ch0 = - = 0; ch1 = 0 + 0 = 0 (ch0 is disabled, doesn't matter)
function compute_initial_channel_offsets( x : sample_controls_t ) return ch_offsets_t is
variable rv : ch_offsets_t(x'range) := (others => 0);
begin
rv := (others => 0);
for i in x'low+1 to x'high loop
for j in x'low to x'high-1 loop
if( x(j).enable = '1' ) then
rv(i) := rv(i) + 1;
end if;
end loop;
end loop;
return rv;
end function;
variable unpacked : sample_streams_t(out_samples'range);
variable read_req : std_logic := '0';
begin
fifo_future <= fifo_current;
fifo_future.fifo_read <= '0';
fifo_future.packet_control.pkt_sop <= meta_current.meta_pkt_sop;
fifo_future.packet_control.data_valid <= '0';
-- MIMO UNPACKER: STEP 1 of 5
unpacked := unpack(fifo_current.sample_controls_reg, fifo_data);
for i in fifo_future.out_samples'range loop
if( fifo_current.sample_controls_reg(i).enable = '1' ) then
fifo_future.out_samples(i) <= unpacked(fifo_current.ch_offsets(i) + fifo_current.ch_shift);
end if;
end loop;
case fifo_current.state is
when COMPUTE_ENABLED_CHANNELS =>
-- MIMO UNPACKER: STEP 2 of 5
-- Count the number of enabled channels
fifo_future.enabled_channels <= count_enabled_channels(in_sample_controls);
-- Register the sample control settings
fifo_future.sample_controls_reg <= in_sample_controls;
fifo_future.state <= COMPUTE_OFFSETS;
when COMPUTE_OFFSETS =>
-- MIMO UNPACKER: STEP 3 of 5
fifo_future.ch_offsets <= compute_initial_channel_offsets(fifo_current.sample_controls_reg);
-- MIMO UNPACKER: STEP 4 of 5
-- Compute the number of valid samples that each channel has remaining in fifo_data that
-- still need to be processed (not including the first). This becomes the number of clock
-- cycles to wait before asserting the FIFO read request to get a new batch of samples.
fifo_future.samples_left_init <= NUM_STREAMS - fifo_current.enabled_channels;
fifo_future.samples_left <= NUM_STREAMS - fifo_current.enabled_channels;
if( packet_en = '1' ) then
fifo_future.state <= READ_PACKET;
fifo_future.samples_left <= NUM_STREAMS - 1;
else
fifo_future.state <= READ_SAMPLES;
end if;
when READ_PACKET =>
if( meta_current.meta_pkt_eop = '1' and meta_current.skip_padding = '1') then
fifo_future.samples_left <= NUM_STREAMS - 1;
end if;
if( fifo_data'high > 31) then
if( fifo_current.samples_left = 0) then
fifo_future.packet_control.data <= fifo_current.packet_data_cache;
elsif( fifo_current.samples_left = 1) then
fifo_future.packet_control.data <= fifo_data(31 downto 0);
fifo_future.packet_data_cache <= fifo_data(63 downto 32);
end if;
else
fifo_future.packet_control.data <= fifo_data(31 downto 0);
end if;
fifo_future.packet_control.pkt_eop <= '0';
if( meta_current.meta_time_go = '1' and meta_current.dma_downcount > 0 and packet_ready = '1' ) then
if( meta_current.dma_downcount = 1 ) then
fifo_future.packet_control.pkt_eop <= '1';
end if;
fifo_future.packet_control.data_valid <= '1';
if( fifo_current.samples_left = NUM_STREAMS - 1) then
fifo_future.fifo_read <= '1';
end if;
if( fifo_current.samples_left = 0 ) then
fifo_future.samples_left <= NUM_STREAMS - 1;
else
fifo_future.samples_left <= fifo_current.samples_left - 1;
end if;
end if;
when READ_SAMPLES =>
fifo_future.downcount <= FIFO_FSM_RESET_VALUE.downcount;
if( fifo_holdoff = '1' ) then
-- Pause for a spell
fifo_future.state <= READ_HOLDOFF;
elsif( fifo_empty = '0' and
(meta_en = '0' or (meta_en = '1' and meta_current.meta_time_go = '1')) ) then
-- Check for valid data request
read_req := '0';
for i in in_sample_controls'range loop
read_req := read_req or (in_sample_controls(i).data_req and in_sample_controls(i).enable);
fifo_future.out_samples(i).data_v <= in_sample_controls(i).data_req and
in_sample_controls(i).enable;
end loop;
-- Received a valid data request
if( read_req = '1' ) then
if( fifo_current.samples_left = 0 ) then
fifo_future.samples_left <= fifo_current.samples_left_init;
fifo_future.ch_shift <= 0;
fifo_future.fifo_read <= read_req;
else
-- MIMO UNPACKER: STEP 5 of 5
-- Add the number of enabled channels to each channel's offset index.
-- This points that channel to the next valid sample in the current fifo_data.
fifo_future.ch_shift <= fifo_current.ch_shift + fifo_current.enabled_channels;
fifo_future.samples_left <= fifo_current.samples_left - 1;
end if;
if( FIFO_FSM_RESET_VALUE.downcount /= 0 ) then
fifo_future.state <= READ_THROTTLE;
end if;
end if;
end if;
when READ_THROTTLE =>
-- If in this state, downcount is guaranteed to be >= 1
if( fifo_current.downcount = 1 ) then
fifo_future.state <= READ_SAMPLES;
else
fifo_future.downcount <= fifo_current.downcount - 1;
end if;
when READ_HOLDOFF =>
if( fifo_holdoff = '0' ) then
fifo_future.state <= READ_SAMPLES;
end if;
when others =>
fifo_future.state <= FIFO_FSM_RESET_VALUE.state;
end case;
-- Abort?
if( enable = '0' ) then
fifo_future.fifo_read <= '0';
fifo_future.state <= FIFO_FSM_RESET_VALUE.state;
for i in fifo_current.out_samples'range loop
fifo_future.out_samples(i).data_v <= '0';
end loop;
end if;
if( fifo_empty = '1' and packet_en = '0' ) then
-- Re-evaluate the MIMO settings
fifo_future.state <= FIFO_FSM_RESET_VALUE.state;
end if;
-- Output assignments
fifo_read <= fifo_current.fifo_read;
out_samples <= fifo_current.out_samples;
packet_control <= fifo_current.packet_control;
end process;
-- ------------------------------------------------------------------------
-- UNDERFLOW
-- ------------------------------------------------------------------------
-- Underflow detection
detect_underflows : process( clock, reset )
begin
if( reset = '1' ) then
underflow_detected <= '0';
elsif( rising_edge( clock ) ) then
underflow_detected <= '0';
if( enable = '1' and fifo_empty = '1' and
(meta_en = '0' or (meta_en = '1' and meta_current.meta_time_go = '1')) ) then
underflow_detected <= '1';
end if;
end if;
end process;
-- Count the number of times we underflow, but only if they are discontinuous
-- meaning we have an underflow condition, a non-underflow condition, then
-- another underflow condition counts as 2 underflows, but an underflow condition
-- followed by N underflow conditions counts as a single underflow condition.
count_underflows : process( clock, reset )
variable prev_underflow : std_logic := '0';
begin
if( reset = '1' ) then
prev_underflow := '0';
underflow_count <= (others =>'0');
elsif( rising_edge( clock ) ) then
if( prev_underflow = '0' and underflow_detected = '1' ) then
underflow_count <= underflow_count + 1;
end if;
prev_underflow := underflow_detected;
end if;
end process;
-- Active high assertion for underflow_duration when the underflow
-- condition has been detected. The LED will stay asserted
-- if multiple underflows have occurred
blink_underflow_led : process( clock, reset )
variable downcount : natural range 0 to 2**underflow_duration'length-1 := 0;
begin
if( reset = '1' ) then
downcount := 0;
underflow_led <= '0';
elsif( rising_edge(clock) ) then
-- Default to not being asserted
underflow_led <= '0';
-- Countdown so we can see what happened
if( downcount /= 0 ) then
downcount := downcount - 1;
underflow_led <= '1';
end if;
-- Underflow occurred so light it up
if( underflow_detected = '1' ) then
downcount := to_integer(underflow_duration);
end if;
end if;
end process;
end architecture;
|