1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
-- Copyright (c) 2017 Nuand LLC
--
-- Permission is hereby granted, free of charge, to any person obtaining a copy
-- of this software and associated documentation files (the "Software"), to deal
-- in the Software without restriction, including without limitation the rights
-- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the Software is
-- furnished to do so, subject to the following conditions:
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.fifo_readwrite_p.all;
entity fifo_writer is
generic (
NUM_STREAMS : natural := 1;
FIFO_USEDW_WIDTH : natural := 12;
FIFO_DATA_WIDTH : natural := 32;
META_FIFO_USEDW_WIDTH : natural := 5;
META_FIFO_DATA_WIDTH : natural := 128
);
port (
clock : in std_logic;
reset : in std_logic;
enable : in std_logic;
usb_speed : in std_logic;
meta_en : in std_logic;
packet_en : in std_logic;
timestamp : in unsigned(63 downto 0);
mini_exp : in std_logic_vector(1 downto 0);
in_sample_controls : in sample_controls_t(0 to NUM_STREAMS-1) := (others => SAMPLE_CONTROL_DISABLE);
in_samples : in sample_streams_t(0 to NUM_STREAMS-1) := (others => ZERO_SAMPLE);
fifo_usedw : in std_logic_vector(FIFO_USEDW_WIDTH-1 downto 0);
fifo_clear : buffer std_logic;
fifo_write : buffer std_logic := '0';
fifo_full : in std_logic;
fifo_data : out std_logic_vector(FIFO_DATA_WIDTH-1 downto 0) := (others => '0');
packet_control : in packet_control_t;
packet_ready : out std_logic;
meta_fifo_full : in std_logic;
meta_fifo_usedw : in std_logic_vector(META_FIFO_USEDW_WIDTH-1 downto 0);
meta_fifo_data : out std_logic_vector(META_FIFO_DATA_WIDTH-1 downto 0) := (others => '0');
meta_fifo_write : out std_logic := '0';
overflow_led : buffer std_logic;
overflow_count : buffer unsigned(63 downto 0);
overflow_duration : in unsigned(15 downto 0)
);
end entity;
architecture simple of fifo_writer is
constant DMA_BUF_SIZE_SS : natural := 512;
constant DMA_BUF_SIZE_HS : natural := 256;
signal dma_buf_size : natural range DMA_BUF_SIZE_HS to DMA_BUF_SIZE_SS := DMA_BUF_SIZE_SS;
signal fifo_enough : boolean := false;
signal overflow_detected : std_logic := '0';
type meta_state_t is (
IDLE,
META_WRITE,
META_DOWNCOUNT,
PACKET_WAIT_EOP
);
type meta_fsm_t is record
state : meta_state_t;
dma_downcount : natural range 0 to 65536;
meta_write : std_logic;
meta_data : std_logic_vector(meta_fifo_data'range);
meta_written : std_logic;
end record;
constant META_FSM_RESET_VALUE : meta_fsm_t := (
state => IDLE,
dma_downcount => 0,
meta_write => '0',
meta_data => (others => '-'),
meta_written => '0'
);
signal meta_current : meta_fsm_t := META_FSM_RESET_VALUE;
signal meta_future : meta_fsm_t := META_FSM_RESET_VALUE;
type fifo_state_t is (
CLEAR,
WRITE_SAMPLES,
WRITE_PACKET_PAYLOAD,
HOLDOFF
);
type ch_offsets_t is array( natural range <> ) of natural range fifo_data'low to fifo_data'high;
type fifo_fsm_t is record
state : fifo_state_t;
fifo_clear : std_logic;
fifo_write : std_logic;
fifo_data : unsigned(fifo_data'range);
samples_left : natural range 0 to in_sample_controls'length;
end record;
constant FIFO_FSM_RESET_VALUE : fifo_fsm_t := (
state => CLEAR,
fifo_clear => '1',
fifo_write => '0',
fifo_data => (others => '-'),
samples_left => 0
);
signal fifo_current : fifo_fsm_t := FIFO_FSM_RESET_VALUE;
signal fifo_future : fifo_fsm_t := FIFO_FSM_RESET_VALUE;
signal sync_mini_exp: std_logic_vector(1 downto 0);
begin
-- Throw an error if port widths don't make sense
assert (fifo_data'length >= (NUM_STREAMS*2*in_samples(in_samples'low).data_i'length) )
report "fifo_data port width too narrow to support " & integer'image(NUM_STREAMS) & " MIMO streams."
severity failure;
-- Determine the DMA buffer size based on USB speed
calc_buf_size : process( clock, reset )
begin
if( reset = '1' ) then
dma_buf_size <= DMA_BUF_SIZE_SS;
elsif( rising_edge(clock) ) then
if( usb_speed = '0' ) then
dma_buf_size <= DMA_BUF_SIZE_SS;
else
dma_buf_size <= DMA_BUF_SIZE_HS;
end if;
end if;
end process;
-- Calculate whether there's enough room in the destination FIFO
calc_fifo_free : process( clock, reset )
constant FIFO_MAX : natural := 2**fifo_usedw'length;
constant META_MAX : natural := 2**meta_fifo_usedw'length;
variable fifo_used_v : unsigned(fifo_usedw'length downto 0) := (others => '0');
variable meta_fifo_used_v : unsigned(meta_fifo_usedw'length downto 0) := (others => '0');
begin
if( reset = '1' ) then
fifo_enough <= false;
fifo_used_v := (others => '0');
elsif( rising_edge(clock) ) then
fifo_used_v := unsigned(fifo_full & fifo_usedw);
meta_fifo_used_v := unsigned(meta_fifo_full & meta_fifo_usedw);
if( fifo_full = '0' and ((FIFO_MAX - fifo_used_v) > ( dma_buf_size * 4 )) and
( ( meta_en = '1' and meta_fifo_full = '0' and ( META_MAX - 4 ) > meta_fifo_used_v )
or (meta_en = '0') ) ) then
fifo_enough <= true;
else
fifo_enough <= false;
end if;
end if;
end process;
-- ------------------------------------------------------------------------
-- MINI EXP PIN SYNCHRONIZER
-- ------------------------------------------------------------------------
generate_sync_mimo_rx_en : for i in mini_exp'range generate
U_sync_mini_exp : entity work.synchronizer
generic map (
RESET_LEVEL => '0'
)
port map (
reset => '0',
clock => clock,
async => mini_exp(i),
sync => sync_mini_exp(i)
);
end generate;
-- ------------------------------------------------------------------------
-- META FIFO WRITER
-- ------------------------------------------------------------------------
-- Meta FIFO synchronous process
meta_fsm_sync : process( clock, reset )
begin
if( reset = '1' ) then
meta_current <= META_FSM_RESET_VALUE;
elsif( rising_edge(clock) ) then
meta_current <= meta_future;
end if;
end process;
packet_ready <= '1' when fifo_enough else '0';
-- Meta FIFO combinatorial process
meta_fsm_comb : process( all )
variable packet_flags : std_logic_vector(7 downto 0);
begin
meta_future <= meta_current;
meta_future.meta_write <= '0';
-- currently the GPIF modules overwrites the bottom 16 bits of the flags field
if( packet_en = '0' ) then
meta_future.meta_data <= x"FFF" & "11" & sync_mini_exp & x"FFFF" & std_logic_vector(timestamp) & x"12344321";
else
packet_flags := packet_control.pkt_flags;
meta_future.meta_data <= x"FFF" & "11" & sync_mini_exp & x"FFFF" & std_logic_vector(timestamp) &
packet_control.pkt_core_id & packet_flags &
std_logic_vector(to_unsigned(integer(meta_current.dma_downcount), 16));
end if;
case meta_current.state is
when IDLE =>
meta_future.dma_downcount <= dma_buf_size - 4;
if( fifo_enough ) then
if( packet_en = '1' ) then
-- use downcount to count number of DWORDS for packets
if( packet_control.pkt_sop = '1' ) then
meta_future.state <= PACKET_WAIT_EOP;
-- meta is not written yet, but there should be space
meta_future.meta_written <= '1';
-- EOP and VALID must be asserted together, count the last VALID now
if( packet_control.data_valid = '1') then
meta_future.dma_downcount <= 2;
else
meta_future.dma_downcount <= 1;
end if;
end if;
else
meta_future.state <= META_WRITE;
end if;
else
meta_future.meta_written <= '0';
end if;
when META_WRITE =>
if( (meta_fifo_full = '0') and (in_samples(in_samples'low).data_v = '1') ) then
meta_future.meta_write <= '1';
meta_future.meta_written <= '1';
meta_future.state <= META_DOWNCOUNT;
end if;
when META_DOWNCOUNT =>
if( fifo_current.fifo_write = '1' and meta_current.meta_write = '0' ) then
meta_future.dma_downcount <= meta_current.dma_downcount - NUM_STREAMS;
end if;
if( meta_current.dma_downcount <= NUM_STREAMS ) then
-- Look for 2 because of the 2 cycles passing
-- through IDLE and META_WRITE after this.
meta_future.state <= IDLE;
end if;
when PACKET_WAIT_EOP =>
if( packet_control.data_valid = '1' ) then
meta_future.dma_downcount <= meta_current.dma_downcount + 1;
if( packet_control.pkt_eop = '1' ) then
meta_future.meta_write <= '1';
meta_future.state <= IDLE;
end if;
end if;
when others =>
meta_future.state <= IDLE;
end case;
-- Abort?
if( (enable = '0') or (meta_en = '0') ) then
meta_future.meta_write <= '0';
meta_future.meta_written <= '0';
meta_future.state <= IDLE;
end if;
-- Output assignments
meta_fifo_write <= meta_current.meta_write;
meta_fifo_data <= meta_current.meta_data;
end process;
-- ------------------------------------------------------------------------
-- SAMPLE FIFO WRITER
-- ------------------------------------------------------------------------
-- Sample FIFO synchronous process
fifo_fsm_sync : process( clock, reset )
begin
if( reset = '1' ) then
fifo_current <= FIFO_FSM_RESET_VALUE;
elsif( rising_edge(clock) ) then
fifo_current <= fifo_future;
end if;
end process;
-- Sample FIFO combinatorial process
fifo_fsm_comb : process( all )
-- --------------------------------------------------------------------
-- MIMO PACKER: STEP 1 of 3
-- --------------------------------------------------------------------
-- This block receives samples as an array of sample streams, one
-- element per channel. These streams need to be packed into a single,
-- wide bus that is written to a FIFO and eventually delivered to the
-- host. When all channels are enabled, this wide bus will contain one
-- I/Q sample pair for each channel. When channels are disabled, the
-- wide bus may contain multiple samples from the remaining enabled
-- channels in order to more efficiently use the available USB bandwidth.
-- For example, a 2x2 MIMO design with 16-bit samples will pack its data
-- into a 64-bit wide bus in one of the following ways:
-- | 63:48 | 47:32 | 31:16 | 15:0 | Bit indices
-- 1. | Q1 | I1 | Q0 | I0 | Channels 0 & 1 enabled
-- 2. | Q0' | I0' | Q0 | I0 | Channel 0 only enabled
-- 3. | Q1' | I1' | Q1 | I1 | Channel 1 only enabled
function pack( sc : sample_controls_t;
ss : sample_streams_t;
d : unsigned ) return unsigned is
constant LEN : natural := ss(ss'low).data_i'length + ss(ss'low).data_q'length;
variable rv : unsigned(d'range) := (others => '0');
begin
rv := d;
for i in sc'range loop
if( (sc(i).enable = '1') and (ss(i).data_v = '1') ) then
rv := unsigned(ss(i).data_q) & unsigned(ss(i).data_i) &
rv(rv'high downto rv'low+LEN);
end if;
end loop;
return rv;
end function;
variable write_req : std_logic := '0';
begin
fifo_future <= fifo_current;
fifo_future.fifo_clear <= '0';
fifo_future.fifo_write <= '0';
-- MIMO PACKER: STEP 1 of 3
if( packet_en = '0' ) then
fifo_future.fifo_data <= pack(in_sample_controls, in_samples, fifo_current.fifo_data);
end if;
case fifo_current.state is
when CLEAR =>
-- MIMO PACKER: STEP 2 of 3
-- Compute "samples left" to fill up the fifo_data bus
fifo_future.samples_left <= NUM_STREAMS - count_enabled_channels(in_sample_controls);
if( enable = '1' ) then
fifo_future.fifo_clear <= '0';
if( packet_en = '1' ) then
fifo_future.state <= WRITE_PACKET_PAYLOAD;
fifo_future.samples_left <= NUM_STREAMS - 1;
else
fifo_future.state <= WRITE_SAMPLES;
end if;
else
fifo_future.fifo_clear <= '1';
end if;
when WRITE_PACKET_PAYLOAD =>
if( meta_current.meta_written = '1' or (fifo_enough and packet_control.pkt_sop = '1' )) then
-- This code converts DWORD packet data into a fifo_data std_logic_vector
-- that is controlled by a generic.
if( packet_control.data_valid = '1' ) then
if( packet_control.pkt_eop = '1' and fifo_current.samples_left /= 0 ) then
-- End of packet asserted, however fifo_data is not full so
-- zero out the unset bits, commit what has been accumulated
fifo_future.samples_left <= NUM_STREAMS - 1;
fifo_future.fifo_write <= '1';
if (fifo_current.fifo_data'high > 31) then
fifo_future.fifo_data(fifo_future.fifo_data'high
downto fifo_future.fifo_data'high - 31) <= (others => '0');
end if;
fifo_future.fifo_data(31 downto 0) <= unsigned(packet_control.data);
elsif( fifo_current.samples_left = 0 ) then
-- DWORDs perfectly filled fifo_data, commit fifo_data
fifo_future.samples_left <= NUM_STREAMS - 1;
fifo_future.fifo_write <= '1';
if (fifo_current.fifo_data'high > 31) then
fifo_future.fifo_data <= unsigned(packet_control.data) &
fifo_current.fifo_data(fifo_current.fifo_data'high downto 32);
else
fifo_future.fifo_data <= unsigned(packet_control.data);
end if;
else
fifo_future.fifo_data(fifo_future.fifo_data'high
downto fifo_future.fifo_data'high - 31) <=
unsigned(packet_control.data);
if (fifo_current.fifo_data'high > 31) then
fifo_future.fifo_data(fifo_future.fifo_data'high - 32 downto 0) <=
(others => '0');
end if;
fifo_future.samples_left <= fifo_current.samples_left - 1;
end if;
end if;
end if;
when WRITE_SAMPLES =>
if( ((meta_current.meta_written = '1') or (meta_en = '0')) ) then
-- Check for valid data
write_req := '0';
for i in in_sample_controls'range loop
if( in_sample_controls(i).enable = '1' ) then
write_req := write_req or in_samples(i).data_v;
end if;
end loop;
-- Received valid data
if( write_req = '1' ) then
if( fifo_current.samples_left = 0 ) then
fifo_future.samples_left <= NUM_STREAMS - count_enabled_channels(in_sample_controls);
fifo_future.fifo_write <= write_req;
else
-- MIMO PACKER: STEP 3 of 3
fifo_future.samples_left <= fifo_current.samples_left - 1;
end if;
end if;
else
fifo_future.fifo_write <= '0';
end if;
if( fifo_full = '1' or ( meta_current.meta_written = '0' and meta_en = '1') ) then
fifo_future.fifo_write <= '0';
fifo_future.state <= HOLDOFF;
end if;
when HOLDOFF =>
if( fifo_enough ) then
fifo_future.state <= WRITE_SAMPLES;
end if;
when others =>
fifo_future.state <= CLEAR;
end case;
-- Abort?
if( enable = '0' ) then
fifo_future.fifo_clear <= '1';
fifo_future.fifo_write <= '0';
fifo_future.state <= CLEAR;
end if;
-- Output assignments
fifo_clear <= fifo_current.fifo_clear;
fifo_write <= fifo_current.fifo_write;
fifo_data <= std_logic_vector(fifo_current.fifo_data);
end process;
-- ------------------------------------------------------------------------
-- OVERFLOW
-- ------------------------------------------------------------------------
-- Overflow detection
detect_overflows : process( clock, reset )
begin
if( reset = '1' ) then
overflow_detected <= '0';
elsif( rising_edge( clock ) ) then
overflow_detected <= '0';
if( enable = '1' and in_samples(in_samples'low).data_v = '1' and
fifo_full = '1' and fifo_current.fifo_clear = '0' ) then
overflow_detected <= '1';
end if;
end if;
end process;
-- Count the number of times we overflow, but only if they are discontinuous
-- meaning we have an overflow condition, a non-overflow condition, then
-- another overflow condition counts as 2 overflows, but an overflow condition
-- followed by N overflow conditions counts as a single overflow condition.
count_overflows : process( clock, reset )
variable prev_overflow : std_logic := '0';
begin
if( reset = '1' ) then
prev_overflow := '0';
overflow_count <= (others =>'0');
elsif( rising_edge( clock ) ) then
if( prev_overflow = '0' and overflow_detected = '1' ) then
overflow_count <= overflow_count + 1;
end if;
prev_overflow := overflow_detected;
end if;
end process;
-- Active high assertion for overflow_duration when the overflow
-- condition has been detected. The LED will stay asserted
-- if multiple overflows have occurred
blink_overflow_led : process( clock, reset )
variable downcount : natural range 0 to 2**overflow_duration'length-1;
begin
if( reset = '1' ) then
downcount := 0;
overflow_led <= '0';
elsif( rising_edge(clock) ) then
-- Default to not being asserted
overflow_led <= '0';
-- Countdown so we can see what happened
if( overflow_detected = '1' ) then
downcount := to_integer(overflow_duration);
elsif( downcount /= 0 ) then
downcount := downcount - 1;
overflow_led <= '1';
end if;
end if;
end process;
end architecture;
|