File: fifo_writer.vhd

package info (click to toggle)
bladerf 0.2022.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 373,752 kB
  • sloc: ansic: 1,186,428; xml: 150,799; vhdl: 24,182; tcl: 15,408; python: 3,409; sh: 1,551; makefile: 1,255; asm: 158; csh: 18; cpp: 9
file content (555 lines) | stat: -rw-r--r-- 22,383 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
-- Copyright (c) 2017 Nuand LLC
--
-- Permission is hereby granted, free of charge, to any person obtaining a copy
-- of this software and associated documentation files (the "Software"), to deal
-- in the Software without restriction, including without limitation the rights
-- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the Software is
-- furnished to do so, subject to the following conditions:
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.

library ieee;
    use ieee.std_logic_1164.all;
    use ieee.numeric_std.all;

library work;
    use work.fifo_readwrite_p.all;

entity fifo_writer is
    generic (
        NUM_STREAMS           : natural := 1;
        FIFO_USEDW_WIDTH      : natural := 12;
        FIFO_DATA_WIDTH       : natural := 32;
        META_FIFO_USEDW_WIDTH : natural := 5;
        META_FIFO_DATA_WIDTH  : natural := 128
    );
    port (
        clock               :   in      std_logic;
        reset               :   in      std_logic;
        enable              :   in      std_logic;

        usb_speed           :   in      std_logic;
        meta_en             :   in      std_logic;
        packet_en           :   in      std_logic;
        timestamp           :   in      unsigned(63 downto 0);
        mini_exp            :   in      std_logic_vector(1 downto 0);

        in_sample_controls  :   in      sample_controls_t(0 to NUM_STREAMS-1) := (others => SAMPLE_CONTROL_DISABLE);
        in_samples          :   in      sample_streams_t(0 to NUM_STREAMS-1)  := (others => ZERO_SAMPLE);

        fifo_usedw          :   in      std_logic_vector(FIFO_USEDW_WIDTH-1 downto 0);
        fifo_clear          :   buffer  std_logic;
        fifo_write          :   buffer  std_logic := '0';
        fifo_full           :   in      std_logic;
        fifo_data           :   out     std_logic_vector(FIFO_DATA_WIDTH-1 downto 0) := (others => '0');

        packet_control      :   in      packet_control_t;
        packet_ready        :   out     std_logic;

        meta_fifo_full      :   in     std_logic;
        meta_fifo_usedw     :   in     std_logic_vector(META_FIFO_USEDW_WIDTH-1 downto 0);
        meta_fifo_data      :   out    std_logic_vector(META_FIFO_DATA_WIDTH-1 downto 0) := (others => '0');
        meta_fifo_write     :   out    std_logic := '0';

        overflow_led        :   buffer  std_logic;
        overflow_count      :   buffer  unsigned(63 downto 0);
        overflow_duration   :   in      unsigned(15 downto 0)
    );
end entity;

architecture simple of fifo_writer is

    constant DMA_BUF_SIZE_SS   : natural   := 512;
    constant DMA_BUF_SIZE_HS   : natural   := 256;

    signal dma_buf_size        : natural range DMA_BUF_SIZE_HS to DMA_BUF_SIZE_SS := DMA_BUF_SIZE_SS;

    signal fifo_enough         : boolean   := false;
    signal overflow_detected   : std_logic := '0';

    type meta_state_t is (
        IDLE,
        META_WRITE,
        META_DOWNCOUNT,
        PACKET_WAIT_EOP
    );

    type meta_fsm_t is record
        state           : meta_state_t;
        dma_downcount   : natural range 0 to 65536;
        meta_write      : std_logic;
        meta_data       : std_logic_vector(meta_fifo_data'range);
        meta_written    : std_logic;
    end record;

    constant META_FSM_RESET_VALUE : meta_fsm_t := (
        state           => IDLE,
        dma_downcount   => 0,
        meta_write      => '0',
        meta_data       => (others => '-'),
        meta_written    => '0'
    );

    signal meta_current : meta_fsm_t := META_FSM_RESET_VALUE;
    signal meta_future  : meta_fsm_t := META_FSM_RESET_VALUE;

    type fifo_state_t is (
        CLEAR,
        WRITE_SAMPLES,
        WRITE_PACKET_PAYLOAD,
        HOLDOFF
    );

    type ch_offsets_t is array( natural range <> ) of natural range fifo_data'low to fifo_data'high;

    type fifo_fsm_t is record
        state               : fifo_state_t;
        fifo_clear          : std_logic;
        fifo_write          : std_logic;
        fifo_data           : unsigned(fifo_data'range);
        samples_left        : natural range 0 to in_sample_controls'length;
    end record;

    constant FIFO_FSM_RESET_VALUE : fifo_fsm_t := (
        state               => CLEAR,
        fifo_clear          => '1',
        fifo_write          => '0',
        fifo_data           => (others => '-'),
        samples_left        => 0
    );

    signal fifo_current : fifo_fsm_t := FIFO_FSM_RESET_VALUE;
    signal fifo_future  : fifo_fsm_t := FIFO_FSM_RESET_VALUE;

    signal sync_mini_exp: std_logic_vector(1 downto 0);

begin

    -- Throw an error if port widths don't make sense
    assert (fifo_data'length >= (NUM_STREAMS*2*in_samples(in_samples'low).data_i'length) )
        report "fifo_data port width too narrow to support " & integer'image(NUM_STREAMS) & " MIMO streams."
        severity failure;

    -- Determine the DMA buffer size based on USB speed
    calc_buf_size : process( clock, reset )
    begin
        if( reset = '1' ) then
            dma_buf_size <= DMA_BUF_SIZE_SS;
        elsif( rising_edge(clock) ) then
            if( usb_speed = '0' ) then
                dma_buf_size <= DMA_BUF_SIZE_SS;
            else
                dma_buf_size <= DMA_BUF_SIZE_HS;
            end if;
        end if;
    end process;

    -- Calculate whether there's enough room in the destination FIFO
    calc_fifo_free : process( clock, reset )
        constant FIFO_MAX    : natural := 2**fifo_usedw'length;
        constant META_MAX    : natural := 2**meta_fifo_usedw'length;
        variable fifo_used_v : unsigned(fifo_usedw'length downto 0) := (others => '0');
        variable meta_fifo_used_v : unsigned(meta_fifo_usedw'length downto 0) := (others => '0');
    begin
        if( reset = '1' ) then
            fifo_enough <= false;
            fifo_used_v := (others => '0');
        elsif( rising_edge(clock) ) then
            fifo_used_v := unsigned(fifo_full & fifo_usedw);
            meta_fifo_used_v := unsigned(meta_fifo_full & meta_fifo_usedw);
            if( fifo_full = '0' and ((FIFO_MAX - fifo_used_v) > ( dma_buf_size * 4 )) and
                 ( ( meta_en = '1' and meta_fifo_full = '0' and ( META_MAX - 4 ) > meta_fifo_used_v )
                   or (meta_en = '0') ) ) then
                fifo_enough <= true;
            else
                fifo_enough <= false;
            end if;
        end if;
    end process;

    -- ------------------------------------------------------------------------
    -- MINI EXP PIN SYNCHRONIZER
    -- ------------------------------------------------------------------------
    generate_sync_mimo_rx_en : for i in mini_exp'range generate
        U_sync_mini_exp : entity work.synchronizer
            generic map (
                RESET_LEVEL         =>  '0'
                )
            port map (
                reset               =>  '0',
                clock               =>  clock,
                async               =>  mini_exp(i),
                sync                =>  sync_mini_exp(i)
            );
    end generate;

    -- ------------------------------------------------------------------------
    -- META FIFO WRITER
    -- ------------------------------------------------------------------------

    -- Meta FIFO synchronous process
    meta_fsm_sync : process( clock, reset )
    begin
        if( reset = '1' ) then
            meta_current <= META_FSM_RESET_VALUE;
        elsif( rising_edge(clock) ) then
            meta_current <= meta_future;
        end if;
    end process;

    packet_ready <= '1' when fifo_enough else '0';

    -- Meta FIFO combinatorial process
    meta_fsm_comb : process( all )
        variable packet_flags : std_logic_vector(7 downto 0);
    begin

        meta_future            <= meta_current;

        meta_future.meta_write <= '0';
        -- currently the GPIF modules overwrites the bottom 16 bits of the flags field
        if( packet_en = '0' ) then
           meta_future.meta_data  <= x"FFF" & "11" & sync_mini_exp & x"FFFF" & std_logic_vector(timestamp) & x"12344321";
        else
           packet_flags := packet_control.pkt_flags;
           meta_future.meta_data  <= x"FFF" & "11" & sync_mini_exp & x"FFFF" & std_logic_vector(timestamp) &
                          packet_control.pkt_core_id & packet_flags &
                          std_logic_vector(to_unsigned(integer(meta_current.dma_downcount), 16));
        end if;


        case meta_current.state is
            when IDLE =>

                meta_future.dma_downcount <= dma_buf_size - 4;

                if( fifo_enough ) then
                    if( packet_en = '1' ) then
                       -- use downcount to count number of DWORDS for packets

                       if( packet_control.pkt_sop = '1' ) then
                          meta_future.state  <= PACKET_WAIT_EOP;

                          -- meta is not written yet, but there should be space
                          meta_future.meta_written <= '1';

                          -- EOP and VALID must be asserted together, count the last VALID now
                          if( packet_control.data_valid = '1') then
                             meta_future.dma_downcount <= 2;
                          else
                             meta_future.dma_downcount <= 1;
                          end if;
                       end if;
                    else
                       meta_future.state  <= META_WRITE;
                    end if;
                else
                    meta_future.meta_written <= '0';
                end if;

            when META_WRITE =>

                if( (meta_fifo_full = '0') and (in_samples(in_samples'low).data_v = '1') ) then
                    meta_future.meta_write   <= '1';
                    meta_future.meta_written <= '1';
                    meta_future.state        <= META_DOWNCOUNT;
                end if;

            when META_DOWNCOUNT =>

                if( fifo_current.fifo_write = '1' and meta_current.meta_write = '0' ) then
                    meta_future.dma_downcount <= meta_current.dma_downcount - NUM_STREAMS;
                end if;

                if( meta_current.dma_downcount <= NUM_STREAMS ) then
                    -- Look for 2 because of the 2 cycles passing
                    -- through IDLE and META_WRITE after this.
                    meta_future.state <= IDLE;
                end if;

            when PACKET_WAIT_EOP =>

                if( packet_control.data_valid = '1' ) then
                   meta_future.dma_downcount <= meta_current.dma_downcount + 1;

                   if( packet_control.pkt_eop = '1' ) then
                       meta_future.meta_write  <= '1';
                       meta_future.state       <= IDLE;
                   end if;
                end if;

            when others =>

                meta_future.state <= IDLE;

        end case;

        -- Abort?
        if( (enable = '0') or (meta_en = '0') ) then
            meta_future.meta_write    <= '0';
            meta_future.meta_written  <= '0';
            meta_future.state         <= IDLE;
        end if;

        -- Output assignments
        meta_fifo_write <= meta_current.meta_write;
        meta_fifo_data  <= meta_current.meta_data;

    end process;


    -- ------------------------------------------------------------------------
    -- SAMPLE FIFO WRITER
    -- ------------------------------------------------------------------------

    -- Sample FIFO synchronous process
    fifo_fsm_sync : process( clock, reset )
    begin
        if( reset = '1' ) then
            fifo_current <= FIFO_FSM_RESET_VALUE;
        elsif( rising_edge(clock) ) then
            fifo_current <= fifo_future;
        end if;
    end process;

    -- Sample FIFO combinatorial process
    fifo_fsm_comb : process( all )

        -- --------------------------------------------------------------------
        -- MIMO PACKER: STEP 1 of 3
        -- --------------------------------------------------------------------
        -- This block receives samples as an array of sample streams, one
        -- element per channel. These streams need to be packed into a single,
        -- wide bus that is written to a FIFO and eventually delivered to the
        -- host. When all channels are enabled, this wide bus will contain one
        -- I/Q sample pair for each channel. When channels are disabled, the
        -- wide bus may contain multiple samples from the remaining enabled
        -- channels in order to more efficiently use the available USB bandwidth.
        -- For example, a 2x2 MIMO design with 16-bit samples will pack its data
        -- into a 64-bit wide bus in one of the following ways:
        --      | 63:48 | 47:32 | 31:16 | 15:0 | Bit indices
        --   1. |   Q1  |   I1  |   Q0  |  I0  | Channels 0 & 1 enabled
        --   2. |   Q0' |   I0' |   Q0  |  I0  | Channel 0 only enabled
        --   3. |   Q1' |   I1' |   Q1  |  I1  | Channel 1 only enabled
        function pack( sc : sample_controls_t;
                       ss : sample_streams_t;
                       d  : unsigned ) return unsigned is
            constant LEN  : natural           := ss(ss'low).data_i'length + ss(ss'low).data_q'length;
            variable rv   : unsigned(d'range) := (others => '0');
        begin
            rv := d;
            for i in sc'range loop
                if( (sc(i).enable = '1') and (ss(i).data_v = '1') ) then
                    rv := unsigned(ss(i).data_q) & unsigned(ss(i).data_i) &
                          rv(rv'high downto rv'low+LEN);
                end if;
            end loop;
            return rv;
        end function;


        variable write_req : std_logic := '0';

    begin

        fifo_future            <= fifo_current;

        fifo_future.fifo_clear <= '0';
        fifo_future.fifo_write <= '0';

        -- MIMO PACKER: STEP 1 of 3
        if( packet_en = '0' ) then
            fifo_future.fifo_data  <= pack(in_sample_controls, in_samples, fifo_current.fifo_data);
        end if;

        case fifo_current.state is

            when CLEAR =>

                -- MIMO PACKER: STEP 2 of 3
                --   Compute "samples left" to fill up the fifo_data bus
                fifo_future.samples_left      <= NUM_STREAMS - count_enabled_channels(in_sample_controls);

                if( enable = '1' ) then
                    fifo_future.fifo_clear <= '0';
                    if( packet_en = '1' ) then
                       fifo_future.state      <= WRITE_PACKET_PAYLOAD;
                       fifo_future.samples_left <= NUM_STREAMS - 1;
                    else
                       fifo_future.state      <= WRITE_SAMPLES;
                    end if;
                else
                    fifo_future.fifo_clear <= '1';
                end if;

            when WRITE_PACKET_PAYLOAD =>

                if( meta_current.meta_written = '1' or (fifo_enough and packet_control.pkt_sop = '1' )) then
                    -- This code converts DWORD packet data into a fifo_data std_logic_vector
                    -- that is controlled by a generic.
                    if( packet_control.data_valid = '1' ) then
                        if( packet_control.pkt_eop = '1' and fifo_current.samples_left /= 0 ) then
                           -- End of packet asserted, however fifo_data is not full so
                           -- zero out the unset bits, commit what has been accumulated
                           fifo_future.samples_left <= NUM_STREAMS - 1;
                           fifo_future.fifo_write <= '1';

                           if (fifo_current.fifo_data'high > 31) then
                               fifo_future.fifo_data(fifo_future.fifo_data'high
                                           downto fifo_future.fifo_data'high - 31) <= (others => '0');
                           end if;
                           fifo_future.fifo_data(31 downto 0) <= unsigned(packet_control.data);
                        elsif( fifo_current.samples_left = 0 ) then
                           -- DWORDs perfectly filled fifo_data, commit fifo_data
                           fifo_future.samples_left <= NUM_STREAMS - 1;
                           fifo_future.fifo_write <= '1';

                           if (fifo_current.fifo_data'high > 31) then
                              fifo_future.fifo_data <= unsigned(packet_control.data) &
                                 fifo_current.fifo_data(fifo_current.fifo_data'high downto 32);
                           else
                              fifo_future.fifo_data <= unsigned(packet_control.data);
                           end if;
                        else
                           fifo_future.fifo_data(fifo_future.fifo_data'high
                                       downto fifo_future.fifo_data'high - 31) <=
                                             unsigned(packet_control.data);

                           if (fifo_current.fifo_data'high > 31) then
                               fifo_future.fifo_data(fifo_future.fifo_data'high - 32 downto 0) <=
                                        (others => '0');
                           end if;
                           fifo_future.samples_left <= fifo_current.samples_left - 1;
                        end if;

                    end if;
                end if;

            when WRITE_SAMPLES =>

                if( ((meta_current.meta_written = '1') or (meta_en = '0')) ) then

                    -- Check for valid data
                    write_req := '0';
                    for i in in_sample_controls'range loop
                        if( in_sample_controls(i).enable = '1' ) then
                            write_req := write_req or in_samples(i).data_v;
                        end if;
                    end loop;

                    -- Received valid data
                    if( write_req = '1' ) then
                        if( fifo_current.samples_left = 0 ) then
                            fifo_future.samples_left <= NUM_STREAMS - count_enabled_channels(in_sample_controls);
                            fifo_future.fifo_write   <= write_req;
                        else
                            -- MIMO PACKER: STEP 3 of 3
                            fifo_future.samples_left <= fifo_current.samples_left - 1;
                        end if;
                    end if;
                else
                    fifo_future.fifo_write <= '0';
                end if;

                if( fifo_full = '1' or ( meta_current.meta_written = '0' and meta_en = '1') ) then
                    fifo_future.fifo_write <= '0';
                    fifo_future.state      <= HOLDOFF;
                end if;

            when HOLDOFF =>

                if( fifo_enough ) then
                    fifo_future.state <= WRITE_SAMPLES;
                end if;

            when others =>

                fifo_future.state <= CLEAR;

        end case;

        -- Abort?
        if( enable = '0' ) then
            fifo_future.fifo_clear <= '1';
            fifo_future.fifo_write <= '0';
            fifo_future.state      <= CLEAR;
        end if;

        -- Output assignments
        fifo_clear <= fifo_current.fifo_clear;
        fifo_write <= fifo_current.fifo_write;
        fifo_data  <= std_logic_vector(fifo_current.fifo_data);

    end process;


    -- ------------------------------------------------------------------------
    -- OVERFLOW
    -- ------------------------------------------------------------------------

    -- Overflow detection
    detect_overflows : process( clock, reset )
    begin
        if( reset = '1' ) then
            overflow_detected <= '0';
        elsif( rising_edge( clock ) ) then
            overflow_detected <= '0';
            if( enable = '1' and in_samples(in_samples'low).data_v = '1' and
                fifo_full = '1' and fifo_current.fifo_clear = '0' ) then
                overflow_detected <= '1';
            end if;
        end if;
    end process;

    -- Count the number of times we overflow, but only if they are discontinuous
    -- meaning we have an overflow condition, a non-overflow condition, then
    -- another overflow condition counts as 2 overflows, but an overflow condition
    -- followed by N overflow conditions counts as a single overflow condition.
    count_overflows : process( clock, reset )
        variable prev_overflow : std_logic := '0';
    begin
        if( reset = '1' ) then
            prev_overflow  := '0';
            overflow_count <= (others =>'0');
        elsif( rising_edge( clock ) ) then
            if( prev_overflow = '0' and overflow_detected = '1' ) then
                overflow_count <= overflow_count + 1;
            end if;
            prev_overflow := overflow_detected;
        end if;
    end process;

    -- Active high assertion for overflow_duration when the overflow
    -- condition has been detected.  The LED will stay asserted
    -- if multiple overflows have occurred
    blink_overflow_led : process( clock, reset )
        variable downcount : natural range 0 to 2**overflow_duration'length-1;
    begin
        if( reset = '1' ) then
            downcount    := 0;
            overflow_led <= '0';
        elsif( rising_edge(clock) ) then
            -- Default to not being asserted
            overflow_led <= '0';

            -- Countdown so we can see what happened
            if( overflow_detected = '1' ) then
                downcount := to_integer(overflow_duration);
            elsif( downcount /= 0 ) then
                downcount := downcount - 1;
                overflow_led <= '1';
            end if;
        end if;
    end process;

end architecture;