1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
-- Copyright (c) 2017 Nuand LLC
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU Affero General Public License as
-- published by the Free Software Foundation, either version 3 of the
-- License, or (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU Affero General Public License for more details.
--
-- You should have received a copy of the GNU Affero General Public License
-- along with this program. If not, see <http://www.gnu.org/licenses/>.
library ieee ;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;
use ieee.math_real.all ;
entity bladerf_agc is
port (
-- 40MHz clock and async asserted, sync deasserted reset
clock : in std_logic ;
reset : in std_logic ;
agc_hold_req : in std_logic ;
gain_inc_req : out std_logic ;
gain_dec_req : out std_logic ;
gain_rst_req : out std_logic ;
gain_ack : in std_logic ;
gain_nack : in std_logic ;
gain_max : in std_logic ;
rst_gains : out std_logic ;
burst : out std_logic ;
sample_i : in signed(15 downto 0 ) ;
sample_q : in signed(15 downto 0 ) ;
sample_valid : in std_logic
) ;
end entity ;
architecture arch of bladerf_agc is
type bladerf_sample_t is record
i : signed(15 downto 0) ;
q : signed(15 downto 0) ;
valid : std_logic ;
end record ;
signal iir : signed( 31 downto 0 ) ;
signal ptemp : signed( 31 downto 0 ) ;
signal burst_cnt: signed( 7 downto 0 ) ;
function run_iir( x : signed( 31 downto 0); y : signed ( 31 downto 0) )
return signed
is
variable amrea : signed(31 downto 0) ;
begin
amrea := resize( x - shift_right(x, 6) + shift_right(y, 6), 32 );
return amrea;
end;
type fsm_t is (IDLE, SETTLE, ATTACK, WAIT_GAIN_ACK, WAIT_GAIN_ACK_1, HOLD) ;
type state_t is record
fsm : fsm_t ;
inc_req : std_logic ;
dec_req : std_logic ;
rst_req : std_logic ;
timer : unsigned( 10 downto 0 ) ;
end record ;
function NULL_STATE return state_t is
variable rv : state_t ;
begin
rv.fsm := IDLE ;
rv.inc_req := '0' ;
rv.dec_req := '0' ;
rv.rst_req := '0' ;
rv.timer := ( others => '0' );
return rv ;
end function ;
signal current, future : state_t := NULL_STATE ;
signal sample, sample_out : bladerf_sample_t ;
begin
sample.i <= sample_i;
sample.q <= sample_q;
sample.valid <= sample_valid;
gain_inc_req <= current.inc_req ;
gain_dec_req <= current.dec_req ;
gain_rst_req <= current.rst_req ;
process( clock, reset )
begin
if( reset = '1' ) then
rst_gains <= '0' ;
burst <= '0' ;
elsif( rising_edge( clock )) then
if( ( gain_max = '1' and iir < 1200 ) or current.fsm = SETTLE ) then
rst_gains <= '1' ;
else
rst_gains <= '0' ;
end if ;
if( gain_max = '0' or iir > 1100 ) then
burst <= '1' ;
burst_cnt <= to_signed(18, burst_cnt'length) ;
else
if( ptemp > 1100 ) then
burst <= '1' ;
burst_cnt <= to_signed(6, burst_cnt'length) ;
else
if( burst_cnt > 0 ) then
burst <= '1' ;
burst_cnt <= burst_cnt - 1 ;
else
burst <= '0' ;
end if ;
end if ;
end if ;
end if ;
end process ;
process( clock, reset )
begin
if( reset = '1' ) then
iir <= ( others => '0' ) ;
ptemp <= (others => '0' ) ;
elsif( rising_edge( clock )) then
if( current.timer = 18 ) then
iir <= ptemp ;
elsif( sample.valid = '1') then
ptemp <= sample.i * sample.i + sample.q * sample.q ;
iir <= run_iir(iir, ptemp) ;
end if ;
end if ;
end process ;
sync : process(clock, reset)
begin
if( reset = '1' ) then
current <= NULL_STATE ;
elsif( rising_edge(clock) ) then
current <= future ;
end if ;
end process ;
comb : process(all)
begin
future <= current ;
future.inc_req <= '0' ;
future.dec_req <= '0' ;
future.rst_req <= '0' ;
case current.fsm is
when IDLE =>
future.fsm <= SETTLE ;
when SETTLE =>
if( current.timer > 32 ) then -- 50 looks good 70 is overkill
future.timer <= ( others => '0' ) ;
future.fsm <= ATTACK ;
else
if( current.timer < 400 ) then
future.timer <= current.timer + 1 ;
end if ;
end if ;
when ATTACK =>
if( rst_gains = '1' ) then
future.timer <= ( others => '0' ) ;
else
if( current.timer < 400 ) then
future.timer <= current.timer + 1 ;
end if ;
end if ;
if( agc_hold_req = '1' ) then
future.fsm <= HOLD ;
else
-- 405000, -48dBm to enter mid, -28dBm to enter low
if( current.timer > 24 and iir > 335000 ) then --335000
future.fsm <= WAIT_GAIN_ACK ;
future.dec_req <= '1' ;
elsif( current.timer < 24 and iir > 485000 ) then --335000
-- I = Q = sqrt(2048*2048/10)=657, IIR = I^2 + Q^2= 845000
future.fsm <= WAIT_GAIN_ACK ;
future.dec_req <= '1' ;
elsif( current.timer > 300 and iir < 1000 ) then
--elsif( iir < 5000 ) then
-- I = Q = 50, IIR = I^2 + Q^2= 5000
future.inc_req <= '1' ;
future.fsm <= WAIT_GAIN_ACK ;
end if ;
end if ;
when WAIT_GAIN_ACK =>
future.fsm <= WAIT_GAIN_ACK_1 ;
when WAIT_GAIN_ACK_1 =>
if( gain_ack = '1' ) then
future.fsm <= SETTLE ;
future.timer <= ( others => '0' ) ;
end if ;
if( gain_nack = '1' ) then
future.fsm <= ATTACK ;
end if ;
when HOLD =>
if( iir < 5000 ) then
-- I = Q = 50, IIR = I^2 + Q^2= 5000
future.rst_req <= '1' ;
future.fsm <= WAIT_GAIN_ACK ;
end if ;
end case ;
end process ;
end architecture ;
|