File: fx3_model.vhd

package info (click to toggle)
bladerf 0.2022.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 373,752 kB
  • sloc: ansic: 1,186,428; xml: 150,799; vhdl: 24,182; tcl: 15,408; python: 3,409; sh: 1,551; makefile: 1,255; asm: 158; csh: 18; cpp: 9
file content (482 lines) | stat: -rw-r--r-- 16,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
-- Copyright (c) 2019 Nuand LLC
--
-- Permission is hereby granted, free of charge, to any person obtaining a copy
-- of this software and associated documentation files (the "Software"), to deal
-- in the Software without restriction, including without limitation the rights
-- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the Software is
-- furnished to do so, subject to the following conditions:
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.

library ieee;
    use ieee.std_logic_1164.all;
    use ieee.numeric_std.all;
    use ieee.math_real.all;
    use ieee.math_complex.all;

library work;
    use work.util.all;

architecture micro_dma of fx3_model is

    constant PCLK_HALF_PERIOD       : time      := 1 sec * (1.0/100.0e6/2.0);
    constant START_COUNT            : natural   := 32;
    constant BLOCKS_PER_ITERATION   : natural   := 4;
    constant ITERATIONS             : natural   := 4;

    -- Control mapping
    alias dma0_rx_ack   is fx3_ctl( 0);
    alias dma1_rx_ack   is fx3_ctl( 1);
    alias dma2_tx_ack   is fx3_ctl( 2);
    alias dma3_tx_ack   is fx3_ctl( 3);
    alias dma_rx_enable is fx3_ctl( 4);
    alias dma_tx_enable is fx3_ctl( 5);
    alias dma_idle      is fx3_ctl( 6);
    alias system_reset  is fx3_ctl( 7);
    alias dma0_rx_reqx  is fx3_ctl( 8);
    alias dma1_rx_reqx  is fx3_ctl(12); -- due to 9 being connected to dclk
    alias dma2_tx_reqx  is fx3_ctl(10);
    alias dma3_tx_reqx  is fx3_ctl(11);

    type gpif_state_t is (IDLE, TX_META, TX_SAMPLES, RX_SAMPLES);
    signal gpif_state_rx, gpif_state_tx : gpif_state_t;

    signal rx_done  : boolean := false;
    signal tx_done  : boolean := false;

    signal rx_data  : std_logic_vector(31 downto 0);
    signal tx_data  : std_logic_vector(31 downto 0);

    function data_gen (count : natural) return std_logic_vector is
        variable msw, lsw : std_logic_vector(15 downto 0);
    begin
        msw := std_logic_vector(to_signed(count+1, 16));
        lsw := std_logic_vector(to_signed(count, 16));

        return (msw & lsw);
    end function data_gen;

    function data_check (count : natural ; rxdata : std_logic_vector(31 downto 0)) return boolean is
    begin
        return (rxdata = data_gen(count));
    end function data_check;

begin

    -- DCLK which isn't used
    fx3_ctl(9) <= '0';

    fx3_ctl(3 downto 0) <= (others => 'Z');

    -- Create a 100MHz clock output
    fx3_pclk <= not fx3_pclk after PCLK_HALF_PERIOD when (not rx_done or not tx_done) else '0';

    -- Doneness
    done <= rx_done and tx_done;

    rx_sample_stream : process
        constant BLOCK_SIZE     : natural := 512;
        variable count          : natural := START_COUNT;
        variable req_time       : time;
    begin
        gpif_state_rx   <= IDLE;
        dma0_rx_reqx    <= '1';
        dma1_rx_reqx    <= '1';
        dma_rx_enable   <= '0';
        rx_data         <= (others => 'U');

        wait until rising_edge(fx3_pclk) and system_reset = '0';

        nop(fx3_pclk, 1000);

        wait until rising_edge(fx3_pclk) and fx3_rx_en = '1';

        wait for 30 us;

        for j in 1 to ITERATIONS loop
            dma_rx_enable <= '1';

            for i in 1 to BLOCKS_PER_ITERATION loop
                dma0_rx_reqx    <= '0';
                req_time        := now;
                wait until rising_edge( fx3_pclk ) and dma0_rx_ack = '1';
                wait until rising_edge( fx3_pclk );
                dma0_rx_reqx    <= '1';

                report "RX iteration " & to_string(j) & " block " & to_string(i) & " delay " & to_string(now - req_time);

                for i in 1 to BLOCK_SIZE loop
                    gpif_state_rx   <= RX_SAMPLES;
                    rx_data         <= fx3_gpif;
                    wait until rising_edge( fx3_pclk );

                    --assert data_check(count, rx_data) severity failure;

                    count := (count + 1) mod 2048;
                    gpif_state_rx   <= IDLE;
                    rx_data         <= (others => 'X');
                end loop;
            end loop;

            dma_rx_enable <= '0';
            wait for 10 us;
        end loop;

        report "Done with RX sample stream";
        rx_done <= true;
        wait;
    end process;

    tx_sample_stream : process
        constant BLOCK_SIZE     : natural := 512;
        variable count          : natural := START_COUNT;
        variable timestamp_cntr : natural := 400;
        variable header_len     : natural := 0;
        variable data_out       : std_logic_vector(31 downto 0);
        variable req_time       : time;
    begin
        gpif_state_tx   <= IDLE;
        dma2_tx_reqx    <= '1';
        dma3_tx_reqx    <= '1';
        dma_tx_enable   <= '0';
        fx3_gpif        <= (others =>'Z');

        wait until rising_edge(fx3_pclk) and system_reset = '0';

        nop(fx3_pclk, 1000);

        wait until rising_edge(fx3_pclk) and fx3_tx_en = '1';

        wait for 30 us;

        for k in 1 to ITERATIONS loop
            dma_tx_enable <= '1';

            for j in 1 to 2 loop
                header_len      := 0;
                dma3_tx_reqx    <= '0';
                req_time        := now;
                wait until rising_edge( fx3_pclk ) and dma3_tx_ack = '1';
                wait until rising_edge( fx3_pclk );
                wait until rising_edge( fx3_pclk );
                wait until rising_edge( fx3_pclk );
                dma3_tx_reqx    <= '1';

                report "TX iteration " & to_string(k) & " block " & to_string(j) & " delay " & to_string(now - req_time);


                if( fx3_tx_meta_en = '1') then
                    header_len := 4;

                    for i in 1 to 4 loop
                        case (i) is
                            when 1 =>
                                data_out := x"00000000";
                            when 2 =>
                                data_out(31 downto 0) := std_logic_vector(to_signed(timestamp_cntr, 32));
                                if (i < 1) then
                                   timestamp_cntr := timestamp_cntr + 2000;
                                else
                                   timestamp_cntr := timestamp_cntr + 254;
                                end if;
                            when 3 =>
                                data_out := (others => '0');
                            when 4 =>
                                data_out := (others => '1');
                        end case;

                        gpif_state_tx   <= TX_META;
                        fx3_gpif        <= data_out;
                        tx_data         <= data_out;
                        wait until rising_edge( fx3_pclk );

                        gpif_state_tx   <= IDLE;
                        tx_data         <= (others => 'X');
                    end loop;
                end if;
                count := 0;

                for i in 1 to (BLOCK_SIZE - header_len) loop
                    gpif_state_tx   <= TX_SAMPLES;
                    data_out        := data_gen(count);
                    fx3_gpif        <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
                    tx_data         <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
                    wait until rising_edge( fx3_pclk );

                    count           := (count + 2) mod 2048;
                    gpif_state_tx   <= IDLE;
                    tx_data         <= (others => 'X');
                end loop;

                fx3_gpif <= (others =>'Z');
                nop(fx3_pclk, 10);
            end loop;

            wait for 1 ms;
            dma_tx_enable <= '0';
            wait for 10 us;
        end loop;

       report "Done with TX sample stream";
       tx_done <= true;
       wait;
    end process;

    reset_system : process
    begin
        system_reset <= '1';
        dma_idle <= '0';
        nop( fx3_pclk, 100 );
        system_reset <= '0';
        nop( fx3_pclk, 10 );
        dma_idle <= '1';
        wait;
    end process;

    -- TODO: UART Interface
    fx3_uart_txd <= '1';
    fx3_uart_cts <= '1';

    assert (gpif_state_tx = IDLE and gpif_state_rx /= IDLE)
        or (gpif_state_rx = IDLE and gpif_state_tx /= IDLE)
        or (gpif_state_rx = IDLE and gpif_state_tx = IDLE)
    report "gpif_state_rx and gpif_state_tx cannot both be non-idle"
    severity failure;

end architecture micro_dma;

architecture micro_packet_dma of fx3_model is

    constant PCLK_HALF_PERIOD       : time      := 1 sec * (1.0/100.0e6/2.0);
    constant START_COUNT            : natural   := 32;
    constant BLOCKS_PER_ITERATION   : natural   := 4;
    constant ITERATIONS             : natural   := 4;

    -- Control mapping
    alias dma0_rx_ack   is fx3_ctl( 0);
    alias dma1_rx_ack   is fx3_ctl( 1);
    alias dma2_tx_ack   is fx3_ctl( 2);
    alias dma3_tx_ack   is fx3_ctl( 3);
    alias dma_rx_enable is fx3_ctl( 4);
    alias dma_tx_enable is fx3_ctl( 5);
    alias dma_idle      is fx3_ctl( 6);
    alias system_reset  is fx3_ctl( 7);
    alias dma0_rx_reqx  is fx3_ctl( 8);
    alias dma1_rx_reqx  is fx3_ctl(12); -- due to 9 being connected to dclk
    alias dma2_tx_reqx  is fx3_ctl(10);
    alias dma3_tx_reqx  is fx3_ctl(11);

    type gpif_state_t is (IDLE, TX_META, TX_SAMPLES, RX_SAMPLES);
    signal gpif_state_rx, gpif_state_tx : gpif_state_t;

    signal rx_done  : boolean := false;
    signal tx_done  : boolean := false;

    signal rx_data  : std_logic_vector(31 downto 0);
    signal tx_data  : std_logic_vector(31 downto 0);

    function data_gen (count : natural) return std_logic_vector is
        variable msw, lsw : std_logic_vector(15 downto 0);
    begin
        msw := (others =>'0');--std_logic_vector(to_signed(count+1, 16));
        lsw := std_logic_vector(to_signed(count, 16));

        return (msw & lsw);
    end function data_gen;

    function data_check (count : natural ; rxdata : std_logic_vector(31 downto 0)) return boolean is
    begin
        return (rxdata = data_gen(count));
    end function data_check;

begin

    -- DCLK which isn't used
    fx3_ctl(9) <= '0';

    fx3_ctl(3 downto 0) <= (others => 'Z');

    -- Create a 100MHz clock output
    fx3_pclk <= not fx3_pclk after PCLK_HALF_PERIOD when (not rx_done or not tx_done) else '0';

    -- Doneness
    done <= rx_done and tx_done;

    rx_sample_stream : process
        constant BLOCK_SIZE     : natural := 512;
        variable count          : natural := START_COUNT;
        variable req_time       : time;
    begin
        gpif_state_rx   <= IDLE;
        dma0_rx_reqx    <= '1';
        dma1_rx_reqx    <= '1';
        dma_rx_enable   <= '0';
        rx_data         <= (others => 'U');

        wait until rising_edge(fx3_pclk) and system_reset = '0';

        nop(fx3_pclk, 1000);

        wait until rising_edge(fx3_pclk) and fx3_rx_en = '1';

        wait for 30 us;

        for j in 1 to ITERATIONS loop
            dma_rx_enable <= '1';

            for i in 1 to BLOCKS_PER_ITERATION loop
                dma0_rx_reqx    <= '0';
                req_time        := now;
                wait until rising_edge( fx3_pclk ) and dma0_rx_ack = '1';
                wait until rising_edge( fx3_pclk );
                dma0_rx_reqx    <= '1';

                report "RX iteration " & to_string(j) & " block " & to_string(i) & " delay " & to_string(now - req_time);

                for i in 1 to BLOCK_SIZE loop
                    gpif_state_rx   <= RX_SAMPLES;
                    rx_data         <= fx3_gpif;
                    wait until rising_edge( fx3_pclk );

                    --assert data_check(count, rx_data) severity failure;

                    count := (count + 1) mod 2048;
                    gpif_state_rx   <= IDLE;
                    rx_data         <= (others => 'X');
                end loop;
            end loop;

            dma_rx_enable <= '0';
            wait for 10 us;
        end loop;

        report "Done with RX sample stream";
        rx_done <= true;
        wait;
    end process;

    tx_sample_stream : process
        constant BLOCK_SIZE     : natural := 512;
        variable count          : natural := START_COUNT;
        variable timestamp_cntr : natural := 100;
        variable header_len     : natural := 0;
        variable packet_len     : natural := 0;
        variable data_out       : std_logic_vector(31 downto 0);
        variable req_time       : time;
    begin
        gpif_state_tx   <= IDLE;
        dma2_tx_reqx    <= '1';
        dma3_tx_reqx    <= '1';
        dma_tx_enable   <= '0';
        fx3_gpif        <= (others =>'Z');

        wait until rising_edge(fx3_pclk) and system_reset = '0';

        nop(fx3_pclk, 1000);

        wait until rising_edge(fx3_pclk) and fx3_tx_en = '1';

        wait for 30 us;

        for k in 1 to ITERATIONS loop
            dma_tx_enable <= '1';

            for j in 1 to BLOCKS_PER_ITERATION loop
                header_len      := 0;
                dma3_tx_reqx    <= '0';
                req_time        := now;
                wait until rising_edge( fx3_pclk ) and dma3_tx_ack = '1';
                wait until rising_edge( fx3_pclk );
                wait until rising_edge( fx3_pclk );
                wait until rising_edge( fx3_pclk );
                dma3_tx_reqx    <= '1';

                report "TX iteration " & to_string(k) & " block " & to_string(j) & " delay " & to_string(now - req_time);


                packet_len      := 36;
                if( fx3_tx_meta_en = '1') then
                    header_len := 4;

                    for i in 1 to 4 loop
                        case (i) is
                            when 1 =>
                                data_out := x"100000" & std_logic_vector(to_unsigned(packet_len, 8));
                            when 2 =>
                                data_out(31 downto 0) := std_logic_vector(to_signed(timestamp_cntr, 32));
                                timestamp_cntr := timestamp_cntr + 300;
                            when 3 =>
                                data_out := (others => '0');
                            when 4 =>
                                data_out := (others => '1');
                        end case;

                        gpif_state_tx   <= TX_META;
                        fx3_gpif        <= data_out;
                        tx_data         <= data_out;
                        wait until rising_edge( fx3_pclk );

                        gpif_state_tx   <= IDLE;
                        tx_data         <= (others => 'X');
                    end loop;
                end if;
                count := 0;

                for i in 1 to packet_len loop
                    gpif_state_tx   <= TX_SAMPLES;
                    data_out        := data_gen(count);
                    fx3_gpif        <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
                    tx_data         <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
                    wait until rising_edge( fx3_pclk );

                    count           := (count + 1) mod 2048;
                    gpif_state_tx   <= IDLE;
                    tx_data         <= (others => 'X');
                end loop;

                fx3_gpif <= (others =>'Z');
                nop(fx3_pclk, 10);
            end loop;

            wait for 1 ms;
            dma_tx_enable <= '0';
            wait for 10 us;
        end loop;

       report "Done with TX sample stream";
       tx_done <= true;
       wait;
    end process;

    reset_system : process
    begin
        system_reset <= '1';
        dma_idle <= '0';
        nop( fx3_pclk, 100 );
        system_reset <= '0';
        nop( fx3_pclk, 10 );
        dma_idle <= '1';
        wait;
    end process;

    -- TODO: UART Interface
    fx3_uart_txd <= '1';
    fx3_uart_cts <= '1';

    assert (gpif_state_tx = IDLE and gpif_state_rx /= IDLE)
        or (gpif_state_rx = IDLE and gpif_state_tx /= IDLE)
        or (gpif_state_rx = IDLE and gpif_state_tx = IDLE)
    report "gpif_state_rx and gpif_state_tx cannot both be non-idle"
    severity failure;

end architecture micro_packet_dma;