1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
-- Copyright (c) 2019 Nuand LLC
--
-- Permission is hereby granted, free of charge, to any person obtaining a copy
-- of this software and associated documentation files (the "Software"), to deal
-- in the Software without restriction, including without limitation the rights
-- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the Software is
-- furnished to do so, subject to the following conditions:
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;
use ieee.math_complex.all;
library work;
use work.util.all;
architecture micro_dma of fx3_model is
constant PCLK_HALF_PERIOD : time := 1 sec * (1.0/100.0e6/2.0);
constant START_COUNT : natural := 32;
constant BLOCKS_PER_ITERATION : natural := 4;
constant ITERATIONS : natural := 4;
-- Control mapping
alias dma0_rx_ack is fx3_ctl( 0);
alias dma1_rx_ack is fx3_ctl( 1);
alias dma2_tx_ack is fx3_ctl( 2);
alias dma3_tx_ack is fx3_ctl( 3);
alias dma_rx_enable is fx3_ctl( 4);
alias dma_tx_enable is fx3_ctl( 5);
alias dma_idle is fx3_ctl( 6);
alias system_reset is fx3_ctl( 7);
alias dma0_rx_reqx is fx3_ctl( 8);
alias dma1_rx_reqx is fx3_ctl(12); -- due to 9 being connected to dclk
alias dma2_tx_reqx is fx3_ctl(10);
alias dma3_tx_reqx is fx3_ctl(11);
type gpif_state_t is (IDLE, TX_META, TX_SAMPLES, RX_SAMPLES);
signal gpif_state_rx, gpif_state_tx : gpif_state_t;
signal rx_done : boolean := false;
signal tx_done : boolean := false;
signal rx_data : std_logic_vector(31 downto 0);
signal tx_data : std_logic_vector(31 downto 0);
function data_gen (count : natural) return std_logic_vector is
variable msw, lsw : std_logic_vector(15 downto 0);
begin
msw := std_logic_vector(to_signed(count+1, 16));
lsw := std_logic_vector(to_signed(count, 16));
return (msw & lsw);
end function data_gen;
function data_check (count : natural ; rxdata : std_logic_vector(31 downto 0)) return boolean is
begin
return (rxdata = data_gen(count));
end function data_check;
begin
-- DCLK which isn't used
fx3_ctl(9) <= '0';
fx3_ctl(3 downto 0) <= (others => 'Z');
-- Create a 100MHz clock output
fx3_pclk <= not fx3_pclk after PCLK_HALF_PERIOD when (not rx_done or not tx_done) else '0';
-- Doneness
done <= rx_done and tx_done;
rx_sample_stream : process
constant BLOCK_SIZE : natural := 512;
variable count : natural := START_COUNT;
variable req_time : time;
begin
gpif_state_rx <= IDLE;
dma0_rx_reqx <= '1';
dma1_rx_reqx <= '1';
dma_rx_enable <= '0';
rx_data <= (others => 'U');
wait until rising_edge(fx3_pclk) and system_reset = '0';
nop(fx3_pclk, 1000);
wait until rising_edge(fx3_pclk) and fx3_rx_en = '1';
wait for 30 us;
for j in 1 to ITERATIONS loop
dma_rx_enable <= '1';
for i in 1 to BLOCKS_PER_ITERATION loop
dma0_rx_reqx <= '0';
req_time := now;
wait until rising_edge( fx3_pclk ) and dma0_rx_ack = '1';
wait until rising_edge( fx3_pclk );
dma0_rx_reqx <= '1';
report "RX iteration " & to_string(j) & " block " & to_string(i) & " delay " & to_string(now - req_time);
for i in 1 to BLOCK_SIZE loop
gpif_state_rx <= RX_SAMPLES;
rx_data <= fx3_gpif;
wait until rising_edge( fx3_pclk );
--assert data_check(count, rx_data) severity failure;
count := (count + 1) mod 2048;
gpif_state_rx <= IDLE;
rx_data <= (others => 'X');
end loop;
end loop;
dma_rx_enable <= '0';
wait for 10 us;
end loop;
report "Done with RX sample stream";
rx_done <= true;
wait;
end process;
tx_sample_stream : process
constant BLOCK_SIZE : natural := 512;
variable count : natural := START_COUNT;
variable timestamp_cntr : natural := 400;
variable header_len : natural := 0;
variable data_out : std_logic_vector(31 downto 0);
variable req_time : time;
begin
gpif_state_tx <= IDLE;
dma2_tx_reqx <= '1';
dma3_tx_reqx <= '1';
dma_tx_enable <= '0';
fx3_gpif <= (others =>'Z');
wait until rising_edge(fx3_pclk) and system_reset = '0';
nop(fx3_pclk, 1000);
wait until rising_edge(fx3_pclk) and fx3_tx_en = '1';
wait for 30 us;
for k in 1 to ITERATIONS loop
dma_tx_enable <= '1';
for j in 1 to 2 loop
header_len := 0;
dma3_tx_reqx <= '0';
req_time := now;
wait until rising_edge( fx3_pclk ) and dma3_tx_ack = '1';
wait until rising_edge( fx3_pclk );
wait until rising_edge( fx3_pclk );
wait until rising_edge( fx3_pclk );
dma3_tx_reqx <= '1';
report "TX iteration " & to_string(k) & " block " & to_string(j) & " delay " & to_string(now - req_time);
if( fx3_tx_meta_en = '1') then
header_len := 4;
for i in 1 to 4 loop
case (i) is
when 1 =>
data_out := x"00000000";
when 2 =>
data_out(31 downto 0) := std_logic_vector(to_signed(timestamp_cntr, 32));
if (i < 1) then
timestamp_cntr := timestamp_cntr + 2000;
else
timestamp_cntr := timestamp_cntr + 254;
end if;
when 3 =>
data_out := (others => '0');
when 4 =>
data_out := (others => '1');
end case;
gpif_state_tx <= TX_META;
fx3_gpif <= data_out;
tx_data <= data_out;
wait until rising_edge( fx3_pclk );
gpif_state_tx <= IDLE;
tx_data <= (others => 'X');
end loop;
end if;
count := 0;
for i in 1 to (BLOCK_SIZE - header_len) loop
gpif_state_tx <= TX_SAMPLES;
data_out := data_gen(count);
fx3_gpif <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
tx_data <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
wait until rising_edge( fx3_pclk );
count := (count + 2) mod 2048;
gpif_state_tx <= IDLE;
tx_data <= (others => 'X');
end loop;
fx3_gpif <= (others =>'Z');
nop(fx3_pclk, 10);
end loop;
wait for 1 ms;
dma_tx_enable <= '0';
wait for 10 us;
end loop;
report "Done with TX sample stream";
tx_done <= true;
wait;
end process;
reset_system : process
begin
system_reset <= '1';
dma_idle <= '0';
nop( fx3_pclk, 100 );
system_reset <= '0';
nop( fx3_pclk, 10 );
dma_idle <= '1';
wait;
end process;
-- TODO: UART Interface
fx3_uart_txd <= '1';
fx3_uart_cts <= '1';
assert (gpif_state_tx = IDLE and gpif_state_rx /= IDLE)
or (gpif_state_rx = IDLE and gpif_state_tx /= IDLE)
or (gpif_state_rx = IDLE and gpif_state_tx = IDLE)
report "gpif_state_rx and gpif_state_tx cannot both be non-idle"
severity failure;
end architecture micro_dma;
architecture micro_packet_dma of fx3_model is
constant PCLK_HALF_PERIOD : time := 1 sec * (1.0/100.0e6/2.0);
constant START_COUNT : natural := 32;
constant BLOCKS_PER_ITERATION : natural := 4;
constant ITERATIONS : natural := 4;
-- Control mapping
alias dma0_rx_ack is fx3_ctl( 0);
alias dma1_rx_ack is fx3_ctl( 1);
alias dma2_tx_ack is fx3_ctl( 2);
alias dma3_tx_ack is fx3_ctl( 3);
alias dma_rx_enable is fx3_ctl( 4);
alias dma_tx_enable is fx3_ctl( 5);
alias dma_idle is fx3_ctl( 6);
alias system_reset is fx3_ctl( 7);
alias dma0_rx_reqx is fx3_ctl( 8);
alias dma1_rx_reqx is fx3_ctl(12); -- due to 9 being connected to dclk
alias dma2_tx_reqx is fx3_ctl(10);
alias dma3_tx_reqx is fx3_ctl(11);
type gpif_state_t is (IDLE, TX_META, TX_SAMPLES, RX_SAMPLES);
signal gpif_state_rx, gpif_state_tx : gpif_state_t;
signal rx_done : boolean := false;
signal tx_done : boolean := false;
signal rx_data : std_logic_vector(31 downto 0);
signal tx_data : std_logic_vector(31 downto 0);
function data_gen (count : natural) return std_logic_vector is
variable msw, lsw : std_logic_vector(15 downto 0);
begin
msw := (others =>'0');--std_logic_vector(to_signed(count+1, 16));
lsw := std_logic_vector(to_signed(count, 16));
return (msw & lsw);
end function data_gen;
function data_check (count : natural ; rxdata : std_logic_vector(31 downto 0)) return boolean is
begin
return (rxdata = data_gen(count));
end function data_check;
begin
-- DCLK which isn't used
fx3_ctl(9) <= '0';
fx3_ctl(3 downto 0) <= (others => 'Z');
-- Create a 100MHz clock output
fx3_pclk <= not fx3_pclk after PCLK_HALF_PERIOD when (not rx_done or not tx_done) else '0';
-- Doneness
done <= rx_done and tx_done;
rx_sample_stream : process
constant BLOCK_SIZE : natural := 512;
variable count : natural := START_COUNT;
variable req_time : time;
begin
gpif_state_rx <= IDLE;
dma0_rx_reqx <= '1';
dma1_rx_reqx <= '1';
dma_rx_enable <= '0';
rx_data <= (others => 'U');
wait until rising_edge(fx3_pclk) and system_reset = '0';
nop(fx3_pclk, 1000);
wait until rising_edge(fx3_pclk) and fx3_rx_en = '1';
wait for 30 us;
for j in 1 to ITERATIONS loop
dma_rx_enable <= '1';
for i in 1 to BLOCKS_PER_ITERATION loop
dma0_rx_reqx <= '0';
req_time := now;
wait until rising_edge( fx3_pclk ) and dma0_rx_ack = '1';
wait until rising_edge( fx3_pclk );
dma0_rx_reqx <= '1';
report "RX iteration " & to_string(j) & " block " & to_string(i) & " delay " & to_string(now - req_time);
for i in 1 to BLOCK_SIZE loop
gpif_state_rx <= RX_SAMPLES;
rx_data <= fx3_gpif;
wait until rising_edge( fx3_pclk );
--assert data_check(count, rx_data) severity failure;
count := (count + 1) mod 2048;
gpif_state_rx <= IDLE;
rx_data <= (others => 'X');
end loop;
end loop;
dma_rx_enable <= '0';
wait for 10 us;
end loop;
report "Done with RX sample stream";
rx_done <= true;
wait;
end process;
tx_sample_stream : process
constant BLOCK_SIZE : natural := 512;
variable count : natural := START_COUNT;
variable timestamp_cntr : natural := 100;
variable header_len : natural := 0;
variable packet_len : natural := 0;
variable data_out : std_logic_vector(31 downto 0);
variable req_time : time;
begin
gpif_state_tx <= IDLE;
dma2_tx_reqx <= '1';
dma3_tx_reqx <= '1';
dma_tx_enable <= '0';
fx3_gpif <= (others =>'Z');
wait until rising_edge(fx3_pclk) and system_reset = '0';
nop(fx3_pclk, 1000);
wait until rising_edge(fx3_pclk) and fx3_tx_en = '1';
wait for 30 us;
for k in 1 to ITERATIONS loop
dma_tx_enable <= '1';
for j in 1 to BLOCKS_PER_ITERATION loop
header_len := 0;
dma3_tx_reqx <= '0';
req_time := now;
wait until rising_edge( fx3_pclk ) and dma3_tx_ack = '1';
wait until rising_edge( fx3_pclk );
wait until rising_edge( fx3_pclk );
wait until rising_edge( fx3_pclk );
dma3_tx_reqx <= '1';
report "TX iteration " & to_string(k) & " block " & to_string(j) & " delay " & to_string(now - req_time);
packet_len := 36;
if( fx3_tx_meta_en = '1') then
header_len := 4;
for i in 1 to 4 loop
case (i) is
when 1 =>
data_out := x"100000" & std_logic_vector(to_unsigned(packet_len, 8));
when 2 =>
data_out(31 downto 0) := std_logic_vector(to_signed(timestamp_cntr, 32));
timestamp_cntr := timestamp_cntr + 300;
when 3 =>
data_out := (others => '0');
when 4 =>
data_out := (others => '1');
end case;
gpif_state_tx <= TX_META;
fx3_gpif <= data_out;
tx_data <= data_out;
wait until rising_edge( fx3_pclk );
gpif_state_tx <= IDLE;
tx_data <= (others => 'X');
end loop;
end if;
count := 0;
for i in 1 to packet_len loop
gpif_state_tx <= TX_SAMPLES;
data_out := data_gen(count);
fx3_gpif <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
tx_data <= std_logic_vector(to_unsigned(j, 8)) & data_out(23 downto 0);
wait until rising_edge( fx3_pclk );
count := (count + 1) mod 2048;
gpif_state_tx <= IDLE;
tx_data <= (others => 'X');
end loop;
fx3_gpif <= (others =>'Z');
nop(fx3_pclk, 10);
end loop;
wait for 1 ms;
dma_tx_enable <= '0';
wait for 10 us;
end loop;
report "Done with TX sample stream";
tx_done <= true;
wait;
end process;
reset_system : process
begin
system_reset <= '1';
dma_idle <= '0';
nop( fx3_pclk, 100 );
system_reset <= '0';
nop( fx3_pclk, 10 );
dma_idle <= '1';
wait;
end process;
-- TODO: UART Interface
fx3_uart_txd <= '1';
fx3_uart_cts <= '1';
assert (gpif_state_tx = IDLE and gpif_state_rx /= IDLE)
or (gpif_state_rx = IDLE and gpif_state_tx /= IDLE)
or (gpif_state_rx = IDLE and gpif_state_tx = IDLE)
report "gpif_state_rx and gpif_state_tx cannot both be non-idle"
severity failure;
end architecture micro_packet_dma;
|