| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 
 | -- Copyright (c) 2017 Nuand LLC
--
-- Permission is hereby granted, free of charge, to any person obtaining a copy
-- of this software and associated documentation files (the "Software"), to deal
-- in the Software without restriction, including without limitation the rights
-- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the Software is
-- furnished to do so, subject to the following conditions:
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.
library ieee;
    use ieee.std_logic_1164.all;
    use ieee.numeric_std.all;
library work;
    use work.fifo_readwrite_p.all;
entity fifo_writer is
    generic (
        NUM_STREAMS           : natural := 1;
        FIFO_USEDW_WIDTH      : natural := 12;
        FIFO_DATA_WIDTH       : natural := 32;
        META_FIFO_USEDW_WIDTH : natural := 5;
        META_FIFO_DATA_WIDTH  : natural := 128
    );
    port (
        clock               :   in      std_logic;
        reset               :   in      std_logic;
        enable              :   in      std_logic;
        usb_speed           :   in      std_logic;
        meta_en             :   in      std_logic;
        packet_en           :   in      std_logic;
        eight_bit_mode_en   :   in      std_logic := '0';
        timestamp           :   in      unsigned(63 downto 0);
        mini_exp            :   in      std_logic_vector(1 downto 0);
        in_sample_controls  :   in      sample_controls_t(0 to NUM_STREAMS-1) := (others => SAMPLE_CONTROL_DISABLE);
        in_samples          :   in      sample_streams_t(0 to NUM_STREAMS-1)  := (others => ZERO_SAMPLE);
        fifo_usedw          :   in      std_logic_vector(FIFO_USEDW_WIDTH-1 downto 0);
        fifo_clear          :   buffer  std_logic;
        fifo_write          :   buffer  std_logic := '0';
        fifo_full           :   in      std_logic;
        fifo_data           :   out     std_logic_vector(FIFO_DATA_WIDTH-1 downto 0) := (others => '0');
        packet_control      :   in      packet_control_t;
        packet_ready        :   out     std_logic;
        meta_fifo_full      :   in     std_logic;
        meta_fifo_usedw     :   in     std_logic_vector(META_FIFO_USEDW_WIDTH-1 downto 0);
        meta_fifo_data      :   out    std_logic_vector(META_FIFO_DATA_WIDTH-1 downto 0) := (others => '0');
        meta_fifo_write     :   out    std_logic := '0';
        overflow_led        :   buffer  std_logic;
        overflow_count      :   buffer  unsigned(63 downto 0);
        overflow_duration   :   in      unsigned(15 downto 0)
    );
end entity;
architecture simple of fifo_writer is
    constant DMA_BUF_SIZE_SS   : natural   := 512;
    constant DMA_BUF_SIZE_HS   : natural   := 256;
    signal dma_buf_size        : natural range DMA_BUF_SIZE_HS to DMA_BUF_SIZE_SS := DMA_BUF_SIZE_SS;
    signal fifo_enough         : boolean   := false;
    signal overflow_detected   : std_logic := '0';
    type meta_state_t is (
        IDLE,
        META_WRITE,
        META_DOWNCOUNT,
        PACKET_WAIT_EOP
    );
    type meta_fsm_t is record
        state           : meta_state_t;
        dma_downcount   : natural range 0 to 65536;
        meta_write      : std_logic;
        meta_data       : std_logic_vector(meta_fifo_data'range);
        meta_written    : std_logic;
    end record;
    constant META_FSM_RESET_VALUE : meta_fsm_t := (
        state           => IDLE,
        dma_downcount   => 0,
        meta_write      => '0',
        meta_data       => (others => '-'),
        meta_written    => '0'
    );
    signal meta_current : meta_fsm_t := META_FSM_RESET_VALUE;
    signal meta_future  : meta_fsm_t := META_FSM_RESET_VALUE;
    type fifo_state_t is (
        CLEAR,
        WRITE_SAMPLES,
        WRITE_PACKET_PAYLOAD,
        HOLDOFF
    );
    type ch_offsets_t is array( natural range <> ) of natural range fifo_data'low to fifo_data'high;
    type fifo_fsm_t is record
        state               : fifo_state_t;
        fifo_clear          : std_logic;
        fifo_write          : std_logic;
        fifo_data           : unsigned(fifo_data'range);
        samples_left        : natural range 0 to in_sample_controls'length;
        eight_bit_delay     : std_logic;
    end record;
    constant FIFO_FSM_RESET_VALUE : fifo_fsm_t := (
        state               => CLEAR,
        fifo_clear          => '1',
        fifo_write          => '0',
        fifo_data           => (others => '-'),
        samples_left        => 0,
        eight_bit_delay     => '0'
    );
    signal fifo_current : fifo_fsm_t := FIFO_FSM_RESET_VALUE;
    signal fifo_future  : fifo_fsm_t := FIFO_FSM_RESET_VALUE;
    signal sync_mini_exp: std_logic_vector(1 downto 0);
begin
    -- Throw an error if port widths don't make sense
    assert (fifo_data'length >= (NUM_STREAMS*2*in_samples(in_samples'low).data_i'length) )
        report "fifo_data port width too narrow to support " & integer'image(NUM_STREAMS) & " MIMO streams."
        severity failure;
    -- Determine the DMA buffer size based on USB speed
    calc_buf_size : process( clock, reset )
    begin
        if( reset = '1' ) then
            dma_buf_size <= DMA_BUF_SIZE_SS;
        elsif( rising_edge(clock) ) then
            if( usb_speed = '0' ) then
                dma_buf_size <= DMA_BUF_SIZE_SS;
            else
                dma_buf_size <= DMA_BUF_SIZE_HS;
            end if;
        end if;
    end process;
    -- Calculate whether there's enough room in the destination FIFO
    calc_fifo_free : process( clock, reset )
        constant FIFO_MAX    : natural := 2**fifo_usedw'length;
        constant META_MAX    : natural := 2**meta_fifo_usedw'length;
        variable fifo_used_v : unsigned(fifo_usedw'length downto 0) := (others => '0');
        variable meta_fifo_used_v : unsigned(meta_fifo_usedw'length downto 0) := (others => '0');
    begin
        if( reset = '1' ) then
            fifo_enough <= false;
            fifo_used_v := (others => '0');
        elsif( rising_edge(clock) ) then
            fifo_used_v := unsigned(fifo_full & fifo_usedw);
            meta_fifo_used_v := unsigned(meta_fifo_full & meta_fifo_usedw);
            if( fifo_full = '0' and ((FIFO_MAX - fifo_used_v) > ( dma_buf_size * 4 )) and
                 ( ( meta_en = '1' and meta_fifo_full = '0' and ( META_MAX - 4 ) > meta_fifo_used_v )
                   or (meta_en = '0') ) ) then
                fifo_enough <= true;
            else
                fifo_enough <= false;
            end if;
        end if;
    end process;
    -- ------------------------------------------------------------------------
    -- MINI EXP PIN SYNCHRONIZER
    -- ------------------------------------------------------------------------
    generate_sync_mimo_rx_en : for i in mini_exp'range generate
        U_sync_mini_exp : entity work.synchronizer
            generic map (
                RESET_LEVEL         =>  '0'
                )
            port map (
                reset               =>  '0',
                clock               =>  clock,
                async               =>  mini_exp(i),
                sync                =>  sync_mini_exp(i)
            );
    end generate;
    -- ------------------------------------------------------------------------
    -- META FIFO WRITER
    -- ------------------------------------------------------------------------
    -- Meta FIFO synchronous process
    meta_fsm_sync : process( clock, reset )
    begin
        if( reset = '1' ) then
            meta_current <= META_FSM_RESET_VALUE;
        elsif( rising_edge(clock) ) then
            meta_current <= meta_future;
        end if;
    end process;
    packet_ready <= '1' when fifo_enough else '0';
    -- Meta FIFO combinatorial process
    meta_fsm_comb : process( all )
        variable packet_flags : std_logic_vector(7 downto 0);
    begin
        meta_future            <= meta_current;
        meta_future.meta_write <= '0';
        -- currently the GPIF modules overwrites the bottom 16 bits of the flags field
        if( packet_en = '0' ) then
           meta_future.meta_data  <= x"FFF" & "11" & sync_mini_exp & x"FFFF" & std_logic_vector(timestamp) & x"12344321";
        else
           packet_flags := packet_control.pkt_flags;
           meta_future.meta_data  <= x"FFF" & "11" & sync_mini_exp & x"FFFF" & std_logic_vector(timestamp) &
                          packet_control.pkt_core_id & packet_flags &
                          std_logic_vector(to_unsigned(integer(meta_current.dma_downcount), 16));
        end if;
        case meta_current.state is
            when IDLE =>
                meta_future.dma_downcount <= dma_buf_size - 4;
                if( fifo_enough ) then
                    if( packet_en = '1' ) then
                       -- use downcount to count number of DWORDS for packets
                       if( packet_control.pkt_sop = '1' ) then
                          meta_future.state  <= PACKET_WAIT_EOP;
                          -- meta is not written yet, but there should be space
                          meta_future.meta_written <= '1';
                          -- EOP and VALID must be asserted together, count the last VALID now
                          if( packet_control.data_valid = '1') then
                             meta_future.dma_downcount <= 2;
                          else
                             meta_future.dma_downcount <= 1;
                          end if;
                       end if;
                    else
                       meta_future.state  <= META_WRITE;
                    end if;
                else
                    meta_future.meta_written <= '0';
                end if;
            when META_WRITE =>
                for i in in_samples'range loop
                    if (meta_fifo_full = '0') and (in_samples(i).data_v = '1') then
                        meta_future.meta_write <= '1';
                        meta_future.meta_written <= '1';
                        meta_future.state <= META_DOWNCOUNT;
                        exit; -- Exit loop after first match
                    end if;
                end loop;
            when META_DOWNCOUNT =>
                if( fifo_current.fifo_write = '1' and meta_current.meta_write = '0' ) then
                    meta_future.dma_downcount <= meta_current.dma_downcount - NUM_STREAMS;
                end if;
                if( meta_current.dma_downcount <= NUM_STREAMS ) then
                    -- Look for 2 because of the 2 cycles passing
                    -- through IDLE and META_WRITE after this.
                    -- 8bit format requires an additional 2 cycle delay.
                    if( eight_bit_mode_en = '1' ) then
                        if( fifo_future.eight_bit_delay = '1' and fifo_future.samples_left = 0) then
                            meta_future.state <= IDLE;
                        end if;
                    else
                        meta_future.state <= IDLE;
                    end if;
                end if;
                -- Patches the late meta write for MIMO mode
                if( in_sample_controls'length = 2 and
                    in_sample_controls(0).enable = '1' and
                    in_sample_controls(1).enable = '1' and
                    eight_bit_mode_en = '0' and
                    meta_current.dma_downcount <= NUM_STREAMS + 2 )
                then
                    meta_future.state <= IDLE;
                end if;
            when PACKET_WAIT_EOP =>
                if( packet_control.data_valid = '1' ) then
                   meta_future.dma_downcount <= meta_current.dma_downcount + 1;
                   if( packet_control.pkt_eop = '1' ) then
                       meta_future.meta_write  <= '1';
                       meta_future.state       <= IDLE;
                   end if;
                end if;
            when others =>
                meta_future.state <= IDLE;
        end case;
        -- Abort?
        if( (enable = '0') or (meta_en = '0') ) then
            meta_future.meta_write    <= '0';
            meta_future.meta_written  <= '0';
            meta_future.state         <= IDLE;
        end if;
        -- Output assignments
        meta_fifo_write <= meta_current.meta_write;
        meta_fifo_data  <= meta_current.meta_data;
    end process;
    -- ------------------------------------------------------------------------
    -- SAMPLE FIFO WRITER
    -- ------------------------------------------------------------------------
    -- Sample FIFO synchronous process
    fifo_fsm_sync : process( clock, reset )
    begin
        if( reset = '1' ) then
            fifo_current <= FIFO_FSM_RESET_VALUE;
        elsif( rising_edge(clock) ) then
            fifo_current <= fifo_future;
        end if;
    end process;
    -- Sample FIFO combinatorial process
    fifo_fsm_comb : process( all )
        -- --------------------------------------------------------------------
        -- MIMO PACKER: STEP 1 of 3
        -- --------------------------------------------------------------------
        -- This block receives samples as an array of sample streams, one
        -- element per channel. These streams need to be packed into a single,
        -- wide bus that is written to a FIFO and eventually delivered to the
        -- host. When all channels are enabled, this wide bus will contain one
        -- I/Q sample pair for each channel. When channels are disabled, the
        -- wide bus may contain multiple samples from the remaining enabled
        -- channels in order to more efficiently use the available USB bandwidth.
        -- For example, a 2x2 MIMO design with 16-bit samples will pack its data
        -- into a 64-bit wide bus in one of the following ways:
        --      | 63:48 | 47:32 | 31:16 | 15:0 | Bit indices
        --   1. |   Q1  |   I1  |   Q0  |  I0  | Channels 0 & 1 enabled
        --   2. |   Q0' |   I0' |   Q0  |  I0  | Channel 0 only enabled
        --   3. |   Q1' |   I1' |   Q1  |  I1  | Channel 1 only enabled
        function pack( sc : sample_controls_t;
                       ss : sample_streams_t;
                       d  : unsigned ) return unsigned is
            constant LEN  : natural           := ss(ss'low).data_i'length + ss(ss'low).data_q'length;
            variable rv   : unsigned(d'range) := (others => '0');
        begin
            rv := d;
            for i in sc'range loop
                if( (sc(i).enable = '1') and (ss(i).data_v = '1') ) then
                    rv := unsigned(ss(i).data_q) & unsigned(ss(i).data_i) &
                          rv(rv'high downto rv'low+LEN);
                end if;
            end loop;
            return rv;
        end function;
        -- --------------------------------------------------------------------
        -- MIMO PACKER: STEP 1 of 3 (8bit mode)
        -- --------------------------------------------------------------------
        -- This block receives samples as an array of sample streams, one
        -- element per channel. These streams need to be packed into a single,
        -- wide bus that is written to a FIFO and eventually delivered to the
        -- host. When all channels are enabled, this wide bus will contain one
        -- I/Q sample pair for each channel. When channels are disabled, the
        -- wide bus may contain multiple samples from the remaining enabled
        -- channels in order to more efficiently use the available USB bandwidth.
        -- For example, a 2x2 MIMO design with 16-bit samples will pack its data
        -- into a 64-bit wide bus in one of the following ways:
        --      |          Sample Set 1         |          Sample Set 0        |
        --      | 63:56 | 55:48 | 47:40 | 39:32 | 31:24 | 23:16 |  15:8 |  7:0 | Bit indices
        --   1. |   Q1  |   I1  |   Q0  |  I0   |   Q1  |   I1  |   Q0  |  I0  | Channels 0 & 1 enabled
        --   2. |   Q0' |   I0' |   Q0  |  I0   |   Q0' |   I0' |   Q0  |  I0  | Channel 0 only enabled
        --   3. |   Q1' |   I1' |   Q1  |  I1   |   Q1' |   I1' |   Q1  |  I1  | Channel 1 only enabled
        function pack_eight_bit_mode( sc : sample_controls_t;
                                      ss : sample_streams_t;
                                      d  : unsigned ) return unsigned is
            constant IQ_PAIR_LEN  : natural := ss(ss'low).data_i'length/2 + ss(ss'low).data_q'length/2;
            variable rv           : unsigned(d'range) := (others => '0');
        begin
            rv := d;
            for i in sc'range loop
                if( (sc(i).enable = '1') and (ss(i).data_v = '1') ) then
                    rv := unsigned(ss(i).data_q(11 downto 4)) &
                          unsigned(ss(i).data_i(11 downto 4)) &
                          rv(rv'high downto rv'low+IQ_PAIR_LEN);
                end if;
            end loop;
            return rv;
        end function;
        variable write_req : std_logic := '0';
    begin
        fifo_future            <= fifo_current;
        fifo_future.fifo_clear <= '0';
        fifo_future.fifo_write <= '0';
        -- MIMO PACKER: STEP 1 of 3
        if( packet_en = '0' ) then
            if( eight_bit_mode_en = '1' ) then
                fifo_future.fifo_data <= pack_eight_bit_mode(in_sample_controls, in_samples, fifo_current.fifo_data);
            else
                fifo_future.fifo_data  <= pack(in_sample_controls, in_samples, fifo_current.fifo_data);
            end if;
        end if;
        case fifo_current.state is
            when CLEAR =>
                -- MIMO PACKER: STEP 2 of 3
                --   Compute "samples left" to fill up the fifo_data bus
                fifo_future.samples_left      <= NUM_STREAMS - count_enabled_channels(in_sample_controls);
                if( enable = '1' ) then
                    fifo_future.fifo_clear <= '0';
                    if( packet_en = '1' ) then
                       fifo_future.state      <= WRITE_PACKET_PAYLOAD;
                       fifo_future.samples_left <= NUM_STREAMS - 1;
                    else
                       fifo_future.state      <= WRITE_SAMPLES;
                    end if;
                else
                    fifo_future.fifo_clear <= '1';
                    fifo_future.eight_bit_delay <= '0';
                end if;
            when WRITE_PACKET_PAYLOAD =>
                if( meta_current.meta_written = '1' or (fifo_enough and packet_control.pkt_sop = '1' )) then
                    -- This code converts DWORD packet data into a fifo_data std_logic_vector
                    -- that is controlled by a generic.
                    if( packet_control.data_valid = '1' ) then
                        if( packet_control.pkt_eop = '1' and fifo_current.samples_left /= 0 ) then
                           -- End of packet asserted, however fifo_data is not full so
                           -- zero out the unset bits, commit what has been accumulated
                           fifo_future.samples_left <= NUM_STREAMS - 1;
                           fifo_future.fifo_write <= '1';
                           if (fifo_current.fifo_data'high > 31) then
                               fifo_future.fifo_data(fifo_future.fifo_data'high
                                           downto fifo_future.fifo_data'high - 31) <= (others => '0');
                           end if;
                           fifo_future.fifo_data(31 downto 0) <= unsigned(packet_control.data);
                        elsif( fifo_current.samples_left = 0 ) then
                           -- DWORDs perfectly filled fifo_data, commit fifo_data
                           fifo_future.samples_left <= NUM_STREAMS - 1;
                           fifo_future.fifo_write <= '1';
                           if (fifo_current.fifo_data'high > 31) then
                              fifo_future.fifo_data <= unsigned(packet_control.data) &
                                 fifo_current.fifo_data(fifo_current.fifo_data'high downto 32);
                           else
                              fifo_future.fifo_data <= unsigned(packet_control.data);
                           end if;
                        else
                           fifo_future.fifo_data(fifo_future.fifo_data'high
                                       downto fifo_future.fifo_data'high - 31) <=
                                             unsigned(packet_control.data);
                           if (fifo_current.fifo_data'high > 31) then
                               fifo_future.fifo_data(fifo_future.fifo_data'high - 32 downto 0) <=
                                        (others => '0');
                           end if;
                           fifo_future.samples_left <= fifo_current.samples_left - 1;
                        end if;
                    end if;
                end if;
            when WRITE_SAMPLES =>
                if( ((meta_current.meta_written = '1') or (meta_en = '0')) ) then
                    -- Check for valid data
                    write_req := '0';
                    for i in in_sample_controls'range loop
                        if( in_sample_controls(i).enable = '1' ) then
                            write_req := write_req or in_samples(i).data_v;
                        end if;
                    end loop;
                    -- Received valid data
                    if( write_req = '1' ) then
                        if( fifo_current.samples_left = 0 ) then
                            fifo_future.samples_left <= NUM_STREAMS - count_enabled_channels(in_sample_controls);
                            if( eight_bit_mode_en = '1' ) then
                                fifo_future.fifo_write <= write_req and fifo_current.eight_bit_delay;
                                fifo_future.eight_bit_delay <= not fifo_current.eight_bit_delay;
                            else
                                fifo_future.fifo_write <= write_req;
                            end if;
                        else
                            -- MIMO PACKER: STEP 3 of 3
                            fifo_future.samples_left <= fifo_current.samples_left - 1;
                        end if;
                    end if;
                else
                    fifo_future.fifo_write <= '0';
                end if;
                if( fifo_full = '1' or ( meta_current.meta_written = '0' and meta_en = '1') ) then
                    fifo_future.fifo_write <= '0';
                    fifo_future.state      <= HOLDOFF;
                end if;
            when HOLDOFF =>
                if( fifo_enough ) then
                    fifo_future.state <= WRITE_SAMPLES;
                end if;
            when others =>
                fifo_future.state <= CLEAR;
        end case;
        -- Abort?
        if( enable = '0' ) then
            fifo_future.fifo_clear <= '1';
            fifo_future.fifo_write <= '0';
            fifo_future.state      <= CLEAR;
        end if;
        -- Output assignments
        fifo_clear <= fifo_current.fifo_clear;
        fifo_write <= fifo_current.fifo_write;
        fifo_data  <= std_logic_vector(fifo_current.fifo_data);
    end process;
    -- ------------------------------------------------------------------------
    -- OVERFLOW
    -- ------------------------------------------------------------------------
    -- Overflow detection
    detect_overflows : process( clock, reset )
    begin
        if( reset = '1' ) then
            overflow_detected <= '0';
        elsif( rising_edge( clock ) ) then
            overflow_detected <= '0';
            if( enable = '1' and in_samples(in_samples'low).data_v = '1' and
                fifo_full = '1' and fifo_current.fifo_clear = '0' ) then
                overflow_detected <= '1';
            end if;
        end if;
    end process;
    -- Count the number of times we overflow, but only if they are discontinuous
    -- meaning we have an overflow condition, a non-overflow condition, then
    -- another overflow condition counts as 2 overflows, but an overflow condition
    -- followed by N overflow conditions counts as a single overflow condition.
    count_overflows : process( clock, reset )
        variable prev_overflow : std_logic := '0';
    begin
        if( reset = '1' ) then
            prev_overflow  := '0';
            overflow_count <= (others =>'0');
        elsif( rising_edge( clock ) ) then
            if( prev_overflow = '0' and overflow_detected = '1' ) then
                overflow_count <= overflow_count + 1;
            end if;
            prev_overflow := overflow_detected;
        end if;
    end process;
    -- Active high assertion for overflow_duration when the overflow
    -- condition has been detected.  The LED will stay asserted
    -- if multiple overflows have occurred
    blink_overflow_led : process( clock, reset )
        variable downcount : natural range 0 to 2**overflow_duration'length-1;
    begin
        if( reset = '1' ) then
            downcount    := 0;
            overflow_led <= '0';
        elsif( rising_edge(clock) ) then
            -- Default to not being asserted
            overflow_led <= '0';
            -- Countdown so we can see what happened
            if( overflow_detected = '1' ) then
                downcount := to_integer(overflow_duration);
            elsif( downcount /= 0 ) then
                downcount := downcount - 1;
                overflow_led <= '1';
            end if;
        end if;
    end process;
end architecture;
 |