1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
|
\documentclass{article}
\oddsidemargin 0.25in
\textwidth 6.0in
\usepackage{fancyvrb}
\begin{document}
%
% cinterface.tex
%
%% Chapter Authors: Clint, Sven, Zohair, Linda, Susan
\section{C interface to the Legacy BLAS}\label{legacy:c}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{legacy:c}, passed 8/0/0, 12/97.\\
%Third vote taken on section~\ref{legacy:c}, passed 13/0/0, 4/98. \\
%Fourth vote taken on section~\ref{legacy:c}, passed 8/0/1 with 16 eligible voters, 8/98.} \\
This section gives a detailed discussion of the proposed C interface to the
legacy BLAS. Every mention of ``BLAS'' in this chapter should be taken to mean
the legacy BLAS. Each interface decision is discussed in its own section.
Each section also contains a {\em Considered methods} subsection, where
other solutions to that particular problem are discussed, along with
the reasons why those options were not chosen. These {\em Considered methods}
subsections are indented and {\it italicized} in order to distinguish them
from the rest of the text.
It is largely agreed among the group (and unanimous among the vendors)
that user demand for a C interface to the BLAS is insufficient to motivate
vendors to support a completely separate standard. This proposal therefore
confines itself to an interface
which can be readily supported on top of the already existing
Fortran 77 callable BLAS (i.e., the legacy BLAS).
The interface is expressed in terms of ANSI/ISO C. Very few platforms fail
to provide ANSI/ISO C compilers at this time, and for those platforms, free
ANSI/ISO C compilers are almost always available (eg., {\tt gcc}).
\subsection{Naming scheme}\label{legacy:c_namingscheme}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_namingscheme}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{legacy:c_namingscheme}, passed 8/0/0, 12/97.\\
%Third vote taken on section~\ref{legacy:c_namingscheme}, passed 14/0/0, 4/98. \\
%Fourth vote taken on section~\ref{legacy:c_namingscheme}, passed 8/0/1 with 16 eligible voters, 8/98.} \\
The naming scheme consists of taking the Fortran 77 routine name, making it
lower case, and adding the prefix {\tt cblas\_}. Therefore, the routine
{\tt DGEMM} becomes {\tt cblas\_dgemm}.
\subsubsection{Considered methods}
{\it
\begin{quotation}
Various other naming schemes have been proposed, such as adding {\tt C\_}
or {\tt c\_} to the name. Most of these schemes accomplish the requirement
of separating the Fortran 77 and C name spaces. It was argued, however, that
the addition of the {\tt blas} prefix unifies the naming scheme in a logical
and useful way (making it easy to search for BLAS use in a code, for instance),
while not placing too great a burden on the typist. The letter {\tt c} is used
to distinguish this language interface from possible future interfaces.
\end{quotation}
}
\subsection{Indices and I\_AMAX} \label{sec-Indices}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{sec-Indices}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{sec-Indices}, passed 8/0/0, 12/97.\\
%Third vote taken on section~\ref{sec-Indices}, passed 14/0/0, 4/98.\\
%A binding vote for section~\ref{sec-Indices} was taken to see if we
%should allow N=0, passed 8/2/4, 4/98. \\
%Fourth vote taken on section~\ref{sec-Indices}, passed 8/0/1 with 16 eligible voters, 8/98.}\\
The Fortran 77 BLAS return indices in the range $1 \leq I \leq N$ (where $N$
is the number of entries in the dimension in question, and $I$ is the index),
in accordance with Fortran 77 array indexing conventions. This allows functions
returning indices to be directly used to index standard arrays. The C interface
therefore returns indices in the range $0 \leq I < N$ for the same reason.
The only BLAS routine which returns an index is the function {\tt I\_AMAX}.
This function is declared to be of type {\tt CBLAS\_INDEX}, which is guaranteed
to be an integer type (i.e., no cast is required when assigning to any integer
type). {\tt CBLAS\_INDEX} will usually correspond to {\tt size\_t} to ensure
any array can be indexed, but implementors might choose the integer type which
matches their Fortran 77 {\tt INTEGER}, for instance. It is defined that zero
is returned as the index for a zero length vector (eg., For $N=0$,
{\tt I\_AMAX} will always return zero).
\subsection{Character arguments}
\label{sec-EnumType}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{sec-EnumType}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{sec-EnumType}, passed 8/0/0, 12/97.\\
%Third vote taken on section~\ref{sec-EnumType}, passed 14/0/0, 4/98. \\
%Fourth vote taken on section~\ref{sec-EnumType}, passed 8/0/1 with 16 eligible voters, 8/98.} \\
All arguments which were characters in the Fortran 77 interface are handled by
enumerated types in the C interface. This allows for tighter error checking,
and provides less opportunity for user error. The character arguments present
in the Fortran 77 interface are: {\tt SIDE}, {\tt UPLO}, {\tt TRANSPOSE}, and
{\tt DIAG}. This interface adds another such argument to all routines involving
two dimensional arrays, {\tt ORDER}. The standard dictates the following
enumerated types:
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};
enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};
enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};
\end{Verbatim}
\subsubsection{Considered methods}
{\it
\begin{quotation}
The other two most commonly suggested methods were accepting these arguments as
either {\tt char~*} or {\tt char}. It was noted that both of these options
require twice as many comparisons as normally required to branch (so that the
character may be either upper or lower case). Both methods also suffered from
ambiguity (what does it mean to have {\tt DIAG='H'}, for instance).
If {\tt char} was chosen, the words could not be written out as they can for the
Fortran 77 interface (you couldn't write "NoTranspose"). If {\tt char~*} were
used, some compilers might fail to optimize string constant use, causing
unnecessary memory usage.
The main advantage of enumerated data types, however, is that much of the error
checking can be done at compile time, rather than at runtime (i.e., if the
user fails to pass one of the valid options, the compiler can issue the error).
There was much discussion as to whether the integer values should be specified,
or whether only the enumerated names should be so specified. The group could
find no substansive way in which specifying the integer values would restrict
an implementor, and specifying the integer values was seen as an aid to
inter-language calls.
\end{quotation}
}
\subsection{Handling of complex data types}\label{legacy:c_handlingcomplex}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_handlingcomplex}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{legacy:c_handlingcomplex}, passed 7/0/1, 12/97.\\
%Third vote taken on section~\ref{legacy:c_handlingcomplex}, passed 14/0/0, 4/98. \\
%Fourth vote taken on section~\ref{legacy:c_handlingcomplex}, passed 8/0/1 with 16 eligible voters, 8/98.} \\
All complex arguments are accepted as {\tt void *}. A complex element consists
of two consecutive memory locations of the underlying data type
(i.e., {\tt float} or {\tt double}), where the first location contains the
real component, and the second contains the imaginary part of the number.
In practice, programmers' methods of handling complex types in C vary.
Some use various data structures (some examples are discussed below).
Others accept complex numbers as arrays of the underlying type.
Complex numbers are accepted as void pointers so that widespread type casting
will not be required to avoid warning or errors during compilation of
complex code.
An ANSI/ISO committee is presently working on an extension to ANSI/ISO C
which defines complex data types. The definition of a complex element
is the same as given above, and so the handling of complex types by this
interface will not need to be changed when ANSI/ISO C standard is
extended.
\subsubsection{Considered methods}
{\it
\begin{quotation}
Probably the most strongly advocated alternative was defining complex numbers
via a structure such as \\
{\tt struct NON\_PORTABLE\_COMPLEX~\{float~r;~float~i;\};}
The main problem with this solution is the lack of portability. By the
ANSI/ISO C standard, elements in a structure are not guaranteed to be
contiguous.
With the above structure, padding between elements has been experimentally
observed (on the CRAY T3D), so this problem is not purely theoretical.
To get around padding problems within the structure, a structure
such as \\
{\tt struct NON\_PORTABLE\_COMPLEX~\{float~v[2];\};}
has been suggested. With this
structure there will obviously be no padding
between the real and imaginary parts. However, there still exists the
possibility of padding between elements within an array. More importantly, this
structure does not lend itself nearly as well as the first to code clarity.
A final proposal is to define a structure which may be addressed the same
as the one above (i.e., \verb+ptr->r+, \verb+ptr->i+), but whose actual
definition is platform dependent. Then, hopefully, various vendors will
either use the above structure and ensure via their compilers its
contiguousness, or they will create a different structure which can be
accessed in the same way.
This requires vendors to support something which is not in the ANSI C standard,
and so there is no way to ensure this would take place. More to the point,
use of such a structure turns out to not offer much in the way of real
advantage, as discussed in the following section.
All of these approaches require the programmer to either use the specified
data type throughout the code which will call the BLAS, or to perform type
casting on each BLAS call. When complex numbers are accepted as void pointers,
no type casting or data type is dictated, with the only restriction being
that a complex number have the definition given above.
\end{quotation}
}
\subsection{Return values of complex functions}\label{legacy:c_returncomplex}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_returncomplex}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{legacy:c_returncomplex}, passed 7/0/1, 12/97.\\
%Third vote taken on section~\ref{legacy:c_returncomplex}, passed 13/0/1, 4/98. \\
%Fourth vote taken on section~\ref{legacy:c_returncomplex}, passed 8/0/1 with 16 eligible voters, 8/98.} \\
BLAS routines which return complex values in Fortran 77 are instead recast as
subroutines in the C interface, with the return value being an output parameter
added to the end of the argument list. This allows the output parameter to
be accepted as void pointers, as discussed above.
Further, the name is suffixed by {\tt \_sub}. There are two main reasons
for this name change. First, the change from a function to a subroutine
is a significant change, and thus the name should reflect this. More
importantly, the ``traditional'' name space is specifically reserved
for use when the forthcoming ANSI/ISO C extension is finalized. When
this is done, this C interface will be extended to include functions using
the ``traditional'' names which utilize the new ANSI/ISO complex type to
return the values.
\subsubsection{Considered methods}
{\it
\begin{quotation}
This is the area where use of a structure is most desired. Again, the most
common suggestion is a structure such as\\
\verb+struct NON_PORTABLE_COMPLEX {float r; float i;};+.
If one is willing to use this structure throughout one's code, then this
provides a natural and convenient mechanism. If, however, the programmer has
utilized a different structure for complex, this ease of use breaks down. Then,
something like the following code fragment is required:
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
NON_PORTABLE_COMPLEX ctmp;
float cdot[2];
ctmp = cblas_cdotc(n, x, 1, y, 1);
cdot[0] = ctmp.r;
cdot[1] = ctmp.i;
\end{Verbatim}
which is certainly much less convenient than:\\
\verb+cblas_cdotc_sub(n, x, 1, y, 1, cdot)+.
It should also be noted that the primary reason for having a function instead
of a subroutine is already invalidated by C's lack of a standard complex type.
Functions are most useful when the result may be used directly as part of
an in-line computation. However, since ANSI/ISO C lacks support for
complex arithmetic primitives or operator overloading, complex functions cannot
be standardly used in this way. Since the function cannot be used as a part
of a larger expression, nothing is lost by recasting it as a subroutine;
indeed a slight performance win may be obtained.
\end{quotation}
}
\subsection{Array arguments}\label{legacy:c_arrayarguments}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_arrayarguments}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{legacy:c_arrayarguments}, passed 8/0/0, 12/97.\\
%Third vote taken on section~\ref{legacy:c_arrayarguments}, passed 13/0/1, 4/98. \\
%Fourth vote taken on section~\ref{legacy:c_arrayarguments}, passed 8/0/1 with 16 eligible voters, 8/98.} \\
Arrays are constrained to being contiguous in memory. They
are accepted as pointers, not as arrays of pointers.
%This means that
%the C definition of a two dimensional array may not be used directly, since each
%row is an arbitrary pointer (i.e., the address of the second row cannot
%be obtained from the address of the first row). Note that if the user
%somehow ensures the C array is actually contiguous (eg. by allocating
%it himself), C two dimensional arrays can indeed be used.
All BLAS routines which take one or more two dimensional arrays as arguments
receive one extra parameter as their first argument. This argument is
of the enumerated type \\
{\tt enum~CBLAS\_ORDER~\{CblasRowMajor=101,~CblasColMajor=102\};}.\\
If this parameter
is set to {\tt CblasRowMajor}, it is assumed that elements within a row of
the array(s) are contiguous in memory, while elements within array columns
are separated by a constant stride given in the {\tt stride} parameter (this
parameter corresponds to the leading dimension [e.g. {\tt LDA}] in the
Fortran 77 interface).
If the order is given as {\tt CblasColMajor}, elements within array columns
are assumed to be contiguous, with elements within array rows separated
by {\tt stride} memory elements.
Note that there is only one {\tt CBLAS\_ORDER} parameter
to a given routine: all array operands are required to use the same ordering.
\subsubsection{Considered methods}
{\it
\begin{quotation}
This solution comes after much discussion. C users appear to split roughly
into two camps. Those people who have a history
of mixing C and Fortran 77 (in particular making use of the Fortran 77 BLAS
from C), tend to use column-major arrays in order to allow ease of
inter-language operations. Because of the flexibility of pointers, this
is not appreciably harder than using row-major arrays, even though C
``natively'' possesses row-major arrays.
The second camp of C users
are not interested in overt C/Fortran 77 interoperability, and wish to
have arrays which are row-major, in accordance with standard C conventions.
The idea that they must recast their row-oriented algorithms to column-major
algorithms is unacceptable; many in this camp would probably not utilize
any BLAS which enforced a column-major constraint.
Because both camps are fairly widely represented within the target
audience, it is impossible to choose one solution to the exclusion of
the other.
Column-major array storage can obviously be supported directly on top of
the legacy Fortran 77 BLAS. Recent work, particularly code provided
by D.P. Manley of DEC, has shown that row-major array storage may also
be supported in this way with little cost. Appendix~\ref{app-ArrayStore}
discusses this issue in detail. To preview it here, we can say the level
1 and 3 BLAS require no extra operations or storage to support row-major
operations on top of the legacy BLAS. Level 2 real routines also require
no extra operations or storage. Some complex level 2 routines involving
the conjugate transpose will require extra storage and operations in order
to form explicit conjugates. However, this will always involve vectors,
not the matrix. In the worst case, we will need $n$ extra storage, and
$3n$ sign changes.
One proposal was to accept arrays as arrays of pointers, instead of as
a single pointer.
%This would correspond exactly to the standard ANSI/ISO C
%two dimensional array.
The problems with this approach are manifold. First,
the existing Fortran 77 BLAS could not be used, since they demand contiguous
(though strided) storage. Second, this approach requires users of standard
C 2D arrays or 1D arrays to allocate and assign the appropriate pointer array.
Beyond this, many of the vectors used in level 1 and level 2 BLAS come
from rows or columns of two dimensional arrays. Elements within columns of
row-major arrays are not uniformly strided, which means that a {\tt n}-element
column vector would need {\tt n} pointers to represent it. This then
leads to vectors being accepted as arrays of pointers as well.
Now, assuming both our one and two dimensional arrays are accepted as arrays
of pointers,
we have a problem when we wish to perform sub-array access. If we wish to
pass an $m \times n$ subsection of a this array of pointers, starting at row $i$
and column $j$,
we must allocate $m$ pointers, and assign them in a section of code such as:
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
float **A, **subA;
subA = malloc(m*sizeof(float*));
for (k=0; k != m; k++) subA[k] = A[i+k] + j;
cblas_rout(... subA ...);
\end{Verbatim}
The same operation must be done if we wish to use a row or column as a vector.
This is not only an inconvenience, but can add up to a non-negligible
performance loss as well.
A fix for these problems is that one and two dimensional arrays be passed
as arrays of
pointers, and then indices are passed in to indicate the sub-portion to
access. Thus you have a call that looks like:
\verb|cblas_rout(... A, i, j, ...);|.
This solution still requires some additional tweaks to allow using two
dimensional array rows and columns as vectors. Users presently using
C 2D arrays or 1D arrays would have to malloc the array of pointers as shown
in the preceding example in order to use this kind of interface. At any
rate, a library accepting pointers to pointers cannot be supported on top
of the Fortran 77 BLAS, while one supporting simple pointers can.
If the programmer is utilizing the pointer to pointer style of array indexing,
it is still possible to use this library providing that the user ensures that
the operand matrix is contiguous, and that the rows are constantly
strided. If this is the case, the user may pass the operand matrix
to the library in precicely the same way as with a 2D C array:
\verb|cblas_rout(... &A[i][j] ...);|.
\noindent
{\bf Example 1: making a library call with a C 2D array:}
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
double A[50][25]; /* standard C 2D array */
cblas_rout(CblasRowMajor, ... &A[i][j], 25, ...);
\end{Verbatim}
\noindent
{\bf Example 2: Legal use of pointer to pointer style programming and the CBLAS}
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
double **A, *p;
A = malloc(M*sizeof(double *));
p = malloc(M*N*sizeof(double));
for (i=0; i < M; i++) A[i] = &p[i*N];
cblas_rout(CblasRowMajor, ... &A[i][j], N, ...);
\end{Verbatim}
\noindent
{\bf Example 3: Illegal use of pointer to pointer style programming and the CBLAS}
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
double **A, *p;
A = malloc(M*sizeof(double *));
p = malloc(M*N*sizeof(double));
for (i=0; i < M; i++) A[i] = malloc(N*sizeof(double));
cblas_rout(CblasRowMajor, ... &A[i][j], N, ...);
\end{Verbatim}
Note that Example 3 is illegal because the rows of A have no guaranteed stride.
\end{quotation}
}
\subsection{Aliasing of arguments}\label{legacy:c_aliasing}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_aliasing}, failed, too restrictive,
%back to subcommittee, 4/98.\\
%Second vote taken on section~\ref{legacy:c_aliasing}, passed 13/0/0, 4/98.\\
%Third vote taken on section~\ref{legacy:c_aliasing}, passed 8/0/1 with 16 eligible voters, 8/98.}\\
Unless specified otherwise, only input-only arguments (specified with the
{\tt const} qualifier), may be legally aliased on a call to the C interface
to the BLAS.
\subsubsection{Considered methods}
The ANSI C standard allows for the aliasing of output arguments. However,
allowing this often carries a substantial performance penalty. This, along
with the fact that Fortran 77 (which we hope to call for optimized libraries)
does not allow aliasing of output arguments, led us to make this restriction.
\subsection{C interface include file}\label{legacy:c_includefile}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_includefile}, passed 14/0/0, 4/98.\\
%Second vote taken on section~\ref{legacy:c_includefile}, passed 13/0/0, 4/98.\\
%Third vote taken on section~\ref{legacy:c_includefile}, passed 8/0/1 with 16 eligible voters, 8/98.}\\
The C interface to the BLAS will have a standard include file, called
{\tt cblas.h}, which minimally contains the definition of the CBLAS types
and ANSI/ISO C prototypes for all BLAS routines.
It is not an error to include this file multiple times.
Section~\ref{sec-cblash} contains an example of a minimal {\tt cblas.h}.
{{\bf ADVICE TO THE IMPLEMENTOR:}\\ \em
Note that the vendor is not constrained to using precisely
this include file; only the enumerated type definitions are fully specified.
The implementor is free to make any other changes which are not apparent
to the user. For instance, all matrix dimensions might be accepted as
{\tt size\_t} instead of {\tt int}, or the implementor might choose to
make some routines inline.
}
\subsection{Error checking}\label{legacy:c_errorchecking}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_errorchecking}, passed 9/0/0, 8/97.\\
%Second vote taken on section~\ref{legacy:c_errorchecking}, passed 8/0/0, 12/97.\\
%Third vote taken on section~\ref{legacy:c_errorchecking}, passed 13/0/0, 4/98.\\
%Fourth vote taken on section~\ref{legacy:c_errorchecking}, passed 8/0/1 with 16 eligible voters, 8/98.}\\
The C interface to the legacy BLAS must supply error checking corresponding
to that provided by the reference Fortran 77 BLAS implementation.
%{\it {\bf ADVICE TO IMPLEMENTOR:}
%If the Fortran 77 code is used to implement the C interface, most of the error
%checking may be done by Fortran 77 code, assuming error reporting is
%changed to reflect the differing C interface.
%}
\subsection{Rules for obtaining the C interface from the Fortran 77}
\label{legacy:c_rules}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{legacy:c_rules}, passed 9/0/1 with 16 eligible voters, 8/98.}\\
\begin{itemize}
\item The Fortran 77 routine name is changed to lower case, and prefixed by {\tt cblas\_}.
\item All routines which accept two dimensional arrays (i.e., level 2 and 3),
acquire a new parameter of type {\tt CBLAS\_ORDER} as their first
argument, which determines if the two dimensional arrays are row or
column major.
\item {\em Character arguments} are replaced by the appropriate enumerated type,
as shown in Section~\ref{sec-EnumType}.
\item {\em Input arguments} are declared with the {\tt const} modifier.
\item {\em Non-complex scalar input arguments} are passed by value. This
allows the user to put in constants when desired (eg., passing 10 on
the command line for \verb+N+).
\item {\em Complex scalar input arguments} are passed as void pointers,
since they do not exist as a predefined data type in ANSI/ISO C.
\item {\em Array arguments} are passed by address.
\item {\em Output scalar arguments} are passed by address.
\item {\em Complex functions} become subroutines which return the result via
a void pointer, added as the last parameter. The name is suffixed
with {\tt \_sub}.
\end{itemize}
\subsection{cblas.h include file}
\label{sec-cblash}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{sec-cblash}, passed 9/0/1 with 16 eligible voters, 8/98.}\\
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
#ifndef CBLAS_H
#define CBLAS_H
#include <stddef.h>
/*
* Enumerated and derived types
*/
#define CBLAS_INDEX size_t /* this may vary between platforms */
enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};
enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};
enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};
/*
* ===========================================================================
* Prototypes for level 1 BLAS functions (complex are recast as routines)
* ===========================================================================
*/
float cblas_sdsdot(const int N, const float alpha, const float *X,
const int incX, const float *Y, const int incY);
double cblas_dsdot(const int N, const float *X, const int incX, const float *Y,
const int incY);
float cblas_sdot(const int N, const float *X, const int incX,
const float *Y, const int incY);
double cblas_ddot(const int N, const double *X, const int incX,
const double *Y, const int incY);
/*
* Functions having prefixes Z and C only
*/
void cblas_cdotu_sub(const int N, const void *X, const int incX,
const void *Y, const int incY, void *dotu);
void cblas_cdotc_sub(const int N, const void *X, const int incX,
const void *Y, const int incY, void *dotc);
void cblas_zdotu_sub(const int N, const void *X, const int incX,
const void *Y, const int incY, void *dotu);
void cblas_zdotc_sub(const int N, const void *X, const int incX,
const void *Y, const int incY, void *dotc);
/*
* Functions having prefixes S D SC DZ
*/
float cblas_snrm2(const int N, const float *X, const int incX);
float cblas_sasum(const int N, const float *X, const int incX);
double cblas_dnrm2(const int N, const double *X, const int incX);
double cblas_dasum(const int N, const double *X, const int incX);
float cblas_scnrm2(const int N, const void *X, const int incX);
float cblas_scasum(const int N, const void *X, const int incX);
double cblas_dznrm2(const int N, const void *X, const int incX);
double cblas_dzasum(const int N, const void *X, const int incX);
/*
* Functions having standard 4 prefixes (S D C Z)
*/
CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);
CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);
CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);
CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);
/*
* ===========================================================================
* Prototypes for level 1 BLAS routines
* ===========================================================================
*/
/*
* Routines with standard 4 prefixes (s, d, c, z)
*/
void cblas_sswap(const int N, float *X, const int incX,
float *Y, const int incY);
void cblas_scopy(const int N, const float *X, const int incX,
float *Y, const int incY);
void cblas_saxpy(const int N, const float alpha, const float *X,
const int incX, float *Y, const int incY);
void cblas_dswap(const int N, double *X, const int incX,
double *Y, const int incY);
void cblas_dcopy(const int N, const double *X, const int incX,
double *Y, const int incY);
void cblas_daxpy(const int N, const double alpha, const double *X,
const int incX, double *Y, const int incY);
void cblas_cswap(const int N, void *X, const int incX,
void *Y, const int incY);
void cblas_ccopy(const int N, const void *X, const int incX,
void *Y, const int incY);
void cblas_caxpy(const int N, const void *alpha, const void *X,
const int incX, void *Y, const int incY);
void cblas_zswap(const int N, void *X, const int incX,
void *Y, const int incY);
void cblas_zcopy(const int N, const void *X, const int incX,
void *Y, const int incY);
void cblas_zaxpy(const int N, const void *alpha, const void *X,
const int incX, void *Y, const int incY);
/*
* Routines with S and D prefix only
*/
void cblas_srotg(float *a, float *b, float *c, float *s);
void cblas_srotmg(float *d1, float *d2, float *b1, const float b2, float *P);
void cblas_srot(const int N, float *X, const int incX,
float *Y, const int incY, const float c, const float s);
void cblas_srotm(const int N, float *X, const int incX,
float *Y, const int incY, const float *P);
void cblas_drotg(double *a, double *b, double *c, double *s);
void cblas_drotmg(double *d1, double *d2, double *b1, const double b2, double *P);
void cblas_drot(const int N, double *X, const int incX,
double *Y, const int incY, const double c, const double s);
void cblas_drotm(const int N, double *X, const int incX,
double *Y, const int incY, const double *P);
/*
* Routines with S D C Z CS and ZD prefixes
*/
void cblas_sscal(const int N, const float alpha, float *X, const int incX);
void cblas_dscal(const int N, const double alpha, double *X, const int incX);
void cblas_cscal(const int N, const void *alpha, void *X, const int incX);
void cblas_zscal(const int N, const void *alpha, void *X, const int incX);
void cblas_csscal(const int N, const float alpha, void *X, const int incX);
void cblas_zdscal(const int N, const double alpha, void *X, const int incX);
/*
* ===========================================================================
* Prototypes for level 2 BLAS
* ===========================================================================
*/
/*
* Routines with standard 4 prefixes (S, D, C, Z)
*/
void cblas_sgemv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const float alpha, const float *A, const int lda,
const float *X, const int incX, const float beta,
float *Y, const int incY);
void cblas_sgbmv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const int KL, const int KU, const float alpha,
const float *A, const int lda, const float *X,
const int incX, const float beta, float *Y, const int incY);
void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const float *A, const int lda,
float *X, const int incX);
void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const float *A, const int lda,
float *X, const int incX);
void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const float *Ap, float *X, const int incX);
void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const float *A, const int lda, float *X,
const int incX);
void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const float *A, const int lda,
float *X, const int incX);
void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const float *Ap, float *X, const int incX);
void cblas_dgemv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const double alpha, const double *A, const int lda,
const double *X, const int incX, const double beta,
double *Y, const int incY);
void cblas_dgbmv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const int KL, const int KU, const double alpha,
const double *A, const int lda, const double *X,
const int incX, const double beta, double *Y, const int incY);
void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const double *A, const int lda,
double *X, const int incX);
void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const double *A, const int lda,
double *X, const int incX);
void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const double *Ap, double *X, const int incX);
void cblas_dtrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const double *A, const int lda, double *X,
const int incX);
void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const double *A, const int lda,
double *X, const int incX);
void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const double *Ap, double *X, const int incX);
void cblas_cgemv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta,
void *Y, const int incY);
void cblas_cgbmv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const int KL, const int KU, const void *alpha,
const void *A, const int lda, const void *X,
const int incX, const void *beta, void *Y, const int incY);
void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *A, const int lda,
void *X, const int incX);
void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const void *A, const int lda,
void *X, const int incX);
void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *Ap, void *X, const int incX);
void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *A, const int lda, void *X,
const int incX);
void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const void *A, const int lda,
void *X, const int incX);
void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *Ap, void *X, const int incX);
void cblas_zgemv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta,
void *Y, const int incY);
void cblas_zgbmv(const enum CBLAS_ORDER order,
const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
const int KL, const int KU, const void *alpha,
const void *A, const int lda, const void *X,
const int incX, const void *beta, void *Y, const int incY);
void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *A, const int lda,
void *X, const int incX);
void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const void *A, const int lda,
void *X, const int incX);
void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *Ap, void *X, const int incX);
void cblas_ztrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *A, const int lda, void *X,
const int incX);
void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const int K, const void *A, const int lda,
void *X, const int incX);
void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,
const int N, const void *Ap, void *X, const int incX);
/*
* Routines with S and D prefixes only
*/
void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *A,
const int lda, const float *X, const int incX,
const float beta, float *Y, const int incY);
void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const float alpha, const float *A,
const int lda, const float *X, const int incX,
const float beta, float *Y, const int incY);
void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *Ap,
const float *X, const int incX,
const float beta, float *Y, const int incY);
void cblas_sger(const enum CBLAS_ORDER order, const int M, const int N,
const float alpha, const float *X, const int incX,
const float *Y, const int incY, float *A, const int lda);
void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X,
const int incX, float *A, const int lda);
void cblas_sspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X,
const int incX, float *Ap);
void cblas_ssyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X,
const int incX, const float *Y, const int incY, float *A,
const int lda);
void cblas_sspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const float *X,
const int incX, const float *Y, const int incY, float *A);
void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *A,
const int lda, const double *X, const int incX,
const double beta, double *Y, const int incY);
void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const double alpha, const double *A,
const int lda, const double *X, const int incX,
const double beta, double *Y, const int incY);
void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *Ap,
const double *X, const int incX,
const double beta, double *Y, const int incY);
void cblas_dger(const enum CBLAS_ORDER order, const int M, const int N,
const double alpha, const double *X, const int incX,
const double *Y, const int incY, double *A, const int lda);
void cblas_dsyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X,
const int incX, double *A, const int lda);
void cblas_dspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X,
const int incX, double *Ap);
void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X,
const int incX, const double *Y, const int incY, double *A,
const int lda);
void cblas_dspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const double *X,
const int incX, const double *Y, const int incY, double *A);
/*
* Routines with C and Z prefixes only
*/
void cblas_chemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *A,
const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);
void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const void *alpha, const void *A,
const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);
void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *Ap,
const void *X, const int incX,
const void *beta, void *Y, const int incY);
void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);
void cblas_cgerc(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);
void cblas_cher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float alpha, const void *X, const int incX,
void *A, const int lda);
void cblas_chpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const float *alpha, const void *X,
const int incX, void *A);
void cblas_cher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);
void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *Ap);
void cblas_zhemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *A,
const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);
void cblas_zhbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const int K, const void *alpha, const void *A,
const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);
void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const void *alpha, const void *Ap,
const void *X, const int incX,
const void *beta, void *Y, const int incY);
void cblas_zgeru(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);
void cblas_zgerc(const enum CBLAS_ORDER order, const int M, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);
void cblas_zher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double alpha, const void *X, const int incX,
void *A, const int lda);
void cblas_zhpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,
const int N, const double *alpha, const void *X,
const int incX, void *A);
void cblas_zher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);
void cblas_zhpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N,
const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *Ap);
/*
* ===========================================================================
* Prototypes for level 3 BLAS
* ===========================================================================
*/
/*
* Routines with standard 4 prefixes (S, D, C, Z)
*/
void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N,
const int K, const float alpha, const float *A,
const int lda, const float *B, const int ldb,
const float beta, float *C, const int ldc);
void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N,
const float alpha, const float *A, const int lda,
const float *B, const int ldb, const float beta,
float *C, const int ldc);
void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const float alpha, const float *A, const int lda,
const float beta, float *C, const int ldc);
void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const float alpha, const float *A, const int lda,
const float *B, const int ldb, const float beta,
float *C, const int ldc);
void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const float alpha, const float *A, const int lda,
float *B, const int ldb);
void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const float alpha, const float *A, const int lda,
float *B, const int ldb);
void cblas_dgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N,
const int K, const double alpha, const double *A,
const int lda, const double *B, const int ldb,
const double beta, double *C, const int ldc);
void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N,
const double alpha, const double *A, const int lda,
const double *B, const int ldb, const double beta,
double *C, const int ldc);
void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const double alpha, const double *A, const int lda,
const double beta, double *C, const int ldc);
void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const double alpha, const double *A, const int lda,
const double *B, const int ldb, const double beta,
double *C, const int ldc);
void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const double alpha, const double *A, const int lda,
double *B, const int ldb);
void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const double alpha, const double *A, const int lda,
double *B, const int ldb);
void cblas_cgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N,
const int K, const void *alpha, const void *A,
const int lda, const void *B, const int ldb,
const void *beta, void *C, const int ldc);
void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta,
void *C, const int ldc);
void cblas_csyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const void *alpha, const void *A, const int lda,
const void *beta, void *C, const int ldc);
void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta,
void *C, const int ldc);
void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const void *alpha, const void *A, const int lda,
void *B, const int ldb);
void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const void *alpha, const void *A, const int lda,
void *B, const int ldb);
void cblas_zgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N,
const int K, const void *alpha, const void *A,
const int lda, const void *B, const int ldb,
const void *beta, void *C, const int ldc);
void cblas_zsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta,
void *C, const int ldc);
void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const void *alpha, const void *A, const int lda,
const void *beta, void *C, const int ldc);
void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta,
void *C, const int ldc);
void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const void *alpha, const void *A, const int lda,
void *B, const int ldb);
void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_DIAG Diag, const int M, const int N,
const void *alpha, const void *A, const int lda,
void *B, const int ldb);
/*
* Routines with prefixes C and Z only
*/
void cblas_chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta,
void *C, const int ldc);
void cblas_cherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const float alpha, const void *A, const int lda,
const float beta, void *C, const int ldc);
void cblas_cher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const float beta,
void *C, const int ldc);
void cblas_zhemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
const enum CBLAS_UPLO Uplo, const int M, const int N,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta,
void *C, const int ldc);
void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const double alpha, const void *A, const int lda,
const double beta, void *C, const int ldc);
void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,
const enum CBLAS_TRANSPOSE Trans, const int N, const int K,
const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const double beta,
void *C, const int ldc);
#endif
\end{Verbatim}
\subsection{Using Fortran 77 BLAS to support row-major BLAS operations}
\label{app-ArrayStore}
%{\footnotesize {\bf Current Status:}\\
%First vote taken on section~\ref{app-ArrayStore}, passed 9/0/1 with 16 eligible voters, 8/98.}\\
This section is not part of the standard per se. Rather, it exists as an
advice to the implementor on how row-major BLAS operations may be
implemented using column-major BLAS. This allows vendors to leverage
years of Fortran 77 BLAS developement in producing the C BLAS.
Before this issue is examined in detail, a few general observations on array
storage are helpful. We must distinguish between the matrix and the array
which is used to store the matrix. The matrix, and its rows and columns,
have mathematical meaning. The array is simply the method of storing the
matrix, and its rows and columns are significant only for memory addressing.
Thus we see we can store the columns of a matrix in the rows of an array,
for instance. When this occurs in the BLAS, the matrix is said to be
stored in transposed form.
A row-major array stores elements along a row in contiguous storage, and
separates the column elements by some constant stride (often the actual
length of a row). Column-major arrays have contiguous columns, and strided
rows. The importance of this is to note that a row-major array storing
a matrix in the natural way, is a transposed column-major array (i.e.,
it can be thought of as a column-major array where the rows of the matrix
are stored in the columns of the array).
Similarly, an upper triangular row-major array corresponds to a transposed
lower triangular column-major array (the same is true in reverse [i.e.,
lower-to-upper], obviously). To see this, simply think of what a upper
triangular matrix stored in a row-major array looks like. The first $n$
entries contain the first matrix row, followed by a non-negative gap,
followed by the second matrix row.
If this same array is viewed as column-major, the first $n$ entries are a
column, instead of a row, so that the columns of the array store the
rows of the matrix (i.e., it is transposed). This means that if we wish
to use the Fortran 77 (column-major) BLAS with triangular matrices coming
from C (possibly row-major), we will be reversing the setting of {\tt UPLO},
while simultaneously reversing the setting of {\tt TRANS} (this gets slightly
more complicated when the conjugate transpose is involved, as we will see).
Finally, note that if a matrix is symmetric or Hermitian, its rows are the
same as its columns, so we may merely switch {\tt UPLO}, without bothering with
{\tt TRANS}.
In the BLAS, there are two separate cases of importance. one dimensional
arrays (storage for vectors) have the same meaning in both C and Fortran 77,
so if we are
solving a linear algebra problem who's answer is a vector, we will need to
solve the same problem for both languages. However, if the answer is a
matrix, in terms of calling routines which use column-major storage from
one using row-major storage, we will want to solve the {\em transpose}
of the problem.
To get an idea of what this means, consider a contrived example. Say we
have routines for simple matrix-matrix and matrix-vector multiply. The vector
operation is $y \leftarrow A \times x$, and the matrix operation is
$C \leftarrow A \times B$. Now say we are implementing these as calls
from row-major array storage to column-major storage. Since the matrix-vector
multiply's answer is a vector, the problem we are solving is remains the same,
but we must remember that our C array $A$ is a Fortran 77 $A^T$.
On the other hand, the matrix-matrix multiply has a matrix
for a result, so when the differing array storage is taken into account,
the problem we want to solve is $C^T \leftarrow B^T \times A^T$.
This last example demonstrates another general result. Some level 3 BLAS
contain a {\tt SIDE} parameter, determining which side a matrix is applied
on. In general, if we are solving the transpose of this operation, the side
parameter will be reversed.
With these general principles, it is possible to show that all that
row-major level 3 BLAS can be expressed in terms of column-major BLAS without
any extra array storage or extra operations. In the level 2 BLAS, no
extra storage or array accesses are required for the real routines. Complex
routines involving the conjugate transpose, however, may require a
$n$-element temporary, and up to $3n$ more operations (vendors may avoid all
extra workspace and operations
by overloading the {\tt TRANS} option for the level 2 BLAS: letting it also
allow conjugation without doing the transpose).
The level 1 BLAS, which deal exclusively with vectors, are unaffected by
this storage issue.
With these ideas in mind, we will now show how to support a row-major BLAS
on top of a column major BLAS.
This information will be presented in tabular form.
For brevity, row-major storage will be referred to as coming from C (even
though column-major arrays can also come from C), while
column-major storage will be referred to as F77.
Each table will show a BLAS invocation coming from C, the operation that the
BLAS should perform, the operation required once F77 storage is taken
into account (if this changes), and the call to the appropriate F77 BLAS.
Not every possible
combination of parameters is shown, since many are simply reflections of
another (i.e., when we are applying the {\tt Upper, NoTranspose} becomes
{\tt Lower, Transpose} rule, we will show it for only the upper case.
In order to make the notation more concise, let us define $\overline{x}$
to be $conj(x)$.
\subsubsection{Level 2 BLAS}
\subsubsection{GEMV}
\noindent
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_cgemv(CblasRowMajor, CblasNoTrans, m, n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
op & $y \leftarrow \alpha A x + \beta y$\\
F77 call & {\tt CGEMV('T', n, m, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\\\
%
C call & {\tt cblas\_cgemv(CblasRowMajor, CblasTrans, m, n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
op & $y \leftarrow \alpha A^T x + \beta y$\\
F77 call & {\tt CGEMV('N', n, m, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\\\
%
C call & {\tt cblas\_cgemv(CblasRowMajor, CblasConjTrans, m, n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
op & $y \leftarrow \alpha A^H x + \beta y \Rightarrow
\overline{(\overline{y} \leftarrow \overline{\alpha} A^T \overline{x} +
\overline{\beta} \overline{y})}$\\
F77 call & {\tt CGEMV('N', n, m, $\overline{\alpha}$, A, lda, $\overline{x}$, 1, $\overline{\beta}$, $\overline{y}$, incy)}\\\\
\end{tabular}
}
Note that we switch the value of transpose to handle the row/column major
ordering difference.
In the last case, we will require $n$ elements of workspace so that
we may store the conjugated vector $\overline{x}$. Then, we set $y = \overline{y}$, and
make the call. This gives
us the conjugate of the answer, so we once again set $y = \overline{y}$. Therefore, we
see that to support the conjugate transpose, we will need to allocate an $n$-element
vector, and perform $2m+n$ extra operations.
\subsubsection{SYMV}
SYMV requires no extra workspace or operations.
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_csymv(CblasRowMajor, CblasUpper, n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
op & $y \leftarrow \alpha A x + \beta y \Rightarrow
y \leftarrow \alpha A^T x + \beta y$\\
F77 call & {\tt CSYMV('L', n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\\\
%
%C call & {\tt cblas\_csymv(CblasRowMajor, CblasLower, n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
%op & $y \leftarrow \alpha A x + \beta y$\\
%F77 call & {\tt CSYMV('U', n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
\end{tabular}
}
\subsubsection{HEMV}
HEMV routine requires $3n$ conjugations, and $n$ extra storage.
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_chemv(CblasRowMajor, CblasUpper, n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
op & $y \leftarrow \alpha A x + \beta y \Rightarrow
y \leftarrow \alpha A^H x + \beta y \Rightarrow
\overline{(\overline{y} \leftarrow \overline{\alpha} A^T \overline{x}
+ \overline{\beta} \overline{y})}$\\
F77 call & {\tt CHEMV('L', n, $\overline{\alpha}$, A, lda, $\overline{x}$, incx, $\overline{\beta}$, $\overline{y}$, incy)}\\\\
%
%C call & {\tt cblas\_chemv(CblasRowMajor, CblasLower, n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
%op & $y \leftarrow \alpha A x + \beta y$\\
%F77 call & {\tt CHEMV('U', n, $\alpha$, A, lda, x, incx, $\beta$, y, incy)}\\
\end{tabular}
}
\subsubsection{TRMV/TRSV}
\noindent
{ \small
\begin{tabular}{ll}
C call & {\tt cblas\_ctrmv(CblasRowMajor, CblasUpper, CblasNoTrans, diag, n, A, lda, x, incx)}\\
op & $x \leftarrow A x$\\
F77 call & {\tt CTRMV('L', 'T', diag, n, A, lda, x, incx)}\\\\
%
C call & {\tt cblas\_ctrmv(CblasRowMajor, CblasUpper, CblasTrans, diag, n, A, lda, x, incx)}\\
op & $x \leftarrow A^T x$\\
F77 call & {\tt CTRMV('L', 'N', diag, n, A, lda, x, incx)}\\\\
%
C call & {\tt cblas\_ctrmv(CblasRowMajor, CblasUpper, CblasConjTrans, diag, n, A, lda, x, incx)}\\
op & $x \leftarrow A^H x \Rightarrow \overline{(\overline{x} = A^T \overline{x})}$\\
F77 call & {\tt CTRMV('L', 'N', diag, n, A, lda, $\overline{x}$, incx)}\\\\
\end{tabular}
}
Again, we see that we will need some extra operations when we are handling the
conjugate transpose. We conjugate $x$ before the call, giving us the conjugate
of the answer we seek. We then conjugate this again to return the correct answer.
This routine therefore needs $2n$ extra operations for the complex conjugate case.
The calls with the C array being {\tt Lower} are merely the reflection of these
calls, and thus are not shown. The analysis for TRMV is the same, since it
involves the same principle of what a transpose of a triangular matrix is.
\subsubsection{GER/GERU}
This is our first routine that has a matrix as the solution. Recalling that
this means we solve the transpose of the original problem, we get:
{ \small
\noindent
\begin{tabular}{ll}
C call & {\tt cblas\_cgeru(CblasRowMajor, m, n, $\alpha$, x, incx, y, incy, A, lda)}\\
C op & $A \leftarrow \alpha x y^T + A$ \\
F77 op & $A^T \leftarrow \alpha y x^T +A^T$ \\
F77 call & {\tt CGERU(n, m, $\alpha$, y, incy, x, incx, A, lda)}\\\\
\end{tabular}
}
No extra storage or operations are required.
\subsubsection{GERC}
{ \small
\begin{tabular}{ll}
C call & {\tt cblas\_cgerc(CblasRowMajor, m, n, $\alpha$, x, incx, y, incy, A, lda)}\\
C op & $A \leftarrow \alpha x y^H + A$ \\
F77 op & $A^T \leftarrow \alpha (x y^H)^T + A^T = \alpha \overline{y} x^T + A^T$ \\
F77 call & {\tt CGERU(n, m, $\alpha$, $\overline{y}$, incy, x, incx, A, lda)}\\\\
\end{tabular}
}
Note that we need to allocate $n$-element workspace to hold
the conjugated $y$, and we call {\tt GERU}, not {\tt GERC}.
\subsubsection{HER}
{ \small
\begin{tabular}{ll}
C call & {\tt cblas\_cher(CblasRowMajor, CblasUpper, n, $\alpha$, x, incx, A, lda)}\\
C op & $A \leftarrow \alpha x x^H + A$ \\
F77 op & $A^T \leftarrow \alpha \overline{x} x^T + A^T$ \\
F77 call & {\tt CHER('L', n, $\alpha$, $\overline{x}$, 1, A, lda)}\\\\
\end{tabular}
}
Again, we have an $n$-element workspace and $n$ extra operations.
\subsubsection{HER2}
{ \small
\begin{tabular}{ll}
C call & {\tt cblas\_cher2(CblasRowMajor, CblasUpper, n, $\alpha$, x, incx, y, incy, A, lda)}\\
C op & $A \leftarrow \alpha x y^H + y (\alpha x)^H + A$ \\
F77 op & $A^T \leftarrow \alpha \overline{y} x^T + \overline{\alpha} \overline{x} y^T + A^T =
\alpha \overline{y} (\overline{x})^H + \overline{x} (\alpha \overline{y})^H + A^T$ \\
F77 call & {\tt CHER2('L', n, $\alpha$, $\overline{y}$, 1, $\overline{x}$, 1, A, lda)}\\\\
\end{tabular}
}
So we need $2n$ extra workspace and operations to form the conjugates of $x$
and $y$.
\subsubsection{SYR}
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_ssyr(CblasRowMajor, CblasUpper, n, $\alpha$, x, incx, A, lda)}\\
C op & $A \leftarrow \alpha x x^T + A$ \\
F77 op & $A^T \leftarrow \alpha x x^T + A^T$ \\
F77 call & {\tt SSYR('L', n, $\alpha$, x, incx, A, lda)}\\\\
\end{tabular}
}
No extra storage or operations required.
\subsubsection{SYR2}
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_ssyr2(CblasRowMajor, CblasUpper, n, $\alpha$, x, incx, y, incy, A, lda)}\\
C op & $A \leftarrow \alpha x y^T + \alpha y x^T + A$ \\
F77 op & $A^T \leftarrow \alpha y x^T + \alpha x y^T + A^T$ \\
F77 call & {\tt SSYR2('L', n, $\alpha$, y, incy, x, incx, A, lda)}\\\\
\end{tabular}
}
No extra storage or operations required.
\subsubsection{Level 3 BLAS}
\subsubsection{GEMM}
{\footnotesize
\begin{tabular}{ll}
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A B + \beta C$\\
F77 op & $C^T \leftarrow \alpha B^T A^T + \beta C^T$\\
F77 call & {\tt CGEMM('N', 'N', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A B^T + \beta C$\\
F77 op & $C^T \leftarrow \alpha B A^T + \beta C^T$\\
F77 call & {\tt CGEMM('T', 'N', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasNoTrans, CblasConjTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A B^H + \beta C$\\
F77 op & $C^T \leftarrow \alpha \overline{B} A^T + \beta C^T$\\
F77 call & {\tt CGEMM('C', 'N', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasTrans, CblasNoTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^T B + \beta C$\\
F77 op & $C^T \leftarrow \alpha B^T A + \beta C^T$\\
F77 call & {\tt CGEMM('N', 'T', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasTrans, CblasTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^T B^T + \beta C$\\
F77 op & $C^T \leftarrow \alpha B A + \beta C^T$\\
F77 call & {\tt CGEMM('T', 'T', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasTrans, CblasConjTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^T B^H + \beta C$\\
F77 op & $C^T \leftarrow \alpha \overline{B} A + \beta C^T$\\
F77 call & {\tt CGEMM('C', 'T', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasConjTrans, CblasNoTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^H B + \beta C$\\
F77 op & $C^T \leftarrow \alpha B^T \overline{A} + \beta C^T$\\
F77 call & {\tt CGEMM('N', 'C', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasConjTrans, CblasTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^H B^T + \beta C$\\
F77 op & $C^T \leftarrow \alpha B \overline{A} + \beta C^T$\\
F77 call & {\tt CGEMM('T', 'C', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cgemm(CblasRowMajor, CblasConjTrans, CblasConjTrans, m, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^H B^H + \beta C$\\
F77 op & $C^T \leftarrow \alpha \overline{B} \overline{A} + \beta C^T$\\
F77 call & {\tt CGEMM('C', 'C', n, m, k, $\alpha$, B, ldb, A, lda, $\beta$, C, ldc)}\\\\
\end{tabular}
}
\subsubsection{SYMM/HEMM}
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_chemm(CblasRowMajor, CblasLeft, CblasUpper, m, n, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A B + \beta C$\\
F77 op & $C^T \leftarrow \alpha B^T A^T + \beta C^T$\\
F77 call & {\tt CHEMM('R', 'L', n, m, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_chemm(CblasRowMajor, CblasRight, CblasUpper, m, n, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha B A + \beta C$\\
F77 op & $C^T \leftarrow \alpha A^T B^T + \beta C^T$\\
F77 call & {\tt CHEMM('L', 'L', n, m, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
\end{tabular}
}
\subsubsection{SYRK}
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_csyrk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, $\alpha$, A, lda, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A A^T + \beta C$\\
F77 op & $C^T \leftarrow \alpha A A^T + \beta C^T$\\
F77 call & {\tt CSYRK('L', 'T', n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_csyrk(CblasRowMajor, CblasUpper, CblasTrans, n, k, $\alpha$, A, lda, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^T A + \beta C$\\
F77 op & $C^T \leftarrow \alpha A^T A + \beta C^T$\\
F77 call & {\tt CSYRK('L', 'N', n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
\end{tabular}
}
In reading the above descriptions, it is important to remember a few things.
First, the symmetric matrix is $C$, and thus we change {\tt UPLO} to accommodate
the differing storage of $C$. {\tt TRANSPOSE} is then varied to handle the
storage effects on $A$.
\subsubsection{HERK}
{\small
\begin{tabular}{ll}
C call & {\tt cblas\_cherk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, $\alpha$, A, lda, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A A^H + \beta C$\\
F77 op & $C^T \leftarrow \alpha \overline{A} A^T + \beta C^T$\\
F77 call & {\tt CHERK('L', 'C', n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cherk(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, $\alpha$, A, lda, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^H A + \beta C$\\
F77 op & $C^T \leftarrow \alpha A^T \overline{A} + \beta C^T$\\
F77 call & {\tt CHERK('L', 'N', n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
\end{tabular}
}
\subsubsection{SYR2K}
{ \footnotesize
\begin{tabular}{ll}
C call & {\tt cblas\_csyr2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A B^T + \alpha B A^T + \beta C$\\
F77 op & $C^T \leftarrow \alpha B A^T + \alpha A B^T + \beta C^T =
\alpha A B^T + \alpha B A^T + \beta C^T$\\
F77 call & {\tt CSYR2K('L', 'T', n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_csyr2k(CblasRowMajor, CblasUpper, CblasTrans, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^T B + \alpha B^T A + \beta C$\\
F77 op & $C^T \leftarrow \alpha B^T A + \alpha A^T B + \beta C^T =
\alpha A^T B + \alpha B^T A + \beta C^T$\\
F77 call & {\tt CSYR2K('L', 'N', n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
\end{tabular}
}
Note that we once again wind up with an operation that looks the same from C and
Fortran 77, saving that the C operations wishes to form $C^T$, instead of $C$.
So once again we flip the setting of {\tt UPLO} to handle the difference in the
storage of $C$. We then flip the setting of {\tt TRANS} to handle the storage
effects for $A$ and $B$.
\subsubsection{HER2K}
{\footnotesize
\begin{tabular}{ll}
C call & {\tt cblas\_cher2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A B^H + \overline{\alpha} B A^H + \beta C$\\
F77 op & $C^T \leftarrow \alpha \overline{B} A^T + \overline{\alpha} \overline{A} B^T + \beta C^T =
\overline{\alpha} \overline{A} B^T + \alpha \overline{B} A^T + \beta C^T$\\
F77 call & {\tt CHER2K('L', 'C', n, k, $\overline{\alpha}$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
%
C call & {\tt cblas\_cher2k(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, $\alpha$, A, lda, B, ldb, $\beta$, C, ldc)}\\
C op & $C \leftarrow \alpha A^H B + \overline{\alpha} B^H A + \beta C$\\
F77 op & $C^T \leftarrow \alpha B^T \overline{A} + \overline{\alpha} A^T \overline{B} + \beta C^T =
\overline{\alpha} A^T \overline{B} + \alpha B^T \overline{A} + \beta C^T$\\
F77 call & {\tt CHER2K('L', 'N', n, k, $\overline{\alpha}$, A, lda, B, ldb, $\beta$, C, ldc)}\\\\
\end{tabular}
}
\subsubsection{TRMM/TRSM}
Because of their identical use of the {\tt SIDE}, {\tt UPLO}, and {\tt TRANSA}
parameters, TRMM and TRSM share the same general analysis.
Remember that A is a triangular matrix, and thus when we handle its storage by
flipping {\tt UPLO}, we implicitly change its {\tt TRANS} setting as well.
With this in mind, we have:
{\footnotesize
\noindent
\begin{tabular}{ll}
C call & {\tt cblas\_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, $\alpha$, A, lda, B, ldb)}\\
C op & $B \leftarrow \alpha A B$\\
F77 op & $B^T \leftarrow \alpha B^T A^T$\\
F77 call & {\tt CTRMM('R', 'L', 'N', diag, n, m, $\alpha$, A, lda, B, ldb)}\\\\
%
C call & {\tt cblas\_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasTrans, diag, m, n, $\alpha$, A, lda, B, ldb)}\\
C op & $B \leftarrow \alpha A^T B$\\
F77 op & $B^T \leftarrow \alpha B^T A$\\
F77 call & {\tt CTRMM('R', 'L', 'T', diag, n, m, $\alpha$, A, lda, B, ldb)}\\\\
%
C call & {\tt cblas\_ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, $\alpha$, A, lda, B, ldb)}\\
C op & $B \leftarrow \alpha A^H B$\\
F77 op & $B^T \leftarrow \alpha B^T \overline{A}$\\
F77 call & {\tt CTRMM('R', 'L', 'C', diag, n, m, $\alpha$, A, lda, B, ldb)}\\\\
\end{tabular}
}
\subsubsection{Banded routines}\label{cint:banded}
The above techniques can be used for the banded routines only if a C (row-major)
banded array has some sort of meaning when expanded as a Fortran banded
array. It turns out that when this is done, you get the transpose of
the C array, just as in the dense case.
In Fortran 77, the banded array is an array whose rows correspond to
the diagonals of the matrix, and whose columns contain the selected portion
of the matrix column. To rephrase this, the diagonals of the matrix are
stored in strided storage, and the relevant pieces of the columns of the
matrix are stored in contiguous memory. This makes sense: in a column-based
algorithm, you will want your columns to be contiguous for efficiency
reasons.
In order to ensure our columns are contiguous, we will structure the banded
array as shown below. Notice that the first $K_U$ rows
of the array store the superdiagonals, appropriately spaced to line up
correctly in the column direction with the main diagonal. The last $K_L$
rows contain the subdiagonals.
{\samepage
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
------ Super diagonal KU
----------- Super diagonal 2
------------ Super diagonal 1
------------- main diagonal (D)
------------ Sub diagonal 1
----------- Sub diagonal 2
------ Sub diagonal KL
\end{Verbatim}
}
If we have a row-major storage, and thus a row-oriented algorithm, we will
similarly want our rows to be contiguous in order to ensure efficiency.
The storage scheme that is thus dictated is shown below. Notice
that the first $K_L$ columns store the subdiagonals, appropriately padded
to line up with the main diagonal along rows.
{\samepage
\begin{Verbatim}[fontsize=\small,fontfamily=tt,fontshape=rm]
KL D KU
| | | |
| | | | |
| | | | | |
| | | | | |
| | | | |
| | | |
\end{Verbatim}
}
Now, let us contrast these two storage schemes. Both store
the diagonals of the matrix along the non-contiguous dimension of the matrix.
The column-major banded array stores the matrix columns along the contiguous
dimension, whereas the row-major banded array stores the matrix rows along the
contiguous storage.
This gives us our first hint as to what to do: rows stored where columns
should be, indicated, in the dense routines, that we needed to set a
transpose parameter. We will see that we can do this for the banded routines
as well.
We can further note that in the column-major banded array, the first part of the
non-contiguous dimension (i.e. the first rows) store superdiagonals, whereas
the first part of the non-contiguous dimension of row-major arrays (i.e., the
first columns) store the subdiagonals.
We now note that when you transpose a matrix, the superdiagonals of the matrix
become the subdiagonals of the matrix transpose (and vice versa).
Along the contiguous dimension, we note that we skip $K_U$ elements before
coming to our first entry in a column-major banded array. The same happens
in our row-major banded array, except that the skipping factor is $K_L$.
All this leads to the idea that when we have a row-major banded array, we can
consider it as a transpose of the Fortran 77 column-major banded array, where
we will swap not only $m$ and $n$, but also $K_U$ and $K_L$. An example should
help demonstrate this principle. Let us say we have the matrix
$
A = \left [
\begin{array}{rrrr}
1 & 3 & 5 & 7\\
2 & 4 & 6 & 8
\end{array}
\right ]
$
If we express this entire array in banded form (a fairly dumb thing to do,
but good for example purposes), we get
$K_U = 3$, $K_L = 1$. In row-major banded storage this becomes:
$
C_b = \left [
\begin{array}{rrrrr}
X & 1 & 3 & 5 & 7\\
2 & 4 & 6 & 8 & X
\end{array}
\right ] $
So, we believe this should be the transpose if interpreted as a Fortran 77
banded array. The matrix transpose, and its Fortran 77 banded storage is shown
below:
$A^T = \left [
\begin{array}{rr}
1 & 2\\
3 & 4\\
5 & 6\\
7 & 8
\end{array}
\right ] \Rightarrow
F_b = \left [
\begin{array}{rr}
X & 2\\
1 & 4\\
3 & 6\\
5 & 8\\
7 & X
\end{array}
\right ]$
Now we simply note that since $C_b$ is row major, and $F_b$ is column-major,
they are actually the same array in memory.
With the idea that row-major banded matrices produce the transpose of the matrix
when interpreted as column-major banded matrices, we can use the same analysis
for the banded BLAS as we used for the dense BLAS, noting that we must also
always swap $K_U$ and $K_L$.
\subsubsection{Packed routines}
Packed routines are much simpler than banded. Here we have a triangular,
symmetric or Hermitian matrix which is packed so that only the relevant triangle
is stored. Thus if we have an upper triangular matrix stored in column-major
packed storage, the first element holds the relevant portion of the first column
of the matrix, the next two elements hold the relevant portion of the second
column, etc.
With an upper triangular matrix stored in row-major packed storage, the first
$N$ elements hold the first row of the matrix, the next $N-1$ elements hold
the next row, etc.
Thus we see in the Hermitian and symmetric cases, to get a row-major packed
array correctly interpreted by Fortran 77, we will simply switch the setting
of {\tt UPLO}. This will mean that the rows of the matrix will be read in as the
columns, but this is not a problem, as we have seen before. In the symmetric case,
since $A = A^T$ the column and rows are the same, so there is obviously no
problem. In the Hermitian case, we must be sure that the imaginary component
of the diagonal is not used, and it assumed to be zero. However, the diagonal
element in a row when our matrix is upper will correspond to the diagonal
element in a column when our matrix is called lower, so this is handled as well.
In the triangular cases, we will need to change both {\tt UPLO} and {\tt TRANS},
just as in the dense routines.
With these ideas in mind, the analysis for the dense routines may be used
unchanged for packed.
\clearpage
\end{document}
|