1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
.TH DTRSM l "16 October 1992" "BLAS routine" "BLAS routine"
.SH NAME
DTRSM - solve one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B,
.SH SYNOPSIS
.TP 17
SUBROUTINE DTRSM
( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
B, LDB )
.TP 17
.ti +4
CHARACTER*1
SIDE, UPLO, TRANSA, DIAG
.TP 17
.ti +4
INTEGER
M, N, LDA, LDB
.TP 17
.ti +4
DOUBLE
PRECISION ALPHA
.TP 17
.ti +4
DOUBLE
PRECISION A( LDA, * ), B( LDB, * )
.SH PURPOSE
DTRSM solves one of the matrix equations
where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A ) = A or op( A ) = A'.
.br
The matrix X is overwritten on B.
.br
.SH PARAMETERS
.TP 7
SIDE - CHARACTER*1.
On entry, SIDE specifies whether op( A ) appears on the left
or right of X as follows:
SIDE = 'L' or 'l' op( A )*X = alpha*B.
SIDE = 'R' or 'r' X*op( A ) = alpha*B.
Unchanged on exit.
.TP 7
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the matrix A is an upper or
lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
Unchanged on exit.
TRANSA - CHARACTER*1.
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = 'N' or 'n' op( A ) = A.
TRANSA = 'T' or 't' op( A ) = A'.
TRANSA = 'C' or 'c' op( A ) = A'.
Unchanged on exit.
.TP 7
DIAG - CHARACTER*1.
On entry, DIAG specifies whether or not A is unit triangular
as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit
triangular.
Unchanged on exit.
.TP 7
M - INTEGER.
On entry, M specifies the number of rows of B. M must be at
least zero.
Unchanged on exit.
.TP 7
N - INTEGER.
On entry, N specifies the number of columns of B. N must be
at least zero.
Unchanged on exit.
.TP 7
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha. When alpha is
zero then A is not referenced and B need not be set before
entry.
Unchanged on exit.
.TP 7
A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
Before entry with UPLO = 'U' or 'u', the leading k by k
upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of
A is not referenced.
Before entry with UPLO = 'L' or 'l', the leading k by k
lower triangular part of the array A must contain the lower
triangular matrix and the strictly upper triangular part of
A is not referenced.
Note that when DIAG = 'U' or 'u', the diagonal elements of
A are not referenced either, but are assumed to be unity.
Unchanged on exit.
.TP 7
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When SIDE = 'L' or 'l' then
LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
then LDA must be at least max( 1, n ).
Unchanged on exit.
.TP 7
B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
Before entry, the leading m by n part of the array B must
contain the right-hand side matrix B, and on exit is
overwritten by the solution matrix X.
.TP 7
LDB - INTEGER.
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least
max( 1, m ).
Unchanged on exit.
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
.. External Functions ..
.. External Subroutines ..
.. Intrinsic Functions ..
.. Local Scalars ..
|