1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/**
------------------------------------------------------------
@defgroup blas1 Level 1: vectors operations, O(n) work
@brief Vector operations that perform $O(n)$ work on $O(n)$ data.
These are memory bound, since every operation requires a memory read or write.
@{
@defgroup asum asum: Vector 1 norm (sum)
@brief $\sum_i |Re(x_i)| + |Im(x_i)|$
@defgroup axpy axpy: Add vectors
@brief $y = \alpha x + y$
@defgroup copy copy: Copy vector
@brief $y = x$
@defgroup dot dot: Dot (inner) product
@brief $x^H y$
@defgroup dotu dotu: Dot (inner) product, unconjugated
@brief $x^T y$
@defgroup iamax iamax: Find max element
@brief $\text{argmax}_i\; |x_i|$
@defgroup nrm2 nrm2: Vector 2 norm
@brief $||x||_2$
@defgroup rot rot: Apply Givens plane rotation
@defgroup rotg rotg: Generate Givens plane rotation
@defgroup rotm rotm: Apply modified (fast) Givens plane rotation
@defgroup rotmg rotmg: Generate modified (fast) Givens plane rotation
@defgroup scal scal: Scale vector
@brief $x = \alpha x$
@defgroup swap swap: Swap vectors
@brief $x \leftrightarrow y$
@}
------------------------------------------------------------
@defgroup blas2 Level 2: matrix-vector operations, O(n^2) work
@brief Matrix operations that perform $O(n^2)$ work on $O(n^2)$ data.
These are memory bound, since every operation requires a memory read or write.
@{
@defgroup gemv gemv: General matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup ger ger: General matrix rank 1 update
@brief $A = \alpha xy^H + A$
@defgroup geru geru: General matrix rank 1 update, unconjugated
@brief $A = \alpha xy^T + A$
@defgroup hemv hemv: Hermitian matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup her her: Hermitian rank 1 update
@brief $A = \alpha xx^H + A$
@defgroup her2 her2: Hermitian rank 2 update
@brief $A = \alpha xy^H + conj(\alpha) yx^H + A$
@defgroup symv symv: Symmetric matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup syr syr: Symmetric rank 1 update
@brief $A = \alpha xx^T + A$
@defgroup syr2 syr2: Symmetric rank 2 update
@brief $A = \alpha xy^T + \alpha yx^T + A$
@defgroup trmv trmv: Triangular matrix-vector multiply
@brief $x = Ax$
@defgroup trsv trsv: Triangular matrix-vector solve
@brief $x = op(A^{-1})\; b$
@}
------------------------------------------------------------
@defgroup blas3 Level 3: matrix-matrix operations, O(n^3) work
@brief Matrix-matrix operations that perform $O(n^3)$ work on $O(n^2)$ data.
These benefit from cache reuse, since many operations can be
performed for every read from main memory.
@{
@defgroup gemm gemm: General matrix multiply
@brief $C = \alpha \;op(A) \;op(B) + \beta C$
@defgroup hemm hemm: Hermitian matrix multiply
@brief $C = \alpha A B + \beta C$
or $C = \alpha B A + \beta C$ where $A$ is Hermitian
@defgroup herk herk: Hermitian rank k update
@brief $C = \alpha A A^H + \beta C$ where $C$ is Hermitian
@defgroup her2k her2k: Hermitian rank 2k update
@brief $C = \alpha A B^H + conj(\alpha) B A^H + \beta C$ where $C$ is Hermitian
@defgroup symm symm: Symmetric matrix multiply
@brief $C = \alpha A B + \beta C$
or $C = \alpha B A + \beta C$ where $A$ is symmetric
@defgroup syrk syrk: Symmetric rank k update
@brief $C = \alpha A A^T + \beta C$ where $C$ is symmetric
@defgroup syr2k syr2k: Symmetric rank 2k update
@brief $C = \alpha A B^T + \alpha B A^T + \beta C$ where $C$ is symmetric
@defgroup trmm trmm: Triangular matrix multiply
@brief $B = \alpha \;op(A)\; B$
or $B = \alpha B \;op(A)$ where $A$ is triangular
@defgroup trsm trsm: Triangular solve matrix
@brief $C = op(A)^{-1} B $
or $C = B \;op(A)^{-1}$ where $A$ is triangular
@}
------------------------------------------------------------
@defgroup blas1_internal Level 1: internal routines.
@brief Internal low-level and mid-level wrappers.
@{
@defgroup asum_internal asum: Vector 1 norm (sum)
@defgroup axpy_internal axpy: Add vectors
@defgroup copy_internal copy: Copy vector
@defgroup dot_internal dot: Dot (inner) product
@defgroup dotu_internal dotu: Dot (inner) product, unconjugated
@defgroup iamax_internal iamax: Find max element
@defgroup nrm2_internal nrm2: Vector 2 norm
@defgroup rot_internal rot: Apply Givens plane rotation
@defgroup rotg_internal rotg: Generate Givens plane rotation
@defgroup rotm_internal rotm: Apply modified (fast) Givens plane rotation
@defgroup rotmg_internal rotmg: Generate modified (fast) Givens plane rotation
@defgroup scal_internal scal: Scale vector
@defgroup swap_internal swap: Swap vectors
@}
------------------------------------------------------------
@defgroup blas2_internal Level 2: internal routines.
@brief Internal low-level and mid-level wrappers.
@{
@defgroup gemv_internal gemv: General matrix-vector multiply
@defgroup ger_internal ger: General matrix rank 1 update
@defgroup geru_internal geru: General matrix rank 1 update, unconjugated
@defgroup hemv_internal hemv: Hermitian matrix-vector multiply
@defgroup her_internal her: Hermitian rank 1 update
@defgroup her2_internal her2: Hermitian rank 2 update
@defgroup symv_internal symv: Symmetric matrix-vector multiply
@defgroup syr_internal syr: Symmetric rank 1 update
@defgroup syr2_internal syr2: Symmetric rank 2 update
@defgroup trmv_internal trmv: Triangular matrix-vector multiply
@defgroup trsv_internal trsv: Triangular matrix-vector solve
@}
------------------------------------------------------------
@defgroup blas3_internal Level 3: internal routines.
@brief Internal low-level and mid-level wrappers.
@{
@defgroup gemm_internal gemm: General matrix multiply
@defgroup hemm_internal hemm: Hermitian matrix multiply
@defgroup herk_internal herk: Hermitian rank k update
@defgroup her2k_internal her2k: Hermitian rank 2k update
@defgroup symm_internal symm: Symmetric matrix multiply
@defgroup syrk_internal syrk: Symmetric rank k update
@defgroup syr2k_internal syr2k: Symmetric rank 2k update
@defgroup trmm_internal trmm: Triangular matrix multiply
@defgroup trsm_internal trsm: Triangular solve matrix
@}
*/
|