File: flops.hh

package info (click to toggle)
blaspp 2024.10.26-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,636 kB
  • sloc: cpp: 29,332; ansic: 8,448; python: 2,192; xml: 182; perl: 101; makefile: 53; sh: 7
file content (459 lines) | stat: -rw-r--r-- 14,615 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.

#ifndef BLAS_FLOPS_HH
#define BLAS_FLOPS_HH

#include "blas.hh"

namespace blas {

// =============================================================================
// Level 1 BLAS

// -----------------------------------------------------------------------------
inline double fmuls_asum( double n )
    { return 0; }

inline double fadds_asum( double n )
    { return n-1; }

// -----------------------------------------------------------------------------
inline double fmuls_axpy( double n )
    { return n; }

inline double fadds_axpy( double n )
    { return n; }

// -----------------------------------------------------------------------------
inline double fmuls_iamax( double n )
    { return 0; }

// n-1 compares, which are essentially adds (x > y is x - y > 0)
inline double fadds_iamax( double n )
    { return n-1; }

// -----------------------------------------------------------------------------
inline double fmuls_nrm2( double n )
    { return n; }

inline double fadds_nrm2( double n )
    { return n-1; }

// -----------------------------------------------------------------------------
inline double fmuls_dot( double n )
    { return n; }

inline double fadds_dot( double n )
    { return n-1; }

// -----------------------------------------------------------------------------
inline double fmuls_scal( double n )
    { return n; }

inline double fadds_scal( double n )
    { return 0; }

// -----------------------------------------------------------------------------
inline double fmuls_rot( double n )
    { return 4 * n; }

inline double fadds_rot( double n )
    { return 2 * n; }

// -----------------------------------------------------------------------------
inline double fmuls_rotm( double n )
    { return 2 * n; }

inline double fadds_rotm( double n )
    { return 2 * n; }

// =============================================================================
// Level 2 BLAS
// most formulas assume alpha=1, beta=0 or 1; otherwise add lower-order terms.
// i.e., this is minimum flops and bandwidth that could be consumed.

// -----------------------------------------------------------------------------
inline double fmuls_gemv( double m, double n )
    { return m*n; }

inline double fadds_gemv( double m, double n )
    { return m*n; }

// -----------------------------------------------------------------------------
inline double fmuls_trmv( double n )
    { return 0.5*n*(n + 1); }

inline double fadds_trmv( double n )
    { return 0.5*n*(n - 1); }

// -----------------------------------------------------------------------------
inline double fmuls_ger( double m, double n )
    { return m*n; }

inline double fadds_ger( double m, double n )
    { return m*n; }

// -----------------------------------------------------------------------------
inline double fmuls_gemm( double m, double n, double k )
    { return m*n*k; }

inline double fadds_gemm( double m, double n, double k )
    { return m*n*k; }

// -----------------------------------------------------------------------------
// Assume gbmm is band matrix A (m-by-k) and general matrix B (k-by-n).
// Usually, the bottom equation (m-kl <= k and k-ku <= m) calculates the flops,
// but some matrices are too tall or too wide and require extra care.
// This bottom equation fails because a triangle it subtracts extends beyond
// the matrix, so it should subtract a trapezoid instead.
// For the first corner (m-kl > k) case,
// think rectangle minus trapezoid minus triangle and reduce:
//        (m*k - (m-kl+m-k-kl-1)/2*k - (k-ku-1)*(k-ku)/2)*n;
//        (m*k - (m-kl)*k+(k-1)*k/2 - (k-ku-1)*(k-ku)/2)*n;
//        (kl*k + (k+1)*k/2 - (k-ku-1)*(k-ku)/2)*n;
// We are conveniently left with the geometric interpretation of
// rectangle plus triangle minus triangle.
inline double fmuls_gbmm( double m, double n, double k, double kl, double ku )
{
    if (m-kl > k)
        return (kl*k + (k+1)*k/2. - (k-ku-1)*(k-ku)/2.)*n;
    if (k-ku > m)
        return (ku*m - (m-kl-1)*(m-kl)/2. + (m+1)*m/2.)*n;
    return (m*k - (m-kl-1)*(m-kl)/2. - (k-ku-1)*(k-ku)/2.)*n;
}

// Assuming alpha=1, beta=1, adds are same as muls.
inline double fadds_gbmm( double m, double n, double k, double kl, double ku )
{
    return fmuls_gbmm( m, n, k, kl, ku );
}

// -----------------------------------------------------------------------------
inline double fmuls_hemm( blas::Side side, double m, double n )
    { return (side == blas::Side::Left ? m*m*n : m*n*n); }

inline double fadds_hemm( blas::Side side, double m, double n )
    { return (side == blas::Side::Left ? m*m*n : m*n*n); }

// -----------------------------------------------------------------------------
inline double fmuls_herk( double n, double k )
    { return 0.5*k*n*(n+1); }

inline double fadds_herk( double n, double k )
    { return 0.5*k*n*(n+1); }

// -----------------------------------------------------------------------------
inline double fmuls_her2k( double n, double k )
    { return k*n*n; }

inline double fadds_her2k( double n, double k )
    { return k*n*n; }

// -----------------------------------------------------------------------------
inline double fmuls_trmm( blas::Side side, double m, double n )
{
    if (side == blas::Side::Left)
        return 0.5*n*m*(m + 1);
    else
        return 0.5*m*n*(n + 1);
}

inline double fadds_trmm( blas::Side side, double m, double n )
{
    if (side == blas::Side::Left)
        return 0.5*n*m*(m - 1);
    else
        return 0.5*m*n*(n - 1);
}

//==============================================================================
// template class. Example:
// gflop< float >::gemm( m, n, k ) yields flops for sgemm.
// gflop< std::complex<float> >::gemm( m, n, k ) yields flops for cgemm.
//==============================================================================
template <typename T>
class Gbyte
{
public:
    // ----------------------------------------
    // Level 1 BLAS
    // read x
    static double asum( double n )
        { return 1e-9 * (n * sizeof(T)); }

    // read x, y; write y
    static double axpy( double n )
        { return 1e-9 * (3*n * sizeof(T)); }

    // read x; write y
    static double copy( double n )
        { return 1e-9 * (2*n * sizeof(T)); }

    // read x
    static double iamax( double n )
        { return 1e-9 * (n * sizeof(T)); }

    // read x
    static double nrm2( double n )
        { return 1e-9 * (n * sizeof(T)); }

    // read x, y
    static double dot( double n )
        { return 1e-9 * (2*n * sizeof(T)); }

    // read x; write x
    static double scal( double n )
        { return 1e-9 * (2*n * sizeof(T)); }

    // read x, y; write x, y
    static double swap( double n )
        { return 1e-9 * (4*n * sizeof(T)); }

    // ----------------------------------------
    // Level 2 BLAS
    // read A, x; write y
    static double gemv( double m, double n )
        { return 1e-9 * ((m*n + m + n) * sizeof(T)); }

    // read A triangle, x; write y
    static double hemv( double n )
        { return 1e-9 * ((0.5*(n+1)*n + 2*n) * sizeof(T)); }

    static double symv( double n )
        { return hemv( n ); }

    // read A triangle, x; write x
    static double trmv( double n )
        { return 1e-9 * ((0.5*(n+1)*n + 2*n) * sizeof(T)); }

    static double trsv( double n )
        { return trmv( n ); }

    // read A, x, y; write A
    static double ger( double m, double n )
        { return 1e-9 * ((2*m*n + m + n) * sizeof(T)); }

    // read A triangle, x; write A triangle
    static double her( double n )
        { return 1e-9 * (((n+1)*n + n) * sizeof(T)); }

    static double syr( double n )
        { return her( n ); }

    // read A triangle, x, y; write A triangle
    static double her2( double n )
        { return 1e-9 * (((n+1)*n + n + n) * sizeof(T)); }

    static double syr2( double n )
        { return her2( n ); }

    // read A; write B
    static double copy_2d( double m, double n )
        { return 1e-9 * (2*m*n * sizeof(T)); }

    // ----------------------------------------
    // Level 3 BLAS
    // read A, B, C; write C
    static double gemm( double m, double n, double k )
        { return 1e-9 * ((m*k + k*n + 2*m*n) * sizeof(T)); }

    static double hemm( blas::Side side, double m, double n )
    {
        // read A, B, C; write C
        double sizeA = (side == blas::Side::Left ? 0.5*m*(m+1) : 0.5*n*(n+1));
        return 1e-9 * ((sizeA + 3*m*n) * sizeof(T));
    }

    static double symm( blas::Side side, double m, double n )
        { return hemm( side, m, n ); }

    static double herk( double n, double k )
    {
        // read A, C; write C
        double sizeC = 0.5*n*(n+1);
        return 1e-9 * ((n*k + 2*sizeC) * sizeof(T));
    }

    static double syrk( double n, double k )
        { return herk( n, k ); }

    static double her2k( double n, double k )
    {
        // read A, B, C; write C
        double sizeC = 0.5*n*(n+1);
        return 1e-9 * ((2*n*k + 2*sizeC) * sizeof(T));
    }

    static double syr2k( double n, double k )
        { return her2k( n, k ); }

    static double trmm( blas::Side side, double m, double n )
    {
        // read A triangle, x; write x
        if (side == blas::Side::Left)
            return 1e-9 * ((0.5*(m+1)*m + 2*m*n) * sizeof(T));
        else
            return 1e-9 * ((0.5*(n+1)*n + 2*m*n) * sizeof(T));
    }

    static double trsm( blas::Side side, double m, double n )
        { return trmm( side, m, n ); }
};

//==============================================================================
// Traits to lookup number of operations per multiply and add.
template <typename T>
class FlopTraits
{
public:
    static constexpr double mul_ops = 1;
    static constexpr double add_ops = 1;
};

//------------------------------------------------------------------------------
// specialization for complex
// flops = 6*muls + 2*adds
template <typename T>
class FlopTraits< std::complex<T> >
{
public:
    static constexpr double mul_ops = 6;
    static constexpr double add_ops = 2;
};

//==============================================================================
// template class. Example:
// gflop< float >::gemm( m, n, k ) yields flops for sgemm.
// gflop< std::complex<float> >::gemm( m, n, k ) yields flops for cgemm.
//==============================================================================
template <typename T>
class Gflop
{
public:
    static constexpr double mul_ops = FlopTraits<T>::mul_ops;
    static constexpr double add_ops = FlopTraits<T>::add_ops;

    // ----------------------------------------
    // Level 1 BLAS
    static double asum( double n )
        { return 1e-9 * (mul_ops*fmuls_asum(n) +
                         add_ops*fadds_asum(n)); }

    static double axpy( double n )
        { return 1e-9 * (mul_ops*fmuls_axpy(n) +
                         add_ops*fadds_axpy(n)); }

    static double copy( double n )
        { return 0; }

    static double iamax( double n )
        { return 1e-9 * (mul_ops*fmuls_iamax(n) +
                         add_ops*fadds_iamax(n)); }

    static double nrm2( double n )
        { return 1e-9 * (mul_ops*fmuls_nrm2(n) +
                         add_ops*fadds_nrm2(n)); }

    static double dot( double n )
        { return 1e-9 * (mul_ops*fmuls_dot(n) +
                         add_ops*fadds_dot(n)); }

    static double scal( double n )
        { return 1e-9 * (mul_ops*fmuls_scal(n) +
                         add_ops*fadds_scal(n)); }

    static double swap( double n )
        { return 0; }

    static double rot( double n )
        { return 1e-9 * (mul_ops*fmuls_rot(n) +
                         add_ops*fadds_rot(n)); }

    static double rotm( double n )
        { return 1e-9 * (mul_ops*fmuls_rotm(n) +
                         add_ops*fadds_rotm(n)); }

    // ----------------------------------------
    // Level 2 BLAS
    static double gemv(double m, double n)
        { return 1e-9 * (mul_ops*fmuls_gemv(m, n) +
                         add_ops*fadds_gemv(m, n)); }

    static double symv(double n)
        { return gemv( n, n ); }

    static double hemv(double n)
        { return symv( n ); }

    static double trmv( double n )
        { return 1e-9 * (mul_ops*fmuls_trmv(n) +
                         add_ops*fadds_trmv(n)); }

    static double trsv( double n )
        { return trmv( n ); }

    static double her( double n )
        { return ger( n, n ); }

    static double syr( double n )
        { return her( n ); }

    static double ger( double m, double n )
        { return 1e-9 * (mul_ops*fmuls_ger(m, n) +
                         add_ops*fadds_ger(m, n)); }

    static double her2( double n )
        { return 2*ger( n, n ); }

    static double syr2( double n )
        { return her2( n ); }

    // ----------------------------------------
    // Level 3 BLAS
    static double gemm(double m, double n, double k)
        { return 1e-9 * (mul_ops*fmuls_gemm(m, n, k) +
                         add_ops*fadds_gemm(m, n, k)); }

    static double gbmm(double m, double n, double k, double kl, double ku)
        { return 1e-9 * (mul_ops*fmuls_gbmm(m, n, k, kl, ku) +
                         add_ops*fadds_gbmm(m, n, k, kl, ku)); }

    static double hemm(blas::Side side, double m, double n)
        { return 1e-9 * (mul_ops*fmuls_hemm(side, m, n) +
                         add_ops*fadds_hemm(side, m, n)); }

    static double hbmm(double m, double n, double kd)
        { return gbmm(m, n, m, kd, kd); }

    static double symm(blas::Side side, double m, double n)
        { return hemm( side, m, n ); }

    static double herk(double n, double k)
        { return 1e-9 * (mul_ops*fmuls_herk(n, k) +
                         add_ops*fadds_herk(n, k)); }

    static double syrk(double n, double k)
        { return herk( n, k ); }

    static double her2k(double n, double k)
        { return 1e-9 * (mul_ops*fmuls_her2k(n, k) +
                         add_ops*fadds_her2k(n, k)); }

    static double syr2k(double n, double k)
        { return her2k( n, k ); }

    static double trmm(blas::Side side, double m, double n)
        { return 1e-9 * (mul_ops*fmuls_trmm(side, m, n) +
                         add_ops*fadds_trmm(side, m, n)); }

    static double trsm(blas::Side side, double m, double n)
        { return trmm( side, m, n ); }

};

}  // namespace blas

#endif        //  #ifndef BLAS_FLOPS_HH