1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef BLAS_FLOPS_HH
#define BLAS_FLOPS_HH
#include "blas.hh"
namespace blas {
// =============================================================================
// Level 1 BLAS
// -----------------------------------------------------------------------------
inline double fmuls_asum( double n )
{ return 0; }
inline double fadds_asum( double n )
{ return n-1; }
// -----------------------------------------------------------------------------
inline double fmuls_axpy( double n )
{ return n; }
inline double fadds_axpy( double n )
{ return n; }
// -----------------------------------------------------------------------------
inline double fmuls_iamax( double n )
{ return 0; }
// n-1 compares, which are essentially adds (x > y is x - y > 0)
inline double fadds_iamax( double n )
{ return n-1; }
// -----------------------------------------------------------------------------
inline double fmuls_nrm2( double n )
{ return n; }
inline double fadds_nrm2( double n )
{ return n-1; }
// -----------------------------------------------------------------------------
inline double fmuls_dot( double n )
{ return n; }
inline double fadds_dot( double n )
{ return n-1; }
// -----------------------------------------------------------------------------
inline double fmuls_scal( double n )
{ return n; }
inline double fadds_scal( double n )
{ return 0; }
// -----------------------------------------------------------------------------
inline double fmuls_rot( double n )
{ return 4 * n; }
inline double fadds_rot( double n )
{ return 2 * n; }
// -----------------------------------------------------------------------------
inline double fmuls_rotm( double n )
{ return 2 * n; }
inline double fadds_rotm( double n )
{ return 2 * n; }
// =============================================================================
// Level 2 BLAS
// most formulas assume alpha=1, beta=0 or 1; otherwise add lower-order terms.
// i.e., this is minimum flops and bandwidth that could be consumed.
// -----------------------------------------------------------------------------
inline double fmuls_gemv( double m, double n )
{ return m*n; }
inline double fadds_gemv( double m, double n )
{ return m*n; }
// -----------------------------------------------------------------------------
inline double fmuls_trmv( double n )
{ return 0.5*n*(n + 1); }
inline double fadds_trmv( double n )
{ return 0.5*n*(n - 1); }
// -----------------------------------------------------------------------------
inline double fmuls_ger( double m, double n )
{ return m*n; }
inline double fadds_ger( double m, double n )
{ return m*n; }
// -----------------------------------------------------------------------------
inline double fmuls_gemm( double m, double n, double k )
{ return m*n*k; }
inline double fadds_gemm( double m, double n, double k )
{ return m*n*k; }
// -----------------------------------------------------------------------------
// Assume gbmm is band matrix A (m-by-k) and general matrix B (k-by-n).
// Usually, the bottom equation (m-kl <= k and k-ku <= m) calculates the flops,
// but some matrices are too tall or too wide and require extra care.
// This bottom equation fails because a triangle it subtracts extends beyond
// the matrix, so it should subtract a trapezoid instead.
// For the first corner (m-kl > k) case,
// think rectangle minus trapezoid minus triangle and reduce:
// (m*k - (m-kl+m-k-kl-1)/2*k - (k-ku-1)*(k-ku)/2)*n;
// (m*k - (m-kl)*k+(k-1)*k/2 - (k-ku-1)*(k-ku)/2)*n;
// (kl*k + (k+1)*k/2 - (k-ku-1)*(k-ku)/2)*n;
// We are conveniently left with the geometric interpretation of
// rectangle plus triangle minus triangle.
inline double fmuls_gbmm( double m, double n, double k, double kl, double ku )
{
if (m-kl > k)
return (kl*k + (k+1)*k/2. - (k-ku-1)*(k-ku)/2.)*n;
if (k-ku > m)
return (ku*m - (m-kl-1)*(m-kl)/2. + (m+1)*m/2.)*n;
return (m*k - (m-kl-1)*(m-kl)/2. - (k-ku-1)*(k-ku)/2.)*n;
}
// Assuming alpha=1, beta=1, adds are same as muls.
inline double fadds_gbmm( double m, double n, double k, double kl, double ku )
{
return fmuls_gbmm( m, n, k, kl, ku );
}
// -----------------------------------------------------------------------------
inline double fmuls_hemm( blas::Side side, double m, double n )
{ return (side == blas::Side::Left ? m*m*n : m*n*n); }
inline double fadds_hemm( blas::Side side, double m, double n )
{ return (side == blas::Side::Left ? m*m*n : m*n*n); }
// -----------------------------------------------------------------------------
inline double fmuls_herk( double n, double k )
{ return 0.5*k*n*(n+1); }
inline double fadds_herk( double n, double k )
{ return 0.5*k*n*(n+1); }
// -----------------------------------------------------------------------------
inline double fmuls_her2k( double n, double k )
{ return k*n*n; }
inline double fadds_her2k( double n, double k )
{ return k*n*n; }
// -----------------------------------------------------------------------------
inline double fmuls_trmm( blas::Side side, double m, double n )
{
if (side == blas::Side::Left)
return 0.5*n*m*(m + 1);
else
return 0.5*m*n*(n + 1);
}
inline double fadds_trmm( blas::Side side, double m, double n )
{
if (side == blas::Side::Left)
return 0.5*n*m*(m - 1);
else
return 0.5*m*n*(n - 1);
}
//==============================================================================
// template class. Example:
// gflop< float >::gemm( m, n, k ) yields flops for sgemm.
// gflop< std::complex<float> >::gemm( m, n, k ) yields flops for cgemm.
//==============================================================================
template <typename T>
class Gbyte
{
public:
// ----------------------------------------
// Level 1 BLAS
// read x
static double asum( double n )
{ return 1e-9 * (n * sizeof(T)); }
// read x, y; write y
static double axpy( double n )
{ return 1e-9 * (3*n * sizeof(T)); }
// read x; write y
static double copy( double n )
{ return 1e-9 * (2*n * sizeof(T)); }
// read x
static double iamax( double n )
{ return 1e-9 * (n * sizeof(T)); }
// read x
static double nrm2( double n )
{ return 1e-9 * (n * sizeof(T)); }
// read x, y
static double dot( double n )
{ return 1e-9 * (2*n * sizeof(T)); }
// read x; write x
static double scal( double n )
{ return 1e-9 * (2*n * sizeof(T)); }
// read x, y; write x, y
static double swap( double n )
{ return 1e-9 * (4*n * sizeof(T)); }
// ----------------------------------------
// Level 2 BLAS
// read A, x; write y
static double gemv( double m, double n )
{ return 1e-9 * ((m*n + m + n) * sizeof(T)); }
// read A triangle, x; write y
static double hemv( double n )
{ return 1e-9 * ((0.5*(n+1)*n + 2*n) * sizeof(T)); }
static double symv( double n )
{ return hemv( n ); }
// read A triangle, x; write x
static double trmv( double n )
{ return 1e-9 * ((0.5*(n+1)*n + 2*n) * sizeof(T)); }
static double trsv( double n )
{ return trmv( n ); }
// read A, x, y; write A
static double ger( double m, double n )
{ return 1e-9 * ((2*m*n + m + n) * sizeof(T)); }
// read A triangle, x; write A triangle
static double her( double n )
{ return 1e-9 * (((n+1)*n + n) * sizeof(T)); }
static double syr( double n )
{ return her( n ); }
// read A triangle, x, y; write A triangle
static double her2( double n )
{ return 1e-9 * (((n+1)*n + n + n) * sizeof(T)); }
static double syr2( double n )
{ return her2( n ); }
// read A; write B
static double copy_2d( double m, double n )
{ return 1e-9 * (2*m*n * sizeof(T)); }
// ----------------------------------------
// Level 3 BLAS
// read A, B, C; write C
static double gemm( double m, double n, double k )
{ return 1e-9 * ((m*k + k*n + 2*m*n) * sizeof(T)); }
static double hemm( blas::Side side, double m, double n )
{
// read A, B, C; write C
double sizeA = (side == blas::Side::Left ? 0.5*m*(m+1) : 0.5*n*(n+1));
return 1e-9 * ((sizeA + 3*m*n) * sizeof(T));
}
static double symm( blas::Side side, double m, double n )
{ return hemm( side, m, n ); }
static double herk( double n, double k )
{
// read A, C; write C
double sizeC = 0.5*n*(n+1);
return 1e-9 * ((n*k + 2*sizeC) * sizeof(T));
}
static double syrk( double n, double k )
{ return herk( n, k ); }
static double her2k( double n, double k )
{
// read A, B, C; write C
double sizeC = 0.5*n*(n+1);
return 1e-9 * ((2*n*k + 2*sizeC) * sizeof(T));
}
static double syr2k( double n, double k )
{ return her2k( n, k ); }
static double trmm( blas::Side side, double m, double n )
{
// read A triangle, x; write x
if (side == blas::Side::Left)
return 1e-9 * ((0.5*(m+1)*m + 2*m*n) * sizeof(T));
else
return 1e-9 * ((0.5*(n+1)*n + 2*m*n) * sizeof(T));
}
static double trsm( blas::Side side, double m, double n )
{ return trmm( side, m, n ); }
};
//==============================================================================
// Traits to lookup number of operations per multiply and add.
template <typename T>
class FlopTraits
{
public:
static constexpr double mul_ops = 1;
static constexpr double add_ops = 1;
};
//------------------------------------------------------------------------------
// specialization for complex
// flops = 6*muls + 2*adds
template <typename T>
class FlopTraits< std::complex<T> >
{
public:
static constexpr double mul_ops = 6;
static constexpr double add_ops = 2;
};
//==============================================================================
// template class. Example:
// gflop< float >::gemm( m, n, k ) yields flops for sgemm.
// gflop< std::complex<float> >::gemm( m, n, k ) yields flops for cgemm.
//==============================================================================
template <typename T>
class Gflop
{
public:
static constexpr double mul_ops = FlopTraits<T>::mul_ops;
static constexpr double add_ops = FlopTraits<T>::add_ops;
// ----------------------------------------
// Level 1 BLAS
static double asum( double n )
{ return 1e-9 * (mul_ops*fmuls_asum(n) +
add_ops*fadds_asum(n)); }
static double axpy( double n )
{ return 1e-9 * (mul_ops*fmuls_axpy(n) +
add_ops*fadds_axpy(n)); }
static double copy( double n )
{ return 0; }
static double iamax( double n )
{ return 1e-9 * (mul_ops*fmuls_iamax(n) +
add_ops*fadds_iamax(n)); }
static double nrm2( double n )
{ return 1e-9 * (mul_ops*fmuls_nrm2(n) +
add_ops*fadds_nrm2(n)); }
static double dot( double n )
{ return 1e-9 * (mul_ops*fmuls_dot(n) +
add_ops*fadds_dot(n)); }
static double scal( double n )
{ return 1e-9 * (mul_ops*fmuls_scal(n) +
add_ops*fadds_scal(n)); }
static double swap( double n )
{ return 0; }
static double rot( double n )
{ return 1e-9 * (mul_ops*fmuls_rot(n) +
add_ops*fadds_rot(n)); }
static double rotm( double n )
{ return 1e-9 * (mul_ops*fmuls_rotm(n) +
add_ops*fadds_rotm(n)); }
// ----------------------------------------
// Level 2 BLAS
static double gemv(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_gemv(m, n) +
add_ops*fadds_gemv(m, n)); }
static double symv(double n)
{ return gemv( n, n ); }
static double hemv(double n)
{ return symv( n ); }
static double trmv( double n )
{ return 1e-9 * (mul_ops*fmuls_trmv(n) +
add_ops*fadds_trmv(n)); }
static double trsv( double n )
{ return trmv( n ); }
static double her( double n )
{ return ger( n, n ); }
static double syr( double n )
{ return her( n ); }
static double ger( double m, double n )
{ return 1e-9 * (mul_ops*fmuls_ger(m, n) +
add_ops*fadds_ger(m, n)); }
static double her2( double n )
{ return 2*ger( n, n ); }
static double syr2( double n )
{ return her2( n ); }
// ----------------------------------------
// Level 3 BLAS
static double gemm(double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_gemm(m, n, k) +
add_ops*fadds_gemm(m, n, k)); }
static double gbmm(double m, double n, double k, double kl, double ku)
{ return 1e-9 * (mul_ops*fmuls_gbmm(m, n, k, kl, ku) +
add_ops*fadds_gbmm(m, n, k, kl, ku)); }
static double hemm(blas::Side side, double m, double n)
{ return 1e-9 * (mul_ops*fmuls_hemm(side, m, n) +
add_ops*fadds_hemm(side, m, n)); }
static double hbmm(double m, double n, double kd)
{ return gbmm(m, n, m, kd, kd); }
static double symm(blas::Side side, double m, double n)
{ return hemm( side, m, n ); }
static double herk(double n, double k)
{ return 1e-9 * (mul_ops*fmuls_herk(n, k) +
add_ops*fadds_herk(n, k)); }
static double syrk(double n, double k)
{ return herk( n, k ); }
static double her2k(double n, double k)
{ return 1e-9 * (mul_ops*fmuls_her2k(n, k) +
add_ops*fadds_her2k(n, k)); }
static double syr2k(double n, double k)
{ return her2k( n, k ); }
static double trmm(blas::Side side, double m, double n)
{ return 1e-9 * (mul_ops*fmuls_trmm(side, m, n) +
add_ops*fadds_trmm(side, m, n)); }
static double trsm(blas::Side side, double m, double n)
{ return trmm( side, m, n ); }
};
} // namespace blas
#endif // #ifndef BLAS_FLOPS_HH
|