1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef BLAS_GEMV_HH
#define BLAS_GEMV_HH
#include "blas/util.hh"
#include <limits>
namespace blas {
// =============================================================================
/// General matrix-vector multiply:
/// \[
/// y = \alpha op(A) x + \beta y,
/// \]
/// where $op(A)$ is one of
/// $op(A) = A$,
/// $op(A) = A^T$, or
/// $op(A) = A^H$,
/// alpha and beta are scalars, x and y are vectors,
/// and A is an m-by-n matrix.
///
/// Generic implementation for arbitrary data types.
///
/// @param[in] layout
/// Matrix storage, Layout::ColMajor or Layout::RowMajor.
///
/// @param[in] trans
/// The operation to be performed:
/// - Op::NoTrans: $y = \alpha A x + \beta y$,
/// - Op::Trans: $y = \alpha A^T x + \beta y$,
/// - Op::ConjTrans: $y = \alpha A^H x + \beta y$.
///
/// @param[in] m
/// Number of rows of the matrix A. m >= 0.
///
/// @param[in] n
/// Number of columns of the matrix A. n >= 0.
///
/// @param[in] alpha
/// Scalar alpha. If alpha is zero, A and x are not accessed.
///
/// @param[in] A
/// The m-by-n matrix A, stored in an lda-by-n array [RowMajor: m-by-lda].
///
/// @param[in] lda
/// Leading dimension of A. lda >= max(1, m) [RowMajor: lda >= max(1, n)].
///
/// @param[in] x
/// - If trans = NoTrans:
/// the n-element vector x, in an array of length (n-1)*abs(incx) + 1.
/// - Otherwise:
/// the m-element vector x, in an array of length (m-1)*abs(incx) + 1.
///
/// @param[in] incx
/// Stride between elements of x. incx must not be zero.
/// If incx < 0, uses elements of x in reverse order: x(n-1), ..., x(0).
///
/// @param[in] beta
/// Scalar beta. If beta is zero, y need not be set on input.
///
/// @param[in, out] y
/// - If trans = NoTrans:
/// the m-element vector y, in an array of length (m-1)*abs(incy) + 1.
/// - Otherwise:
/// the n-element vector y, in an array of length (n-1)*abs(incy) + 1.
///
/// @param[in] incy
/// Stride between elements of y. incy must not be zero.
/// If incy < 0, uses elements of y in reverse order: y(n-1), ..., y(0).
///
/// @ingroup gemv
template <typename TA, typename TX, typename TY>
void gemv(
blas::Layout layout,
blas::Op trans,
int64_t m, int64_t n,
blas::scalar_type<TA, TX, TY> alpha,
TA const *A, int64_t lda,
TX const *x, int64_t incx,
blas::scalar_type<TA, TX, TY> beta,
TY *y, int64_t incy )
{
using std::swap;
using scalar_t = blas::scalar_type<TA, TX, TY>;
#define A(i_, j_) A[ (i_) + (j_)*lda ]
// constants
const scalar_t zero = 0;
const scalar_t one = 1;
// check arguments
blas_error_if( layout != Layout::ColMajor &&
layout != Layout::RowMajor );
blas_error_if( trans != Op::NoTrans &&
trans != Op::Trans &&
trans != Op::ConjTrans );
blas_error_if( m < 0 );
blas_error_if( n < 0 );
if (layout == Layout::ColMajor)
blas_error_if( lda < m );
else
blas_error_if( lda < n );
blas_error_if( incx == 0 );
blas_error_if( incy == 0 );
// quick return
if (m == 0 || n == 0 || (alpha == zero && beta == one))
return;
bool doconj = false;
if (layout == Layout::RowMajor) {
// A => A^T; A^T => A; A^H => A & conj
swap( m, n );
if (trans == Op::NoTrans) {
trans = Op::Trans;
}
else {
if (trans == Op::ConjTrans) {
doconj = true;
}
trans = Op::NoTrans;
}
}
int64_t lenx = (trans == Op::NoTrans ? n : m);
int64_t leny = (trans == Op::NoTrans ? m : n);
int64_t kx = (incx > 0 ? 0 : (-lenx + 1)*incx);
int64_t ky = (incy > 0 ? 0 : (-leny + 1)*incy);
// ----------
// form y = beta*y
if (beta != one) {
if (incy == 1) {
if (beta == zero) {
for (int64_t i = 0; i < leny; ++i) {
y[i] = zero;
}
}
else {
for (int64_t i = 0; i < leny; ++i) {
y[i] *= beta;
}
}
}
else {
int64_t iy = ky;
if (beta == zero) {
for (int64_t i = 0; i < leny; ++i) {
y[iy] = zero;
iy += incy;
}
}
else {
for (int64_t i = 0; i < leny; ++i) {
y[iy] *= beta;
iy += incy;
}
}
}
}
if (alpha == zero)
return;
// ----------
if (trans == Op::NoTrans && ! doconj) {
// form y += alpha * A * x
int64_t jx = kx;
if (incy == 1) {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha*x[jx];
jx += incx;
for (int64_t i = 0; i < m; ++i) {
y[i] += tmp * A(i, j);
}
}
}
else {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha*x[jx];
jx += incx;
int64_t iy = ky;
for (int64_t i = 0; i < m; ++i) {
y[iy] += tmp * A(i, j);
iy += incy;
}
}
}
}
else if (trans == Op::NoTrans && doconj) {
// form y += alpha * conj( A ) * x
// this occurs for row-major A^H * x
int64_t jx = kx;
if (incy == 1) {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha*x[jx];
jx += incx;
for (int64_t i = 0; i < m; ++i) {
y[i] += tmp * conj(A(i, j));
}
}
}
else {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha*x[jx];
jx += incx;
int64_t iy = ky;
for (int64_t i = 0; i < m; ++i) {
y[iy] += tmp * conj(A(i, j));
iy += incy;
}
}
}
}
else if (trans == Op::Trans) {
// form y += alpha * A^T * x
int64_t jy = ky;
if (incx == 1) {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = zero;
for (int64_t i = 0; i < m; ++i) {
tmp += A(i, j) * x[i];
}
y[jy] += alpha*tmp;
jy += incy;
}
}
else {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = zero;
int64_t ix = kx;
for (int64_t i = 0; i < m; ++i) {
tmp += A(i, j) * x[ix];
ix += incx;
}
y[jy] += alpha*tmp;
jy += incy;
}
}
}
else {
// form y += alpha * A^H * x
int64_t jy = ky;
if (incx == 1) {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = zero;
for (int64_t i = 0; i < m; ++i) {
tmp += conj(A(i, j)) * x[i];
}
y[jy] += alpha*tmp;
jy += incy;
}
}
else {
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = zero;
int64_t ix = kx;
for (int64_t i = 0; i < m; ++i) {
tmp += conj(A(i, j)) * x[ix];
ix += incx;
}
y[jy] += alpha*tmp;
jy += incy;
}
}
}
#undef A
}
} // namespace blas
#endif // #ifndef BLAS_GEMV_HH
|