File: gemv.hh

package info (click to toggle)
blaspp 2024.10.26-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,636 kB
  • sloc: cpp: 29,332; ansic: 8,448; python: 2,192; xml: 182; perl: 101; makefile: 53; sh: 7
file content (281 lines) | stat: -rw-r--r-- 8,061 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.

#ifndef BLAS_GEMV_HH
#define BLAS_GEMV_HH

#include "blas/util.hh"

#include <limits>

namespace blas {

// =============================================================================
/// General matrix-vector multiply:
/// \[
///     y = \alpha op(A) x + \beta y,
/// \]
/// where $op(A)$ is one of
///     $op(A) = A$,
///     $op(A) = A^T$, or
///     $op(A) = A^H$,
/// alpha and beta are scalars, x and y are vectors,
/// and A is an m-by-n matrix.
///
/// Generic implementation for arbitrary data types.
///
/// @param[in] layout
///     Matrix storage, Layout::ColMajor or Layout::RowMajor.
///
/// @param[in] trans
///     The operation to be performed:
///     - Op::NoTrans:   $y = \alpha A   x + \beta y$,
///     - Op::Trans:     $y = \alpha A^T x + \beta y$,
///     - Op::ConjTrans: $y = \alpha A^H x + \beta y$.
///
/// @param[in] m
///     Number of rows of the matrix A. m >= 0.
///
/// @param[in] n
///     Number of columns of the matrix A. n >= 0.
///
/// @param[in] alpha
///     Scalar alpha. If alpha is zero, A and x are not accessed.
///
/// @param[in] A
///     The m-by-n matrix A, stored in an lda-by-n array [RowMajor: m-by-lda].
///
/// @param[in] lda
///     Leading dimension of A. lda >= max(1, m) [RowMajor: lda >= max(1, n)].
///
/// @param[in] x
///     - If trans = NoTrans:
///       the n-element vector x, in an array of length (n-1)*abs(incx) + 1.
///     - Otherwise:
///       the m-element vector x, in an array of length (m-1)*abs(incx) + 1.
///
/// @param[in] incx
///     Stride between elements of x. incx must not be zero.
///     If incx < 0, uses elements of x in reverse order: x(n-1), ..., x(0).
///
/// @param[in] beta
///     Scalar beta. If beta is zero, y need not be set on input.
///
/// @param[in, out] y
///     - If trans = NoTrans:
///       the m-element vector y, in an array of length (m-1)*abs(incy) + 1.
///     - Otherwise:
///       the n-element vector y, in an array of length (n-1)*abs(incy) + 1.
///
/// @param[in] incy
///     Stride between elements of y. incy must not be zero.
///     If incy < 0, uses elements of y in reverse order: y(n-1), ..., y(0).
///
/// @ingroup gemv

template <typename TA, typename TX, typename TY>
void gemv(
    blas::Layout layout,
    blas::Op trans,
    int64_t m, int64_t n,
    blas::scalar_type<TA, TX, TY> alpha,
    TA const *A, int64_t lda,
    TX const *x, int64_t incx,
    blas::scalar_type<TA, TX, TY> beta,
    TY *y, int64_t incy )
{
    using std::swap;
    using scalar_t = blas::scalar_type<TA, TX, TY>;

    #define A(i_, j_) A[ (i_) + (j_)*lda ]

    // constants
    const scalar_t zero = 0;
    const scalar_t one  = 1;

    // check arguments
    blas_error_if( layout != Layout::ColMajor &&
                   layout != Layout::RowMajor );
    blas_error_if( trans != Op::NoTrans &&
                   trans != Op::Trans &&
                   trans != Op::ConjTrans );
    blas_error_if( m < 0 );
    blas_error_if( n < 0 );

    if (layout == Layout::ColMajor)
        blas_error_if( lda < m );
    else
        blas_error_if( lda < n );

    blas_error_if( incx == 0 );
    blas_error_if( incy == 0 );

    // quick return
    if (m == 0 || n == 0 || (alpha == zero && beta == one))
        return;

    bool doconj = false;
    if (layout == Layout::RowMajor) {
        // A => A^T; A^T => A; A^H => A & conj
        swap( m, n );
        if (trans == Op::NoTrans) {
            trans = Op::Trans;
        }
        else {
            if (trans == Op::ConjTrans) {
                doconj = true;
            }
            trans = Op::NoTrans;
        }
    }

    int64_t lenx = (trans == Op::NoTrans ? n : m);
    int64_t leny = (trans == Op::NoTrans ? m : n);
    int64_t kx = (incx > 0 ? 0 : (-lenx + 1)*incx);
    int64_t ky = (incy > 0 ? 0 : (-leny + 1)*incy);

    // ----------
    // form y = beta*y
    if (beta != one) {
        if (incy == 1) {
            if (beta == zero) {
                for (int64_t i = 0; i < leny; ++i) {
                    y[i] = zero;
                }
            }
            else {
                for (int64_t i = 0; i < leny; ++i) {
                    y[i] *= beta;
                }
            }
        }
        else {
            int64_t iy = ky;
            if (beta == zero) {
                for (int64_t i = 0; i < leny; ++i) {
                    y[iy] = zero;
                    iy += incy;
                }
            }
            else {
                for (int64_t i = 0; i < leny; ++i) {
                    y[iy] *= beta;
                    iy += incy;
                }
            }
        }
    }
    if (alpha == zero)
        return;

    // ----------
    if (trans == Op::NoTrans && ! doconj) {
        // form y += alpha * A * x
        int64_t jx = kx;
        if (incy == 1) {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = alpha*x[jx];
                jx += incx;
                for (int64_t i = 0; i < m; ++i) {
                    y[i] += tmp * A(i, j);
                }
            }
        }
        else {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = alpha*x[jx];
                jx += incx;
                int64_t iy = ky;
                for (int64_t i = 0; i < m; ++i) {
                    y[iy] += tmp * A(i, j);
                    iy += incy;
                }
            }
        }
    }
    else if (trans == Op::NoTrans && doconj) {
        // form y += alpha * conj( A ) * x
        // this occurs for row-major A^H * x
        int64_t jx = kx;
        if (incy == 1) {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = alpha*x[jx];
                jx += incx;
                for (int64_t i = 0; i < m; ++i) {
                    y[i] += tmp * conj(A(i, j));
                }
            }
        }
        else {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = alpha*x[jx];
                jx += incx;
                int64_t iy = ky;
                for (int64_t i = 0; i < m; ++i) {
                    y[iy] += tmp * conj(A(i, j));
                    iy += incy;
                }
            }
        }
    }
    else if (trans == Op::Trans) {
        // form y += alpha * A^T * x
        int64_t jy = ky;
        if (incx == 1) {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = zero;
                for (int64_t i = 0; i < m; ++i) {
                    tmp += A(i, j) * x[i];
                }
                y[jy] += alpha*tmp;
                jy += incy;
            }
        }
        else {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = zero;
                int64_t ix = kx;
                for (int64_t i = 0; i < m; ++i) {
                    tmp += A(i, j) * x[ix];
                    ix += incx;
                }
                y[jy] += alpha*tmp;
                jy += incy;
            }
        }
    }
    else {
        // form y += alpha * A^H * x
        int64_t jy = ky;
        if (incx == 1) {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = zero;
                for (int64_t i = 0; i < m; ++i) {
                    tmp += conj(A(i, j)) * x[i];
                }
                y[jy] += alpha*tmp;
                jy += incy;
            }
        }
        else {
            for (int64_t j = 0; j < n; ++j) {
                scalar_t tmp = zero;
                int64_t ix = kx;
                for (int64_t i = 0; i < m; ++i) {
                    tmp += conj(A(i, j)) * x[ix];
                    ix += incx;
                }
                y[jy] += alpha*tmp;
                jy += incy;
            }
        }
    }

    #undef A
}

}  // namespace blas

#endif        //  #ifndef BLAS_GEMV_HH