1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef BLAS_GERU_HH
#define BLAS_GERU_HH
#include "blas/util.hh"
#include "blas/ger.hh"
#include <limits>
namespace blas {
// =============================================================================
/// General matrix rank-1 update:
/// \[
/// A = \alpha x y^T + A,
/// \]
/// where alpha is a scalar, x and y are vectors,
/// and A is an m-by-n matrix.
///
/// Generic implementation for arbitrary data types.
///
/// @param[in] layout
/// Matrix storage, Layout::ColMajor or Layout::RowMajor.
///
/// @param[in] m
/// Number of rows of the matrix A. m >= 0.
///
/// @param[in] n
/// Number of columns of the matrix A. n >= 0.
///
/// @param[in] alpha
/// Scalar alpha. If alpha is zero, A is not updated.
///
/// @param[in] x
/// The m-element vector x, in an array of length (m-1)*abs(incx) + 1.
///
/// @param[in] incx
/// Stride between elements of x. incx must not be zero.
/// If incx < 0, uses elements of x in reverse order: x(n-1), ..., x(0).
///
/// @param[in] y
/// The n-element vector y, in an array of length (n-1)*abs(incy) + 1.
///
/// @param[in] incy
/// Stride between elements of y. incy must not be zero.
/// If incy < 0, uses elements of y in reverse order: y(n-1), ..., y(0).
///
/// @param[in, out] A
/// The m-by-n matrix A, stored in an lda-by-n array [RowMajor: m-by-lda].
///
/// @param[in] lda
/// Leading dimension of A. lda >= max(1, m) [RowMajor: lda >= max(1, n)].
///
/// @ingroup geru
template <typename TA, typename TX, typename TY>
void geru(
blas::Layout layout,
int64_t m, int64_t n,
blas::scalar_type<TA, TX, TY> alpha,
TX const *x, int64_t incx,
TY const *y, int64_t incy,
TA *A, int64_t lda )
{
typedef blas::scalar_type<TA, TX, TY> scalar_t;
#define A(i_, j_) A[ (i_) + (j_)*lda ]
// constants
const scalar_t zero = 0;
// check arguments
blas_error_if( layout != Layout::ColMajor &&
layout != Layout::RowMajor );
blas_error_if( m < 0 );
blas_error_if( n < 0 );
blas_error_if( incx == 0 );
blas_error_if( incy == 0 );
if (layout == Layout::ColMajor)
blas_error_if( lda < m );
else
blas_error_if( lda < n );
// quick return
if (m == 0 || n == 0 || alpha == zero)
return;
// for row-major, simply swap dimensions and x <=> y
// this doesn't work in the complex gerc case because y gets conj
if (layout == Layout::RowMajor) {
geru( Layout::ColMajor, n, m, alpha, y, incy, x, incx, A, lda );
return;
}
if (incx == 1 && incy == 1) {
// unit stride
for (int64_t j = 0; j < n; ++j) {
// note: NOT skipping if y[j] is zero, for consistent NAN handling
scalar_t tmp = alpha * y[j];
for (int64_t i = 0; i < m; ++i) {
A(i, j) += x[i] * tmp;
}
}
}
else if (incx == 1) {
// x unit stride, y non-unit stride
int64_t jy = (incy > 0 ? 0 : (-n + 1)*incy);
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha * y[jy];
for (int64_t i = 0; i < m; ++i) {
A(i, j) += x[i] * tmp;
}
jy += incy;
}
}
else {
// x and y non-unit stride
int64_t kx = (incx > 0 ? 0 : (-m + 1)*incx);
int64_t jy = (incy > 0 ? 0 : (-n + 1)*incy);
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha * y[jy];
int64_t ix = kx;
for (int64_t i = 0; i < m; ++i) {
A(i, j) += x[ix] * tmp;
ix += incx;
}
jy += incy;
}
}
#undef A
}
} // namespace blas
#endif // #ifndef BLAS_GER_HH
|