File: geru.hh

package info (click to toggle)
blaspp 2024.10.26-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,636 kB
  • sloc: cpp: 29,332; ansic: 8,448; python: 2,192; xml: 182; perl: 101; makefile: 53; sh: 7
file content (141 lines) | stat: -rw-r--r-- 4,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.

#ifndef BLAS_GERU_HH
#define BLAS_GERU_HH

#include "blas/util.hh"
#include "blas/ger.hh"

#include <limits>

namespace blas {

// =============================================================================
/// General matrix rank-1 update:
/// \[
///     A = \alpha x y^T + A,
/// \]
/// where alpha is a scalar, x and y are vectors,
/// and A is an m-by-n matrix.
///
/// Generic implementation for arbitrary data types.
///
/// @param[in] layout
///     Matrix storage, Layout::ColMajor or Layout::RowMajor.
///
/// @param[in] m
///     Number of rows of the matrix A. m >= 0.
///
/// @param[in] n
///     Number of columns of the matrix A. n >= 0.
///
/// @param[in] alpha
///     Scalar alpha. If alpha is zero, A is not updated.
///
/// @param[in] x
///     The m-element vector x, in an array of length (m-1)*abs(incx) + 1.
///
/// @param[in] incx
///     Stride between elements of x. incx must not be zero.
///     If incx < 0, uses elements of x in reverse order: x(n-1), ..., x(0).
///
/// @param[in] y
///     The n-element vector y, in an array of length (n-1)*abs(incy) + 1.
///
/// @param[in] incy
///     Stride between elements of y. incy must not be zero.
///     If incy < 0, uses elements of y in reverse order: y(n-1), ..., y(0).
///
/// @param[in, out] A
///     The m-by-n matrix A, stored in an lda-by-n array [RowMajor: m-by-lda].
///
/// @param[in] lda
///     Leading dimension of A. lda >= max(1, m) [RowMajor: lda >= max(1, n)].
///
/// @ingroup geru

template <typename TA, typename TX, typename TY>
void geru(
    blas::Layout layout,
    int64_t m, int64_t n,
    blas::scalar_type<TA, TX, TY> alpha,
    TX const *x, int64_t incx,
    TY const *y, int64_t incy,
    TA *A, int64_t lda )
{
    typedef blas::scalar_type<TA, TX, TY> scalar_t;

    #define A(i_, j_) A[ (i_) + (j_)*lda ]

    // constants
    const scalar_t zero = 0;

    // check arguments
    blas_error_if( layout != Layout::ColMajor &&
                   layout != Layout::RowMajor );
    blas_error_if( m < 0 );
    blas_error_if( n < 0 );
    blas_error_if( incx == 0 );
    blas_error_if( incy == 0 );

    if (layout == Layout::ColMajor)
        blas_error_if( lda < m );
    else
        blas_error_if( lda < n );

    // quick return
    if (m == 0 || n == 0 || alpha == zero)
        return;

    // for row-major, simply swap dimensions and x <=> y
    // this doesn't work in the complex gerc case because y gets conj
    if (layout == Layout::RowMajor) {
        geru( Layout::ColMajor, n, m, alpha, y, incy, x, incx, A, lda );
        return;
    }

    if (incx == 1 && incy == 1) {
        // unit stride
        for (int64_t j = 0; j < n; ++j) {
            // note: NOT skipping if y[j] is zero, for consistent NAN handling
            scalar_t tmp = alpha * y[j];
            for (int64_t i = 0; i < m; ++i) {
                A(i, j) += x[i] * tmp;
            }
        }
    }
    else if (incx == 1) {
        // x unit stride, y non-unit stride
        int64_t jy = (incy > 0 ? 0 : (-n + 1)*incy);
        for (int64_t j = 0; j < n; ++j) {
            scalar_t tmp = alpha * y[jy];
            for (int64_t i = 0; i < m; ++i) {
                A(i, j) += x[i] * tmp;
            }
            jy += incy;
        }
    }
    else {
        // x and y non-unit stride
        int64_t kx = (incx > 0 ? 0 : (-m + 1)*incx);
        int64_t jy = (incy > 0 ? 0 : (-n + 1)*incy);
        for (int64_t j = 0; j < n; ++j) {
            scalar_t tmp = alpha * y[jy];
            int64_t ix = kx;
            for (int64_t i = 0; i < m; ++i) {
                A(i, j) += x[ix] * tmp;
                ix += incx;
            }
            jy += incy;
        }
    }

    #undef A
}

}  // namespace blas

#endif        //  #ifndef BLAS_GER_HH