1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef BLAS_HER2_HH
#define BLAS_HER2_HH
#include "blas/util.hh"
#include "blas/syr2.hh"
#include <limits>
namespace blas {
// =============================================================================
/// Hermitian matrix rank-2 update:
/// \[
/// A = \alpha x y^H + \text{conj}(\alpha) y x^H + A,
/// \]
/// where alpha is a scalar, x and y are vectors,
/// and A is an n-by-n Hermitian matrix.
///
/// Generic implementation for arbitrary data types.
///
/// @param[in] layout
/// Matrix storage, Layout::ColMajor or Layout::RowMajor.
///
/// @param[in] uplo
/// What part of the matrix A is referenced,
/// the opposite triangle being assumed from symmetry.
/// - Uplo::Lower: only the lower triangular part of A is referenced.
/// - Uplo::Upper: only the upper triangular part of A is referenced.
///
/// @param[in] n
/// Number of rows and columns of the matrix A. n >= 0.
///
/// @param[in] alpha
/// Scalar alpha. If alpha is zero, A is not updated.
///
/// @param[in] x
/// The n-element vector x, in an array of length (n-1)*abs(incx) + 1.
///
/// @param[in] incx
/// Stride between elements of x. incx must not be zero.
/// If incx < 0, uses elements of x in reverse order: x(n-1), ..., x(0).
///
/// @param[in] y
/// The n-element vector y, in an array of length (n-1)*abs(incy) + 1.
///
/// @param[in] incy
/// Stride between elements of y. incy must not be zero.
/// If incy < 0, uses elements of y in reverse order: y(n-1), ..., y(0).
///
/// @param[in, out] A
/// The n-by-n matrix A, stored in an lda-by-n array [RowMajor: n-by-lda].
/// Imaginary parts of the diagonal elements need not be set,
/// are assumed to be zero on entry, and are set to zero on exit.
///
/// @param[in] lda
/// Leading dimension of A. lda >= max(1, n).
///
/// @ingroup her2
template <typename TA, typename TX, typename TY>
void her2(
blas::Layout layout,
blas::Uplo uplo,
int64_t n,
blas::scalar_type<TA, TX, TY> alpha,
TX const *x, int64_t incx,
TY const *y, int64_t incy,
TA *A, int64_t lda )
{
typedef blas::scalar_type<TA, TX, TY> scalar_t;
#define A(i_, j_) A[ (i_) + (j_)*lda ]
// constants
const scalar_t zero = 0;
// check arguments
blas_error_if( layout != Layout::ColMajor &&
layout != Layout::RowMajor );
blas_error_if( uplo != Uplo::Lower &&
uplo != Uplo::Upper );
blas_error_if( n < 0 );
blas_error_if( incx == 0 );
blas_error_if( incy == 0 );
blas_error_if( lda < n );
// quick return
if (n == 0 || alpha == zero)
return;
// for row major, swap lower <=> upper
if (layout == Layout::RowMajor) {
uplo = (uplo == Uplo::Lower ? Uplo::Upper : Uplo::Lower);
}
int64_t kx = (incx > 0 ? 0 : (-n + 1)*incx);
int64_t ky = (incy > 0 ? 0 : (-n + 1)*incy);
if (uplo == Uplo::Upper) {
if (incx == 1 && incy == 1) {
// unit stride
for (int64_t j = 0; j < n; ++j) {
// note: NOT skipping if x[j] or y[j] is zero, for consistent NAN handling
scalar_t tmp1 = alpha * conj( y[j] );
scalar_t tmp2 = conj( alpha * x[j] );
for (int64_t i = 0; i <= j-1; ++i) {
A(i, j) += x[i]*tmp1 + y[i]*tmp2;
}
A(j, j) = real( A(j, j) ) + real( x[j]*tmp1 + y[j]*tmp2 );
}
}
else {
// non-unit stride
int64_t jx = kx;
int64_t jy = ky;
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp1 = alpha * conj( y[jy] );
scalar_t tmp2 = conj( alpha * x[jx] );
int64_t ix = kx;
int64_t iy = ky;
for (int64_t i = 0; i <= j-1; ++i) {
A(i, j) += x[ix]*tmp1 + y[iy]*tmp2;
ix += incx;
iy += incy;
}
A(j, j) = real( A(j, j) ) + real( x[jx]*tmp1 + y[jy]*tmp2 );
jx += incx;
jy += incy;
}
}
}
else {
// lower triangle
if (incx == 1 && incy == 1) {
// unit stride
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp1 = alpha * conj( y[j] );
scalar_t tmp2 = conj( alpha * x[j] );
A(j, j) = real( A(j, j) ) + real( x[j]*tmp1 + y[j]*tmp2 );
for (int64_t i = j+1; i < n; ++i) {
A(i, j) += x[i]*tmp1 + y[i]*tmp2;
}
}
}
else {
// non-unit stride
int64_t jx = kx;
int64_t jy = ky;
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp1 = alpha * conj( y[jy] );
scalar_t tmp2 = conj( alpha * x[jx] );
A(j, j) = real( A(j, j) ) + real( x[jx]*tmp1 + y[jy]*tmp2 );
int64_t ix = jx;
int64_t iy = jy;
for (int64_t i = j+1; i < n; ++i) {
ix += incx;
iy += incy;
A(i, j) += x[ix]*tmp1 + y[iy]*tmp2;
}
jx += incx;
jy += incy;
}
}
}
#undef A
}
} // namespace blas
#endif // #ifndef BLAS_HER2_HH
|