1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef BLAS_SYMV_HH
#define BLAS_SYMV_HH
#include "blas/util.hh"
#include <limits>
namespace blas {
// =============================================================================
/// Symmetric matrix-vector multiply:
/// \[
/// y = \alpha A x + \beta y,
/// \]
/// where alpha and beta are scalars, x and y are vectors,
/// and A is an n-by-n symmetric matrix.
///
/// Generic implementation for arbitrary data types.
///
/// @param[in] layout
/// Matrix storage, Layout::ColMajor or Layout::RowMajor.
///
/// @param[in] uplo
/// What part of the matrix A is referenced,
/// the opposite triangle being assumed from symmetry.
/// - Uplo::Lower: only the lower triangular part of A is referenced.
/// - Uplo::Upper: only the upper triangular part of A is referenced.
///
/// @param[in] n
/// Number of rows and columns of the matrix A. n >= 0.
///
/// @param[in] alpha
/// Scalar alpha. If alpha is zero, A and x are not accessed.
///
/// @param[in] A
/// The n-by-n matrix A, stored in an lda-by-n array [RowMajor: n-by-lda].
///
/// @param[in] lda
/// Leading dimension of A. lda >= max(1, n).
///
/// @param[in] x
/// The n-element vector x, in an array of length (n-1)*abs(incx) + 1.
///
/// @param[in] incx
/// Stride between elements of x. incx must not be zero.
/// If incx < 0, uses elements of x in reverse order: x(n-1), ..., x(0).
///
/// @param[in] beta
/// Scalar beta. If beta is zero, y need not be set on input.
///
/// @param[in, out] y
/// The n-element vector y, in an array of length (n-1)*abs(incy) + 1.
///
/// @param[in] incy
/// Stride between elements of y. incy must not be zero.
/// If incy < 0, uses elements of y in reverse order: y(n-1), ..., y(0).
///
/// @ingroup symv
template <typename TA, typename TX, typename TY>
void symv(
blas::Layout layout,
blas::Uplo uplo,
int64_t n,
blas::scalar_type<TA, TX, TY> alpha,
TA const *A, int64_t lda,
TX const *x, int64_t incx,
blas::scalar_type<TA, TX, TY> beta,
TY *y, int64_t incy )
{
printf( "%s: %s\n", __func__, __PRETTY_FUNCTION__ );
typedef blas::scalar_type<TA, TX, TY> scalar_t;
#define A(i_, j_) A[ (i_) + (j_)*lda ]
// constants
const scalar_t zero = 0;
const scalar_t one = 1;
// check arguments
blas_error_if( layout != Layout::ColMajor &&
layout != Layout::RowMajor );
blas_error_if( uplo != Uplo::Lower &&
uplo != Uplo::Upper );
blas_error_if( n < 0 );
blas_error_if( lda < n );
blas_error_if( incx == 0 );
blas_error_if( incy == 0 );
// quick return
if (n == 0 || (alpha == zero && beta == one))
return;
// for row major, swap lower <=> upper
if (layout == Layout::RowMajor) {
uplo = (uplo == Uplo::Lower ? Uplo::Upper : Uplo::Lower);
}
int64_t kx = (incx > 0 ? 0 : (-n + 1)*incx);
int64_t ky = (incy > 0 ? 0 : (-n + 1)*incy);
// form y = beta*y
if (beta != one) {
if (incy == 1) {
if (beta == zero) {
for (int64_t i = 0; i < n; ++i) {
y[i] = zero;
}
}
else {
for (int64_t i = 0; i < n; ++i) {
y[i] *= beta;
}
}
}
else {
int64_t iy = ky;
if (beta == zero) {
for (int64_t i = 0; i < n; ++i) {
y[iy] = zero;
iy += incy;
}
}
else {
for (int64_t i = 0; i < n; ++i) {
y[iy] *= beta;
iy += incy;
}
}
}
}
if (alpha == zero)
return;
if (uplo == Uplo::Upper) {
// A is stored in upper triangle
// form y += alpha * A * x
if (incx == 1 && incy == 1) {
// unit stride
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp1 = alpha*x[j];
scalar_t tmp2 = zero;
for (int64_t i = 0; i < j; ++i) {
y[i] += tmp1 * A(i, j);
tmp2 += A(i, j) * x[i];
}
y[j] += tmp1 * A(j, j) + alpha * tmp2;
}
}
else {
// non-unit stride
int64_t jx = kx;
int64_t jy = ky;
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp1 = alpha*x[jx];
scalar_t tmp2 = zero;
int64_t ix = kx;
int64_t iy = ky;
for (int64_t i = 0; i < j; ++i) {
y[iy] += tmp1 * A(i, j);
tmp2 += A(i, j) * x[ix];
ix += incx;
iy += incy;
}
y[jy] += tmp1 * A(j, j) + alpha * tmp2;
jx += incx;
jy += incy;
}
}
}
else {
// A is stored in lower triangle
// form y += alpha * A * x
if (incx == 1 && incy == 1) {
// unit stride
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp1 = alpha*x[j];
scalar_t tmp2 = zero;
for (int64_t i = j+1; i < n; ++i) {
y[i] += tmp1 * A(i, j);
tmp2 += A(i, j) * x[i];
}
y[j] += tmp1 * A(j, j) + alpha * tmp2;
}
}
else {
// non-unit stride
int64_t jx = kx;
int64_t jy = ky;
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp1 = alpha*x[jx];
scalar_t tmp2 = zero;
int64_t ix = jx;
int64_t iy = jy;
for (int64_t i = j+1; i < n; ++i) {
ix += incx;
iy += incy;
y[iy] += tmp1 * A(i, j);
tmp2 += A(i, j) * x[ix];
}
y[jy] += tmp1 * A(j, j) + alpha * tmp2;
jx += incx;
jy += incy;
}
}
}
#undef A
}
} // namespace blas
#endif // #ifndef BLAS_SYMV_HH
|