1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef BLAS_SYR_HH
#define BLAS_SYR_HH
#include "blas/util.hh"
#include <limits>
namespace blas {
// =============================================================================
/// Symmetric matrix rank-1 update:
/// \[
/// A = \alpha x x^T + A,
/// \]
/// where alpha is a scalar, x is a vector,
/// and A is an n-by-n symmetric matrix.
///
/// Generic implementation for arbitrary data types.
///
/// @param[in] layout
/// Matrix storage, Layout::ColMajor or Layout::RowMajor.
///
/// @param[in] uplo
/// What part of the matrix A is referenced,
/// the opposite triangle being assumed from symmetry.
/// - Uplo::Lower: only the lower triangular part of A is referenced.
/// - Uplo::Upper: only the upper triangular part of A is referenced.
///
/// @param[in] n
/// Number of rows and columns of the matrix A. n >= 0.
///
/// @param[in] alpha
/// Scalar alpha. If alpha is zero, A is not updated.
///
/// @param[in] x
/// The n-element vector x, in an array of length (n-1)*abs(incx) + 1.
///
/// @param[in] incx
/// Stride between elements of x. incx must not be zero.
/// If incx < 0, uses elements of x in reverse order: x(n-1), ..., x(0).
///
/// @param[in, out] A
/// The n-by-n matrix A, stored in an lda-by-n array [RowMajor: n-by-lda].
///
/// @param[in] lda
/// Leading dimension of A. lda >= max(1, n).
///
/// @ingroup syr
template <typename TA, typename TX>
void syr(
blas::Layout layout,
blas::Uplo uplo,
int64_t n,
blas::scalar_type<TA, TX> alpha,
TX const *x, int64_t incx,
TA *A, int64_t lda )
{
typedef blas::scalar_type<TA, TX> scalar_t;
#define A(i_, j_) A[ (i_) + (j_)*lda ]
// constants
const scalar_t zero = 0;
// check arguments
blas_error_if( layout != Layout::ColMajor &&
layout != Layout::RowMajor );
blas_error_if( uplo != Uplo::Lower &&
uplo != Uplo::Upper );
blas_error_if( n < 0 );
blas_error_if( incx == 0 );
blas_error_if( lda < n );
// quick return
if (n == 0 || alpha == zero)
return;
// for row major, swap lower <=> upper
if (layout == Layout::RowMajor) {
uplo = (uplo == Uplo::Lower ? Uplo::Upper : Uplo::Lower);
}
int64_t kx = (incx > 0 ? 0 : (-n + 1)*incx);
if (uplo == Uplo::Upper) {
if (incx == 1) {
// unit stride
for (int64_t j = 0; j < n; ++j) {
// note: NOT skipping if x[j] is zero, for consistent NAN handling
scalar_t tmp = alpha * x[j];
for (int64_t i = 0; i <= j; ++i) {
A(i, j) += x[i] * tmp;
}
}
}
else {
// non-unit stride
int64_t jx = kx;
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha * x[jx];
int64_t ix = kx;
for (int64_t i = 0; i <= j; ++i) {
A(i, j) += x[ix] * tmp;
ix += incx;
}
jx += incx;
}
}
}
else {
// lower triangle
if (incx == 1) {
// unit stride
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha * x[j];
for (int64_t i = j; i < n; ++i) {
A(i, j) += x[i] * tmp;
}
}
}
else {
// non-unit stride
int64_t jx = kx;
for (int64_t j = 0; j < n; ++j) {
scalar_t tmp = alpha * x[jx];
int64_t ix = jx;
for (int64_t i = j; i < n; ++i) {
A(i, j) += x[ix] * tmp;
ix += incx;
}
jx += incx;
}
}
}
#undef A
}
} // namespace blas
#endif // #ifndef BLAS_SYR_HH
|